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Is turn-shift distinguishable with synchrony? ⋆
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During an interaction, interlocutors emit multimodal social signals to communicate their intent by exchanging speaking turns smoothly or through interruptions, and adapting to their interacting partners which is referred to as interpersonal synchrony. We are interested in understanding whether the synchrony of multimodal signals could help to distinguish different types of turn-shifts. We consider three types of turnshifts: smooth turn exchange, interruption and backchannel in this paper. We segmented each turn-shift into three phases: before, during and after, we calculated the synchrony measures of the three phases for multimodal signals (facial expression, head pose, and low-level acoustic features). In this paper, a brief analysis of synchronization during turn-shifts is presented, we also study the evolution of interpersonal synchrony before, during and after the turn-shifts. We proposed computational models for the turn-shift classification task only using synchrony measures. The best performance was obtained with an FNN model using the three phases' synchrony score of all features (accuracy of 0.75).

Introduction

During an interaction, people communicate information via verbal and nonverbal channels. Verbal communication transfers information through language containing explicit content. Nonverbal behavior conveys through "body language" including gestures, facial expressions, body movement, and gaze [START_REF] Burgoon | Nonverbal signals. The SAGE handbook of interpersonal communication[END_REF]. Intra-synergies are formed within one's own behavior [START_REF] Condon | Sound film analysis of normal and pathological behavior patterns[END_REF].

While the intent is communicated in a direct manner, by emitting multimodal social signals, people also coordinate and adapt their behavior to that of their interlocutors [START_REF] Condon | Sound film analysis of normal and pathological behavior patterns[END_REF] in a continuous manner. Being in sync enables a fluid exchange of information and increases the engagement level [START_REF] Fong | A survey of socially interactive robots[END_REF]. This coordination of behaviors, which may occur unintentionally [START_REF] Schmidt | Dynamics of interpersonal coordination[END_REF], is also referred to as synchrony and we define it as in [START_REF] Delaherche | Interpersonal synchrony: A survey of evaluation methods across disciplines[END_REF].

In conversations, speaking turns are exchanged between the interlocutors which is done smoothly or through interruptions. We call this change of turns as turn-shift in this paper. Beattie [START_REF] Beattie | Interruption in conversational interaction, and its relation to the sex and status of the interactants[END_REF] and Schegloff and Sacks [START_REF] Schegloff | Opening up closings[END_REF] classified turnshift into three main categories based on simultaneous speech and willingness to yield the floor: smooth switch, interruption, and overlap. Overlap happens at the end of a speaking turn when the listener starts speaking and over-anticipating the end of the current speaker's turn [START_REF] Sacks | A simplest systematics for the organization of turn taking for conversation[END_REF]. On the other hand, interruption grabs the floor against the speaker's will when she/he is not finished. Here we also consider the backchannels which are produced by the listener without the intent to grab the speaking turn. Similar to interruption, backchannels always happen during a speaking floor. They may be mistakenly identified as an interruption when conducting real-time analysis of interlocutors' multimodal signals.

We are interested in understanding whether the synchrony of multimodal signals could help to distinguish different turn-shift types along with backchannel via analysis. A predictor (computational model) is built for the classification task using synchrony measures. We focus on dyadic interactions. To our knowledge, we are the first to build a computational model to classify turn-shift types using only synchrony measures.

In this paper, overlap and smooth switch are merged as smooth turn exchange since they are at the end of a turn. Thus, we analyze synchrony measures for the following three turn-shift types: smooth turn exchange, backchannel and interruption.

Related works of turn-shift and synchrony will be introduced in Section 2. In Section 3, the analyzed corpus and the studied features will be explained. The analysis will be shared in Section 4 and our turn-shift type predictors and their results will be presented in Section 5. The paper will be concluded with a brief discussion of the possible future applications and extensions of our work.

Related works

Turn-shift during interaction has been an interesting subject of research for a long time. Emanuel A. Schegloff [START_REF] Schegloff | Sequencing in conversational openings 1[END_REF] firstly defined conversation sequencing rules. During the course of a conversation, interlocutors dynamically collaborate with each other by yielding and taking the speaking turns based on rules in order to keep the flow of information exchange and maintain the communication [START_REF] Condon | A segmentation of behavior[END_REF][START_REF] Burgoon | Interpersonal adaptation: Dyadic interaction patterns[END_REF]. The idea of conversation analysis was then proposed by Harvey Sacks [START_REF] Sacks | A simplest systematics for the organization of turn taking for conversation[END_REF] which describes its most basic structure as turn-taking.

Various works analyzed turn-taking, to get a better understanding of the coordination taking place during turn-shifts by looking into multimodal features, such as eye-gaze [START_REF] De Kok | Multimodal end-of-turn prediction in multi-party meetings[END_REF][START_REF] Ishii | Predicting next speaker and timing from gaze transition patterns in multi-party meetings[END_REF], respiration [START_REF] Heldner | Pauses, gaps and overlaps in conversations[END_REF][START_REF] Ishii | Using respiration to predict who will speak next and when in multiparty meetings[END_REF], and head-direction [START_REF] Skantze | Exploring turn-taking cues in multi-party human-robot discussions about objects[END_REF]. Linguistic features such as syntactic structure, turn-ending markers, and language model were also investigated [START_REF] Ishimoto | End-of-utterance prediction by prosodic features and phrase-dependency structure in spontaneous japanese speech[END_REF][START_REF] Maier | Towards deep end-of-turn prediction for situated spoken dialogue systems[END_REF][START_REF] Ishii | Multimodal and multitask approach to listener's backchannel prediction: Can prediction of turn-changing and turn-management willingness improve backchannel modeling?[END_REF]. They highlighted the importance of prosodic feature variation (e.g. fundamental frequency F 0 and intensity) during turnshifts [START_REF] French | Turn-competitive incomings[END_REF][START_REF] Kurtić | Resources for turn competition in overlapping talk[END_REF][START_REF] Truong | Classification of cooperative and competitive overlaps in speech using cues from the context, overlapper, and overlappee[END_REF]. Interruptions were observed to be often combined with higher voice energy [START_REF] Shriberg | Observations on overlap: Findings and implications for automatic processing of multi-party conversation[END_REF][START_REF] Gravano | A corpus-based study of interruptions in spoken dialogue[END_REF][START_REF] Hammarberg | Perceptual and acoustic correlates of abnormal voice qualities[END_REF]. These differences in the three turn-shift types might lead to an increased or decreased interpersonal synchrony.

To study the interpersonal synchrony of whether the partners are in sync or not, a multitude of methods were introduced.

Pioneer works consists of manual assessments that rely on trained observers. The synchrony perception was done by directly observing the data on a local time scale using behavior coding methods [START_REF] Cappella | Behavioral and judged coordination in adult informal social interactions: Vocal and kinesic indicators[END_REF][START_REF] Condon | Neonate movement is synchronized with adult speech: Interactional participation and language acquisition[END_REF]. For larger time scales, judgment methods were employed [START_REF] Cappella | Behavioral and judged coordination in adult informal social interactions: Vocal and kinesic indicators[END_REF][START_REF] Bernieri | Synchrony, pseudosynchrony, and dissynchrony: measuring the entrainment process in mother-infant interactions[END_REF]. The rating was done using a Likert scale [START_REF] Cappella | Behavioral and judged coordination in adult informal social interactions: Vocal and kinesic indicators[END_REF][START_REF] Bernieri | Synchrony, pseudosynchrony, and dissynchrony: measuring the entrainment process in mother-infant interactions[END_REF].

Manual annotation is a laborious and time-consuming task. This tedious workload was relieved by the appearance of automatic measures. The measures capture relevant signals to detect synchrony. One of the most commonly used measures for interpersonal synchrony is the correlation [START_REF] Campbell | Multimodal processing of discourse information; the effect of synchrony[END_REF][START_REF] Delaherche | Multimodal coordination: exploring relevant features and measures[END_REF][START_REF] Reidsma | Measuring multimodal synchrony for human-computer interaction[END_REF] that calculates the synchrony during a same period. Interlocutors' social signals constantly react to those of the other which leads to behavior coordination. When conversing, the perception of the other interacting partner's behavior is delayed by a certain time period (2 to 4 seconds [START_REF] Chartrand | The chameleon effect: the perception-behavior link and social interaction[END_REF][START_REF] Leander | You give me the chills: Embodied reactions to inappropriate amounts of behavioral mimicry[END_REF]). Several works consider this time delay by employing the time-lagged cross-correlation [START_REF] Boker | Windowed cross-correlation and peak picking for the analysis of variability in the association between behavioral time series[END_REF][START_REF] Ashenfelter | Spatiotemporal symmetry and multifractal structure of head movements during dyadic conversation[END_REF][START_REF] Beňuš | Pragmatic aspects of temporal accommodation in turn-taking[END_REF]. As such behavior signals are shifted in time, but they can also vary in length. Dynamic Time Warping (DTW) [START_REF] Müller | Dynamic time warping[END_REF], which measures the similarity between two temporal sequences while being invariant to speed and length, can address such problems. It is widely used to find common patterns [START_REF] Berndt | Using dynamic time warping to find patterns in time series[END_REF]. Some other studies perform spectral analysis to capture the synchrony between signals. The evolution of the relative phase is measured to obtain information related to synchrony stability [START_REF] Oullier | Social coordination dynamics: Measuring human bonding[END_REF][START_REF] Richardson | Rocking together: Dynamics of intentional and unintentional interpersonal coordination[END_REF].

For our study, we choose to employ frequently used synchrony measures of correlation (Pearson correlation coefficient), time-lagged cross-correlation, and DTW to study the synchrony of a turn-shift. As explained above, the three measures differ in the way how they measure synchrony. Correlation expresses the linear relation of signals within the same time window. Time-lagged crosscorrelation takes into account the time swift between the signals and DTW maps the signals that are shifted in time and differ in length. This leads us to use all three of them.

Prior works analyzed the synchrony of interlocutors' behavior during the entire course of the interaction. They do not specifically look into them during the turn-shift moments.

We want to check if there is a visible link between synchrony and turnshift which allows synchrony measures to serve as a potential feature for the characterization of turn-shift types. We also intend to verify the usefulness of synchrony measures in classifying the turn-shift types via computational models.

Corpus

The NoXi database [START_REF] Cafaro | The noxi database: multimodal recordings of mediated novice-expert interactions[END_REF], which contains screen-mediated face-to-face dyadic interactions, was used for this study. The database is made up of 3 parts depending on the recording location (France, Germany, and UK). For our study, we choose to use the French part that contains 21 dyadic interactions performed by 28 participants with a total duration of 7h22.

All turn-shift moments (1403 smooth turn exchanges, 1651 backchannels, and 929 interruptions) were manually annotated following Yang's annotation schema [START_REF] Yang | Annotating interruption in dyadic human interaction[END_REF].

The turn-shift and backchannel moments were identified on the onset point of the listener's voice activity which we note as t 0 . We segmented each moment into three phases:

-Before: t 0 -6s ∼ t 0 -2s; -During: t 0 -2s ∼ t 0 + 2s; -After: t 0 + 2s ∼ t 0 + 6s.

We define the three phases of turn-shift (before, during, and after) to refine the detection of different shifts. For each phase, multimodal features were extracted, and the synchrony scores between partners were calculated separately.

For our study, the features employed are the following:

-Facial features: AU1, AU2, AU4, AU12, and AU15; -Head features: Head translation and rotation; -Acoustic features: F0 and loudness.

Facial features were obtained using OpenFace [START_REF] Baltrušaitis | Openface: an open source facial behavior analysis toolkit[END_REF] and acoustic features were extracted via openSMILE [START_REF] Eyben | Opensmile: the munich versatile and fast open-source audio feature extractor[END_REF].

As the initial head position of the interlocutor may create a bias, instead of using the absolute position we applied the following equation for the head translation, called head motion activity:

v Head (i) = (x i -x i-1 ) 2 + (y i -y i-1 ) 2 + (z i -z i-1 ) 2 (1) 
where x i , y i and z i are the coordinates of the head position in the image at timestep i.

And for head rotation, we also calculate the head rotation activity:

r Head (i) = |x i -x i-1 | + |y i -y i-1 | + |z i -z i-1 | (2) 
where x i , y i and z i are the head angles according to the 3 axes at timestep i. A z-score normalization was applied to all features for them to be invariant to the quantity of behaviors of interlocutors.

Analysis

To understand the relationship between synchrony and turn-shift types, we analyzed the presented multimodal signals. The significance of the turn-shift type difference was checked via a two-tailed t-test.

We start our analysis by looking at the interpersonal synchrony scores (correlation, time-lagged cross-correlation, and DTW) during the turn-shift (during phase of t 0 -2s ∼ t 0 + 2s) for all features.

Significant differences can be seen for several signals of interruption (Int), smooth turn exchange (ST), and backchannel (BC) with t-test (p < 0.01) in The values of the other two are mostly uncorrelated (close to 0) or comparatively less correlated. Interruption gets a higher positive correlation score for AU12 while smooth turn exchange and backchannel shows no relation (close to 0). Thus, correlation measure can be used to distinguish smooth turn exchange and interruption.

In Figure 2, backchannel is significant for the acoustic features of F0 and loudness using time-lagged correlation. For all three types, a positive correlation can be observed for AU1 and loudness. For AU1, no correlation can be found for backchannel while the other two are positively correlated. An increasing trend of synchrony can be seen in the order of interruption, smooth turn exchange, and backchannel for loudness. F0 is negatively correlated for all three types. A noticeably higher correlation score can be noticed for backchannel compared to the other two. Backchannels can thus be identifiable among the others via time-lagged correlation scores of AU1, F0 and loudness.

Using DTW, in Figure 3, backchannel for F0 and smooth turn exchange for head features are significant. Via DTW, the distance between two signals can be measured, which can be interpreted to be more synchronized when the distance gets smaller. Here we can note a lower sync during smooth turn exchange via the head translation and rotation compared to interruption and backchannel. In the same manner, a lower sync can be seen for backchannel with F0 compared to the other two. Therefore, DTW can be used to distinguish smooth turn exchange and backchannel.

We can thus identify the three types of smooth turn exchange, interruption, and backchannel using the synchrony measures at the during phase of t 0 -2s ∼ t 0 + 2s.

The usefulness of synchrony scores has been proved for the task of identifying turn-shift types. However, a clearer way of distinguishing them would be more desirable. To do so, we observe the variation of synchrony scores before, during, and after the turn-shifts. By evaluating the evolution of correlation measures before, during, and after turn-shifts, in Figure 4, for smooth turn exchange we can find a remarkable sudden increase in negative correlation in the features of F0, loudness, head rotation and translation. For these acoustic and head features, a stable trend or only a slight change in synchrony can be observed for backchannel and interruption.

In the same respect, in Figure 5 synchrony evolution trends of acoustic features obtained via time-lagged cross-correlation render significant information. The trends of backchannels are easily distinguishable compared to interruption and smooth turn exchange. An increase in inverse correlation can be seen for F0, and for loudness, the synchrony score rises during backchannels while there is only a minor change in synchrony score for the other two types.

Figure 6 present the evolution of the DTW synchrony score. Head rotation, F0, and loudness show an increase in synchrony scores during the turn-shifts. This could be interpreted as the turn-shift event causing an effect on interpersonal synchrony.

The difference between the three phases was calculated to check the variation significance of the phase transitions (before-during and during-after ) via the ttest (p < 0.01).

The evolution of synchrony scores of the three phases of before, during, and after provided additional information on distinguishing turn-shift types. As seen above, each turn-shift type has different synchrony evolution trends which have been proven to enable the identification of smooth turn exchange, interruption, and backchannel.

Turn-shift Classification Models

With the analysis of the relationship between synchrony and turn-shift types, we want to employ synchrony measures in identifying the different turn-shift types to verify their usefulness. For this, we built computational models only using the We approach this task considering two aspects:

choice of turn-shift phase(s) choice of features

As our Model 1, we start by looking into the synchrony measures of all features during turn-shifts. We use a feedforward neural network (FNN) to classify the turn-shift types.

In Section 4, we have identified several features by analysis which were significant in differentiating the turn-shift types. We selected these features to check if the same performance could be obtained only by using these features. The selected features for the during phase are:

-Correlation: AU12 and head translation and rotation; -Time-lagged cross-correlation: AU1, F0, and loudness; -DTW: Head translation and rotation, and F0.

Via Model 1, an accuracy of 0.627, in Table 1, is obtained. With this, we can see that the synchrony measure can be used to identify turn-shift types. Also, the same accuracy of 0.627 is obtained using only the selected features. This Table 1. Accuracy scores of different turn-shift classification models.

Model

Accuracy Model 2 0.750 Model 2 (selected features) 0.650 supports our analysis that these features indeed are significant in identifying turn-shift types.

We continue by using the synchrony measures obtained through all three phases of before, during, and after. We have tested structures of FNN, onedimensional convolutional neural network (1D CNN), and long short-term memory network (LSTM) with all features. The best-performing model was the FNN which we have chosen as our Model 2.

We have also evaluated Model 2 using the selected features for all three phases are:

-Correlation: Head translation and rotation, F0, and loudness; -Time-lagged cross-correlation: F0 and loudness; -DTW: Head rotation, F0, and loudness.

An accuracy score of 0.750 is obtained for Model 2, in Table 1. However, the accuracy decreases to 0.636 when using only the selected features. This can be explained by the fact that the cross-modality information was missed in the analysis, as it is implicit and thus hard to visually capture them.

Model 2 renders a promising accuracy, however, its application is restricted as the future is required. To enable real-time turn-shift identification, we assess Model 2 by varying the moment time range. We studied the 3 time ranges of: t 0 -6s ∼ t 0 + 2s, t 0 -6s ∼ t 0 , and t 0 -6s ∼ t 0 -2s. We can remark that a similar accuracy score of 0.727 can be obtained using the moment time range of t 0 -6s ∼ t 0 + 2s. This implies that the after phase (t 0 + 2s ∼ t 0 + 6s) does not play a critical role in identifying the turn-shift types, which might be too far from the turn-shift moment to provide useful information. For the identification to work in real-time, the moment time range must be restricted to before the turn-shift moment of t 0 . However, the results of t 0 -6s ∼ t 0 and t 0 -6s ∼ t 0 -2s are not acceptable for real-time detection, this indicates that the period just after the turn-shift may carry the most important information to identify the turn-shift type. As seen above for Model 2, in Table 1, the same result of accuracy score falling (0.682, 0.397, and 0.434 respectively) when using the selected features can be observed.

Thus, the best is to use Model 2 with all features with the turn-shift moment time range of t 0 -6s ∼ t 0 + 2.

Conclusion and Discussion

Several works have been done studying turn-shift types of smooth turn exchange and interruption, backchannels by analyzing multimodal signals. However, the research on turn-shift types and synchrony is still to be done.

Through the analysis of multimodal signals (visual and acoustic features), we investigated the synchrony scores for three phases before, during, and after turn-shift. We were able to find a link between synchrony scores and turn-shift types and backchannel. This relationship was used to build computational models to automatically classify the turn-shift types. The modeling of all features of all three phases showed the most promising result which proved the usefulness of synchrony measures in turn-shift identification task. We also looked into whether the classification could be done in real-time by varying the moment time range. A lower accuracy was obtained compared to that using future information, although it is better than random chance and is a compromise to be considered.

Our turn-shift type identification model can be applied to various purposes. Manual annotation of turn-shifts is a lot of work, this is the problem we need to face every time a new corpus is generated, we are looking forward to integrating this model into automatic annotation systems that can help to detect and annotate different turn-shifts. The identified turn-shifts could also be used to analyze the personality or characteristic of people. We studied the synchrony of the same features of the interlocutors. We would also include cross-modality synchrony measures in the future to improve the performance of our classification model.
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 123 Fig. 1. Correlation of multimodal features during Interruption(Int), Backchannel(BC), Smooth turn exchange(ST) (*: p < 0.01)

Fig. 4 .

 4 Fig. 4. Correlation of multimodal features before, during, and after Interruption(Int), Backchannel(BC), Smooth turn exchange(ST) (*: p < 0.01)

Fig. 5 .

 5 Fig. 5. Time-lagged cross-correlation of multimodal features before, during, and after Interruption(Int), Backchannel(BC), Smooth turn exchange(ST) (*: p < 0.01)

Fig. 6 .

 6 Fig. 6. DTW of multimodal features before, during, and after Interruption(Int), Backchannel(BC), Smooth turn exchange(ST) (*: p < 0.01)

  

Table 2 .

 2 Accuracy scores of model 2 using all features with different time ranges.

	Moment time range Accuracy
	t0 -6s ∼ t0 + 2s	0.727
	t0 -6s ∼ t0	0.478
	t0 -6s ∼ t0 -2s	0.530

Table 3 .

 3 Accuracy scores of Model 2 using selected features with different time ranges.

	Moment time range Accuracy
	t0 -6s ∼ t0 + 2s	0.682
	t0 -6s ∼ t0	0.397
	t0 -6s ∼ t0 -2s	0.434

⋆ Supported by ANR-JST-CREST TAPAS (ANR-19-JSTS-0001) and IA ANR-DFG-JST Panorama (ANR-20-IADJ-0008) projects.