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Abstract: Rock paintings undergo physical, chemical, biological and/or anthropic altera-

tions that alter their visibility. Cameras and image enhancement tools (DStretch® plug-in, 

for example) are commonly used to help identify and record images that have become 

invisible to the naked eye. HyperSpectral Imaging (HSI) which is strongly developing in 

many research and application fields, is tested in this study to analyze Neolithic rock 

paintings. We particularly address the question of what kind of additional information 

can Visible Near InfraRed HSI instruments, coupled to mathematical transformations to 

reduce the dimensionality of the data, bring for rock paintings, compared to standard 

RGB cameras. From the analysis of a selection of panels painted on yellow-reddish altered 

sandstone walls and measured in Saharan shaded shelters, we show that HSI can reveal 

new figures by capitalizing both on its ability to extract the different pigment types with 

a greater contrast, and on the new discriminating information contained in the very near 

infrared part of the spectrum. Despite their much smaller image format, HSI can provide 

up to 5-7 contrasted images of the spatial distribution of the different types of pigments 

in the figures. It thus appears to be a promising non-invasive and efficient methodology 

to both reveal disappeared paintings and to study image juxtapositions and painted layer 

superimpositions. 
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Introduction 

Compared to techniques like freehand drawing, direct tracing or silver photography, dig-

ital photography and image enhancement software have dramatically improved the pro-

cesses of documenting and studying rock art paintings [1-5]. Bringing more accurate and 

objective surveys [6, 7], these techniques not only facilitate the study of visible paintings 

[8-10], but also make it possible to discover new ones, either previous paintings, under-

drawings or pentimenti, that we did not even know existed [11]. 

Digital photography has also proven particularly suitable for remote fieldwork due to its 

ease of use. Yet, to document rock images, it requires a camera with a sufficient resolution, 

a skilled operator to control the various parameters during the shooting, as well as ad-

vanced post-processing of the shots. Nevertheless, it is possible to make usable pictures 

without being an expert, as long as the shooting conditions are not extreme. The contri-

bution of image processing software to the study of rock art images has mainly concerned 

the enhancement of pictures, in order to reveal what the human eye could perceive with 

difficulty on site. These post-processing stages were developed in the beginning of the 

1980s, when an image was scanned before being processed on a computer. Mickael R. Rip 

[12, 13] was one of the first to assess this methodology on a rock-painting picture.  

From then on, image enhancement software diversified as their performance increased, 

together with the arrival of digital cameras [14-17]. In addition, image enhancement has 

also proven to be effective in monitoring the evolution in terms of degradation of the 

paintings as well as localized areas of the supports. This use for conservation purposes is 

currently an application under development [10, 18, 19]. 

Among the software currently used for rock arts, the "standard" is Photoshop©, produced 

by the company Adobe© [2,3,20-22]. Another software appears to be particularly well 

adapted to the study of rock paintings, because of its processing speed, very low cost and 

ease to use: DStretch®, a free plugin for ImageJ©, specifically designed in 2005 by Jon 

Harman [23, 21]. Ever since it became available [3], DStretch® has been widely used over 

the last 15 years by many rock art archaeologists [5, 24-27] as well as by  Learned Societies 

like the AARS (Association of the Friends of Saharan Rock Art) [28]. To enhance digital 

photographs of cave paintings, DStretch® uses a decorrelation algorithm originally de-

veloped in 1978 at the Jet Propulsion Laboratory in Pasadena, California, where it was 

used to improve the contrast of Landsat multispectral images [29]. It was then used with 

the ASTER (Advanced Spaceborne Thermal Emission and Reflectance Radiometer [30]). 

In 2004, Nasa released images from the Rover mission to Mars, which had been enhanced 

with this technique and which suggested that it could also work well on photographs of 

cave paintings.  

DStretch® has been developed to process Red-Green-Blue (RGB) camera pictures only. 

Since only three visible bands are available, its ability to separate and enhance different 

information is limited. Most standard cameras work with RGB bandpass filters in a Bayer 

mosaic covering the 400-410 to 670-690 nm range (at 2% Green maximum, [31]), i.e. about 

the human eye photopic sensitivity range (~420-675 nm at 2% of eye sensitivity maximum, 

[32]) which is limited to a very small portion of the whole electromagnetic spectrum. This 

feature presents a severe limitation when attempting to detect remaining painting pig-

ments invisible to the naked eyes. Hyperspectral imaging (HSI) technology may be used 

for this challenging application by recording hundreds of bands across a wider spectral 

range (see e.g. [33]). Those bands are contiguous, narrow and regularly sampled and are 

not limited to the visible part of the spectrum. HSI provides a well sampled spectral sig-

nature at each pixel of the image creating a three-dimensional data cube or hypercube. A 

frame hypercube is composed by a sequence of images each corresponding to individual 

spectral bands acquired by the camera (Fig. 1). 
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Fig. 1. In a hyperspectral imaging’s pushbroom mode, the camera scans the surface line by line and 

record a full spectrum at each pixel location. An image at each wavelength forming a 3D data cube 

is obtained (Two spatial dimensions and one in the spectral dimension) (adapted from [34]). 

After several generations of multispectral imagers (with only a few wide and specific 

spectral filters), HSI has been developed for space exploration missions since the late 

1980s (French ISM instrument on the Phobos missions, [35]) and on aircraft since the 1990s 

and then on Earth’s observation satellites since the late 2000s [36]. Presently, hyperspectral 

cameras are used indoor (laboratory, industry…), in the field and now often mounted on 

UAV platforms. They can be classified according to the methodology by which these sen-

sors build the hypercube. A pushbroom (or line scan) sensor records images line by line 

in motion (Fig. 1), while spectral scan instruments record single images for each spectral 

band selected sequentially in time, and snapshot hyperspectral imagers record the image 

at all wavelengths at the same time. For about two decades HSI have been more and more 

widely used for various application including geology [33, 37], industry, environment, 

agriculture [33], agri-food, forensic [38], biotechnologies and medical diagnosis [39], as 

well as art painting where it is becoming an essential tool for the historical study of the 

technical realization of the paint layers and underlying material of the artwork [40-44], 

their restoration [45, 46], as well as for their expertise [47]. The HSI technique strongly 

improves the collected information in the spectral dimension (to the detriment of spatial 

resolution) and complements the pioneering studies using multispectral imaging and 

pulse-compression thermography at high spatial resolution, developed in particular in 

the field of art work studies [48, 49]. 

Each painting pigment has its unique composition and texture and therefore reflects sun-

light according to its characteristic spectral signature over the electromagnetic spectrum 

(see e.g. [50]). However, rock paintings undergo physical, chemical, biological and/or an-

thropic alterations that alter their visibility, i.e. its contrast relative to the underlying rock. 

Nevertheless, we can expect that its distinctive spectral pattern, fully sampled by an HSI, 

is still recognizable at least in some spectral ranges and may detect the presence of tiny 

amounts of pigment. Because of both the increased spectral range and the number of 

measurement channels, HSI can provide a larger amount of information that may allow 

us to identify the screened materials, and separate them from the underlying rock, based 
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on their chemical composition rather than only their remaining perceived visible colors. 

As an example, the spectrum of a very thin layer of red pigment painted on a flat slice of 

brown carbonate rock compared to the VNIR spectrum (Visible-very Near InfraRed: 400-

1000 nm) of the rock itself [50] is shown in Fig. 2. The spectral signals present clear spectral 

and photometric differences between the painted and the non-painted zones, in particular 

above 650 nm, while the simulations of the RGB signal of a classical digital camera (Canon 

20D) present only a very small difference in hue (~6%) and radiometric brightness (aver-

age ~10%). Such a difference may be not significant enough on a more inhomogeneous 

rock wall because spatial variations of rock texture and composition, or the lightning na-

ture and orientation can also produce it. It should be noted that the perceived brightness 

difference between the paint and the substrate in Fig. 2 is larger (~25%) because the pho-

topic eye sensitivity is peaking near the green where the brightness difference is the larg-

est, in that specific case.   

 

Fig. 2. Comparison between spectra of VNIR hyperspectral imaging and signal of classical RGB 

camera for typical rock painting pigments. The high-resolution reflectance spectra measured on a 

very thin layer of red ‘Beauregard’ pigment (red) painted on a carbonate rock, and the non-painted 

rock itself (brown) are plotted with a continuous line (left scale) [50]. The large dots are simulations 

corresponding to the RGB signal of a digital camera (Canon 20D, [31]) extracted from these spectra 

by convolving them with its filter band passes (dotted lines at the bottom, right scale) with ‘error 

bars’ representing the full width at half maximum of the three filters. The bottom black curve is the 

total photopic eye sensitivity [26].   

The numerous spectral channels of an HSI camera should also provide a better discrimi-

nation between the various pigment materials used in a polychromic painting, even be-

tween paints of very similar colors in a 3-channels RGB image [41, 45, 46]. Finally, we can 

also expect detection of underlying paintings due to the large transparency windows of 

numerous mineral pigments in the very near (700-1000 nm) and short-wave infrared 

ranges (SWIR: 1000-2500 nm). The use of these infrared wavelength ranges for revealing 

underdrawings and pentimenti are already well established for art work inspection [48]. 

Until now, studies of cave art have used RGB cameras and image enhancement tools 

(DStretch® plug-in for example) to help identify images that have sometimes become in-

visible to the naked eye and to make a survey [24, 25, 27]. Multispectral imagery, mostly 

by adding channels in the Near-IR [42], or using true multispectral instruments [51] have 

shown the advantage to extend the wavelength range outside the visible spectrum to 

study artwork. This technique has been discussed since a long time for rock painting [52] 

but only tested up to now [53-57]. In particular, Bayarri in his PhD, appears to have per-

formed 5-band multispectral measurements in both the Near-IR (< 2500 nm) and mid-IR 

(> 2500 nm) ranges [56]. 
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To our knowledge, only one group has done pioneering work with VNIR hyperspectral 

imaging, to study prehistoric rock painting in two Spanish caves [56-60]. They used four 

sets of three lamps for the illumination of the panels. From their analysis of some panels 

painted on the limestone wall of the cave of El Castillo (Spain) they were able to identify 

76% more figures, some of them below a calcite layer, and to differentiate between slightly 

different paints. They concluded that hyperspectral imaging could become an efficient 

tool for the recognition of figures, coloring matter and state of conservation. 

The objective of this study is to show what kind of useful additional information VNIR 

HSI imaging can bring in the case of rock painting on yellow-reddish oxidized sandstone 

walls measured in shaded shelters, compared to standard RGB cameras. In particular we 

are focusing on the capacity of HSI to detect invisible/barely visible figures, to extract the 

pigment distribution from the rock texture pattern and to separate the different paint lay-

ers. ‘Visual simulations' using only the visible range of the HSI data is out of the scope of 

this paper. The images we provide are B&W or 'false color' synthetic images to best dis-

play to the eye the ‘invisible’ and mathematically transformed spectral information con-

tained in HSI data. 

As an application case a lightweight portable VNIR HSI camera has been used in the Sa-

hara, i.e. in a particular rough field, to take pictures of large painted surfaces using an HSI 

without special lighting, just as would be done with a regular camera. The aim was to 

allow a quick and easy implementation for extensive non-contact imaging measurements 

and thus the possibility of exploring hard-to-reach areas. This paper presents the meas-

urements and the analysis of a selection of painted panels of increasing complexity and 

will draw conclusions from a remote sensing point of view on the detectivity, separability 

and extraction of pigments, but will not address any archeological consideration or artistic 

interpretation of the highlighted figures.  

Materials and Methods 

Studied rock painting panels 

The panels used for these tests are located in central Sahara. If many of them are well-

preserved, many more are very faded (Fig. 3a) because they were painted on the walls of 

open rock shelters (Fig. 3b). Among factors that may affect the conservation state of those 

paintings are the low rainfall and the rising temperatures [61, 62] which appear to have 

increased in recent decades. This accelerated climatic deterioration could have a double 

effect: on the one hand, to accentuate the process of flaking of the walls used as support 

to the paintings, by a phenomenon of desiccation, and on the other hand, by increasing 

the intensity of the abrasion related to the corrasion, i.e. erosion by the action of sand 

grains carried by winds on the most exposed walls [19]. Additional degradations in some 

areas come from modern tagging over the painted figures.  

Data acquisition using classical RGB camera  

Highly portable RGB cameras were used to meet the difficult field conditions and among 

them, a Samsung galaxy S21 integrated camera. This camera has three multi-rear cameras 

with several functions. We used the 64 Mpx f/2.0 telephoto camera with 1.1x optical zoom 

to take pictures of rock paintings (Fig. 21a). 
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Fig. 3. An example of a faded rock paintings which is analyzed in this study (a). View of a 

typical rock shelter (b). 

DStretch® process from classical RGB camera  

Different types of stretching algorithms (decorrelation stretch (DS), photographic stretch, 

saturation stretch, …) and transformation algorithms (PCA, ICA, MNF) may be applied 

to RGB images to enhance the information it contains. Some comparisons have been al-

ready made between DS and PCA, showing that the later was slightly more efficient [63]. 

We made some tests of all these algorithms on several of the images presented below and 

finally decided to use only decorrelation stretch throughout this study by using the 

DStretch® software, the only algorithm/software widely used as a reference tool by pre-

historic archaeologists. Thanks to its flexibility in use and its optimization to the specific 

problem of rock painting it provides among the best results when faint paints are present. 

In some cases, ICA or MNF transformations gave slightly better results in terms of figure 

contrast or paint-rock separation than DStretch® but in none case they allowed to detect 

the invisible figures highlighted by the analysis of the HSI data presented in section “Re-

sults”. 

a 

b 
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Dstretch enhances the color separation in images with high interchannel correlation. If 

one views the pixels from 3 channels of a RGB photo as 3-vectors, this is done by first 

finding the linear transformation that results in removing the correlation among the vec-

tors in the transformed space. This is an eigenvector problem, and can be considered of as 

a rotation of the coordinate system of the original vector space. Within this rotated space, 

each component is rescaled (i.e. contrast stretched) by normalizing the variances of the 

vectors. Then the rotation that returns the vectors to the original coordinate system is ap-

plied. Both of the rotations and the variance normalization step can be described by matrix 

and vector operations, and can be combined into a single mathematical operation that 

operates on the input photo and produces the decorrelation stretched output. The result 

of the process is an output image whose pixels are well distributed among all possible 

colors, while preserving the relative sense of hue, saturation, and intensity of the input 

image [30]. 

With most image enhancement software, the result is very much related to the level of 

expertise of the operator. It can therefore be extremely variable, whereas with DStretch® 

it depends much less on the operator, at least at the first level of use, which is largely 

sufficient in most cases. This allows for more objective and easily reproducible results, 

which is essential for an accurate study of the art [10, 17]. These twenty-three color spaces 

are currently defined as standards while processing rock paintings with DStretch®. How-

ever, image enhancement has the built-in limitation of the three RGB measurement chan-

nels, and thus strongly depends on the intensity and visual color of the paint. 

Data aquisition using HSI Specim IQ camera  

Field captures of rock paintings were performed with a SPECIM IQ (Fig. 4), an HSI system 

operating in the VNIR, which is based on an internal line scanner process, i.e., push broom 

principle. It covers the whole wavelength range 400–1000 nm at a spectral resolution of 7 

nm.  Its characteristics are summarized in Table 1 [64]. A 1.2 Megapixels RGB context 

image with slightly better resolution fully including the HSI field of view is also recorded 

simultaneously with the ‘viewfinder’ camera. This context image is taken from virtually 

the same point of view (2.5 cm above the HSI lens) and with exactly the same illumination. 

It will be used, raw and processed with DStretch©, to compare with the HSI results. 

  

Hyperspectral imager SPECIM IQ 

Sensor type CMOS 

Spectral range 400-1000 nm 

Spectral resolution 7 nm 

Spectral bands 204 

Image size 512 x 512 px 

Focal length 21 mm 
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Field of view (fixed lens) 31 x 31° 

Imaged wall @ 1m 55 x 55 cm 

Spatial resolution @ 1m  1.07 mm 

Focus range 15 cm - infinity 

Weight 1.3kg 

Context RGB image 
 

Image size 1280 x 960 px 

Imaged wall @ 1m 110 x 82 cm 

Spatial resolution @ 1m  0.85 mm 

Table 1: Characteristics of the SPECIM IQ hyperspectral imaging system and its context 

RGB camera [64]. 

As common for any hyperspectral measurement, a suitable lighting providing a continu-

ous spectrum over the wavelength range of interest is required. In our case, to avoid the 

complex and power consuming use of artificial lighting in the field, our illumination 

source was mostly sunlight scattered by the perfectly clear sky and the surrounding land-

scape since rock paintings are located on shelters’ walls. The sky contribution (more than 

60% of the solid angle) provides a bluer light with strongly decreasing intensity in the 

very near infrared (40 times less Rayleigh scattered light at 1000nm than at 400nm) com-

pared to the sun spectrum which, combined with the decrease of sensitivity above 700 nm 

of the CMOS detector, limits the useful spectral range below 920 nm. The spatial variation 

in intensity across the measured area remains limited (a maximum of a few percent esti-

mated in a particular case from measurements of the Spectralon® panel at different places 

in the field of view) and very smooth because of the diffuse multidirectional illumination 

and the small and relatively flat measurement area (typically 50x50 cm) compared to the 

size of the rock wall of the shelters (several meters). The spectral variation of the illumi-

nation is also faint and smooth across the image. The temporal variation during the frame 

acquisition (< 2 min) is also negligible as the weather was always offering a perfectly clear 

sky. 
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Fig. 4. The Specim IQ camera in the field measuring rock paintings. 

Here after, we present some key information to reproduce our technical approach. The 

measurement process includes seven steps:  

1. Reference panel: After selecting the field of view of the HSI camera, a white 

reference panel (Spectralon® 99%, 10x10 cm) is positioned next to the 

painted wall in the field of view of the instrument to allow to capture the 

spectral characteristics of the wall lighting at the same time as the image 

(simultaneous white reference).  

2. Focusing: The hyperspectral camera is then focused on the target using the 

viewfinder camera, i.e., a small RGB camera situated just above the spectral 

camera, with identical viewing direction but larger field of view. The focus-

ing is done manually by highlighting sharp edges.  

3. Context image: To overlay the spectral and viewfinder camera images their 

parallax is corrected either automatically or manually.  

4. Integration time: Then, the integration time is adjusted (in the range 1–500 

ms). The viewfinder camera image provides an evaluation for the integration 

time of the spectral camera but a manual optimization was always made in 

order to use 80-90% of the capacity of the detector while being cautious about 

saturation, especially in the white reference target.  

5. Recording: After these initial adjustment steps, the image recording process 

is triggered. At first, a dark reference image representing the sensor back-

ground noise and read noise, without incoming light is recorded automati-

cally. Then, the line scanner starts the actual data acquisition.  

6. Validation and reference selection: after the full 512 × 512 pixels image is 

scanned, the focus and possible saturation or under-exposition are checked 

in the data validation view with a synthetic RGB image derived from the 

hyperspectral image cube and minimum and maximum intensity pixel his-

tograms. If the image is validated, part of the white area of the Spectralon® 
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reference target (typically 2000-8000 pixels depending on camera-wall dis-

tance) is then selected by thresholding the intensity of the image followed by 

a pixel connectivity algorithm.  

7. Calibration: After removal of the dark background the calibration process 

converts the image cube in ‘reflectance factor’ unit by dividing the spectra of 

all pixels by an average spectrum of the selected area of the Spectralon®  ref-

erence. All the data are automatically stored, the raw and calibrated hyper-

spectral data cubes, the dark and white reference spectra, an RGB preview 

of the HSI data and the RGB context image. 

Hyperspectral data analysis 

A set of hyperspectral reflectance data obtained on various sites have been analyzed using 

different standard tools available in the standard ENVI® hyperspectral image software 

(Version 5.5, L3HARRIS GEOSPATIALTM). The results have been compared to the simul-

taneously recorded context RGB image (with only 20% better spatial resolution, but iden-

tical lighting and viewing geometry) as well with very high-resolution images of the same 

scenes recorded by the different cameras (listed in 2.2) and analyzed with DStretch®.  

Several unsupervised mathematical transformations aimed at extracting and packing the 

information contained in hyperspectral image cubes have been tested and compared:  

• Principal Components Analysis (PCA), with covariance matrix 

• Independent Components Analysis (ICA), with LogCosh contrast function 
and 2D spatial coherence sorting  

• Minimum Noise Fraction Transform, (MNF), with noise statistics from 

whole image.  

They are called ‘rotations’ as they aim at changing the base on which the dataset is pro-

jected in order to reduce the dimensionality of the useful data (initially 204 spectral infor-

mation planes, one at each wavelength) and to segregate the noise in the data. Their work-

ing hypotheses on the initial content of the data are however different and the recently 

developed ICA [65] is expected to be the most efficient transformation to separate differ-

ent layers of information, i.e. different types of paintings as well as rock composition and 

texture. This transformation is generally used for ‘blind source separation’, with no a-

priori information on the mixing. It assumes non-Gaussian distribution of the independ-

ent information sources, which is typical of natural hyperspectral datasets, and uses high-

order statistics to reveal interesting but faint features or covering only a small portion of 

the image.  

These transformations are frequently used in space exploration and remote sensing data 

analysis [e.g. 65] and more recently PCA was introduced and commonly used in art work 

studies [42, 43, 63]. In rock art PCA was used for analysis of camera images [52, 63, 67] 

and one group [56, 57, 60, 68] used all these algorithms in parallel on hyperspectral data 

to analyze rock paintings but did not discussed their relative advantages. However, Cer-

rillo-Cuenca et al. [69] very recently made a thorough comparison of PCA and ICA on 

camera images of superimposed rock paintings. They concluded that “ICA accurately sep-

arates panels with more than one type of colour, while PCA achieves a lower degree of separation”. 

They also showed that “in scenes with monochrome depictions, ICA tends to be slightly more 

effective in separating the pigments from the rock.” 

But before running the transformation, several preliminary analyses of the data cube and 

a few conversions are necessary in order to optimize their results. First the data cube needs 

to be rotated 90° clockwise to go back to the original vertical view. Then the reference 

target and its shadow, which may adversely alter the image statistics of the rock painting 

due to their extreme and constant brightness values, needs to be removed by applying a 
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spatial mask to the image. Finally, from local statistics on the very homogeneous spectra 

of the reference target (Fig. 5) coupled with an analysis of a selection of individual spectra 

(Fig. 10), we can select the spectral range in which the signal-to-noise ratio is large enough 

while keeping enough channels to preserve most of the useful information and to run 

efficiently the ICA transformation. Removing the noisiest channels should improves the 

detectivity of subtle painting that otherwise may remain buried in noise. The first five 

spectral channels in the deep blue (< 410 nm) and the 923-1000 nm very near infrared 

range receive very little light and are removed from this analysis. The hyperspectral data 

cube is thus restricted to the 410-920 nm range, i.e. 172 spectral channels (instead of 204). 

Tests on a few data sets showed that both these spectral and spatial filtering, commonly 

used in the analysis of space exploration hyperspectral images [65], significantly im-

proved the quality of the results in particular in terms of noise segregation. 

 

Fig. 5. Statistics on the spectra of the reference target (~2700 pixels) with mean (black), mean +/- 

standard deviation (green), min and max values (red) showing the increasing noise below 410 nm 

and above 920 nm. Only the central part of the spectrum (dashed lines: 410-920 nm) with standard 

deviation < 5% is kept for the hyperspectral data analysis. 

Fig. 6 presents the comparison between the different synthetic results obtained from the 

PCA, ICA and MNF mathematical transformations for one of our case studies (panel #2, 

see part “Panel #2: Separation between a complex wall and pigments”).  The different 

transformations applied on the HSI data, because of the numerous spectral channels and 

extended range, not only efficiently separates the large-scale effects of the rock texture 

from the painting patterns but also removes a large fraction of the ‘noise’ in the compo-

nents containing the pigment and rock information. This ‘noise’ might be a purely instru-

mental noise but it can be also high spatial frequency fluctuations of the reflected signal 

due to the microscopic texture of the rock inducing random local illumination and reflec-

tion angles, micro-shadows as well as color variations at the pixel scale. 
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Fig. 6. Comparison between the results of different transformations (ICA, PCA, MNF) performed 

on one set of hyperspectral data (panel #2, see part “Panel #2: Separation between a complex wall 

and pigments”) and with its context RGB image processed with DStretch®. Columns: 1) ICA, 2) 

PCA, 3) MNF, 4) DStretch®. Line: 1) RGB synthetic image made with the 3 most significant com-

ponents. Lines 2 to 7) The six most significant components ordered to match as well as possible 

between the different transformations. For DStretch® there is only 3 components but an improved 
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RGB combination removing the rock wall contribution is given in line 5 (see text). Scale provided 

by the reference 10 cm square. 

 

From a detailed comparison between the results of ICA and the other transformations, it 

appears that the PCA and MNF transformations are not able to separate as well the dif-

ferent painting layers, although MNF can possibly remove more efficiently the noise from 

the first components. In particular, ICA provides more contrasted components with less 

background ghost information from the other paints or the rock wall. This is clearly seen 

when looking at the two major components (lines 2 and 3 of Fig. 6) which well separate 

the two main pigments with a smooth background for the ICA while they contain ghost 

information for PCA and MNF. All the pigment information is also spread over more than 

6 components for PCA and MNF while it is concentrated in only 4 or 5 for ICA. This ex-

tends to hyperspectral data the higher separation efficiency recently found for ICA com-

pared to PCA on RGB images of rock paintings [69]. 

Comparison with the DStretch® processing of the exact same area of the context RGB 

image illustrates the same difficulty in separating paintings and rock: Although one com-

ponent contains only information on rock wall texture and composition (#3, line 4) and 

contrast is enhanced in the two other components, there is still a strong correlation be-

tween them. Hence, there is no effective separation of the pigments, which is mathemati-

cally unavoidable in this case due to the limited information contained in the 3 RGB chan-

nels. As component #3 only contains wall information, a DStretch® RGB image with in-

creased contrast can be obtained by combining only the 2 components containing pigment 

information, but this did not solve the problem of their separability.  

 

In the following, we mostly used ICA transformation to analyze the hyperspectral data. 

We first ran a few tests by varying the different free parameters of the iterative ICA trans-

formation which control its convergence (100 iterations with stabilization, contrast func-

tion = LogCosh, change threshold = 0.0001) but decided to keep their standard values as 

they appeared to provide good results with little improvement and much larger calcula-

tion times when the convergence constraints are significantly increased. At the end of the 

calculation, the algorithm orders the ICA components in decreasing order of their spatial 

coherence (an option in the ENVI algorithm), large scale variations first and purely ran-

dom noise at the end. This facilitates the separation of those containing useful painting or 

rock wall information from those mostly or only containing instrument artefact or noise. 

From a series of preliminary analyses, all the information that we can identify by visual 

inspection of the data, as due either to the rock wall or to the paintings, is always con-

tained in the first 10-15 components of the ICA. We thus decided to conservatively run 

the iterative process of the ICA transformation only on 30 components, in order to reduce 

the processing time by a factor of 30 (from about 15 to 0.5 minutes on a powerful 64-bit 

laptop). The comparison of the results with a full ICA transformation showed no detecta-

ble loss of information. 

 

Another tool we will use in this paper is the extraction of end-member spectra character-

istic of the purest pixels of each ICA component of interest in order to compare their av-

erage spectra and draw conclusions from their differences. They will be selected manually 

with the help of a thresholding either of the extreme values of each ICA component, and 
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their mean values and statistics will be estimated, or in n-dimension using the ‘Pixel Pu-

rity Index’ (PPI) and n-D visualizer tools. Finally, we will test several spectral classifica-

tion algorithms, two unsupervised: IsoData and K-means; as well as the supervised Sam-

ple Angle Mapper (SAM) algorithm. All these generic tools are available in the ENVI soft-

ware (and in many others). 

 

3. Results 

Here, we present several results obtained by ICA transformation on a selection of six typ-

ical or challenging painted scenes (called “panel” hereafter) of increasing complexity, and 

compare them with camera images, at both equivalent and very high resolution, pro-

cessed with DStretch®. These comparisons present different situations for which hyper-

spectral images bring an improvement compared to RGB images as well as the type of 

new information which can be extracted. 

The first result is that the ICA transformation concentrates most of the useful information 

contained in the selected 172 spectral channels into only 6 to 12 independent components 

depending on the complexity of rock wall and diversity of paintings in the image, with 

the different paintings typically decomposed into 3 to 7 different components mostly de-

picting the different pigments used. All the remaining components contained different 

types of noise sometimes with a few ones mixed with faint ghosts of rock wall or painting 

information already present in the previous components. 

 

3.1. Panel #1 : simple scene 

In Figs 7 and 8, a typical simple case is presented: a single scene (panel #1) probably 

painted with a single pigment on a relatively smooth and homogeneous rock wall. Indeed, 

the ICA transformation of the hyperspectral image concentrates most of the painting in-

formation in a single component with only minor local variations depicted in two other 

components. Those components add little information, just a slightly different hue of pig-

ment in the upper dog, which is confirmed by comparing average spectra of the different 

figures. When combined in a false color RGB image and compared to the RGB context 

image processed with DStretch®, it becomes clear that the hyperspectral data allows a 

better extraction of the spatial distribution of the pigment. Indeed, the main ICA compo-

nent has a much higher contrast with less background noise than the corresponding com-

ponent in the DStretched image. This can be highlighted by thresholding and stretching 

the channel of the DStretched image containing most of the information on the paint, in 

order to best select the pigment, i.e. removing as much noise as possible without removing 

pigment information, and comparing it with the same process applied to the main pig-

ment ICA component (#1) (Fig. 7f). 
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Fig. 7. Comparison of pigment extraction between DStretch® on RGB image (left) and ICA anal-

ysis on hyperspectral data (right) on a simple scene (panel #1). a) Context RGB image. b) same 

image processed with DStretch® (YRD). d) ICA transformation of the HSI image: the main signif-

icant component (#1) containing most of the information on the pigment used in the scene.  e) a 

false color RGB image using the main ICA component describing the pigment (#1) as well as 2 

others recording small local variations (#2 & 6) (R=#6, G=#1, B=#2). c) the channel containing most 

of the information on the paint of the above DStretched RGB context image with a threshold and 

stretch adjusted to select the pigment in the best way, while minimizing the presence of noise. f) 

Same but for the main pigment ICA component (#1). Scale provided by the white reference 10 cm 

square. 

  

Fig. 8. Extraction and restoration of the painted pigments (panel #1).: a) original synthetic RGB 

image from the hyperspectral data (R=600, G=550, B=450 nm).  b) same image with the extracted 

pigment (ICA component #1) superimposed. Scale given in Fig. 7. 
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There is a noticeable gain in selectivity with the ICA component as witnessed, for exam-

ple, by the better definition of the spokes of the wheel of the cart. This allows an easier 

pigment extraction, using only global image operations, and its superimposition on the 

original image (or on any other higher resolution RGB image) to restore the painting on 

the rock wall with a better, and possibly closer to initial contrast (Fig. 8). 

A similar quality of pigment extraction can be achieved by using DStretch® and the same 

type of thresholding and stretching, but on a much higher resolution RGB image, such as 

the one in Fig. 9, with about 200 times higher resolution (one pixel in the hyperspectral 

data cube corresponds to about 14x14 pixels in this image). 

   

 

 

 

 

 

 

 

Fig. 9. Comparison with a high-resolution image:  a) part of a high resolution RGB image (~37 

Mpx, ~40 µm/px) covering about the same area as Fig. 7 and processed with DStretch® (LRE). The 

shot angle and point of view of the image were slightly different but illumination was the same 

as for the HSI image.  b) the green channel of the DStretched image with a threshold and stretch 

adjusted to best select the pigment. Scale given in Fig. 7. 

3.2. Panel #2: Separation between a complex wall and pigments 

Fig. 10 provides an example of an effective separation between a complex shelter wall and 

pigments, as well as discrimination between two overlapping paintings (panel #2). The 

two main paint components (ICA #1 & 5) are almost completely decorrelated, with only 

the seated character in the upper right quarter that appears in both components, but as a 

line drawing in component #5 and as a color filling in component #1. Two other compo-

nents (#6 & 7) provide additional but more subtle information on the paintings with even 

fainter and noisier pigment information in component #9. The rock texture is mainly seg-

regated in components #3 & #4. Component #2 is more difficult to interpret given its spa-

tial distribution, but may represent either the remnant of an older painting, or a particular 

texture of the rock. All other components, #8, #10 and above, are dominated by noise.  
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Fig. 10. Separation between a complex shelter wall and pigments, and discrimination between 

two overlapping paintings (panel #2). a) Context RGB image.  b) synthetic RGB image of the HSI 

data (R=600, G=550, B=450 nm). Right: ICA transformation of the HSI image: the 4 most signifi-

cant of the 8 components containing information, the top two (e, f: ICA components #1 & 5) sep-

arates two different pigments.  g) depicts an unidentified component (#2): paint or wall?  h) ICA 

component (#4) that extracts part of the complex texture of the underlying rock wall. d) synthetic 

RGB image using 3 ICA components (R=#5, G=#1, B=#7) displaying the different pigments (in red 

and green) much more clearly than the corresponding DStretch® (YWE) image ( c). Scale pro-

vided by the white reference 10 cm square.   
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Fig. 11 displays two end-member spectra of each of the two types of pigments identified, 

corresponding to ICA component #1 (dark red pigment) and #5 (orange pigment), as well 

as 2 typical spectra of the rock wall. The spectral differences between them can be recog-

nized, mostly with a stronger absorption below 580 nm and between 750 and 880 nm for 

pigments, but are relatively subtle especially if one restricts the spectra to the sensitivity 

range of digital cameras (typically 410-680 nm).  

 

Fig. 11. End-member spectra (average of 30 to 100 pixels) of the orange pigment (red, orange) and 

dark red pigment (dark and light blue) and typical spectra of the rock wall (black and grey) taken 

from the hyperspectral image of panel #2 presented in Fig. 10. 

The spectrum of the uncertain ICA component #2 has a less pronounced absorption below 

580 nm than the two pigments and most of the rock wall. It mostly occurs where the wall 

is brighter, but only on part of these brighter area. It may be either an area of ‘fresher’ less 

oxidized rock (scraped off?) or covered with a fainter pigment, but apparently covered by 

the other pigments.  

The resulting synthetic ‘painting’ RGB image using the two main ICA paint components 

(#1 & #5), together with the secondary component #7, displays different pigments of the 

paintings much more clearly than the corresponding YWE DStretch® image (Fig. 10).  

For this panel, which has at least 2 main pigments with possible local variations, we first 

tested two unsupervised classification algorithms, IsoData and K-means, but none of 

them gave satisfactory results on such a complex data set as only the dark red pigment 

was more or less correctly classified, but not the orange one which is more spectrally sim-

ilar to the rock wall. We then tested the physically-based spectral classification algorithm 

Sample Angle Mapper (SAM) on the original spectra of the hyperspectral data cube and 

on both the MNF or ICA transformations. For the transformations we only used the first 

significant components (13 for MNF, 8 for ICA) containing information on pigments and 

rock wall and removed all the noise components. We then used the ‘Pixel Purity Index’ 

(PPI) tool in ENVI to find the most spectrally pure (extreme) pixels in the hyperspectral 

image and the n-D Visualizer to manually select 6 groups of these end-member pixels. 

The supervised SAM algorithm, using an n-D angle to match pixels to the selected end-

member spectra, is then run on the corresponding data and its ‘maximum angle threshold’ 

parameter optimized (to 1.0 radian) to classify most of the pixels of the pigments and the 

rock wall in one of the 6 classes. 
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Fig. 12. Classifications of the pigments from the hyperspectral image of panel #2. a) run on the 8 first 

components of the ICA transformation. b) run on the 13 first components of the MNF transfor-

mation. In both cases 6 groups of end-members pixels were selected with the ‘Pixel Purity Index’ 

(PPI) and n-D visualizer tools in ENVI before Sample Angle Mapper (SAM) classification. Only 

the 3 classes depicting pigments are shown here. c) classification obtained by thresholding the 

2 main ICA components (#1 & 5) of the painting. The blue class (orange pigment) is plotted over the 

red (dark red pigment). d) same superimposed on the context image. All 3 classification were post-

processed with a slight ‘sieving’ algorithm (with a pixel connectivity of 8 and a minimum size of 4) 

to clean part of the random noise disconnected from the painting.   

The results presented in Fig. 12 show that, as generally stated, the classification of the 

pigments (3 classes) on the MNF transformation (Fig. 12b) seems more efficient to remove 

noise than the one run on the ICA (Fig. 12a), but it also misses some faint painting espe-

cially in the ‘blue’ class. Increasing the value of the angle parameter would help include 

these faint paintings but will also dramatically increase the amount of noise (from wall) 

in the pigment classes. We should also note that the classification directly performed on 

the hyperspectral data cube (not shown) is not able to correctly extract most of the pig-

ments for this scene painted on a complex wall. A transformation to concentrate the in-

formation and segregate most of the noise is thus really necessary before any classifica-

tion.  

However, we found that an alternative and more efficient way to classify the pigments is 

to capitalize on the high separation power of ICA by simply thresholding its main com-

ponents depicting the pigments (Fig. 12c), the corresponding end-members being the 

most extreme pixels of each ICA component. The results show that this method provides 

a slightly better recovery of the pigment distribution obtained by SAM classification of 

ICA (Fig. 12a) and much better than the classification performed on the MNF, but with a 

noise level as low as that of MNF (Fig. 12b).  

The first advantage of this method is that it is easier (interactive on most software), faster 

and more objective, to determine the parameter value that is the best compromise between 
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pigment separation and noise contamination. Another advantage is that it has not the re-

striction of the ‘exclusion principle’ of all classification tools (one pixel can belong only to 

one class) and thus it allows to have pixels in two or more classes where two pigments are 

mixed or superimposed, an important information that should not be discarded. In Fig. 

12c it is particularly the case of the human figure in the top right part of the scene where 

a drawing with the orange pigment (ICA #5, blue class) is superimposed with solid dark 

red pigment (ICA #1, red class), unlike almost everything else on the scene (see also Fig. 

10e,f). And finally, the extraction of each pigment can be optimized by its own threshold 

value of the ICA component, contrary to SAM classification (and many others) where a 

unique and common value applies for all classes.  

 

3.3. Panel #3: Highlighting invisible/barely-visible figures on complex rock wall 

Another interesting example is a strongly oxidized brown-red wall with barely visible 

traces of red pigment on top of the image (panel #3, Fig. 13). The DStretch® (YUV) pro-

cessing of the context RGB image allowed us to confirm the presence of several figures at 

the top of the image and possibly a bovine in the middle-left. The ICA analysis of the HSI 

image clearly displays these figures in components #2 and #7, but components #5 and #4 

uncovered in a very clear way a few large anthropomorphic figures belonging to another 

layer of painting that is unobserved by eye. These figures remained undetected on the 

context RGB image despite a whole set of analysis attempts using various options of 

DStretch®, as well as different types of stretching algorithms (Photographic stretch, Satu-

ration stretch, Decorrelation Stretch), transformation algorithms (PCA, ICA, MNF) and 

anomaly detection algorithms (RXD, UTD, RXD-UTD) available in ENVI software. Only 

the 'elongated head' of the main anthropomorph can be barely recognized a posteriori in 

some of these transformations. With the ICA of the HSI data the different types of rock 

texture and composition are also well separated in components #1, #3 and #6.  
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Fig. 13. Highlighting invisible figures on complex rock wall (panel #3). a) original context RGB 

image. Right (d, e, f): ICA transformation of the HSI image: the 3 most significant of the 7 compo-

nents with information (ICA components #7, 2 & 5) clearly separating three different pigments. c) 

synthetic RGB image of the HSI data using the 3 ICA components (R=#7, G=#5, B=#2) displaying 

the different pigments. The large anthropomorphs are mostly invisible in the corresponding 

DStretch® (YUV) image  (b), only the 'elongated head' of the main anthropomorph can be barely 

recognized a posteriori. Scale provided by the white reference 10 cm square. The rectangle in the 

image b locates the high-resolution image of Fig. 14. 

Even with a high-resolution camera image (60 Mega-pixels) covering part of the hyper-

spectral dataset and processed with DStretch® (IDS) or the other algorithms we can 

hardly recognize some of the ‘anthropomorphs’ elements, even knowing where they 

should be located in this stretched image (Fig. 14). They only have a very slightly different 

orange hue in this stretched image compared to the surrounding oxidized rock with 

strongly variable hues. 
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Fig. 14. High resolution camera image (60 Mpx, ~65µm/px) processed with DStretch® (IDS) and 

covering part of the hyperspectral dataset (panel #3) presented in Fig. 13. The point of view is 

slightly different than for the HSI image. Even knowing where the ‘anthropomorphs’ painting 

occurs in this stretched image we can hardly recognize some of its elements from the very slightly 

different orange color compared to the surrounding oxidized rock. Scale and location given in 

Fig. 13. 

 

A comparison of end-member spectra of the three main ICA components of panel #3 and 

of the rock wall (Fig. 15) shows only little variability between the pigments and the oxi-

dized rock wall, in particular in the 400-600 nm range where the oxide absorptions are 

very similar among the spectra. The spectral features that should mainly contribute to the 

detection of the painting of the large anthropomorphs are most probably the slightly more 

marked shoulder around 590 nm and the flat part of their spectra between 770 and 850 

nm which strongly contrasts with the steady spectral slope of the rock wall. Moreover, its 

separation from the other pigments occurs in the visible range (stronger slope and curva-

ture between about 500 and 580 nm) where the anthropomorph’s pigment has a color and 

a spectrum very similar to the rock wall. This explains why an RGB camera cannot distin-

guish these figures from the oxidized background wall. 

 

Fig. 15. End-member spectra (average of 40 to 110 contiguous pixels) of the orange pigment (or-

ange), the dark red pigment (light and dark red) and the anthropomorph pigment (dark and light 

blue) and typical spectrum of the rock wall (green) selected in the hyperspectral image of panel 

#3 presented in Fig. 13. 
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For a better assessment of the relative contributions of the visible and near-infrared re-

garding the figures versus the rock wall respectively, we performed ICA transformations 

on different spectral subsets of the HSI data, i.e. the visible spectrum only and the near-

infrared spectrum only.  

The transformation over the visible spectrum was limited to the 93 spectral channels con-

tained in the photopic sensitivity range of the human eye (420-675 nm, i.e. for sensitivity 

> 2% of its maximum [32]). While still clearly identifying the anthropomorph figures, their 

contrast with the surrounding is partly reduced and some small parts are missing (Fig. 

16b). Other figures, such as the bovine in the middle left of the image and the series of 

characters above, are much less clearly detected using only the visible range (Fig. 16c,d).  

The ICA transformation restricted to the near-infrared, performed over the 73 spectral 

channels of the 700-920 nm range, displays all painted figures in a single component with 

the anthropomorphs less sharply defined but containing the missing parts in the visible 

range, and with all the other painted figures with high contrast relative to the rock wall 

(Fig. 16e).  

These tests show that the visible and near-infrared ranges contribute in different but com-

plementary ways to enhancing the contrast and separation of the figures in the full spec-

trum result. The visible range appears to play a major role in the separation between dif-

ferent painted figures while the infrared range mostly boosts the contrast between the 

figures and the rock wall.  

 

A final test, aimed at better understanding the limitation of RGB images in detecting very 

faint figures, was performed using only the three spectral channels corresponding to the 

RGB peak sensitivity wavelengths of either the eye (~421, 530, 558 nm) or the camera (~470, 

530, 600 nm). In the case of the eye peak wavelengths the ICA transformation slightly 

highlights the anthropomorph figures (Fig. 16f), while in the case of the camera, only the 

series of characters on top left of the image is highlighted. The large width (60-100nm) and 

strong overlap of the RGB sensitivity curves of the eye and of standard cameras with re-

spect to the narrow spectral bands (7 nm wide) used here are most likely the main factors 

that prevent them from distinguishing pigments that have both close color and very low 

contrast. 

 

 

Fig. 16. The main components of ICA transformations of the hyperspectral image of panel #3 per-

formed on a-b) the whole spectrum (410-920 nm, from Fig. 13), and on different subsets of the spec-

trum: c-d) the visible spectrum only (420-675 nm), e) the near-infrared spectrum only (700-920 nm), 

and f-g) the three RGB peak sensitivity wavelengths of the eye (~421, 530, 558 nm). 

 

3.4. Panel #4: Discovery of indistinguishable painting and separation of paint layers 
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An even more complex situation is represented by the hyperspectral image of panel #4, 

where a Barbary sheep is easily seen with naked eyes, as well as two greenish lines on the 

top left quarter of the image (Fig. 17a). Processing the RGB context image with DStretch® 

confirmed these observations but did not reveal more figures. The ICA analysis of the 

corresponding hyperspectral image (Fig. 17) reveals 3 superimposed paintings or draw-

ings separated in 7 information components (#1 to #3, #5 to #7 & #9). In addition to a part 

of a second Barbary sheep on the right side of the image, the outline of a large anthropo-

morph, of which only the tail and part of the back are visible in the camera and DStretched 

images, now more fully appears all around the first Barbary sheep. However, some parts 

of the contour lines of the anthropomorph are still hidden below the two Barbary sheeps 

making this outline very spotty at some places and surrounded by a variety of rock colors 

and more recent paintings. DStretch® cannot highlight it as its statistics for stretching fo-

cuses on the dominant colors of the image in terms of covered surface, i.e. the Barbary 

sheep painting and the highly variable rock wall colors.  

The outline of the Barbary sheep is also well separated in the ICA components from its 

filling, probably drawn with another pigment or technique. All these paintings can be 

represented in a false color image by combining 3 of the ICA components (R=#3, G=#6, 

B=#9) (Fig. 17d). It shows that in addition to these main figures a few other painting, or 

part of paintings, are also present, such as a third horned ‘ghost’ left of the head of the 

first Barbary sheep (in green in Fig. 17d), or additional lines above the back and below the 

right hand of the ‘siemen’ anthropomorph (in faint pink in Fig. 17d).       

There is also a ‘goat’ with thin horns and legs that looks like it is scraped on the rock 

(bright lines), partly over the Barbary sheep. It can be already guessed in the original con-

text RGB image from some lines and area whiter than the rock and locally removing the 

pigments of the Barbary sheep (Fig. 17a). However, the ICA transformation extracts its 

component with little contrast relative to the background. An MNF calculation was also 

run on this image, which provided a component with a better contrast and signal to noise 

ratio allowing us to better determine the outline of the ‘goat’. A false color RGB image of 

the 3 main MNF components (Fig. 17h) clearly shows the superimposition of the three 

paintings or drawings. 
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Fig. 17. Discovery of an indistinguishable painting and separation of three layers of paints (panel 

#4): a) original context image. Middle rows: ICA transformation of the HSI image: the 4 most 

significant components (b) #3, c) #9, f) #6, g) #1) of the 7 components that separate at least four 

different pigments. e) ICA component (#4) of the ‘cleaned’ rock wall.  d) false color RGB image 

using 3 of the pigment ICA components (R=#3, G=#6, B=#9) displaying two of the 3 superimposed 

drawings (in red and blue-green). h) false color RGB image using 3 components of a MNF trans-

formation (R=#2, G=#3, B=#6) highlighting the superimposition of the 3 paintings. Scale provided 

by the white reference 10 cm square. The rectangle in the context image locates the zoom pre-

sented in Fig. 1. 
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In the case of this panel the MNF transformation, although not efficiently separating the 

different pigments, provides interesting complementary results. In particular some of its 

components clearly display two or three of the superimposed paintings, more efficiently 

cleaned from the complex rock texture (Fig. 18).  

 

                                                        

Fig. 

18. Two components of the MNF transformation (panel #4) displaying the superimposition of 

several painting layers, with smoothed rock wall texture.  a) The anthropomorph (first layer) and 

the Barbary sheeps with their outline (second layer).  b) Same (but without the Barbary sheep 

outline) with the addition of the goat as the third ‘layer’. 

The MNF components can be an additional help to understand the paintings organization 

and sequence, e.g. we can now spot a small figure behind the first Barbary sheep, inside 

the thigh of the anthropomorph, which is seen only in secondary painting components of 

the ICA (with fainter and noisier information) and thus not visible in the synthetic RGB 

images of the main painting, such as the two images of Fig. 17d, h. A specific analysis of 

these secondary component is necessary to highlight this figure (Fig. 19) and the MNF 

component provides a slightly sharper view. 

 

Fig. 19. Zoom of a small part of panel #4, highlighting a small figure only seen in the ICA compo-

nents containing secondary information (#2, #5, #7, #8).  a) ICA ‘secondary’ component #2.  b) 

MNF component #4 displaying a slightly better signal-to-noise ratio and thus a better figure def-

inition. Scale and location given in Fig. 17. 

The shape of the end-member spectra collected for the main four pigments provides an 

overview on how they can be differentiated (Fig. 20). Again, the main spectral features 
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that should allow to separate between these pigments are located in the 500-650 and 750-

900 nm ranges. In particular, the shoulder around 580 nm for the anthropomorph is 

shifted up by about 20 nm for the Barbary sheep pigment, and in addition, it has a lower 

slope than typical surrounding rock below 500 nm and above 590 nm. So, contrary to the 

anthropomorph of panel #3, its pigment can be clearly differentiated from the others and 

from the surrounding rock by its color. It is indeed the superposition of the other two 

drawings and the overall complexity of this panel that makes the outline of the anthropo-

morph of panel #4 very difficult to perceive. The difficulty is here more a question of de-

tectability of the discontinuous silhouette of the anthropomorph than of visibility of its 

pigments.  

 

Fig. 20. End-member spectra (average of 35 to 75 pixels for pigments, > 300 for rock) of the Barbary 

sheep pigment (light and dark red) and its outline (orange and brown), the anthropomorph pig-

ment (dark and light blue), the goat (light and dark green) and typical rock wall area (grey and 

black) selected in the hyperspectral image of panel #4 presented in Fig. 17. 

As for panel #3, we also tested the relative contributions of the visible and near-infrared 

ranges by performing ICA restricted on these two ranges (not displayed). In the case of 

panel #4 the different figures are readily separated using only the visible range, but the 

near-infrared seems to contribute better to recover the faintest paints with a more efficient 

separation from the rock wall. 

The hyperspectral image presented above (Fig. 17-18) is part of a series of three images 

which cover a larger part of panel #4 and depicts several superimposed scenes painted 

with different styles when analyzed with ICA and subsequently projected (with 2D-spline 

adjustment on a large number, ~40, of common anchor points) and merged on a high-

resolution image of the same rock wall (Fig. 21). As a first approach the ICA transfor-

mations were performed independently on the three hyperspectral images (with their 

own statistics) but they provided quite consistent components that can be easily matched. 

The overall organization of this panel is very complex with numerous overlapping figures 

that probably belong to more than 3 layers. A complete analysis would need to also study 

in detail the other 5 components containing pigment information and displaying other 

fainter figures, but this is out of the scope of this paper. We can nevertheless point a few 

additional interesting results. In particular two other types of anthropomorphs, which can 

already be seen in the other parts of panel #4 in the DStretch® image (the Fig. 21c) are also 

well extracted and appear to be painted with a similar pigment as the first one. The ‘simen’ 

anthropomorph style, at the bottom part of the panel, is however only partly seen in the 

DStretched image, its head and back being hidden by a large rock scarp clearly visible in 
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the bottom quarter of the RGB image ( Fig. 21a). In contrast, the whole figure is well seen 

in the ICA component despite the interference of this large rock default. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. The two main scenes of a larger part of panel #4, separated using the ICA transformation 

and projected on a high-resolution image of the whole panel (Samsung galaxy S21, 64 Mpx).  a) 

RGB high-resolution camera photo (slightly different shot angle but same illumination as for the 

HSI image).  c) YBK DStretch® processing of a stitching of several high-resolution photos.  b) the 

‘Barbary sheep scene’ build with 3 hyperspectral images analyzed with ICA transformation (com-

ponent #3).  d) the ‘anthropomorph scene’, same but using ICA component #6. 

 

3.5. Panel #5: the case of white painting 

A known difficult case where DStretch® struggles to improve contrast is the presence of 

faint white paints, due to a lack of tint. We tested the detection and separation of faint 

white painting to assess if a VNIR HSI instrument can better extract such colorless pig-

ment from the others and from the rock wall. Fig. 22 shows a faded-out scene comprising 

a complex mixture of various pigment colors, including whitish (panel #5). The scene is 

decomposed in 4 main ICA components (#1, 3, 4, 6) for the pigments, the first one repre-

senting the whitish paint (Fig. 22d), the second the upper left bovine and the two last ones 

the three other bovines. However, although component #1 clearly improves the visibility 
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of the faintest white figures (see in particular the barely visible thin human figure close to 

the right edge, above a bovine), the contrast with the surrounding wall and the other 

paintings is not as sharp as that obtained in the previous panels for orange or red pig-

ments. Also it does not significantly improve the visibility of the whitish figures already 

visible with naked eyes (see e.g. the second human figure from the right edge).      

 

 

Fig. 22. Detection and contrast improvement of faint white painting (panel #5).  a) original RGB 

context image. Right: ICA transformation of the HSI image: the 3 most significant ICA components 

(d) #1, e) #3, f) #4) describing the painting.  b) a synthetic RGB image using these 3 painting ICA 

components (R=#4, G=#1, B=#3).  c) DStretch® (LAB) image for comparison. Scale provided by the 

white reference 10 cm square. 

 

Comparison of the synthetic RGB image build using the 3 first painting ICA components 

(#1, #3, #4 - Fig. 22d,e,f) against the context image processed with DStretch® LAB (Fig. 

22c)  shows that the ICA decomposition provides a significant contrast improvement of 

the faintest whitish pigments. We should note here that the specifically designed ‘white’ 

YWE and LWE DStretch® enhancements were not well working with this scene. 

We then compared the spectra of the whitish human figures with the surrounding wall 

and the two types of bovine seen in the ICA components #3 and 4 (Fig. 23). We can see 

only little difference in spectrum shape of the two whitish human figures with the nearby 

rock wall, especially for the faintest one which has its spectrum exactly overlapping that 
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of one of the rock (grey spectrum) up to 560 nm and little departure (< 0.02 in reflectance) 

in the remaining visible range. The main difference with the underlying wall is a more 

pronounced shoulder around 580 nm leading to about 15-20% brighter reflectance in the 

very near infrared. These whitish human figures are in fact not so white, but rather red-

dish according to their spectra, but they look whitish only by contrast because they are 

slightly brighter than the wall, especially figure #2, contrary to most red paints that are 

darker, as it is the case for the bovines. Part of the human figure #1 has color and visible 

brightness so close to the surrounding wall that only small dotted parts are visible by 

contrast to the eye. It has also a more reddish color than figure #2 (slightly stronger spec-

tral slope below 450 nm) as it also appears in the ICA component #4 which mostly depicts 

the light brown part of the bovine below (Fig. 22f). Some of the bovines are also difficult 

to discern with naked eyes due to very similar visible spectra of the surrounding wall (in 

particular, the one in the upper left quarter of the image), but they have clearly different 

spectral shapes outside the eye sensitive range, in particular between 680 and 900nm, 

which allow the ICA to extract them with a much sharper contrast with the rock (Fig. 

22e,f). 

 
Fig. 23. End-member spectra (average of 35 to 75 pixels for pigments, > 300 for rock) of the whitish 

human figures (dark blue: #1, light blue: #2) with the surrounding wall (grey and black) and the two 

types of bovine seen in ICA component #3 and 4 (orange and red) of panel #5. 

 

3.6. Panel #6: Separation of graffiti superimposed on paintings 

A final example of the ability of VNIR hyperspectral imagery coupled with ICA transfor-

mation to separate different information mixed together on the rock is the case of ‘modern 

art and poetry’ superimposed on Neolithic painting. 

Fig. 24 shows a painting ‘contaminated’ with several graffiti drawn with different mate-

rials and colors (panel #6). The ICA transformation of the hyperspectral image produces 

12 significant components with information on the relatively complex painting (5 compo-

nents: #5 to #9), the rock wall (3 components #3, #4, #10) and the graffiti (2 components #1, 

#11) as well as 2 components with mixed information (#2, #12). 
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Fig. 24. Separation of ‘modern art and poetry’ superimposed on Neolithic paintings (panel #6).  a) 

original RGB context image.  d-e) ICA transformation of the HSI image: 2 of the 12 significant ICA 

components, d) component #1, clearly separating the graffiti.  e) one (#6) of the five components 

describing the painting of this relatively complex panel.  b) a synthetic RGB image using 3 of these 

5 ‘painting’ ICA components (R=#8, G=#6, B=#7). The graffiti can only be barely seen in this image, 

most of its information being concentrated in ICA component #1.  c) DStretch® (YDS) image for 

comparison.  f) The best synthetic RGB image of PCA components still displaying some ghosts of 

the graffiti. Scale provided by the white reference 10 cm square. 
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When simulating a false color RGB image of the painting using three of the five compo-

nents with relevant information, the graffiti can only be barely seen in the image (Fig. 24b) 

most of its information being concentrated in ICA component #1. The PCA transformation 

is found to be slightly less efficient to segregate the graffiti information in this hyperspec-

tral dataset (Fig. 24f), and a MNF transformation did not separate efficiently enough 

painting, rock and graffiti to be useful in that case. DStretch® applied on the RGB context 

image is also completely unable to remove the Graffiti (Fig. 24c). At the opposite it has the 

tendency to highlight them to the detriment of the other colors. 

 

4. Discussion 

Even with a spectral range limited to 410-920 nm, mainly due to measurements of shaded 

walls indirectly illuminated by sunlight scattered from the sky and reflected by the sur-

rounding landscape, the analysis of the hyperspectral data cubes provided many im-

provements over DStretched RGB camera images. The main advantages of hyperspectral 

imagery for the study of Neolithic paintings can be listed as follow.  

First, based on ICA analysis which concentrates the useful information in 8 to 12 compo-

nents, with 3 to 7 concerning pigments, we could better separate different physical contri-

butions to the image which are generally mixed in the three channels of a standard cam-

era, including:  

• the pigments and the underlying rock,  

• the composition (mostly Fe-bearing minerals) and the color of the pigments, 

• the different paint layers and their juxtaposition. 

While ICA is relatively efficient in separating different types of pigments used (independ-

ent components), it did not provide by itself composition information. This can be ob-

tained from the end-member spectra of the components by comparing them with labora-

tory spectra of well characterized pigments or minerals [50]. However, with the VNIR 

range we can only provide information on the Fe-bearing minerals. SWIR would be nec-

essary to get info on some of the other minerals, such as kaolinite, carbonate and sul-

phates, constituting the paintings. 

We could detect faint paintings, which were undetected by the naked eye and even with 

high resolution camera images post-processed with DStretch®. In the various cases stud-

ied we found different reasons that led the ICA analysis of hyperspectral data to highlight 

new figures. In one case (panel #3) the pigment of the figure, an anthropomorph, has a 

color too similar to the complex surrounding rock to be separated by eye or by a DStretch 

processed RGB image, but it can be easily differentiated in the very-near infrared thanks 

to different spectral behaviors. The situation is similar for panel #5 (a whitish human fig-

ure) but occurs even in the presence of a fairly homogeneous wall color. In both cases the 

‘near-infrared vision’ provided by the HSI instrument is key to detect these invisible fig-

ures. In another case (panel #4) the paint was faint but sufficiently contrasted in the visible 

range relative to rock. However, the superimposition of at least two other paintings cross-

ing the first one in many places led to very discontinuous and faint remains that the eye 

was unable to recognized as a painted figure in the middle of a complex mix of other 

figures. The ICA extraction of this paint layer from the other layers and from the rock 

texture allowed us to obtain a clean image of the visible remains of its paint, completed 

by additional missing pieces located under other thin paint layers.  

Thus, specific spectral ranges contribute the most to differentiate the pigments from the 

rock wall (e.g. panel #2, Fig. 13), or between 2 pigments. However, in some cases only 

very subtle spectral differences are noticeable (e.g. panel #3, Fig. 15 and panel #5, Fig. 23). 

These sensitive ranges are not always the same and depends on the painting, its alteration 
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as well as the weathering of the rock wall. In our cases the two most sensitive ranges are 

both in the visible, around 580 nm, and in the near-infrared, above about 750 nm. It is why 

not only the whole wavelength range needs to be used, but also the analysis of various 

cases with no preconceptions on which type of spectral difference exists between pig-

ments and rock wall textures.  

 

While both ranges contribute to enhance the invisible or very faint figures, we found that 

the visible range plays a major role in the separation between different painted figures 

while the infrared mostly improve the contrast between the figures and the rock wall. 

The extraction and efficient separation of the different painting layers is the second major 

advantage of hyperspectral data, as soon they have some spectral differences in the VNIR 

spectral range, either due to differences in e.g. color, composition, texture, thickness or 

alteration.  

 

Due to the numerous spectral channels and the wider spectral range, the ICA transfor-

mation allows us to suppress or reduce the effects of the rock wall structure and of the 

inhomogeneous lighting. It can also remove a large part of the noise in the image and thus 

increases strongly the contrast between the paint itself and its surrounding environment. 

The example of panel #1 shows that even a small HSI instrument with just 0.25Mpx can 

compete with large cameras with several dozen Megapixels in terms of pigment extraction 

thanks to the efficient segregation of instrumental (from the HSI camera) and natural 

noises. This later ‘noise’ is in fact produced by high frequency spatial variations of re-

flected light induced by the rock & paint textures at microscopic/millimetric scales and 

some larger scale lighting variations, both factors that cannot be suppressed even with 

very high-quality cameras. Indeed, the pixel size of this HSI instrument (about 1-2mm 

depending on camera-wall distance) is still slightly larger than the sub-mm size of the 

textural unit (grain facet) of sandstone rock, but the pixel size of high-resolution cameras 

(10-100 µm) may be smaller than crystal facets. So ‘single grain BRDF’ (and probably 

mostly its specular component) begins to be a major factor of pixel-to-pixel variability in 

high resolution images. It should be noted that the intensity of these fluctuations is greatly 

reduced in diffuse light (such as in shaded area) compared to direct sunlight (or artificial 

light) because of the angular spreading of the microscopic specular reflections (first exter-

nal reflection at rock crystal face scale) and the attenuation of shadows at all scales. So, 

the reduced amount of light and the slightly limited spectral range in the shadowed area 

may be partly compensated by the diffuse lighting leading to the removal of a large part 

of natural ‘textural’ noise. The advantages of VNIR HSI acquisition in full sunlight is 

mostly the acquisition time which may be reduced to less than 1 minute (instead of 3-10 

min in shadowed area), and the extended spectral range up to 1000 nm which may probe 

additional differences between near-infrared spectra. But the stability of the measure-

ment, in terms of absolute intensity and, more critically, color (white clouds versus blue 

sky) is then highly sensitive to any cloud moving in the vicinity of the sun direction. The 

respective advantage of the two situations in terms of pigment detection and extraction 

performance has yet to be assessed in a range of relevant situations. 

 

The ICA decomposition on VNIR HSI data may also detect pigments under another paint 

layer where this layer is thin enough to be translucent in the very near infrared (> 700nm), 

where most chromophore mineral pigments are less absorbing (see e.g. [50]). In addition 

to uncovering parts of an underlayer figure, this ability of HSI may also be to ‘clean’ graf-

fiti drawn over Neolithic painting, such as in the example of panel #6. 

Pigment classification is a further step in the analysis of a painted prehistoric scene. Our 

first tests with the simplest algorithms (IsoData, K-means, SAM on MNF and ICA trans-

formations) show that the most satisfactory is SAM on MNF but our simpler classification 

technique of thresholding ICA components proved to be more efficient in classifying the 

two main pigments while further limiting the interference of background noise. This 
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method also has the advantage of allowing quick and easy adjustment of a single, inde-

pendent parameter for each component to obtain the best compromise between pigment 

separation and noise elimination. It also frees itself from the ‘exclusion principle’ of all 

classification tools and thus keep the very important information of the location of mixed 

or superimposed pigments. 

More sophisticated classification algorithms may possibly get slightly better results, and 

should be tested in the future. However, they are generally more complex and time con-

suming, with pre-processing steps (extraction of end-members…), and parameters, some-

times purely mathematical, to tune to each case by trial and error. And in most cases the 

classes are constrained by the ‘exclusion principle’. 

 

We also note some limitations in the measurement presented here, such as the format and 

spatial resolution of the HSI images. Although such lightweight and stand-alone VNIR 

HSI camera is ideal for exploratory campaigns, a larger hyperspectral image format is 

necessary to make comprehensive surveys at higher spatial resolution of extended Neo-

lithic or Paleolithic sites. Such instruments have been around for more than a decade and 

have recently been extended to a 3000-pixel swath leading to hyperspectral images of 

more than 15 megapixels. However, they require heavier logistics in terms of scanning 

system, set of front optics, computer and power supply.  

Extending to the near infrared (SWIR: Short-Wave InfraRed, 1000-2500 nm) might also 

improve the separation between paints and rock and should also provide additional in-

formation especially on the composition of pigments and on the taphonomy of the rock 

wall (see e.g. [50, 70], but the logistic (and cost) of SWIR HSI instruments is even heavier, 

in particular in weight and energy consumption, which should be considered for remote 

field operations.  

Alternative solutions to VNIR HSI may be multispectral VNIR cameras with 8 to 20 spec-

tral bands and larger image format if they cover a wide enough spectral range (at least 

400-900 nm) in order to be sensitive to some very near infrared spectral differences be-

tween pigments and/or rocks of same apparent color (see e.g. panels #3 and #5). The sim-

plest ones with only 8 spectral channels (using a 3x3 Bayer filter mosaic) may already 

provide useful additional information, but as they still strongly under-sample the whole 

spectral information, the separation between pigments, rock and noise will not be optimal 

in the case of complex paintings and /or rocks. Although we have not fully investigated 

the effects of number, position and width of spectral channels, our guess, given the num-

ber of useful information channels, is that instrument noise and natural high spatial fre-

quency fluctuations will not be well segregated by the ICA transformation until a large 

number of spectral channels (> 20) is used. Indeed, in our study up to 12 components 

contained useful information and the noise was concentrated in the other ones. 

Another aspect to be considered is the processing of the hyperspectral data, which is more 

complex and computer and manpower time consuming as it involves copy of the data set 

to a computer, preliminary inspection of the data to optimize the process, a series of high-

level mathematical operations on the data cubes to get the results, followed by visual in-

spection of each of the 12-15 first ICA components to determine which type of information 

they contain (painting, rock, illumination field, noise, …) and then post-processing of the 

most interesting components. This whole series of processing cannot be easily and rapidly 

done in the field (> 20 min) compared to a simple DStretch® visualization. The data re-

cording is therefore partly blind to the potential presence of "invisible" paintings in the 

scene. However, automatization of a pipeline including most of the process is possible, at 

least for a given type of measurement, but it still needs to be developed and standardized. 

Nevertheless, it should be kept in mind that the amount of information contained in a 

single data cube is very large (300 Mo to 50 Go) and its complete exploitation, beyond the 
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simple separation of pigments, may need additional analyses and tools. For example, an 

extension of the processing may consist in performing local analyses of the images, focus-

ing on local variations of pigments and rock texture in and around a single figure. If the 

subset selection reduces the variability in the image part under study, it may help to dis-

cover small additional figures or details which were otherwise buried in the noise. In a 

second stage, the use of well-adapted hyperspectral pixel classification tools and tech-

niques may allow a sharper separation of the different types of pigments and their pro-

jection on high spatial resolution camera image [70], with their ‘original’ color rendering, 

thanks to the conversion of their visible reflectance spectrum into photometric infor-

mation. 

However, a small software running a pre-optimized ICA transformation on HSI data com-

plemented with some simple visualization functions should be as easy to manage as with 

DStretch® on RGB camera images and will provide much better results due to the better 

separation between the various pigment and rock contributions and the removal of a large 

part of the high spatial instrument and natural noises.  

Data reduction steps of HSI image may be even easier and more reproducible as only 

global and standard image processing functions may be used thanks to the better separa-

tion of information by ICA. For example, a simple global thresholding of some of the ICA 

components (i.e. a black & white image) can already provide a quite clean distribution 

map for some pigments, without having to use sophisticated functions and local manip-

ulation to extract the pixels of a figure in image processing software. 

 

5. Conclusions 

The "HSI revolution" that has emerged from space exploration and now back on Earth 

may provide archaeologists with a new way to access more information than in the past 

while respecting the integrity of rock paintings. It is a new step in the evolution of the 

methods for documentation of rock art. It is advisable to recall nevertheless that it does 

not eliminate the subjectivity of the survey, since, whatever the chosen mode of operation, 

the human intervention is always preponderant at the acquisition step, but also at the 

analysis and interpretation steps [2,71]. Nevertheless, HSI instruments made it possible to 

push back the limits of the standard RGB cameras.  

An RGB camera image of Neolithic painting on oxidized sandstone analyzed with 

DStretch® can be sufficient to visualize part of the figures, generally the most recent, or 

even all the figures in the scene when they have sufficient color contrasts between them 

and with the rock. Now, with a hyperspectral data cube recorded with a VNIR HSI instru-

ment we can better remove the wall texture as well as the natural noise and extract the 

distribution of the various pigments with a greater contrast. When the color contrast of a 

figure with the surrounding rock, or figures, becomes poor or statistically null, due to the 

progressive alteration of both paint and rock, an HSI can reveal new figures by capitaliz-

ing both on its strong ability to extract the distribution of the different pigment types, and 

on the new discriminating information contained in the very near infrared part of the 

spectrum. Another important result is that measurement of shaded walls is not a major 

problem, mostly slightly reducing the VNIR spectral range and increasing measurement 

time, but possibly positively reducing the natural high spatial frequency noise linked to 

rock and pigment micro-textures that otherwise strongly disturb the extraction of pig-

mented pixels. 

HSI measurements are especially useful when the figures have a complex organization in 

the scene with numerous juxtapositions or layer superimpositions, when they are poly-
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chromatic, and when in addition some of them are very faint. In that case a dozen infor-

mation components are needed to describe correctly the variety of pigment and rock com-

position, texture and alteration degrees. In such a case, quite frequent indeed, a few dozen 

well distributed spectral channels are a minimum to sample all this information as well 

as the different sources and pattern of noises, to best remove them. Thus, from this point 

of view, one can easily realize that an RGB camera can only record highly degraded infor-

mation with its only three wide spectral filters covering a limited spectral range, a strong 

physical limitation that DStretch® cannot improve in any way. Our eye, with a similar 

color information collection process, is well known to have a sensitivity covering less than 

an octave (a factor of 2) and to be a poor discriminator of wavelength [72]. It is thus abso-

lutely unable to recognize the individual wavelengths of two combined monochromatic 

sources, contrary to our ear that can recognize the combination of 2 or more tones over at 

least 5-6 octaves. It is what a VNIR HSI instrument can do over about 1.5 octaves and 

almost 3 octaves for a coupled VNIR-SWIR instrument. 

With a VNIR instrument only, even able to record larger images at higher spatial resolu-

tion, the capability to go to the next scientific step of the identification and mapping of the 

composition of pigments is quite limited as mostly the chromophore minerals (hematite, 

goethite, …) play a role and can be identified in this spectral range. It should be noted 

here that an RGB + DStretch® image gives no access to such information. A SWIR HSI 

instrument covering the 1-2.5 µm range is needed to map chemical and mineral composi-

tion of pigments and rock. It should also improve the separability of pigments of similar 

visual color; allow us to group figures on the basis of their composition; and provide clues 

as to the presence of mineral phases associated with the pigment giving indications on 

possible intentional mixtures and on the origin of the raw materials. But a SWIR HSI in-

strument implies a much heavier logistic on the field. 

The speed and ease of obtaining powerful and reliable results are essential conditions for 

documenting rock sites in mountainous or desert areas where access difficulties, extreme 

environment conditions and field logistics are crucial. For such exploratory campaigns 

DStretch® allows a quick deciphering of the walls, which facilitates the acquisition of pre-

cise and detailed documentation. Complexity is not a guarantee of performance, and for 

the Saharan terrain, efficiency is the essential quality to privilege. At the moment, RGB 

cameras with DStretch® is still an unavoidable combination of tools for field research. Its 

partially automatized decorrelation of image channels specifically dedicated to enhance 

pigments makes it easy and fast to use and very popular among most rock art recorders 

[5, 24]. Previous tests of PCA run on RGB images showed that they gave slightly better 

results (5%) than DStretch, but the difference was not considered enough to revolutionize 

the field [63]. But a compact and lightweight VNIR HSI (or multispectral) camera should 

become the best companion of Neolithic painting explorers as we demonstrated that its 

added archaeological value is very significant.  

Currently the three major limitations of HSI cameras, compared to RGB cameras, are first 

the size of the image, typically an order of magnitude smaller in both directions, which 

constrains either the size of the figure or panel recorded, and/or the pixel spatial resolu-

tion: a strong limitation when there are narrow drawings (sub-mm). And second, the 

measurement preparation (need to be fixed on a tripod) and recording time (up to 10 min 

in the worst cases of low light) which limits the number of measurements also by more 

than an order of magnitude compared to cameras. When the recording time is long there 

is also the issue of the stability of the illumination, so relatively stable weather conditions 

are the best, either clear sky or fully cloudy. However, the developments of these types of 

instruments are fast and image format of portable HSI should steadily increase. There is 

also a growing number of compact commercial ‘snapshot’ (or quasi-snapshot) acquisition 

solutions, with 8 to up to a hundred spectral channels, but generally still with a small 

image format and sometimes with too large minimum focusing distances for archaeolog-
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ical use (currently mostly developed for UAV). They should in the future reduce the prep-

aration and acquisition time of hyperspectral measurements close to that of a normal cam-

era. When these instruments will be mature and will have overcome some of their restric-

tive characteristics, they will be the perfect and powerful camera in remote area.  

The last limitation is the data processing, as ICA is a time-consuming convergence algo-

rithm and involves also a visual selection of the relevant components, which may be more 

than 3, to be displayed in B&W or RGB. Currently, unlike DStretch®, this processing can-

not be performed on site, but the development of dedicated plugins can be considered. 

However, back from the field, data analysis with ICA can be efficiently computed with 

dedicated software (such as ENVI) on powerful computers. It requires a little bit more 

skills to preselect the best wavelength range and some ICA parameters, but some of these 

steps may be automatized to get the best results for rock art. With the coupled use of 

hyperspectral images and ICA algorithms the gains in detectivity and separability be-

tween pigments and with rock wall texture is such that it should make the extraction of 

faint or barely-visible painting easier, faster and more reproducible than with camera, 

even with the current limitations of the instruments. 

In the following, we suggest a photographic strategy for remote and hard-to-reach area in 

3 steps: 

Step 1: identify the paintings 

- use of RGB cameras (e.g. last generation smartphone cameras) with onboard DStretch® 

or similar software to 1) help rapidly explore shelters, especially those hard-to-reach, 2) 

visualize on-site the faint paintings to assess their potential interest, and 3) systematically 

record the figures, their locations and extend, or tracks of pigments on the wall. 

- use a lightweight VNIR HSI camera to record the most complex panels, in terms of pol-

ychromies, figure superposition, or variability / complexity of rock texture and color of 

the wall. Also make some global low-resolution measurements on potential panels where 

no clear figure is visible either by eye or on DStretched images.   

- possibly use lightweight and foldable sun reflectors directed toward the shaded panel 

to increase the spectral range up to 1000 nm (but may induce illumination inhomogenei-

ties). 

Step 2: systematic recording of the paintings of whole panels 

- use of a high performance VNIR HSI instrument (1500-3000 pixels swath) to easily cover 

large scenes at high spatial resolution 

- use lighting lamps for shaded walls (but energy consuming) to reduce acquisition time 

and benefit from the full very near infrared range, up to 1000nm. 

- complement measurements with a portable VNIR-SWIR point spectrometer to record 

typical and end-member spectra of paint and rock wall over the full spectral range (but 

may need on-site HSI data preprocessing to locate them accurately) for pigment and rock 

composition determination. 

Step 3: mapping of the pigment composition and rock taphonomy 

- in addition, use a SWIR HSI instrument (1000-2500 nm) to improve the pigment separa-

bility and map pigment composition and rock taphonomy (mineral identification). But 

these measurements in the near-infrared will be only possible in sunlight (but restricted 

outside the strong atmospheric water bands), or better, with a powerful artificial halogen 

lighting to cover the whole spectral range (further increasing weight, complexity and 

power consumption). This step can be also complemented with 3D acquisition with digi-

tal photogrammetry and three-dimensional scanner laser [73, 74].   

In order to be efficient in the field for the exploratory phase (step 1) it should be useful to 

get on-site a first guess of the interest of HSI measurements of some area. So, a fast and 
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automatic data analysis pipeline run just after recording should be developed to assess if 

more extended data cube measurements or at higher spatial resolution are needed. 

Also, in this exploratory study we only analyzed the main ‘paint’ components of the ICA 

transformation as well as comparisons between some end-member spectra of the major 

ICA components of interest. We have shown only one example, in a simple case (panel 

#1), of complete pigment extraction and overlay on the original image after ‘restoration’ 

of the color with a higher contrast with the rock. However, various other post-processing 

operations may be performed on the hyperspectral data and their analysis products de-

pending of the final goal (figures and scene reconstruction, chronological study, pigment 

composition, …) 

Many different tools have been developed, in addition to the mathematical transfor-

mations used here, to help distinguish between the different pigments and classify them 

in a series of homogeneous classes for further analysis in terms of color, composition, 

painting technique, superposition, etc. After the spectral concentration of information per-

formed by the ICA, this step corresponds to the spatial dimension reduction and concen-

tration of the information [75]. These tools can work either directly on the original hyper-

spectral data cube, or on a selected set of ICA, PCA or MNF components, or even on de-

noised hyperspectral data cubes reconstructed by filtering out the noise components fol-

lowed by an inverse transformation [66]. These tools, once adapted to the data and the 

specific problem to be solved, have proven over the last three decades to be very useful 

and efficient in many fields of remote sensing (e.g. planetary sciences or Earth monitoring) 

as well as in painting arts of all ages.  

Regarding rock arts, they need to be tested and adapted to the types of pigment and rock 

wall color, composition, texture and alteration types. But also, to fieldwork and its specific 

lighting conditions. The case treated in this exploratory article of red-orange pigments 

painted on oxidized sandstone walls and subjected to strong corrasion was a good exam-

ple and a rather difficult case to test the technique. But it proved the great potential of 

VNIR HSI instruments to uncover new figures hidden to the naked eye and to effectively 

separate their pigments from the wall substrate. We believe that these instruments open 

up new and exciting horizons for the study of rock and cave paintings. 
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