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Abstract
Rock paintings undergo physical, chemical, biological and/or anthropic alterations that alter their
visibility. Cameras and image enhancement tools (DStretch® plug-in) are commonly used to help identify
and record images that have become invisible to the naked eye. HyperSpectral imaging (HSI) which is
strongly developing in many research and application �elds, is tested in this study to analyze Neolithic
rock paintings. We particularly address the question of what kind of additional information can Visible
Near InfraRed HSI instruments, coupled to mathematical transformations to reduce the dimensionality of
the data, bring for rock paintings, compared to standard RGB cameras. From the analysis of a selection
of panels painted on yellow-reddish altered sandstone walls and measured in Saharan shaded shelters
we show that HSI can reveal new �gures by capitalizing both on its ability to extract the different pigment
types with a greater contrast and on the new discriminating information contained in the very near
infrared part of the spectrum. Despite their much smaller image format, HSI can provide up to 5-7
contrasted images of the spatial distribution of the different types of pigments in the �gures. It thus
appears to be a promising non-invasive and e�cient methodology to both reveal disappeared paintings
and to study image juxtapositions and painted layer superimpositions.

1. Introduction
Compared to techniques like freehand drawing, direct tracing or silver photography, digital photography
and image enhancement software have dramatically improved the processes of documenting and
studying rock art paintings [1-3]. Bringing more accurate and objective surveys [4,5], these techniques not
only facilitate the study of visible paintings [6-8], but also make it possible to discover new ones, either
previous paintings, underdrawings or pentimenti, that we did not even know existed [9].

Digital photography has also proven particularly suitable for remote �eldwork due to its ease of use. Yet,
to document rock images, it requires a camera with a su�cient resolution, a skilled operator to control the
various parameters during the shooting, as well as advanced post-processing of the shots. Nevertheless,
it is possible to make usable pictures without being an expert, as long as the shooting conditions are not
extreme. The contribution of image processing software to the study of rock art images has mainly
concerned the enhancement of pictures, in order to reveal what the human eye could perceive with
di�culty on site. These post-processing stages were developed in the beginning of the 1980s, when an
image was scanned before being processed on a computer. Mickael R. Rip [10,11] was one of the �rst to
assess this methodology on a rock-painting picture. 

From then on, image enhancement software diversi�ed as their performance increased, together with the
arrival of digital cameras [12-15]. In addition, image enhancement has also proven to be effective in
monitoring the evolution in terms of degradation of the paintings as well as localized areas of the
supports. This use for conservation purposes is currently an application under development [9, 16, 17].
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Among the software currently used for rock arts, the "standard" is Photoshop©, produced by the company
Adobe© [2,3,18-20]. Another software appears to be particularly well adapted to the study of rock
paintings, because of its processing speed and ease to use: DStretch®, a free plugin for ImageJ©,
speci�cally designed in 2005 by Jon Harman [21,19]. Ever since it became available [3], DStretch® has
been widely used by the European Learned Societies like the AARS (Association of the Friends of Saharan
Rock Art). To enhance digital photographs of cave paintings, DStretch® uses a decorrelation algorithm
originally developed in 1978 at the Jet Propulsion Laboratory in Pasadena, California, where it was used
to improve the contrast of Landsat multispectral images [22]. It was then used with the ASTER (Advanced
Spaceborne Thermal Emission and Re�ectance Radiometer [23]). In 2004, Nasa released images from the
Rover mission to Mars, which had been enhanced with this technique [24], and which suggested that it
could also work well on photographs of cave paintings. 

DStretch® has been developed to process Red-Green-Blue (RGB) camera pictures only. Since only three
visible bands are available, its ability to separate and enhance different information is limited. Most
standard cameras work with RGB bandpass �lters in a Bayer mosaic covering the 400-410 to 670-690 nm
range (at 2% Green maximum, [25]), i.e. about the human eye photopic sensitivity range (~420-675 nm at
2% of eye sensitivity maximum, [26]) which is limited to a very small portion of the whole electromagnetic
spectrum. This feature presents a severe limitation when attempting to detect remaining painting
pigments invisible to the naked eyes. Hyperspectral imaging (HSI) technology may be used for this
challenging application by recording hundreds of bands across a wider spectral range (see e.g. [26]).
Those bands are contiguous, narrow and regularly sampled and are not limited to the visible part of the
spectrum. HSI provides a well sampled spectral signature at each pixel of the image creating a three-
dimensional data cube or hypercube. A frame hypercube is composed by a sequence of images each
corresponding to individual spectral bands acquired by the camera (Fig. 1).

After several generations of multispectral imagers (with only a few wide and speci�c spectral �lters), HSI
has been developed for space exploration missions since the late 1980s (French ISM instrument on the
Phobos missions, [29]) and on aircraft since the 1990s and then on Earth’s observation satellites since
the late 2000s [30]. Presently, hyperspectral cameras are used indoor (laboratory, industry…), in the �eld
and now often mounted on UAV platforms. They can be classified according to the methodology by
which these sensors build the hypercube. A pushbroom (or line scan) sensor records images line by line
in motion (Fig. 1), while spectral scan instruments record single images for each spectral band selected
sequentially in time, and snapshot hyperspectral imagers record the image at all wavelengths at the same
time. For about two decades HSI have been more and more widely used for various application including
geology [27, 31], industry, environment, agriculture [27], agri-food, forensic [32], biotechnologies and
medical diagnosis [33], as well as art painting where it is becoming an essential tool for the historical
study of the technical realization of the paint layers and underlying material of the artwork [34-36], their
restoration [37,38], as well as for their expertise [39]. The HSI technique strongly improves the collected
information in the spectral dimension (to the detriment of spatial resolution) and complements the
pioneering studies using multispectral imaging and pulse-compression thermography at high spatial
resolution, developed in particular in the �eld of art work studies [40,41].
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Each painting pigment has its unique composition and texture and therefore re�ects sunlight according
to its characteristic spectral signature over the electromagnetic spectrum (see e.g. [42]). However, rock
paintings undergo physical, chemical, biological and/or anthropic alterations that alter their visibility, i.e.
its contrast relative to the underlying rock. Nevertheless, we can expect that its distinctive spectral pattern,
fully sampled by an HSI, is still recognizable at least in some spectral ranges and may detect the
presence of tiny amounts of pigment. Because of both the increased spectral range and the number of
measurement channels, HSI can provide a larger amount of information that may allow us to identify the
screened materials, and separate them from the underlying rock, based on their chemical composition
rather than only their remaining perceived visible colors. As an example, the spectrum of a very thin layer
of red pigment painted on a �at slice of brown carbonate rock compared to the VNIR spectrum (Visible-
very Near InfraRed: 400-1000 nm) of the rock itself [42] is shown in Fig. 2. The spectral signals present
clear spectral and photometric differences between the painted and the non-painted zones, in particular
above 650 nm, while the simulations of the RGB signal of a classical digital camera (Canon 20D) present
only a very small difference in hue (~6%) and radiometric brightness (average ~10%). Such a difference
may be not signi�cant enough on a more inhomogeneous rock wall because spatial variations of rock
texture and composition, or the lightning nature and orientation can also produce it. It should be noted
that the perceived brightness difference between the paint and the substrate in Fig. 2 is larger (~25%)
because the photopic eye sensitivity is peaking near the green where the brightness difference is the
largest, in that speci�c case.

The numerous spectral channels of an HSI camera should also provide a better discrimination between
the various pigment materials used in a polychromic painting, even between paints of very similar colors
in a 3-channels RGB image [37, 38, 35]. Finally, we can also expect detection of underlying paintings due
to the large transparency windows of numerous mineral pigments in the very near (0.7-1 µm) and short-
wave infrared ranges (SWIR: 1-2.5µm). The use of these infrared wavelength ranges for revealing
underdrawings and pentimenti are already well established for art work inspection [40].

Until now, studies of cave art have used RGB cameras and image enhancement tools (DStretch® plug-in
for example) to help identify images that have sometimes become invisible to the naked eye and to make
a survey. To our knowledge, only one pioneering work has already used VNIR hyperspectral imaging, to
study prehistoric rock painting [43,44]. They used four sets of three lamps for the illumination of the
panels. From their analysis of some panels painted on the limestone wall of the cave of El Castillo
(Spain) they were able to identify 76% more �gures, some of them below a calcite layer, and to
differentiate between slightly different paints. They concluded that hyperspectral imaging could become
an e�cient tool for the recognition of �gures, coloring matter and state of conservation.

The objective of this study is to show what kind of useful additional information VNIR HSI imaging can
bring in the case of rock painting on yellow-reddish oxidized sandstone walls measured in shaded
shelters, compared to standard RGB cameras. In particular we are focusing on the capacity of HSI to
detect invisible/barely visible �gures, to extract the pigment distribution from the rock texture pattern and
to separate the different paint layers. ‘Visual simulations' using only the visible range of the HSI data is
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out of the scope of this paper. The images we provide are B&W or 'false color' synthetic images to best
display to the eye the ‘invisible’ and mathematically transformed spectral information contained in HSI
data.

As an application case a lightweight portable VNIR HSI camera has been used in the Sahara, i.e. in a
particular rough �eld, to take pictures of large painted surfaces using an HSI without special lighting, just
as would be done with a regular camera. The aim was to allow a quick and easy implementation for
extensive non-contact imaging measurements and thus the possibility of exploring hard-to-reach areas.
This paper presents the measurements and the analysis of a selection of painted panels of increasing
complexity and will draw conclusions from a remote sensing point of view on the detectivity, separability
and extraction of pigments, but will not address any archeological consideration or artistic interpretation
of the highlighted �gures.

2. Materials And Methods
2.1. Studied rock painting panels

The panels used for these tests are located in central Sahara. If many of them are well-preserved, many
more are very faded (Fig. 3 top) because they were painted on the walls of open rock shelters (Fig. 3
bottom). Among factors that may affect the conservation state of those paintings are the low rainfall and
the rising temperatures [45,46] which appear to have increased in recent decades. This accelerated
climatic deterioration could have a double effect: on the one hand, to accentuate the process of �aking of
the walls used as support to the paintings, by a phenomenon of desiccation, and on the other hand, by
increasing the intensity of the abrasion related to the corrasion, i.e. erosion by the action of sand grains
carried by winds on the most exposed walls [17]. Additional degradations in some areas come from
modern tagging over the painted �gures. 

2.2 Data aquisition using classical RGB camera

Highly portable RGB cameras were used to meet the di�cult �eld conditions and among them, a
Samsung galaxy S21 integrated camera. This camera has three multi-rear cameras with several
functions. We used the 64 Mpx f/2.0 telephoto camera with 1.1x optical zoom to take pictures of rock
paintings (Fig. 20 top).

2.3. DStretch® process from classical RGB camera

Different types of stretching algorithms (decorrelation stretch, photographic stretch, saturation stretch, …)
and transformation algorithms (PCA, ICA, MNF) may be applied to RGB images to enhance the
information it contains. We made some tests of all these algorithms on several of the images presented
below and �nally decided to use only decorrelation stretch throughout this study by using the DStretch®
software, the only algorithm/software widely used as a reference tool by prehistoric archaeologists.
Thanks to its �exibility in use and its optimization to the speci�c problem of rock painting it provides
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among the best results when faint paints are present. In some cases, ICA or MNF transformations gave
slightly better results in terms of �gure contrast or paint-rock separation than DStretch® but in none case
they allowed to detect the invisible �gures highlighted by the analysis of the HSI data presented in section
3.

DStretch® enhances the image in the following way: it �rst calculates the mean value of the image
histogram; then it applies the decorrelation and stretching algorithm to the histogram, normalized by
subtracting the mean. This creates a 3x3 matrix with the resulting values. This transformation is then
applied to the overall original picture to produce the enhanced image. The use of as scaling factor can
improve the e�ciency of this transformation. Three key points characterize the DStretch® enhancement:
the color space, the average histogram values, and the 3x3 matrix of decorrelation and the stretching
step.

When applied in RGB space to process pictures of rock paintings, the original decorrelation algorithm
does not always improve the visualization. It appeared that better results can be obtained by introducing
modi�cations on the color spaces [21]. Indeed, painting and background colors can widely vary according
to the sites, thus producing a large number of possible color spaces increases the chances to obtain an
effective improvement. Therefore, the image can be converted in several color spaces, each of them
producing a different enhancement [21]. The YUV and LAB spaces were �rst tested. The �rst was
developed by linearly modifying the RGB space, and the second gives more vivid color enhancements.
Several optimized variants have been developed for red paintings (LRE, LRD, YBR, YRE, YRD) and for
yellows (YDS, YYE, LDS, LYE). The CRGB space was implemented at an early stage of DStretch®
development: it is a matrix using a preliminary and non-standard version of the algorithm, but which has
proven to be very useful for many sites with red paintings. Black and white paintings are particularly
di�cult to improve by DStretch® as it needs a color difference and cannot work on a grayscale image;
however, most representations are on a background of some hue, so the software can be useful to
increase contrast between rock and paint even for black and white �gures. The YBK and LBK
enhancements are interesting on some black pigments, while YWE and LWE are interesting for whites.
The profusion of choice of color spaces, twenty-three at present, may seem tricky, but their use in
DStretch® is easy. Each of these color spaces can be directly selected, and it is enough to activate it to
carry out the corresponding improvement. To provide more �exibility, DStretch® also offers the ability to
create custom color spaces using YXX and LXX modes. The �rst one allows the creation of color spaces
based on YUV space, and the latter is based on LAB space. In these two modes, the user can modify the
coe�cients which control the transformation of the color spaces, in order to produce a personalized
improvement.

With most image enhancement software, the result is very much related to the level of expertise of the
operator. It can therefore be extremely variable, whereas with DStretch® it depends much less on the
operator, at least at the �rst level of use, which is largely su�cient in most cases. This allows for more
objective and easily reproducible results, which is essential for an accurate study of the art [8,15]. These
twenty-three color spaces are currently de�ned as standards while processing rock paintings with
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DStretch®. However, image enhancement has the built-in limitation of the three RGB measurement
channels, and thus strongly depends on the intensity and visual color of the paint.

2.3. Data aquisition using HSI Specim IQ camera

Field captures of rock paintings were performed with a VNIR HSI ‘IQ’ camera from SPECIM® which is
based on an internal line scanner process, i.e., push broom principle. It covers the whole wavelength
range 400–1000 nm with 204 spectral bands and a spectral resolution of 7 nm. The spatial sampling of
the IQ camera, i.e., the number of pixels per line is 512. The number of imaged lines is also �xed to 512
resulting in the captures of a square hyperspectral image with a size of 512 × 512 pixels within a �eld of
view of 31°, corresponding to about 55x55 cm on the wall at one-meter distance with a pixel resolution of
about 1 mm. The focus range of the camera is from 15 cm to infinity [47]. A 1.2 Megapixels RGB context
image (about 110x82 cm at a distance of 1 m, with slightly better resolution, 0.85 mm/pixel) fully
including the HSI �eld of view is also recorded simultaneously with the ‘viewfinder’ camera. These
context images are taken from virtually the same point of view (2.5 cm above the HSI lens) and with
exactly the same illumination. They will be used, raw and processed with DStretch©, to compare with the
HSI results.

As common for any hyperspectral measurement, a suitable lighting providing a continuous spectrum over
the wavelength range of interest is required. In our case, to avoid the complex and power consuming use
of arti�cial lighting, our illumination source was mostly sunlight scattered by the sky and the surrounding
landscape since rock paintings are located on shelters’ walls. This provides a bluer light with strongly
decreasing intensity in the very near infrared, limiting the useful spectral range below 920 nm. The spatial
variation in intensity across the measured area remains limited (a maximum of a few percent estimated
in a particular case from measurements of the Spectralon® panel at different places in the �eld of view)
and very smooth because of the diffuse multidirectional illumination and the small and relatively �at
measurement area (typically 50x50 cm) compared to the size of the rock wall of the shelters (several
meters). The spectral variation of the illumination is also faint and smooth across the image. The
temporal variation during the frame acquisition (< 2 min) is also negligible as the weather was always
offering a perfectly clear sky.

Here after, we present some key information to reproduce our technical approach. The measurement
process includes five steps (Fig.4). 

1. After �xing the HSI camera on a tripod and selecting the �eld of view, a white reference panel
(Spectralon® 99%) is positioned next to the paintings in the �eld of view of the instrument to allow
to capture the spectral characteristics of the lighting at the same time as the image (simultaneous
white reference). It can also be measured in the center of the �eld of view before the recording of the
hyperspectral image (custom white reference).

2. The hyperspectral camera is then focused on the target using the viewfinder camera, i.e., a small
RGB camera situated just above the spectral camera, with identical viewing direction but larger �eld
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of view. The focusing is done manually by highlighting sharp edges.

3. The parallax between the viewfinder camera and the actual spectral camera is corrected either
automatically or manually by edge detection and alignment between viewfinder and focus cameras.
This vertical adjustment is needed to overlay the spectral and viewfinder camera images with a
suitable accuracy.

4. Then, the integration time is adjusted (in the range 1–500 ms). The viewfinder camera image
provides an evaluation for the integration time of the spectral camera but a manual optimization
was always made in order to use the full capacity of the detector while being cautious about
saturation, especially in the white reference target.

After these initial adjustment steps, the image recording process is triggered. At first, the dark reference
image representing the sensor background noise, without incoming light is recorded automatically. Then,
the line scanner is moved to the measurement starting position and the actual data acquisition is started.
After the full 512 × 512 pixels image is scanned, the focus and possible under-exposition or saturation
are checked in the data validation view with a synthetic RGB image derived from the hyperspectral image
cube and minimum and maximum intensity pixel histograms. If the image is validated, part of the white
area of the reference target is then selected by thresholding the intensity of the image followed by a
connectivity algorithm. The calibration process converts the image cube in ‘re�ectance factor’ unit by
dividing the spectra of all pixels by an average spectrum of the selected area of the reference. All the data
are automatically stored, the raw and calibrated hyperspectral data cubes, the dark and white reference
spectra, an RGB preview of the HSI data and the RGB context images.

2.4. Hyperspectral data analysis

A set of hyperspectral reflectance data obtained on various sites have been analyzed using different
standard tools available in ENVI® hyperspectral image software (L3HARRIS GEOSPATIALTM). The results
have been compared to the simultaneously recorded context RGB image (with only 20% better spatial
resolution, but identical lighting and viewing geometry) as well with very high-resolution images of the
same scenes recorded by the different cameras (listed in 2.2) and analyzed with DStretch®.

Several unsupervised mathematical transformations aimed at extracting and packing the information
contained in hyperspectral image cubes, frequently used in space exploration and remote sensing data
analysis and more recently introduced in prehistoric tattoos [48] and art work studies [35], have been
tested and compared:

Principal Components Analysis (PCA),

Independent Components Analysis (ICA),

Minimum Noise Fraction Transform (MNF). 

They are called ‘rotations’ as they aim at changing the base on which the dataset is projected in order to
reduce the dimensionality of the useful data (initially 204 spectral information planes, one at each
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wavelength) and to segregate the noise in the data. Their working hypotheses on the initial content of the
data are however different and the recently developed ICA [49] is expected to be the most e�cient
transformation to separate different layers of information, i.e. different types of paintings as well as rock
composition and texture. This transformation is generally used for ‘blind source separation’, with no a-
priori information on the mixing. It assumes non-Gaussian distribution of the independent information
sources, which is typical of natural hyperspectral datasets, and uses high-order statistics to reveal
interesting but faint features or covering only a small portion of the image.

But before running the transformation, several preliminary analyses of the data cube and a few
conversions are necessary in order to optimize their results. First the data cube needs to be rotated 90°
clockwise to go back to the original vertical view. Then the reference target and its shadow, which may
adversely alter the image statistics of the rock painting due to their extreme and constant brightness
values, needs to be removed by applying a spatial mask to the image. Finally, from local statistics on the
very homogeneous spectra of the reference target (Fig. 5) coupled with an analysis of a selection of
individual spectra (Fig. 10), we can select the spectral range in which the signal-to-noise ratio is large
enough while keeping enough channels to preserve most of the useful information and to run e�ciently
the ICA transformation. Removing the noisiest channels should improves the detectivity of subtle
painting that otherwise may remain buried in noise. The �rst �ve spectral channels in the deep blue (<
410 nm) and the 923-1000 nm very near infrared range receive very little light and are removed from this
analysis. The hyperspectral data cube is thus restricted to the 410-920 nm range, i.e. 172 spectral
channels (instead of 204). Tests on a few data sets showed that both these spectral and spatial �ltering,
commonly used in the analysis of space exploration hyperspectral images [50], signi�cantly improved the
quality of the results in particular in terms of noise segregation.

Fig. 6 presents the comparison between the different synthetic results obtained from the PCA, ICA and
MNF mathematical transformations for one of our case studies (panel #2, see part 3.2). The different
transformations applied on the HSI data, because of the numerous spectral channels and extended
range, not only e�ciently separates the large-scale effects of the rock texture from the painting patterns
but also removes a large fraction of the ‘noise’ in the components containing the pigment and rock
information. This ‘noise’ might be a purely instrumental noise but it can be also high spatial frequency
�uctuations of the re�ected signal due to the microscopic texture of the rock inducing random local
illumination and re�ection angles, micro-shadows as well as color variations at the pixel scale.

From a detailed comparison between the results of ICA and the other transformations, it appears that the
PCA and MNF transformations are not able to separate as well the different painting layers, although
MNF can possibly remove more e�ciently the noise from the �rst components. In particular, ICA provides
more contrasted components with less background ghost information from the other paints or the rock
wall. This is clearly seen when looking at the two major components (lines 2 and 3 of Fig. 6) which well
separate the two main pigments with a smooth background for the ICA while they contain ghost
information for PCA and MNF. All the pigment information is also spread over more than 6 components
for PCA and MNF while it is concentrated in only 4 or 5 for ICA. 
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Comparison with the DStretch® processing of the exact same area of the context RGB image illustrates
the same di�culty in separating paintings and rock: Although one component contains only information
on rock wall texture and composition (#3, line 4) and contrast is enhanced in the two other components,
there is still a strong correlation between them. Hence, there is no effective separation of the pigments,
which is mathematically unavoidable in this case due to the limited information contained in the 3 RGB
channels. As component #3 only contains wall information, a DStretch® RGB image with increased
contrast can be obtained by combining only the 2 components containing pigment information, but this
did not solve the problem of their separability. 

In the following, we mostly used ICA transformation to analyze the hyperspectral data. We �rst ran a few
tests by varying the different free parameters of the iterative ICA transformation which control its
convergence (100 iterations with stabilization, contrast function = LogCosh, change threshold = 0.0001)
but decided to keep their standard values as they appeared to provide good results with little
improvement and much larger calculation times when the convergence constraints are signi�cantly
increased.

From a series of preliminary analyses, all the information that we can identify by visual inspection of the
data, as due either to the rock wall or to the paintings, is always contained in the �rst 10-15 components
of the ICA. We thus decided to conservatively run the iterative process of the ICA transformation only on
30 components, in order to reduce the processing time by a factor of 30 (from about 15 to 0.5 minutes on
a powerful 64-bit laptop). The comparison of the results with a full ICA transformation showed no
detectable loss of information. At the end of the calculation, we chose to sort the components by
decreasing spatial coherence to facilitate the separation of those containing useful information from
those mostly or only containing noise. 

The only additional tool we will use later on is the extraction of groups of pixels (called ROI: Region Of
Interest) characteristic of each ICA component of interest in order to compare their average spectra and
draw conclusion from their differences. They will be selected manually with the help of a thresholding of
the extreme values of each ICA component, and their mean values and statistics will be estimated.

3. Results
Here, we present several results obtained by ICA transformation on a selection of six typical or
challenging painted scenes (called “panel” hereafter) of increasing complexity, and compare them with
camera images, at both equivalent and very high resolution, processed with DStretch®. These
comparisons present different situations for which hyperspectral images bring an improvement
compared to RGB images as well as the type of new information which can be extracted.

The �rst result is that the ICA transformation concentrates most of the useful information contained in
the selected 172 spectral channels into 6 to 12 components depending on the complexity of rock wall
and painting in the image, with the different paintings typically decomposed into 3 to 7 different
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components. All the remaining components contained different types of noise sometimes with a few
ones mixed with faint ghosts of rock wall or painting information. 

3.1. Panel #1 : simple scene

In Figs 7 and 8, a typical simple case is presented: a single scene (panel #1) probably painted with a
single pigment on a relatively smooth and homogeneous rock wall. Indeed, the ICA transformation of the
hyperspectral image concentrates most of the painting information in a single component with only
minor local variations depicted in two other components. Those components add little information, just a
slightly different hue of pigment in the upper dog, which is con�rmed by comparing average spectra of
the different �gures. When combined in a false color RGB image and compared to the RGB context image
processed with DStretch®, it becomes clear that the hyperspectral data allows a better extraction of the
spatial distribution of the pigment. Indeed, the main ICA component has a much higher contrast with less
background noise than the corresponding component in the DStretched image. This can be highlighted
by thresholding and stretching the green channel of the DStretched image in order to best select the
pigment, i.e. removing as much noise as possible without removing pigment information, and comparing
it with the same process applied to the main pigment ICA component (#1) (bottom of Fig. 7).

There is a noticeable gain in selectivity with the ICA component as witnessed, for example, by the better
de�nition of the spokes of the wheel of the cart. This allows an easy pigment extraction, using only
global image operations, and its superimposition on the original image (or on any other higher resolution
RGB image) to restore the painting on the rock wall with a better, and possibly closer to initial contrast
(Fig. 8).

A similar quality of pigment extraction can be achieved by using DStretch® and the same type of
thresholding and stretching, but on a much higher resolution RGB image, such as the one in Fig. 9, with
about 200 times higher resolution (one pixel in the hyperspectral data cube corresponds to about 14x14
pixels in this image).

3.2. Panel #2: Separation between a complex wall and pigments

Fig. 10 provides an example of an effective separation between a complex shelter wall and pigments, as
well as discrimination between two overlapping paintings (panel #2). The two main paint components
(ICA #1 & 5) are almost completely decorrelated, with only the seated character in the upper right quarter
that appears in both components, but as a line drawing in component #5 and as a color �lling in
component #1. Two other components (#6 & 7) provide additional but more subtle information on the
paintings with even fainter and noisier pigment information in component #9. The rock texture is mainly
segregated in components #3 & #4. Component #2 is more di�cult to interpret given its spatial
distribution, but may represent either the remnant of an older painting, or a particular texture of the rock.
All other components, #8, #10 and above, are dominated by noise.
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Fig. 11 displays two end-member spectra of each of the two types of pigments identi�ed, corresponding
to ICA component #1 (dark red pigment) and #5 (orange pigment), as well as 2 typical spectra of the rock
wall and one typical spectrum of the ICA component #2 of unknown origin. The spectral differences
between them can be recognized, mostly with a stronger absorption below 580 nm and between 750 and
880 nm for pigments, but are relatively subtle especially if one restricts the spectra to the sensitivity range
of digital cameras (typically 410-680 nm). 

The spectrum of the uncertain ICA component #2 has a less pronounced absorption below 580 nm than
the two pigments and most of the rock wall. It mostly occurs where the wall is brighter, but only on part of
these brighter area. It may be either an area of ‘fresher’ less oxidized rock (scraped off?) or covered with a
fainter pigment, but apparently covered by the other pigments. 

The resulting synthetic ‘painting’ RGB image using the two main ICA paint components (#1 & #5),
together with the secondary component #7, displays different pigments of the paintings much more
clearly than the corresponding YWE DStretch® image (Fig. 10).   

3.3. Panel #3: Highlighting invisible/barely-visible �gures on complex rock wall

Another interesting example is a strongly oxidized brown-red wall with barely visible traces of red pigment
on top of the image (panel #3, Fig. 12). The DStretch® (YUV) processing of the context RGB image
allowed us to con�rm the presence of several �gures at the top of the image and possibly a bovine in the
middle-left. The ICA analysis of the HSI image clearly displays these �gures in components #2 and #7,
but components #5 and #4 uncovered in a very clear way a few large anthropomorphic �gures belonging
to another layer of painting that is unobserved by eye. These �gures remained undetected on the context
RGB image despite a whole set of analysis attempts using various options of DStretch®, as well as
different types of stretching algorithms (Photographic stretch, Saturation stretch, Decorrelation Stretch),
transformation algorithms (PCA, ICA, MNF) and anomaly detection algorithms (RXD, UTD, RXD-UTD)
available in ENVI software. Only the 'elongated head' of the main anthropomorph can be barely
recognized a posteriori in some of these transformations. With the ICA of the HSI data the different types
of rock texture and composition are also well separated in components #1, #3 and #6. 

Even with a high resolution camera image (64 Mega-pixels) covering part of the hyperspectral dataset
and processed with DStretch® (IDS) or the other algoritms we can hardly recognize some of the
‘anthropomorphs’ elements, even knowing where they should be located in this stretched image (Fig. 13).
They only have a very slightly different orange hue in this stretched image compared to the surrounding
oxidized rock with strongly variable hues.

A comparison of end-member spectra of the three main ICA components of panel #3 and of the rock wall
(Fig. 14) shows only little variability between the pigments and the oxidized rock wall, in particular in the
400-600 nm range where the oxide absorptions are very similar among the spectra. The spectral features
that should mainly contribute to the detection of the painting of the large anthropomorphs are most
probably the slightly more marked shoulder around 590 nm and the �at part of their spectra between 770
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and 850 nm which strongly contrasts with the steady spectral slope of the rock wall. Moreover, its
separation from the other pigments occurs in the visible range (stronger slope and curvature between
about 500 and 580 nm) where the anthropomorph’s pigment has a color and a spectrum very similar to
the rock wall. This explains why an RGB camera cannot distinguish these �gures from the oxidized
background wall.

For a better assesment of the relative contributions of the visible and near-infrared regarding the �gures
versus the rock wall respectively, we performed ICA transformations on different spectral subsets of the
HSI data, i.e. the visible spectrum only and the near-infrared spectrum only. 

The transformation over the visible spectrum was limitated to the 93 spectral channels contained in the
photopic sensitivity range of the human eye (420-675 nm, i.e. for sensitivity > 2% of its maximum [26]).
While still clearly identifying the anthropomorph �gures, their contrast with the surrounding is partly
reduced and some small parts are missing (Fig. 15b). Other �gures, such as the bovine in the middle left
of the image and the series  of characters above, are much less clearly detected using only the visible
range (Fig. 15c,d). 

The ICA transformation restricted to the near-infrared, performed over the 73 spectral channels of the 700-
920 nm range, displays all painted �gures in a single component with the anthropomorphs less sharply
de�ned but containing the missing parts in the visible range, and with all the other painted �gures with
high contrast relative to the rock wall (Fig. 15e). 

These tests show that the visible and near-infrared ranges contribute in different but complementary
ways to enhancing the contrast and separation of the �gures in the full spectrum result. The visible range
appears to play a major role in the separation between different painted �gures while the infrared range
mostly boosts the contrast between the �gures and the rock wall. 

A �nal test, aimed at better understanding the limitation of RGB images in detecting very faint �gures,
was performed using only the three spectral channels corresponding to the RGB peak sensitivity
wavelengths of either the eye (~421, 530, 558 nm) or the camera (~470, 530, 600 nm). In the case of the
eye peak wavelengths the ICA transformation slightly highlights the anthropomorph �gures (Fig. 15f),
while in the case of the camera, only the serie of characters on top left of the image is highlighted. The
large width (60-100nm) and strong overlap of the RGB sensitivity curves of the eye and of standard
cameras with respect to the narrow spectral bands (7 nm wide) used here are most likely the main factors
that prevent them from distinguishing pigments that have both close color and very low contrast.

3.4. Panel #4: Discovery of indistinguishable painting and separation of paint layers

An even more complex situation is represented by the hyperspectral image of panel #4, where a Barbary
sheep is easily seen with naked eyes, as well as two greenish lines on the top left quarter of the image
(Fig. 16, top left). Processing the RGB context image with DStretch® con�rmed these observations but
did not reveal more �gures. The ICA analysis of the corresponding hyperspectral image (Fig. 16) reveals 3
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superimposed paintings or drawings separated in 7 information components (#1 to #3, #5 to #7 & #9). In
addition to a part of a second Barbary sheep on the right side of the image, the outline of a large
anthropomorph, of which only the tail and part of the back are visible in the camera and DStretched
images, now more fully appears all around the �rst Barbary sheep. However some parts of the contour
lines of the anthropomorph are still hidden below the two Barbary sheeps making this outline very spotty
at some places and surrounded by a variety of rock colors and more recent paintings. DStretch® cannot
highlight it as its statistics for stretching focuses on the dominant colors of the image in terms of covered
surface, i.e. the Barbary sheep painting and the highly variable rock wall colors. 

The outine of the Barbary sheep is also well separated in the ICA components from its �lling, probably
drawn with another pigment or technique. All these paintings can be represented in a false color image by
combining 3 of the ICA components (R=#3, G=#6, B=#9) (Fig. 16, bottom left). It shows that in addition to
these main �gures a few other painting, or part of paintings, are also present, such as a third horned
‘ghost’ left of the head of the �rst Barbary sheep (in green in bottom left image of Fig. 16), or additional
lines above the back and below the right hand of the ‘siemen’ anthropomorph (in faint pink in bottom left
image of Fig. 16).      

There is also a ‘goat’ with thin horns and legs that looks like it is scraped on the rock (bright lines), partly
over the Barbary sheep. It can be already guessed in the original context RGB image from some lines and
area whiter than the rock and localy removing the pigments of the Barbary sheep (Fig. 16 top left).
However, the ICA transformation extract its component with little contrast relative to the background. A
MNF calculation was also run on this image, which provided a component with a better contrast and
signal to noise ratio allowing us to better determine the outline of the ‘goat’. A false color RGB image of
the 3 main MNF components (Fig. 16, bottom right) clearly shows the superimposition of the three
paintings or drawings.

In the case of this panel the MNF transformation, although not e�ciently separating the different
pigments, provides interesting complementary results. In particular some of its components clearly
display two or three of the supermimposed paintings, more e�ciently cleaned from the complex rock
texture (Fig. 17).

The MNF components can be an additional help to understand the paintings organisation and sequence,
e.g. we can now spot a small �gure behind the �rst Barbary sheep, inside the thigh of the anthropomorph,
which is seen only in secondary painting components of the ICA (with fainter and noiser information) and
thus not visible in the synthetic RGB images of the main painting, such as the two images at bottom of
Fig. 16. A speci�c analysis of these secondary component is necessary to highlight this �gure (Fig. 18)
and the MNF component provides a slightly sharper view.

The shape of the end-member spectra collected for the main four pigments provides an overview on how
they can be differentiated (Fig. 19). Again, the main spectral features that should allow to separate
between these pigments are located in the 500-650 and 750-900 nm ranges. In particular, the shoulder
around 580 nm for the anthropomorph is shifted up by about 20 nm for the Barbary sheep pigment, and
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in addition, it has a lower slope than typical surrounding rock below 500 nm and above 590 nm. So,
contrary to the anthropomorph of panel #3, its pigment can be clearly differentiated from the others and
from the surrounding rock by its color. It is indeed the superposition of the other two drawings and the
overall complexity of this panel that makes the outline of the anthropomorph of panel #4 very di�cult to
perceive. The di�culty is here more a question of detectability of the discontinuous silhouette of the
anthropomorph than of visibility of its pigments.

As for panel #3, we also tested the relative contributions of the visible and near-infrared ranges by
performing ICA restricted on these two ranges (not displayed). In the case of panel #4 the different �gures
are readily separated using only the visible range, but the near-infrared seems to contribute better to
recover the faintest paints with a more e�cient separation from the rock wall.

The hyperspectral image presented above (Fig. 16-18) is part of a series of three images which cover a
larger part of panel #4 and depicts several superimposed scenes painted with different styles when
analyzed with ICA and subsequently projected (with 2D-spline adjustment on a large number, ~40, of
common anchor points) and merged on a high-resolution image of the same rock wall (Fig. 20). As a �rst
approach the ICA transformations were performed independently on the three hyperspectral images (with
their own statistics) but they provided quite consistent components that can be easily matched.

The overall organization of this panel is very complex with numerous overlapping �gures that probably
belong to more than 3 layers. A complete analysis would need to also study in detail the other 5
components containing pigment information and displaying other fainter �gures, but this is out of the
scope of this paper. We can nevertheless point a few additional interesting results. In particular two other
types of anthropomorphs, which can already be seen in the other parts of panel #4 in the DStretch®
image (the Fig. 20 top right) are also well extracted and appear to be painted with a similar pigment as
the �rst one. The ‘simen’ anthropomorph style, at the bottom part of the panel, is however only partly seen
in the DStretched image, its head and back being hidden by a large rock scarp clearly visible in the
bottom quarter of the RGB image (top-left of Fig.20). In contrast, the whole �gure is well seen in the ICA
component despite the interference of this large rock default.

3.5. Panel #5: the case of white painting

A known di�cult case where DStretch® struggles to improve contrast is the presence of faint white
paints, due to a lack of tint. We tested the detection and separation of faint white painting to assess if a
VNIR HSI instrument can better extract such colorless pigment from the others and from the rock wall.
Fig.21 shows a faded-out scene comprising a complex mixture of various pigment colors, including
whitish (panel #5). The scene is decomposed in 4 main ICA components (#1, 3, 4, 6) for the pigments, the
�rst one representing the whitish paint (Fig.21 top right), the second the upper left bovine and the two last
ones the three other bovines. However, although component #1 clearly improves the visibility of the
faintest white �gures (see in particular the barely visible thin human �gure close to the right edge, above a
bovine), the contrast with the surrounding wall and the other paintings is not as sharp as that obtained in
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the previous panels for orange or red pigments. Also it does not signi�cantly improve the visibility of the
withish �gures already visible with nacked eyes (see e.g. the second human �gure from the right edge).

Comparison of the synthetic RGB image build using the 3 �rst painting ICA components (#1, 3, 4 - Fig.21
middle left) against the context image processed with DStretch® LAB (Fig.21 bottom left) shows that the
ICA decomposition provides a signi�cant contrast improvement of the faintest whitish pigments. We
should note here that the speci�cally designed ‘white’ YWE and LWE DStretch® enhancements were not
well working with this scene.

We then compared the spectra of the whitish human �gures with the surrounding wall and the two types
of bovine seen in the ICA components #3 and 4 (Fig. 22). We can see only little difference in spectrum
shape of the two withish human �gures with the nearby rock wall, especially for the faintest one which
has its spectrum exactly overlaping that of one of the rock (grey spectrum) up to 560 nm and little
departure (< 0.02 in re�ectance) in the remaining visible range. The main difference with the underlying
wall is a more pronounced shoulder around 580 nm leading to about 15-20% brighter re�ectance in the
very near infrared. These withish human �gures are in fact not so white, but rather redish according to
their spectra, but they look withish only by contrast because they are slightly brighter than the wall,
especially �gure #2, contrary to most red paints that are darker, as it is the case for the bovines. Part of
the human �gure #1 has color and visible brightness so close to the surrounding wall that only small
dotted parts are visible by contrast to the eye. It has also a more redish color than �gure #2 (slightly
stronger spectral slope below 450 nm) as it also appears in the ICA component #4 which mostly depicts
the light brown part of the bovine below (Fig. 21 bottom right). Some of the bovines are also di�cult to
discern with naked eyes due to very similar visible spectra of the surrounding wall (in particular, the one in
the upper left quarter of the image), but they have clearly different spectral shapes outside the eye
sensitive range, in particular between 680 and 900nm, which allow the ICA to extract them with a much
sharper contrast with the rock (Fig. 21 midle and bottom right).

3.6. Panel #6: Separation of gra�tis superimposed on paintings

A �nal example of the ability of VNIR hyperspectral imagery coupled with ACI transformation to separate
different informations mixed together on the rock is the case of ‘modern art and poetry’ superimposed on
neolithic painting.

Fig. 23 shows a painting ‘contaminated’ with several gra�ti drawn with different materials and colors
(panel #6). The ICA transformation of the hyperspectral image produces 12 signi�cant components with
information on the relatively complex painting (5 components: #5 to #9), the rock wall (3 components #3,
#4, #10) and the gra�ti (2 components #1, #11) as well as 2 components with mixed information (#2,
#12).

When simulating a false color RGB image of the painting using three of the �ve components with relevant
information, the gra�ti can only be barely seen in the image (Fig.23, middle left), most of its information
being concentrated in ICA component #1. The PCA transformation is found to be slightly less e�cient to
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segregate the gra�ti information in this hyperspectral dataset (Fig.23, bottom right), and a MNF
transformation did not separate e�ciently enough painting, rock and gra�ti to be useful in that case.
DStretch® applied on the RGB context image is also completely unable to remove the Gra�ti (Fig.23,
bottom left). At the opposite it has the tendency to highlight them to the detriment of the other colors.

4. Discussion
Even with a spectral range limited to 410-920 nm, mainly due to measurements of shaded walls indirectly
illuminated by sunlight scattered from the sky and re�ected by the surrounding landscape, the analysis of
the hyperspectral data cubes provided many improvements over DStretched RGB camera images. The
main advantages of hyperspectral imagery for the study of Neolithic paintings can be listed as follow. 

First, based on ICA analysis which concentrates the useful information in 8 to 12 components, with 3 to 7
concerning pigments, we could better separate different physical contributions to the image which are
generally mixed in the three channels of a standard camera, including: 

the pigments and the underlying rock, 

the composition and the color of the pigments,

the different paint layers and their juxtaposition.

We could detect faint paintings, which were undetected by the naked eye and even with high resolution
camera images post-processed with DStretch®. In the various cases studied we found different reasons
that led the ICA analysis of hyperspectral data to highlight new �gures. In one case (panel #3) the
pigment of the �gure, an anthropomorph, has a color too similar to the complex surrounding rock to be
separated by eye or by a DStretch processed RGB image, but it can be easily differentiated in the very-
near infrared thanks to different spectral behaviors. The situation is similar for panel #5 (a whitish
human �gure) but occurs even in the presence of a fairly homogeneous wall color. In both cases the
‘near-infrared vision’ provided by the HSI instrument is key to detect these invisible �gures. In another
case (panel #4) the paint was faint but su�ciently contrasted in the visible range relative to rock.
However, the superimposition of at least two other paintings crossing the �rst one in many places led to
very discontinuous and faint remains that the eye was unable to recognized as a painted �gure in the
middle of a complex mix of other �gures. The ICA extraction of this paint layer from the other layers and
from the rock texture allowed us to obtain a clean image of the visible remains of its paint, completed by
additional missing pieces located under other thin paint layers. 

Thus, speci�c spectral ranges contribute the most to differentiate the pigments from the rock wall (e.g.
panel #2, �g. 12), or between 2 pigments. However, in some cases only very subtle spectral differences
are noticeable (e.g. panel #3, �g. 14 and panel #5, �g. 22). These sensitive ranges are not always the
same and depends on the painting, its alteration as well as the weathering of the rock wall. In our cases
the two most sensitive ranges are both in the visible, around 580 nm, and in the near-infrared, above
about 750 nm. It is why not only the whole wavelength range needs to be used, but also the analysis of
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various cases with no preconceptions on which type of spectral difference exists between pigments and
rock wall textures.

While both ranges contribute to enhance the invisible or very faint �gures, we found that the visible range
plays a major role in the separation between different painted �gures while the infrared mostly improve
the contrast between the �gures and the rock wall.

The extraction and e�cient separation of the different painting layers is the second major advantage of
hyperspectral data, as soon they have some spectral differences in the VNIR spectral range, either due to
differences in e.g. color, composition, texture, thickness or alteration. 

Due to the numerous spectral channels and the wider spectral range, the ICA transformation allows us to
suppress or reduce the effects of the rock wall structure and of the inhomogeneous lighting. It can also
remove a large part of the noise in the image and thus increases strongly the contrast between the paint
itself and its surrounding environment. The example of panel #1 shows that even a small HSI instrument
with just 0.25Mpx can compete with large cameras with several dozen Megapixels in terms of pigment
extraction thanks to the e�cient segregation of instrumental (from the HSI camera) and natural noises.
This later ‘noise’ is in fact produced by high frequency spatial variations of re�ected light induced by the
rock & paint textures at microscopic/millimetric scales and some larger scale lighting variations, both
factors that cannot be suppressed even with very high-quality cameras. It should be noted that the
intensity of these �uctuations is greatly reduced in diffuse light (such as in shaded area) compared to
direct sunlight because of the angular spreading of the microscopic specular re�ections (�rst external
re�ection at rock crystal face scale) and the attenuation of shadows at all scales. So, the reduced amount
of light and the slightly limited spectral range in the shadowed area may be partly compensated by the
diffuse lighting leading to the removal of a large part of natural noise. The advantages of VNIR HSI
acquisition in full sunlight is mostly the acquisition time which may be reduced to less than 1 minute
(instead of 3-10 min in shadowed area), and the extended spectral range up to 1000 nm which may probe
additional differences between near-infrared spectra. But the stability of the measurement, in terms of
absolute intensity and, more critically, color (white clouds versus blue sky) is then highly sensitive to any
cloud moving in the vicinity of the sun direction. The respective advantage of the two situations in terms
of pigment detection and extraction performance has yet to be assessed in a range of relevant
situations. 

The ICA decomposition on VNIR HSI data may also detect pigments under another paint layer where this
layer is thin enough to be translucent in the very near infrared (> 700nm), where most chromophore
mineral pigments are less absorbing (see e.g. [42]). In addition to uncovering parts of an underlayer
�gure, this ability of HSI may also be to ‘clean’ gra�ti drawn over Neolithic painting, such as in the
example of panel #6.

We also note some limitations in the measurement presented here, such as the format and spatial
resolution of the HSI images. Although such lightweight and stand-alone VNIR HSI camera is ideal for
exploratory campaigns, a larger hyperspectral image format is necessary to make comprehensive surveys
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at higher spatial resolution of extended Neolithic or Paleolithic sites. Such instruments have been around
for more than a decade and have recently been extended to a 3000-pixel swath leading to hyperspectral
images of more than 15 megapixels. However, they require heavier logistics in terms of scanning system,
set of front optics, computer and power supply. 

Extending to the near infrared (SWIR: Short-Wave InfraRed, 1000-2500 nm) might also improve the
separation between paints and rock and should also provide additional information especially on the
composition of pigments and on the taphonomy of the rock wall (see e.g. [42, 51], but the logistic (and
cost) of SWIR HSI instruments is even heavier, in particular in weight and energy consumption, which
should be considered for remote �eld operations. 

Alternative solutions to VNIR HSI may be multispectral VNIR cameras with 8 to 20 spectral bands and
larger image format if they cover a wide enough spectral range (at least 400-900 nm) in order to be
sensitive to some very near infrared spectral differences between pigments and/or rocks of same
apparent color (see e.g. panels #3 and #5). The simplest ones with only 8 spectral channels (using a 3x3
Bayer �lter mosaic) may already provide useful additional information, but as they still strongly under-
sample the whole spectral information, the separation between pigments, rock and noise will not be
optimal in the case of complex paintings and /or rocks. Although we have not fully investigated the
effects of number, position and width of spectral channels, our guess, given the number of useful
information channels, is that instrument noise and natural high spatial frequency �uctuations will not be
well segregated by the ICA transformation until a large number of spectral channels (> 20) is used.
Indeed, in our study up to 12 components contained useful information and the noise was concentrated
in the other ones.

Another aspect to be considered is the processing of the hyperspectral data, which is more complex and
computer and manpower time consuming as it involves copy of the data set to a computer, preliminary
inspection of the data to optimize the process, a series of high-level mathematical operations on the data
cubes to get the results, followed by visual inspection of each of the 12-15 �rst ICA components to
determine which type of information they contain (painting, rock, illumination �eld, noise, …) and then
post-processing of the most interesting components. This whole series of processing cannot be easily
and rapidly done in the �eld (> 20 min) compared to a simple DStretch® visualization. The data recording
is therefore partly blind to the potential presence of "invisible" paintings in the scene. However,
automatization of a pipeline including most of the process is possible, at least for a given type of
measurement, but it still needs to be developed and standardized. Nevertheless, it should be kept in mind
that the amount of information contained in a single data cube is very large (300 Mo to 50 Go) and its
complete exploitation, beyond the simple separation of pigments, may need additional analyses and
tools. For example, an extension of the processing may consist in performing local analyses of the
images, focusing on local variations of pigments and rock texture in and around a single �gure. If the
subset selection reduces the variability in the image part under study, it may help to discover small
additional �gures or details which were otherwise buried in the noise. In a second stage, the use of well-
adapted hyperspectral pixel classi�cation tools and techniques may allow a sharper separation of the
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different types of pigments and their projection on high spatial resolution camera image [52], with their
‘original’ color rendering, thanks to the conversion of their visible re�ectance spectrum into photometric
information.

However, a small software running a pre-optimized ICA transformation on HSI data complemented with
some simple visualization functions should be as easy to manage as with DStretch® on RGB camera
images and will provide much better results due to the better separation between the various pigment and
rock contributions and the removal of a large part of the high spatial instrument and natural noises. 

Data reduction steps of HSI image may be even easier and more reproducible as only global and
standard image processing functions may be used thanks to the better separation of information by ICA.
For example, a simple global thresholding of some of the ICA components (i.e. a black & white image)
can already provide a quite clean distribution map for some pigments, without having to use
sophisticated functions and local manipulation to extract the pixels of a �gure in image processing
software.

5. Conclusion
The "HSI revolution" that has emerged from space exploration and now back on Earth may provide
archaeologists with a new way to access more information than in the past while respecting the integrity
of rock paintings. It is advisable to recall nevertheless that it does not eliminate the subjectivity of the
survey, since, whatever the chosen mode of operation, the human intervention is always preponderant at
the acquisition step, but also at the analysis and interpretation steps [2,53]. Nevertheless, HSI instruments
made it possible to push back the limits of the standard RGB cameras. 

An RGB camera image of Neolithic painting on oxidized sandstone analyzed with DStretch® can be
su�cient to visualize part of the �gures, generally the most recent, or even all the �gures in the scene
when they have su�cient color contrasts between them and with the rock. Now, with a hyperspectral data
cube recorded with a VNIR HSI instrument we can better remove the wall texture as well as the natural
noise and extract the distribution of the various pigments with a greater contrast. When the color contrast
of a �gure with the surrounding rock, or �gures, becomes poor or statistically null, due to the progressive
alteration of both paint and rock, an HSI can reveal new �gures by capitalizing both on its strong ability to
extract the distribution of the different pigment types, and on the new discriminating information
contained in the very near infrared part of the spectrum. Another important result is that measurement of
shaded walls is not a major problem, mostly slightly reducing the VNIR spectral range and increasing
measurement time, but possibly positively reducing the natural high spatial frequency noise linked to rock
and pigment micro-textures that otherwise strongly disturb the extraction of pigmented pixels.

HSI measurements are especially useful when the �gures have a complex organization in the scene with
numerous juxtapositions or layer superimpositions, when they are polychromatic, and when in addition
some of them are very faint. In that case a dozen information components are needed to describe
correctly the variety of pigment and rock composition, texture and alteration degrees. In such a case, quite
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frequent indeed, a few dozen well distributed spectral channels are a minimum to sample all this
information as well as the different sources and pattern of noises, to best remove them. Thus, from this
point of view, one can easily realize that an RGB camera can only record highly degraded information
with its only three wide spectral �lters covering a limited spectral range, a strong physical limitation that
DStretch® cannot improve in any way. Our eye, with a similar color information collection process, is well
known to have a sensitivity covering less than an octave (a factor of 2) and to be a poor discriminator of
wavelength [53]. It is thus absolutely unable to recognize the individual wavelengths of two combined
monochromatic sources, contrary to our ear that can recognize the combination of 2 or more tones over
at least 5-6 octaves. It is what a VNIR HSI instrument can do over about 1.5 octaves and almost 3 octaves
for a coupled VNIR-SWIR instrument.

With a VNIR instrument only, even able to record larger images at higher spatial resolution, the capability
to go to the next scienti�c step of the identi�cation and mapping of the composition of pigments is quite
limited as mostly the chromophore minerals (hematite, goethite, …) play a role and can be identi�ed in
this spectral range. It should be noted here that an RGB + DStretch® image gives no access to such
information. A SWIR HSI instrument covering the 1-2.5 µm range is needed to map chemical and mineral
composition of pigments and rock. It should also improve the separability of pigments of similar visual
color; allow us to group �gures on the basis of their composition; and provide clues as to the presence of
mineral phases associated with the pigment giving indications on possible intentional mixtures and on
the origin of the raw materials. But a SWIR HSI instrument implies a much heavier logistic on the �eld.

The speed and ease of obtaining powerful and reliable results are essential conditions for documenting
rock sites in mountainous or desert areas where access di�culties, extreme environment conditions and
�eld logistics are crucial. For such exploratory campaigns DStretch® allows a quick deciphering of the
walls, which facilitates the acquisition of precise and detailed documentation. Complexity is not a
guarantee of performance, and for the Saharan terrain, e�ciency is the essential quality to privilege. At
the moment, RGB cameras with DStretch® is still an unavoidable combination of tools for �eld research.
But a compact and lightweight VNIR HSI (or multispectral) camera should become the best companion of
Neolithic painting explorers as we demonstrated that its added archaeological value is signi�cant. 

Currently the two major limitations of HSI cameras, compared to RGB cameras, are �rst the size of the
image, typically an order of magnitude smaller in both directions, which constrains either the size of the
�gure or panel recorded, and/or the pixel spatial resolution: a strong limitation when there are narrow
drawings (sub-mm). And second, the measurement preparation (need to be �xed on a tripod) and
recording time (up to 10 min in the worst cases of low light) which limits the number of measurements
also by more than an order of magnitude compared to cameras. When the recording time is long there is
also the issue of the stability of the illumination, so relatively stable weather conditions are the best,
either clear sky or fully cloudy. However, the developments of these types of instruments are fast and
image format of portable HSI should steadily increase. There is also a growing number of compact
commercial ‘snapshot’ (or quasi-snapshot) acquisition solutions, with 8 to up to a hundred spectral
channels, but generally still with a small image format and sometimes with too large minimum focusing
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distances for archaeological use (currently mostly developed for UAV). They should in the future reduce
the preparation and acquisition time of hyperspectral measurements close to that of a normal camera.
When these instruments will be mature and will have overcome some of their restrictive characteristics,
they will be the perfect and powerful camera in remote area.  

In the following, we suggest a photographic strategy for remote and hard-to-reach area in 3 steps.

Step 1: identify the paintings

- use of RGB cameras (e.g. last generation smartphone cameras) with onboard DStretch® or similar
software to 1) help rapidly explore shelters, especially those hard-to-reach, 2) visualize on-site the faint
paintings to assess their potential interest, and 3) systematically record the �gures, their locations and
extend, or tracks of pigments on the wall.

- use a lightweight VNIR HSI camera to record the most complex panels, in terms of polychromies, �gure
superposition, or variability / complexity of rock texture and color of the wall. Also make some global low-
resolution measurements on potential panels where no clear �gure is visible either by eye or on
DStretched images.  

- possibly use lightweight and foldable sun re�ectors directed toward the shaded panel to increase the
spectral range up to 1000 nm (but may induce illumination inhomogeneities).

Step 2: systematic recording of the paintings of whole panels

- use of a high performance VNIR HSI instrument (1500-3000 pixels swath) to easily cover large scenes at
high spatial resolution

- use lighting lamps for shaded walls (but energy consuming) to reduce acquisition time and bene�t from
the full very near infrared range, up to 1000nm.

- complement measurements with a portable VNIR-SWIR point spectrometer to record typical and end-
member spectra of paint and rock wall over the full spectral range (but may need on-site HSI data
preprocessing to locate them accurately) for pigment and rock composition determination.

Step 3: mapping of the pigment composition and rock taphonomy

- in addition, use a SWIR HSI instrument (1000-2500 nm) to improve the pigment separability and map
pigment composition and rock taphonomy (mineral identi�cation). But these measurements in the near-
infrared will be only possible in sunlight (but restricted outside the strong atmospheric water bands), or
better, with a powerful arti�cial halogen lighting to cover the whole spectral range (further increasing
weight, complexity and power consumption).  

In order to be e�cient in the �eld for the exploratory phase (step 1) it should be useful to get on-site a �rst
guess of the interest of HSI measurements of some area. So, a fast and automatic data analysis pipeline
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run just after recording should be developed to assess if more extended data cube measurements or at
higher spatial resolution are needed.

Also, in this exploratory study we only analyzed the main ‘paint’ components of the ICA transformation as
well as comparisons between some end-member spectra of the major ICA components of interest. We
have shown only one example, in a simple case (panel #1), of complete pigment extraction and overlay
on the original image after ‘restoration’ of the color with a higher contrast with the rock. However, various
other post-processing operations may be performed on the hyperspectral data and their analysis products
depending of the �nal goal (�gures and scene reconstruction, chronological study, pigment composition,
…)

Many different tools have been developed, in addition to the mathematical transformations used here, to
help distinguish between the different pigments and classify them in a series of homogeneous classes
for further analysis in terms of color, composition, painting technique, superposition, etc. After the
spectral concentration of information performed by the ICA, this step corresponds to the spatial
dimension reduction and concentration of the information [54]. These tools can work either directly on the
original hyperspectral data cube, or on a selected set of ICA, PCA or MNF components, or even on
denoised hyperspectral data cubes reconstructed by �ltering out the noise components followed by an
inverse transformation [50]. These tools, once adapted to the data and the speci�c problem to be solved,
have proven over the last three decades to be very useful and e�cient in many �elds of remote sensing
(e.g. planetary sciences or Earth monitoring) as well as in painting arts of all ages. 

Regarding rock arts, they need to be tested and adapted to the types of pigment and rock wall color,
composition, texture and alteration types. But also, to �eldwork and its speci�c lighting conditions. The
case treated in this exploratory article of red-orange pigments painted on oxidized sandstone walls and
subjected to strong corrasion was a good example and a rather di�cult case to test the technique. But it
proved the great potential of VNIR HSI instruments to uncover new �gures hidden to the naked eye and to
effectively separate their pigments from the wall substrate. We believe that these instruments open up
new and exciting horizons for the study of rock and cave paintings.
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Figures
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Figure 2

Comparison between spectra of VNIR hyperspectral imaging and signal of classical RGB camera for
typical rock painting pigments. The high-resolution re�ectance spectra measured on a very thin layer of
red ‘Beauregard’ pigment (red) painted on a carbonate rock, and the non-painted rock itself (brown) are
plotted with a continuous line (left scale) [42]. The large dots are simulations corresponding to the RGB
signal of a digital camera (Canon 20D, [25]) extracted from these spectra by convolving them with its
�lter band passes (dotted lines at the bottom, right scale) with ‘error bars’ representing the full width at
half maximum of the three �lters. The bottom black curve is the total photopic eye sensitivity [26].
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Figure 3

An example of a faded rock paintings which is analyzed in this study (top). View of a typical rock shelter.
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Figure 4

The standard workflow of the Specim IQ hyperspectral camera [47].
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Figure 5

Statistics on the spectra of the reference target (~2700 pixels) with mean (black), mean +/- standard
deviation (green), min and max values (red) showing the increasing noise below 410 nm and above 920
nm. Only the central part of the spectrum (dashed lines: 410-920 nm) with standard deviation < 5% is kept
for the hyperspectral data analysis.



Page 32/45

Figure 6

Comparison between the results of different transformations (ICA, PCA, MNF) performed on one set of
hyperspectral data (panel #2, see 3.2) and with its context RGB image processed with DStretch®.
Columns: 1) ICA, 2) PCA, 3) MNF, 4) DStretch®. Line: 1) RGB synthetic image made with the 3 most
signi�cant components. Lines 2 to 7) The six most signi�cant components ordered to match as well as
possible between the different transformations. For DStretch® there is only 3 components but an
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improved RGB combination removing the rock wall contribution is given in line 5 (see text). Scale
provided by the reference 10 cm square.

Figure 7

Comparison of pigment extraction between DStretch® on RGB image (left) and ICA analysis on
hyperspectral data (right) on a simple scene (panel #1). Top left: Context RGB image. Middle left: same
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image processed with DStretch® (YRD). Top right: ICA transformation of the HSI image: the main
signi�cant component (#1) containing most of the information on the pigment used in the scene. Middle
right: a false color RGB image using the main ICA component describing the pigment (#1) as well as 2
others recording small local variations (#2 & 6) (R=#6, G=#1, B=#2). Bottom left: the green channel of the
above DStretched high resolution image with a threshold and stretch adjusted to select the pigment in the
best way. Bottom right: Same but for the main pigment ICA component (#1). Scale provided by the white
reference 10 cm square.

Figure 8

Extraction and restoration of the painted pigments (panel #1). Left: original synthetic RGB image from
the hyperspectral data (R=600, G=550, B=450 nm). Right: same image with the extracted pigment (ICA
component #1) superimposed. Scale given in Fig. 7.
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Figure 9

Left: part of a high resolution RGB image (~37 Mpx) covering about the same area as Fig.7 and
processed with DStretch® (LRE). The shot angle and point of view of the image were slightly different but
illumination was the same as for the HSI image. Right: the green channel of the DStretched image with a
threshold and stretch adjusted to best select the pigment. Scale given in Fig. 7.
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Figure 10

Separation between a complex shelter wall and pigments, and discrimination between two overlapping
paintings (panel #2). Top left: Context RGB image. Middle-top left: synthetic RGB image of the HSI data
(R=600, G=550, B=450 nm). Right: ICA transformation of the HSI image: the 4 most signi�cant of the 8
components containing information, the top two (ICA components #1 & 5) separates two different
pigments. The middle-bottom depicts an unidenti�ed component (#2): paint or wall? The bottom right
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ICA component (#4) extracts part of the complex texture of the underlying rock wall. Bottom left:
synthetic RGB image using 3 ICA components (R=#5, G=#1, B=#7) displaying the different pigments (in
red and green) much more clearly than the corresponding DStretch® (YWE) image (middle-bottom left).
Scale provided by the white reference 10 cm square.

Figure 12
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Highlighting invisible �gures on complex rock wall (panel #3). Top left: original context RGB image. Right:
ICA transformation of the HSI image: the 3 most signi�cant of the 7 components with information (ICA
components #7, 2 & 5) clearly separating three different pigments. Bottom left: synthetic RGB image of
the HSI data using the 3 ICA components (R=#7, G=#5, B=#2) displaying the different pigments. The
large anthropomorphs are mostly invisible in the corresponding DStretch® (YUV) image (middle left), only
the 'elongated head' of the main anthropomorph can be barely recognized a posteriori. Scale provided by
the white reference 10 cm square. The rectangle in the middle-left image locates the high-resolution
image of Fig. 13.

Figure 15

The main components of ICA transformations of the hyperspectral image of panel #3 performed on a-b)
the whole spectrum (410-920 nm, from Fig. 12), and on different subsets of the spectrum: c-d) the visible
spectrum only (420-675 nm), e) the near-infrared spectrum only (700-920 nm), and f-g) the three RGB
peak snesitivity wavelengths of the eye (~421, 530, 558 nm).
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Figure 16

Discovery of an indistinguishable painting and separation of three layers of paints (panel #4): Top left:
original context image. Middle rows: ICA transformation of the HSI image: the 4 most signi�cant
components (#3, #9, #6, #1) of the 7 components that separate at least four different pigments. Top
right: ICA component (#4) of the ‘cleaned’ rock wall. Bottom left: false color RGB image using 3 of the
pigment ICA components (R=#3, G=#6, B=#9) displaying two of the 3 superimposed drawings (in red and
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blue-green). Bottom right: false color RGB image using 3 components of an MNF transformation (R=#2,
G=#3, B=#6) highlighting the superimposition of the 3 paintings. Scale provided by the white reference 10
cm square. The rectangle in the context image locates the zoom presented in Fig. 18.

Figure 17

Two components of the MNF transformation (panel #4) displaying the superimposition of several
painting layers, with smoothed rock wall texture. Left: The anthropomorph (�rst layer) and the Barbary
sheeps with their outline (second layer). Right: Same (but without the Barbary sheep outline) with the
addition of the goat as the third ‘layer’.
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Figure 19

End-member spectra (ROI average of 35 to 75 pixels for pigments, > 300 for rock) of the Barbary sheep
pigment (light and dark red) and its outline (orange and brown), the anthropomorph pigment (dark and
light blue), the goat (light and dark green) and typical rock wall area (grey and black) selected in the
hyperspectral image of panel #4 presented in Fig. 16.
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Figure 21

Detection and contrast imrpovement of faint white painting (panel #5). Top left: original RGB context
image. Right: ICA transformation of the HSI image: the 3 most signi�cant ICA components (#1, 3, 4, from
top to bottom) describing the painting. Middle left: a synthetic RGB image using these 3 painting ICA
components (R=#4, G=#1, B=#3). Bottom right: DStretch® (LAB) image for comparison. Scale provided
by the white reference 10 cm square.
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Figure 22

End-member spectra (ROI average of 35 to 75 pixels for pigments, > 300 for rock) of the whitish human
�gures (dark blue: #1, light blue: #2) with the surrounding wall (grey and black) and the two types of
bovine seen in ICA component #3 and 4 (orange and red) of panel #5.
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Figure 23

Separation of ‘modern art and poetry’ superimposed on Neolithic paintings (panel #6). Top left: original
RGB context image. Right: ICA transformation of the HSI image: 2 of the 12 signi�cant ICA components,
the top one (component #1) clearly separates the gra�ti. The middle image displays one (#6) of the �ve
components describing the painting of this relatively complex panel. Middle left: a synthetic RGB image
using 3 of these 5 ‘painting’ ICA components (R=#8, G=#6, B=#7). The gra�ti can only be barely seen in
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this image, most of its information being concentrated in ICA component #1. Bottom left: DStretch®
(YDS) image for comparison. Bottom right: The best synthetic RGB image of PCA components still
displaying some ghosts of the gra�ti. Scale provided by the white reference 10 cm square.


