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Abstract. During an interaction, interlocutors emit multimodal social
signals to communicate their intent by exchanging speaking turns smoothly
or through interruptions, and adapting to their interacting partners which
is referred to as interpersonal synchrony. We are interested in under-
standing whether the synchrony of multimodal signals could help to dis-
tinguish different types of turn-shifts. We consider three types of turn-
shifts: smooth turn exchange, interruption and backchannel in this paper.
We segmented each turn-shift into three phases: before, during and after,
we calculated the synchrony measures of the three phases for multimodal
signals (facial expression, head pose, and low-level acoustic features). In
this paper, a brief analysis of synchronization during turn-shifts is pre-
sented, we also study the evolution of interpersonal synchrony before,
during and after the turn-shifts. We proposed computational models for
the turn-shift classification task only using synchrony measures. The best
performance was obtained with an FNN model using the three phases’
synchrony score of all features (accuracy of 0.75).

Keywords: Turn-shift - Synchrony - Neural network.

1 Introduction

During an interaction, people communicate information via verbal and nonverbal
channels. Verbal communication transfers information through language contain-
ing explicit content. Nonverbal behavior conveys through “body language” in-
cluding gestures, facial expressions, body movement, and gaze [8]. Intra-synergies
are formed within one’s own behavior [14].

While the intent is communicated in a direct manner, by emitting multimodal
social signals, people also coordinate and adapt their behavior to that of their
interlocutors [14] in a continuous manner. Being in sync enables a fluid exchange
of information and increases the engagement level [21]. This coordination of
behaviors, which may occur unintentionally [40], is also referred to as synchrony
and we define it as in [19].

In conversations, speaking turns are exchanged between the interlocutors
which is done smoothly or through interruptions. We call this change of turns as
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turn-shift in this paper. Beattie [3] and Schegloff and Sacks [39] classified turn-
shift into three main categories based on simultaneous speech and willingness to
yield the floor: smooth switch, interruption, and overlap. Overlap happens at the
end of a speaking turn when the listener starts speaking and over-anticipating
the end of the current speaker’s turn [37]. On the other hand, interruption grabs
the floor against the speaker’s will when she/he is not finished. Here we also
consider the backchannels which are produced by the listener without the intent
to grab the speaking turn. Similar to interruption, backchannels always happen
during a speaking floor. They may be mistakenly identified as an interruption
when conducting real-time analysis of interlocutors’ multimodal signals.

We are interested in understanding whether the synchrony of multimodal
signals could help to distinguish different turn-shift types along with backchannel
via analysis. A predictor (computational model) is built for the classification task
using synchrony measures. We focus on dyadic interactions. To our knowledge,
we are the first to build a computational model to classify turn-shift types using
only synchrony measures.

In this paper, overlap and smooth switch are merged as smooth turn exchange
since they are at the end of a turn. Thus, we analyze synchrony measures for
the following three turn-shift types: smooth turn exchange, backchannel and
interruption.

Related works of turn-shift and synchrony will be introduced in Section 2. In
Section 3, the analyzed corpus and the studied features will be explained. The
analysis will be shared in Section 4 and our turn-shift type predictors and their
results will be presented in Section 5. The paper will be concluded with a brief
discussion of the possible future applications and extensions of our work.

2 Related works

Turn-shift during interaction has been an interesting subject of research for a
long time. Emanuel A. Schegloff [38] firstly defined conversation sequencing rules.
During the course of a conversation, interlocutors dynamically collaborate with
each other by yielding and taking the speaking turns based on rules in order to
keep the flow of information exchange and maintain the communication [15,9].
The idea of conversation analysis was then proposed by Harvey Sacks [37] which
describes its most basic structure as turn-taking.

Various works analyzed turn-taking, to get a better understanding of the
coordination taking place during turn-shifts by looking into multimodal features,
such as eye-gaze [17,26], respiration [25,27], and head-direction [42]. Linguistic
features such as syntactic structure, turn-ending markers, and language model
were also investigated [29,32,28]. They highlighted the importance of prosodic
feature variation (e.g. fundamental frequency F'0 and intensity) during turn-
shifts [22, 30, 43]. Interruptions were observed to be often combined with higher
voice energy [41,23,24]. These differences in the three turn-shift types might
lead to an increased or decreased interpersonal synchrony.
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To study the interpersonal synchrony of whether the partners are in sync or
not, a multitude of methods were introduced.

Pioneer works consists of manual assessments that rely on trained observers.
The synchrony perception was done by directly observing the data on a local time
scale using behavior coding methods [12,16]. For larger time scales, judgment
methods were employed [12, 6]. The rating was done using a Likert scale [12, 6].

Manual annotation is a laborious and time-consuming task. This tedious
workload was relieved by the appearance of automatic measures. The measures
capture relevant signals to detect synchrony. One of the most commonly used
measures for interpersonal synchrony is the correlation [11, 18, 35] that calculates
the synchrony during a same period. Interlocutors’ social signals constantly react
to those of the other which leads to behavior coordination. When conversing,
the perception of the other interacting partner’s behavior is delayed by a certain
time period (2 to 4 seconds [13,31]). Several works consider this time delay by
employing the time-lagged cross-correlation [7,1,4]. As such behavior signals
are shifted in time, but they can also vary in length. Dynamic Time Warping
(DTW) [33], which measures the similarity between two temporal sequences
while being invariant to speed and length, can address such problems. It is
widely used to find common patterns [5]. Some other studies perform spectral
analysis to capture the synchrony between signals. The evolution of the relative
phase is measured to obtain information related to synchrony stability [34, 36].

For our study, we choose to employ frequently used synchrony measures of
correlation (Pearson correlation coefficient), time-lagged cross-correlation, and
DTW to study the synchrony of a turn-shift. As explained above, the three
measures differ in the way how they measure synchrony. Correlation expresses
the linear relation of signals within the same time window. Time-lagged cross-
correlation takes into account the time swift between the signals and DTW maps
the signals that are shifted in time and differ in length. This leads us to use all
three of them.

Prior works analyzed the synchrony of interlocutors’ behavior during the
entire course of the interaction. They do not specifically look into them during
the turn-shift moments.

We want to check if there is a visible link between synchrony and turn-
shift which allows synchrony measures to serve as a potential feature for the
characterization of turn-shift types. We also intend to verify the usefulness of
synchrony measures in classifying the turn-shift types via computational models.

3 Corpus

The NoXi database [10], which contains screen-mediated face-to-face dyadic in-
teractions, was used for this study. The database is made up of 3 parts depending
on the recording location (France, Germany, and UK). For our study, we choose
to use the French part that contains 21 dyadic interactions performed by 28
participants with a total duration of 7h22.
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All turn-shift moments (1403 smooth turn exchanges, 1651 backchannels,
and 929 interruptions) were manually annotated following Yang’s annotation
schema [44].

The turn-shift and backchannel moments were identified on the onset point
of the listener’s voice activity which we note as ty. We segmented each moment
into three phases:

— Before: tg — 6s ~ tg — 2s;
— During: tg — 2s ~ tg + 2s;
— After: tg + 2s ~ to + 6s.

We define the three phases of turn-shift (before, during, and after) to re-
fine the detection of different shifts. For each phase, multimodal features were
extracted, and the synchrony scores between partners were calculated separately.

For our study, the features employed are the following:

— Facial features: AU1, AU2, AU4, AU12, and AU15;
— Head features: Head translation and rotation;
— Acoustic features: FO and loudness.

Facial features were obtained using OpenFace [2] and acoustic features were
extracted via openSMILE [20].

As the initial head position of the interlocutor may create a bias, instead
of using the absolute position we applied the following equation for the head
translation, called head motion activity:

Viead(t) = V(@i — 2i21)® + (yi — yim1)® + (21 — 2i-1)2 (1)

where x;, y; and z; are the coordinates of the head position in the image at
timestep .
And for head rotation, we also calculate the head rotation activity:

THead () = |25 — Ti—1| + |yi — vi—1| + |20 — zi—1] (2)

where x;, y; and z; are the head angles according to the 3 axes at timestep <.
A z-score normalization was applied to all features for them to be invariant
to the quantity of behaviors of interlocutors.

4 Analysis

To understand the relationship between synchrony and turn-shift types, we an-
alyzed the presented multimodal signals. The significance of the turn-shift type
difference was checked via a two-tailed t-test.

We start our analysis by looking at the interpersonal synchrony scores (cor-
relation, time-lagged cross-correlation, and DTW) during the turn-shift (during
phase of ty — 2s ~ to + 2s) for all features.

Significant differences can be seen for several signals of interruption (Int),
smooth turn exchange (ST), and backchannel (BC) with t-test (p < 0.01) in
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Fig. 1. Correlation of multimodal features during Interruption(Int), Backchannel(BC),
Smooth turn exchange(ST) (*: p < 0.01)
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Fig. 2. Time-lagged cross-correlation of multimodal features during Interruption(Int),
Backchannel(BC), Smooth turn exchange(ST) (*: p < 0.01)
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Fig.3. DTW of multimodal features during Interruption(Int), Backchannel(BC),
Smooth turn exchange(ST)

Figures 1, 2, and 3. To detail, with the synchrony score obtained through corre-
lation, in Figures 1, smooth turn exchange gets higher negative correlation scores
for acoustic and head features (showing opposite trends), these features allow
smooth turn exchange to be differentiated from interruption and backchannel.
The values of the other two are mostly uncorrelated (close to 0) or compara-
tively less correlated. Interruption gets a higher positive correlation score for
AU12 while smooth turn exchange and backchannel shows no relation (close to
0). Thus, correlation measure can be used to distinguish smooth turn exchange
and interruption.

In Figure 2, backchannel is significant for the acoustic features of FO and
loudness using time-lagged correlation. For all three types, a positive correlation
can be observed for AU1 and loudness. For AU1, no correlation can be found for
backchannel while the other two are positively correlated. An increasing trend
of synchrony can be seen in the order of interruption, smooth turn exchange,
and backchannel for loudness. FO is negatively correlated for all three types.
A noticeably higher correlation score can be noticed for backchannel compared
to the other two. Backchannels can thus be identifiable among the others via
time-lagged correlation scores of AU1, FO and loudness.

Using DTW, in Figure 3, backchannel for FO and smooth turn exchange for
head features are significant. Via DTW, the distance between two signals can be
measured, which can be interpreted to be more synchronized when the distance
gets smaller. Here we can note a lower sync during smooth turn exchange via the
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head translation and rotation compared to interruption and backchannel. In the
same manner, a lower sync can be seen for backchannel with FO compared to the
other two. Therefore, DTW can be used to distinguish smooth turn exchange
and backchannel.

We can thus identify the three types of smooth turn exchange, interruption,
and backchannel using the synchrony measures at the during phase of ty — 2s ~
to + 2s.

The usefulness of synchrony scores has been proved for the task of identifying
turn-shift types. However, a clearer way of distinguishing them would be more
desirable. To do so, we observe the variation of synchrony scores before, during,
and after the turn-shifts.
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o035
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Fig. 4. Correlation of multimodal features before, during, and after Interruption(Int),
Backchannel(BC), Smooth turn exchange(ST) (*: p < 0.01)

By evaluating the evolution of correlation measures before, during, and after
turn-shifts, in Figure 4, for smooth turn exchange we can find a remarkable sud-
den increase in negative correlation in the features of F0, loudness, head rotation
and translation. For these acoustic and head features, a stable trend or only a
slight change in synchrony can be observed for backchannel and interruption.

In the same respect, in Figure 5 synchrony evolution trends of acoustic fea-
tures obtained via time-lagged cross-correlation render significant information.
The trends of backchannels are easily distinguishable compared to interruption
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AU . ) AU2 ) AU4

headR headT . " loudness*

Fig. 5. Time-lagged cross-correlation of multimodal features before, during, and after
Interruption(Int), Backchannel(BC), Smooth turn exchange(ST) (*: p < 0.01)

and smooth turn exchange. An increase in inverse correlation can be seen for
F0, and for loudness, the synchrony score rises during backchannels while there
is only a minor change in synchrony score for the other two types.

Figure 6 present the evolution of the DTW synchrony score. Head rotation,
F0, and loudness show an increase in synchrony scores during the turn-shifts.
This could be interpreted as the turn-shift event causing an effect on interper-
sonal synchrony.

The difference between the three phases was calculated to check the variation
significance of the phase transitions (before-during and during-after) via the t-
test (p < 0.01).

The evolution of synchrony scores of the three phases of before, during, and
after provided additional information on distinguishing turn-shift types. As seen
above, each turn-shift type has different synchrony evolution trends which have
been proven to enable the identification of smooth turn exchange, interruption,
and backchannel.

5 Turn-shift Classification Models

With the analysis of the relationship between synchrony and turn-shift types, we
want to employ synchrony measures in identifying the different turn-shift types
to verify their usefulness. For this, we built computational models only using the
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1225

headR* headT - " loudness*

Fig.6. DTW of multimodal features before, during, and after Interruption(Int),
Backchannel(BC), Smooth turn exchange(ST) (*: p < 0.01)

synchrony measures of the three segmented phases in the turn-shift classification
task.
We approach this task considering two aspects:

— choice of turn-shift phase(s)
— choice of features

As our Model 1, we start by looking into the synchrony measures of all fea-
tures during turn-shifts. We use a feedforward neural network (FNN) to classify
the turn-shift types.

In Section 4, we have identified several features by analysis which were signif-
icant in differentiating the turn-shift types. We selected these features to check
if the same performance could be obtained only by using these features. The
selected features for the during phase are:

— Correlation: AU12 and head translation and rotation;
— Time-lagged cross-correlation: AU1, F0, and loudness;
— DTW: Head translation and rotation, and FO.

Via Model 1, an accuracy of 0.627, in Table 1, is obtained. With this, we can
see that the synchrony measure can be used to identify turn-shift types. Also,
the same accuracy of 0.627 is obtained using only the selected features. This
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Table 1. Accuracy scores of different turn-shift classification models.

Model Accuracy
Model 2 0.750
Model 2 (selected features)| 0.650

supports our analysis that these features indeed are significant in identifying
turn-shift types.

We continue by using the synchrony measures obtained through all three
phases of before, during, and after. We have tested structures of FNN, one-
dimensional convolutional neural network (1D CNN), and long short-term mem-
ory network (LSTM) with all features. The best-performing model was the FNN
which we have chosen as our Model 2.

We have also evaluated Model 2 using the selected features for all three phases
are:

— Correlation: Head translation and rotation, F0, and loudness;
— Time-lagged cross-correlation: FO and loudness;
— DTW: Head rotation, F0O, and loudness.

An accuracy score of 0.750 is obtained for Model 2, in Table 1. However,
the accuracy decreases to 0.636 when using only the selected features. This can
be explained by the fact that the cross-modality information was missed in the
analysis, as it is implicit and thus hard to visually capture them.

Model 2 renders a promising accuracy, however, its application is restricted
as the future is required. To enable real-time turn-shift identification, we assess
Model 2 by varying the moment time range. We studied the 3 time ranges of:
to — 6s ~ tg + 2s, tg — 6s ~ tg, and tg — 68 ~ tg — 2s.

Table 2. Accuracy scores of model 2 using all features with different time ranges.

Moment time range|Accuracy
to — 68 ~ tg + 28 0.727
to — 6S ~ t() 0.478
t() — 6s ~ to —2s 0.530

We can remark that a similar accuracy score of 0.727 can be obtained using
the moment time range of ty — 6s ~ tg + 2s. This implies that the after phase
(to + 2s ~ to + 6s) does not play a critical role in identifying the turn-shift
types, which might be too far from the turn-shift moment to provide useful
information. For the identification to work in real-time, the moment time range
must be restricted to before the turn-shift moment of ¢y. However, the results of
to — 6s ~ tg and ty — 6s ~ tg — 2s are not acceptable for real-time detection, this
indicates that the period just after the turn-shift may carry the most important
information to identify the turn-shift type.
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Table 3. Accuracy scores of Model 2 using selected features with different time ranges.

Moment time range|Accuracy
to — 6s ~ tg + 2s 0.682
to — 6s ~ to 0.397
t() — 6s ~ t() —2s 0.434

As seen above for Model 2, in Table 1, the same result of accuracy score
falling (0.682, 0.397, and 0.434 respectively) when using the selected features
can be observed.

Thus, the best is to use Model 2 with all features with the turn-shift moment
time range of tg — 6s ~ to + 2.

6 Conclusion and Discussion

Several works have been done studying turn-shift types of smooth turn exchange
and interruption, backchannels by analyzing multimodal signals. However, the
research on turn-shift types and synchrony is still to be done.

Through the analysis of multimodal signals (visual and acoustic features),
we investigated the synchrony scores for three phases before, during, and after
turn-shift. We were able to find a link between synchrony scores and turn-shift
types and backchannel. This relationship was used to build computational mod-
els to automatically classify the turn-shift types. The modeling of all features
of all three phases showed the most promising result which proved the useful-
ness of synchrony measures in turn-shift identification task. We also looked into
whether the classification could be done in real-time by varying the moment
time range. A lower accuracy was obtained compared to that using future in-
formation, although it is better than random chance and is a compromise to be
considered.

Our turn-shift type identification model can be applied to various purposes.
Manual annotation of turn-shifts is a lot of work, this is the problem we need to
face every time a new corpus is generated, we are looking forward to integrat-
ing this model into automatic annotation systems that can help to detect and
annotate different turn-shifts. The identified turn-shifts could also be used to
analyze the personality or characteristic of people. We studied the synchrony of
the same features of the interlocutors. We would also include cross-modality syn-
chrony measures in the future to improve the performance of our classification
model.
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