
HAL Id: hal-04293272
https://hal.science/hal-04293272v1

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ASAP: Endowing Adaptation Capability to Agent in
Human-Agent Interaction

Jieyeon Woo, Catherine Pelachaud, Catherine Achard

To cite this version:
Jieyeon Woo, Catherine Pelachaud, Catherine Achard. ASAP: Endowing Adaptation Capability to
Agent in Human-Agent Interaction. IUI ’23: 28th International Conference on Intelligent User In-
terfaces, Mar 2023, Sydney NSW Australia, Australia. pp.464-475, �10.1145/3581641.3584081�. �hal-
04293272�

https://hal.science/hal-04293272v1
https://hal.archives-ouvertes.fr


ASAP: Endowing Adaptation Capability to Agent in Human-Agent
Interaction

Jieyeon Woo
woo@isir.upmc.fr

ISIR - Sorbonne University
Paris, France

Catherine Pelachaud
catherine.pelachaud@upmc.fr

CNRS - ISIR - Sorbonne University
Paris, France

Catherine Achard
achard@isir.upmc.fr

ISIR - Sorbonne University
Paris, France

ABSTRACT
Socially Interactive Agents (SIAs) offer users with interactive face-
to-face conversations. They can take the role of a speaker and com-
municate verbally and nonverbally their intentions and emotional
states; but they should also act as active listener and be an interac-
tive partner. In human-human interaction, interlocutors adapt their
behaviors reciprocally and dynamically. The endowment of such
adaptation capability can allow SIAs to show social and engaging
behaviors. In this paper, we focus on modelizing the reciprocal
adaptation to generate SIA behaviors for both conversational roles
of speaker and listener. We propose the Augmented Self-Attention
Pruning (ASAP) neural network model. ASAP incorporates recur-
rent neural network, attention mechanism of transformers, and
pruning technique to learn the reciprocal adaptation via multi-
modal social signals. We evaluate our work objectively, via several
metrics, and subjectively, through a user perception studywhere the
SIA behaviors generated by ASAP is compared with those of other
state-of-the-art models. Our results demonstrate that ASAP signifi-
cantly outperforms the state-of-the-art models and thus shows the
importance of reciprocal adaptation modeling.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI); • Computing methodologies→ Artificial intelli-
gence.
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1 INTRODUCTION
An increase in application of embodied agents, such as socially
interactive agents (SIAs) (also referred as embodied conversational
agents (ECAs) or virtual agents) simulated via a graphical user in-
terface (GUI) or robots with a physical body, can be seen in our daily
life. The use of embodied agents ranges from providing assistance
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to being a companion [34, 54]. To carry out interactive and natural
conversations, they are often designed with friendly or human-like
appearances and communicative capabilities are given. While the
process of starting a conversation and interacting with other people
comes naturally to us, it is challenging to endow the same capability
of communicating thoughts and intentions to SIAs as it involves
complex mechanisms such as planning what to say and how, while
talking into account its human interlocutor’s behavior.
During an interaction, we constantly coordinate our behavior by
perceiving and responding to social signals [9]. This behavior coor-
dination happens with a specific temporality and appears between
the signals of a same person (intrapersonally, such as the coor-
dination of facial expression, gesture, and prosody) and between
the interlocutors (interpersonally, for example when participants
mirror each other’s behaviors). The interpersonal coordination (or
synchrony) is mutual and evolves during the entire interaction [57].
It can also maintain interlocutors’ engagement [14, 28]. Due to the
mutuality, temporality, and everlasting facade seen during human-
human interactions, human interlocutors can adapt their behaviors
continuously to those of the others reciprocally and dynamically.
We refer to this adaptation as reciprocal adaptation. It arises in
real-time following a looped process.
Communication consists of verbal and nonverbal signals [8]. Non-
verbal signals, which are also referred to as body language (in-
cluding gestures, facial expressions, body movement, and gaze),
constitute a major part of communication signals. When gener-
ating SIA behaviors, the generation of words (i.e. verbal behav-
ior) might be essential for conveying intentions but nonverbal
behavior generation is also important for communicating inten-
tions and to be socially interactive. Recent works on multimodal
behavior generation (where only one person is concerned) show
promising results for the generation of communicative nonverbal
behaviors focusing on Deep Learning (DL) techniques from clas-
sical Feed-Forward Neural Network (FFN) to latest Transformers
model [3, 7, 16, 19, 21, 27, 29, 32, 56, 72]. These works model the
communicative behaviors linked to speech but do not pay attention
to the social signals arising between interaction participants. In
this paper, we focus on generating nonverbal behavior for dyadic
interactions. We aim to provide SIAs with this capacity of reciprocal
adaptation to enhance its behaviors so that they can behave natu-
rally like a human-being. We use multimodal features (visual and
acoustic) and produce SIA behaviors of an active interactant as both
listener and speaker. We hold attention to the aspect of behavior
coherence, synchrony, and continuity. Behaviors are made up of
continuous values which evolve over time (for example for human
motion the body landmark positions change smoothly in time). We
also intend to assure the production of continuous behaviors by
looking at their temporal continuity which motivates us to look
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into different prediction approaches of offline and online predic-
tion to better model the motion fluidity. Behavior motions should
not only be continuous but also coherent and in sync with those
shown by the interactant. We are thus interested in the temporal
alignment and the appropriateness of the generated SIA behavior
type (e.g. a smile in response of an interlocutor’s smile). We also
look into how the quality (continuity, temporal alignment, and type
of behavior) of the generated behaviors could be quantified via
objective measures that are used to evaluate the generated behavior
sequences.
With the goal to create a SIA capable of adapting its behaviors to
its interlocutor, we propose the Augmented Self-Attention Pruning
(ASAP) model that models the reciprocal adaptation of interac-
tion partners throughout the interaction. The multimodal signal
information of both interaction partners along with the interper-
sonal relationship between them are captured. Specifically, ASAP
allows us to: (1) capture multimodal information of visual and
acoustic features; (2) learn from both interactants through data
augmentation technique; (3) better select key features within the
interaction via the self-attention mechanism with pruning; (4) gen-
erate continuous nonverbal behaviors by updating cells’ memo-
ries at each step of the inference phase with autoregressive adap-
tive online prediction; (5) generate behaviors as both active lis-
tener and speaker; (6) and train without needing a massive amount
of data.
Our paper makes the following contributions:

• We propose the modeling of reciprocal adaptation and show
how the endowment of such capability can make SIAs behave
more social and engaged as both speaker and listener;

• Our results show that ASAP out-performs state-of-the-art mod-
els quantitatively and qualitatively notably for interaction syn-
chrony and engagement.

The rest of the paper is structured as the following: Section 2
presents state-of-the-art of related techniques for continuous non-
verbal behavior prediction and evaluation measures; Section 3 in-
troduces the database and feature extraction; Section 4 details the
implementation of our ASAP model; Section 5 provides objective
and subjective evaluation results; Section 6 summarizes our find-
ings; and Section 7 discusses the practical and social implications of
our work of endowing SIAs with reciprocal adaptation capability.

2 RELATEDWORK
Related works that are key to our interest of generating social and
engaging nonverbal behaviors of SIAs and methods of evaluating
these behaviors within interactions quantitatively are outlined in
this section.

2.1 Sequence prediction techniques
Generating nonverbal behaviors can be considered as a similar prob-
lem as forecasting future non-linguistic action sequences. It is thus
interesting to investigate existing sequence prediction techniques
that could be applicable to nonverbal behaviors.
The methods of sequence prediction can be broadly split into two:
offline and online prediction. Offline prediction predicts by giving
a sequence data all at once while online prediction refers to the

inference method in which data is predicted sequentially one after
another.

2.1.1 Offline prediction. Offline prediction infers with the whole
input data given from the start. The prediction is done in chunks
and is done independently without considering the previously out-
putted prediction. Its application can be easily seen for sequence
to sequence predictions. Models for such predictions generally
have the structure of an autoencoder which consists of an en-
coder that encodes the inputted sequence and a decoder that pre-
dicts the resulting sequence by decoding the output of the en-
coder. Sequence to sequence prediction models produce good re-
sults for machine translation [59] and speech recognition [38]. The
representative models that can be seen in the literature are Bi-
directional Long Short-Term Memory (BLSTM) [26], Conditional
Variational Autoencoder(CVAE) [27, 72], Generative Adversarial
Network (GAN) [21, 24], normalizing flow [30, 53], and Transform-
ers [7, 19, 65].

2.1.2 Online prediction. Unlike offline prediction, online predic-
tion renders the output in a sequential manner predicting for each
time-step separately. Among the appliance domains of online pre-
diction, the most representative one is the time series forecasting.
Time series forecasting has a wide range of applications such as
weather forecasting [36, 68], traffic flow forecasting [39, 60], and
stock market prediction [33, 62]. Various models based on online
prediction can be seen in the literature such as Multilayer Percep-
tron (MLP), Recurrent Neural Network (RNN), Long Short-term
Memory (LSTM), Convolutional Neural Network (CNN), and Tem-
poral Convolutional Network (TCN) [45, 52, 60, 62, 68, 70].
Online prediction can be separated into two types which are slid-
ing window prediction and adaptive online prediction. For sliding
window prediction, predictions are made for each time-step in an
independent manner with a pre-trained weight without considering
its previous output data. Adaptive online prediction also predicts
sequentially for every time-step but its predictor’s weights are up-
dated for each prediction step. As the prediction of the next step is
made based on the previous time stamped data, continuous values
are rendered.
For cases where online prediction is applied, such as the time se-
ries forecasting, the data is often not available to make the future
prediction. To resolve such problem, observations from previous
time-steps can be used as input to a regression equation to predict
the value at the next time-step. Such technique that predicts by
feeding the output back to the model is called to be autoregressive.
Both online prediction techniques of sliding window prediction
and adaptive online prediction can be autoregressive.
The generation of nonverbal signals is time-dependent like time
series problems. As previous SIA behaviors, which are needed to
produce its next behavior, are unavailable as in time series forecast-
ing, the aspect of predicting based on the previous time stamped
data in an autoregressive manner can be useful for our case. The
memory retention present within recurrent networks such as RNN,
LSTM and TCN, has shown great promise in time series forecasting.
As human behaviors heavily depend on previously performed ones,
this aspect of memory is also important for our situation. More-
over, as behavior must be continuous, it is preferable to employ the
adaptive online prediction.
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2.2 Nonverbal behavior generation models
The generation of the multimodal behavior of SIAs requires to
model the temporality of exchanged social signals. Both intraper-
sonal temporality (coordination of the multimodal communicative
behaviors within a single person) and interpersonal temporality
(multimodal behaviors arising during dyadic or multi-person inter-
actions) are essential components of the reciprocal adaptation as
we adapt our behaviors depending on our prior behaviors and the
behaviors shown by others. Previous works that modelize intraper-
sonal temporality proposed models that generate facial expressions
and communicative gestures linked to speech. These works employ
Deep Learning (DL) techniques such as Feed-Forward Neural Net-
work (FFN), Bi-directional Long Short-TermMemory (BLSTM), Con-
ditional Variational Autoencoder(CVAE), Generative Adversarial
Network (GAN), and Transformers [3, 7, 16, 19, 21, 27, 29, 32, 56, 72].
For our study, we focus on dyadic interactions which leads us
to concentrate on modeling the temporal relationship between
participants during an interaction. We will look into the literature
that considers both interpersonal and intrapersonal temporalities
using multimodal signals (only for dyadic interaction).
The modeling of nonverbal behaviors for dyadic interactions started
off with rule-based systems such as manually designed rules that
were used for predicting backchannels [61], decision trees for chat-
bot systems generating natural responses and their timing [50],
and multimodal probabilistic models that predict backchannels via
multimodal signals [46]. The generation of nonverbal behavior
such as facial expression, head and body motion started to flour-
ish with the rise of DL models. As far as we are aware, Feng et
al. [20] were the pioneers to consider the relationship between a
human user and a SIA. They generate the agent’s facial gestures
using the agent’s and human’s previously predicted facial gestures
by creating a Feed-Forward Neural Network (FFN) model. They
solely use visual features (facial landmarks) and do not make use
of the multimodal information present in the interaction. Also, it
is exposed to the problem of outputting discontinuous predictions
between two time-steps. Grafsgaard et al. [25] learn by encoding
the multimodal signals (facial expression, body motion, and speech)
using a Long Short-Term Memory (LSTM) model to predict the
facial expression and motion of a partner with the speech of both
partners and their facial expression and motion features. The in-
terpersonal relationship is modeled by encoding both partners’
behaviors; the multimodality is considered but their behavior pre-
dictions risk to be not fluid. Dermouche et al. [15] also study the
interpersonal relationship by referring it as the interactive loop
to generate the agent’s behavior. They additionally modelize the
temporality of nonverbal signals by introducing their Interactive
Loop LSTM (IL-LSTM) that considers both agent’s and user’s upper
face behaviors to model the agent’s nonverbal behaviors. Similarly,
to the model in [20], the IL-LSTM has the same issue of only taking
unimodal input features (facial gestures) and as it generates using
the sliding window prediction it produce jerky movements. Woo et
al. [70] address the problem of discontinuous motion prediction of
the IL-LSTM in [15] by proposing the use of online LSTM (an adap-
tive online prediction) which continuously updates memory cells
during the whole interaction and leverage multimodal information
of visual and acoustic features.

For motion generation, several works use generative models such
as Generative Adversarial Network (GAN) [24] and normalizing
flow-based models to generate motions that are more diverse and
realistic. An extended system of MoGlow [30] is used by Jonell et
al. [31] to predict the agent’s facial expression based on the audio
of both partners and the facial expression of the human by encod-
ing all modalities using a RNN and passing their concatenation to
a neural network at each time-step of the flow. Tuyen et al. [63]
forecast the upper body motion (face, body, and hand landmarks)
with a context aware model that consists of three components of
context encoder, generator, and discriminator. The context encoder
encodes the interacting partner’s nonverbal behaviors (body mo-
tion and audio) and passes the encoded contextual information to
the generator along with the target person’s body motion. Then
the actions outputted by the generator is injected into the discrimi-
nator with the contextual information to validate the motion. The
two generative models employed in [31, 63] create various possible
behaviors by modeling the two facades of interpersonal temporal-
ity and multimodality. Nevertheless, they face the same problem
of not establishing a continuous link between two sequentially
but separately predicted outputs. With the emerging trend of the
Transformers model [65], Ng et al. [48] generate a continuous 3D
facial motion of the listener via an autoregressive transformation-
based predictor taking the output of the cross-modal attention that
combines the speaker’s facial motion and audio inputs and that of
Vector Quantised Variational AutoEncoder (VQ-VAE) [64] which
discretizes the listener’s past facial motion. Their architecture al-
lows the modeling of interpersonal temporality and multimodality,
and render continuous predictions via the autoregression. One point
that could be hindersome about the model is that transformer-like
models require massive amount of data to train. Thus, it might not
be suitable for all applications that do not have sufficient amount
of data.
The aforementioned models show how the relationship between the
interlocutors and the multimodal signals can be modeled. For our
work, we want to model the reciprocal adaptation by considering
the two facets of temporality (both intrapersonal and interper-
sonal) and multimodality along with the continuity aspect for the
generation of our agent’s nonverbal behavior. The multimodality
modeling is absent in [15, 20] and the continuity is not assured
for [15, 20, 25, 31, 63]. While [48] meets all three of our criteria, it
requires a lot of training data. In our case, we have a small database
making their model not suitable for our application. We propose
a new model structure, in Section 4, that renders continuous non-
verbal behaviors (for both speaker and listener) performing with a
small dataset. It also learns to capture interpersonal relationship
between the interlocutors from the exchanged multimodal signals
to endow SIAs with the reciprocal adaptation capability.

2.3 Objective evaluation measures
The evaluation of SIA’s non-verbal behavior sequences is a difficult
and ill-posed problem: depending on the person, the time of day,
our mood, we communicate and react differently to our interlocutor.
For example, we may or may not respond to a nonverbal signal
(e.g. smile), with more or less intensity and more or less latency.
In the same way, head movements are important in maintaining
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engagement but they do not obey to strict and precise laws, and a
multitude of movements are possible in response to an interlocutor.
However, not all occurring movements are perceived as social, con-
vincing, informative or even carrying meaningful information. This
is what we want to learn during sequence generation: to generate
multimodal behavior sequences that convey the intended inten-
tion (e.g. maintaining engagement) and is perceived as such by the
human interlocutors.
But how do we evaluate the quality of the generative behaviors
models? There is no unanimous answer to this question today. We
present here some quantitative measures used in the literature and
propose other ones more adapted to our problem. While there is a
large literature on subjective measures (see Fitrianie and colleagues’
work [22, 23]), we focus on objective evaluation measures in this
section.
Behaviors can be interpreted as temporal sequences as their val-
ues change in time such as the position in the relative or absolute
place for head and body motion or the intensity for Action Units
(AUs) [17], which are fundamental actions of facial muscle move-
ments. Thus, we look at sequence comparison measures to evaluate
the behaviors in term of accuracy and quality.
One way to assess the accurateness of a generated behavior se-
quence is to compare its values against the ground truth sequence
at each time-step (under the condition that they have the same
length). This kind of measure is also often used as a loss function
during neural networks learning. Among these measures, we can
cite the Mean Squared Error (MSE) [16, 56], the Root Mean Squared
Error (RMSE) [15], or the Average Position Error (APE) [1, 2, 29].
Similarly, other authors focus on correlation [16, 25, 56]. These
measures allow us to define loss functions for neural network learn-
ing by presenting examples of ground truth sequences. However,
they cannot be used to evaluate objectively a multimodal sequence
generation model for the reasons mentioned above: there is not a
fixed behavior (the ground truth) for a given situation and there
are multiple plausible answers. In addition, the occurrence timing
of a particular behavior can be temporally shifted by a few seconds
(for example the behavioral mimicry generally occurs after 2 to 4
seconds [37]) and still be perceived as synchronized [12].
A lot of solutions are used to estimate the quality of sequences
generated using Generative Adversarial Network (GAN). They are
often based on the principle that several sequences are generated
for the same testing example. A solution [31, 42, 56] consists to
estimate the distribution over generated sequences and then, to
calculate the log-likelihood of the ground truth sequence. Another
solution is to measure the smallest distance between the generated
sequences and the ground truth one, and average these distances
along the testing sequences. Aliakbarian et al. [4] estimate the di-
versity of the generated sequences as the average distance between
all pairs of generated sequences. At the same time, they measure
the quality using a binary classifier that discriminates between real
and generated sequences. Other authors use statistical measures of
Inception Score (ID) or Frechet Inception Distance (FID) to measure
the generation fidelity of the human motion [5, 11].
All the previous measures assume that several sequences are gen-
erated for a same test sequence or that we can estimate the distri-
bution of real sequences. The reciprocal adaptation leads us to a
very specific case where the previous measures cannot be applied.

More importantly, a lot of temporal dependencies exist between
both partners and these phenomena are not observed using the
previous measures. Thus, we are also interested in the interpersonal
relationship and how to measure it.
While conversing, the speech andmovement of the interlocutors are
dynamically coordinated (i.e. interpersonal synchrony). However,
the detection of such coordination is not so simple as in a real
conversation the signals do not happen simultaneously as they
result from an exchange. Each interlocutor can send or respond to
a signal with a certain time delay (after a perception time [12]). For
example, when a person smiles, the interacting person can respond
to this smile or not. This response is be perceived as a mimic of the
first smile if it happens within a time delay of 2 to 4 seconds [37].
Thus, we need to take into account time shifts. The mimicking
behaviors can also differ in terms of duration and intensity. This
implies that the sequence comparison also needs to be invariant to
dilations when comparing the signals. A well-known technique that
deals with such aspects is the Dynamic Time Warping (DTW) [47].
The similarity between two temporal sequences of different speed
and length can be measured.
Various efforts have been done to quantify the quality of non-
verbal behaviors. Nevertheless, there is not yet a perfect metric
to evaluate them. Especially several aspects of behavior quality
such as naturalness and human-likeness might be trivial for a hu-
man, but still very hard to access for a machine [22, 23]. Thus,
human evaluation remains as a critical part of behavior evalua-
tion [3, 11, 13, 20, 23, 31, 32, 56, 72].

3 DATABASE AND FEATURE EXTRACTION
We chose to use the NoXi database [10], which is a corpus of screen-
mediated face-to-face interactions containing human-human con-
versations around a common topic. The database is made up of 3
parts depending on the recording location (France, Germany, and
UK). We focus on the recording from the French location that in-
cludes 21 dyadic interactions performed by 28 participants with a
total duration of 7h22.
We obtain nonverbal behavior features for both interacting partic-
ipants through feature extraction. For each time-step, the visual
features of eye movements (around the x and y axes), head rotations
(around the x, y, and z axes), 6 upper face Action Units (AUs) [17]
(which are AU1, AU2, AU4, AU5, AU6, and AU7) along with that
of the smile (AU12) are extracted via the opensource toolkit Open-
Face [6]. The audio features are also obtained for each time-step, af-
ter a denoising phase, using the opensource toolkit openSMILE [18].
We consider the following acoustic features: fundamental frequency,
loudness, voicing probability, and 13 Mel-frequency cepstral coeffi-
cients (MFCCs) [40]. To clean up the data, we apply a median filter
and a linear interpolation on all extracted features. All features are
adjusted to 25𝑓 𝑝𝑠 .

4 MODELS
We hold interest in generating social and engaging nonverbal be-
havior of a SIA (be a speaker or a listener) when interacting with
its human interlocutor. In particular, we aim to model the recip-
rocal adaptation, by capturing the behavior coordination of both
interactants, notably the interpersonal relationship. We propose a
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new architecture that models the reciprocal adaptation which is our
Augmented Self-Attention Pruning (ASAP) model1, as illustrated
in Figure 1. It takes 100 previous frames (𝑡 − 99 : 𝑡 ) for both human
and agent to predict the agent behavior of the next frame (𝑡 + 1).
ASAP consists of three key techniques: data augmentation tech-
nique, self-attention pruning, and autoregressive adaptive online
prediction.

4.1 Data augmentation
Since our database is not that large, we make use of a data aug-
mentation technique. To learn the reciprocal adaptation we need
accurate data of both participants. Which leads us to propose a data
augmentation technique which learns from both interlocutors in
an equal manner, instead of using classical data augmentation tech-
niques, such as adding noise or dropouts. That is, we learn from the
characteristics of both interacting partners. For each batch of the
training phase, we assign randomly the interlocutor identity that
will be played by the agent to one of the interlocutors. We learn to
predict the behaviors for this interlocutor. Then, we follow by alter-
nating and assigning the interlocutor identity for the agent to the
other interlocutor and continue the learning process. For a better
understanding, we refer to each interacting person of a dyad as 𝑃𝐴
for person A and 𝑃𝐵 for person B. There are two possible choices of
giving the agent the interlocutor identity of either 𝑃𝐴 or 𝑃𝐵. During
each batch, the interlocutor identity of the agent is reassigned ran-
domly (to either maintain the same identity of the previous batch
or to switch identities from 𝑃𝐴 to 𝑃𝐵 or 𝑃𝐵 to 𝑃𝐴). The agent learns
to generate the behavior of the corresponding interlocutor identity.
The data augmentation simulates the interlocutors’ behaviors with-
out separating whether it’s those of a speaker or a listener. It only
takes into account the interlocutor identity (either 𝑃𝐴 or 𝑃𝐵). By
doing so, the model learns to predict equally the behaviors of both
participants and focuses on modeling the interaction between the
two rather than the specific characteristics of a single person.

4.2 Self-Attention Pruning
To better model the reciprocal adaptation, we want to capture in-
terpersonal relationship (of interpersonal behavior coherence and
synchrony) and multimodality from key features. The selection
of relevant features is done via an attention mechanism. A self-
attention, using the multi-head attention of the Transformers [65],
is performed using all the features (2 eyes movements, 3 head rota-
tions, smile (AU12), and 6 upper face AUs) of all interlocutors and
(visual and acoustic) modalities. The self-attention layer captures
key information to model which behaviors should occur along with
mimicry and synchronization mechanisms all at once. However,
most attention heads within the multi-head attention (MHA) con-
tain redundant information [44, 66] which lead the model to overfit.
Michel et al. [44] and Voita et al. [66] demonstrate the overfitting
problem caused by redundant attention heads can be solved by
applying pruning (i.e. pruning removes redundant heads). Our aim
is to modelize the reciprocal adaptation, by retrieving key infor-
mation via pruning. Pruning allows us to drop repetitive heads
only rendering attention to dissimilar heads encoded with unique
information and it also increases the inference speed. The pruning
1The code is available here: https://github.com/jieywoo/ASAP.

of attention heads is similar to structured pruning where neurons
are pruned. An example of structured pruning is given in Figure 2.
Instead of pruning the neurons, we prune the attention heads. Our
technique differs from the conventional pruning technique which
prunes a given percentage of less significant neurons or connections
(for unstructured pruning). Once the model is trained, the same
neurons/connections are pruned out disregarding the input. For our
pruning technique, we learn to choosewhich head(s) aremeaningful
for each specific frame via a pruning mask. For each input sequence,
a custom pruning mask is applied. To detail, as seen in Figure 1, the
input sequence that consists of 𝑇 = 100 frames from 𝑡 −𝑇 + 1 to 𝑡
are passed through the MHA (with the depth of 𝑑 and 𝑁 attention
heads). A custom pruning mask is learned to minimize the loss of
the network for each input sequence to prune the attention heads
(each with the dimension of 𝑑×𝑇 where 𝑑 is the depth). The custom
pruning mask selects to learn from a certain number of attention
heads 𝑁 ′ out of 𝑁 heads. In this way, the pruned attention heads
vary for each prediction. For each head, the significance factor is
obtained by applying a sigmoid function 𝜎 (𝑥) = 1

1+𝑒−𝑥 element-
wise and then binarized (by rounding) within the pruning mask.
To detail, the pruning mask is a vector of dimension 𝑁 where each
element corresponds to the significance factor of each 𝑁 MHA
heads which is obtained via the sigmoid function. The significance
factor is binarized for each element to only leave significant heads
as 1 and the rest as 0. Non-significant heads are removed after
applying the pruning mask to the attention heads outputted by the
MHA. Then, the information of the key heads are grouped together
(dimension reduced from 𝑁 × 𝑑 × 𝑇 to 𝑁 ′ × 𝑑 × 𝑇 ) and then the
essential information among the information of the key heads are
obtained via a fully connected layer (the self-attention pruning
module rendering the final dimension of 𝑑 ×𝑇 ). With our pruning
technique, we can assure that our model accesses only unique and
relevant information for each prediction.

4.3 Autoregressive adaptive online prediction
We want to generate continuous SIA behaviors which is assured by
applying the adaptive online prediction. During the whole course of
the interaction the model updates its memory in a continuous way
as in [71]. Non-continuous values come from the predictions that
are made independently for each input sequence without conserv-
ing previous memories (i.e. temporal sliding window). By applying
adaptive online prediction during the inference, we circumvent this
problem as the past information is kept within the memory cells
and used to make new predictions. Also, the prediction is made in
an autoregressive fashion by feeding back the predicted values of
previous time-steps as input for the prediction at the next time-step.

5 EVALUATIONS
Our goal is to evaluate if ASAP captures the reciprocal adaptation
between participants, that is the interpersonal relationship encoded
withmultimodal signals. Also, we check the quality of our generated
SIA behavior with both roles as listener and speaker. We compare
the performance of ASAP to that of two recent state-of-the-art
models, which are the works of Dermouche et al. [15] and Woo et
al. [70], by evaluating their generated nonverbal behaviors both
quantitatively and qualitatively.



IUI ’23, March 27–31, 2023, Sydney, NSW, Australia Woo, et al.

Figure 1: Architecture of ASAP model.

Figure 2: Example of structured pruning.

5.1 Settings
All models are implemented in Tensorflow and trained for 1000
epochs on 2.20GHz Intel Xeon Linux server with NVIDIA GeForce
GTX TITAN X and 64GB RAM. They all share the same parameters:
batch size of 32 and Adam optimizer with a linear learning rate
scheduler (learning rate starting from 0.001, factor 0.2 decay on
plateau, and patience 3). For ASAP, after fine-tuning the MHA, four
attention heads with the depth of 16 was used and MSE was used
as the objective function in the autoregressive stage. The dataset is
splitted for training:validation:testing in the ratio of 70:10:20 and
ensured that the test set contains pairs of dyads that were never
seen in the train and validation sets. To assure that the training
and test sets do not include the same person, we have manually
excluded participant pairs for the test set.

5.2 Objective evaluation
As mentioned above in Section 2, evaluating nonverbal behaviors
has always been a challenge. Until now there is no perfect measure
that can thoroughly quantify the dynamics of the behaviors. To
assess our model, we propose to use several objective measures,
one metric for each measuring type (i.e. point to point, statistical,
and resemblance).

5.2.1 Appliedmeasures. As point to point measure, we use the Root
Mean Square Error (RMSE), as in the literature [15], to evaluate
our generated nonverbal behaviors. The Mean Square Error (MSE)
or RMSE between training and testing databases is often used as
point to point measure. RMSE, which calculates the error of the
generated time series sequence 𝑦 (𝑡) against the real one 𝑦 (𝑡), is
defined by:

𝑅𝑀𝑆𝐸 =

√√√
1
𝑇

𝑇∑︁
𝑡=1

(𝑦 (𝑡) − 𝑦 (𝑡))2 (1)

This measure provides information on the quality of learning. How-
ever, it is not always pertinent to compute the exact behaviors that
may arise during an interaction, as different reactions (behaviors)
of a participant may arise. Indeed, it is difficult to exactly reproduce
the same behavior of a person from a database that contains vari-
ous participants (excluding the targeted person) each possessing
a personality and showing different behaviors. We chose to use
another measure to further evaluate our model. We are interested to
measure if the behaviors generated by our model have similar distri-
butions as in the NoXi database. That is we check if both, predicted
behaviors and ground truth have similar number of occurrences.
Taking the smile as an example, during the course of a conversation
the smile intensity of a participant varies continuously. In the NoXi
database, the intensity distribution of smiles is more concentrated
around subtle and low level (with the percentage of 84%). We want
to assess the quality of the produced nonverbal behaviors globally
not on the sequence level but on the entire interaction. Using the ex-
ample of smiles, we want to see if smiles are predicted through out
the interaction in terms of the distribution of smile intensity level.
For this purpose, we check the probability distribution similarity
using statistical measures.
The quality of nonverbal behaviors can be quantified by verifying
their probability distribution. The distribution estimation measures
of log-likelihood and density comparison [4, 31, 42, 56] evaluate the
difference between predicted and ground truth sequences; but as
stated above we want to compare the distribution of the interaction
as a whole. In general, when measuring the similarity, statistical
measures are used. Aforementioned measures of Inception Score
(ID) or the Frechet Inception Distance (FID), which are distribution-
based metrics used for scoring the generation fidelity, can not be
used for our work since they require an external classifier for ID or
to compare the distributions of generated and real objects for FID.
As previously presented measures, in Section 2, do not suit our case,
we propose the usage of Kolmogorov-Smirnov (KS) two-sample
test [43]. Its use is new to behavior quality evaluation. The KS test
is a statistical measure that estimates the quality in a quantitative
manner by measuring the difference in density probability between
the ground truth and the generated sequence for each output dimen-
sion. The KS test measures the distance between the generated g(x)
and real r(x) data distributions (or more precisely the cumulative
distributions G(x) and R(x)):

𝑑 = max
𝑥

|𝐺 (𝑥) − 𝑅(𝑥) | (2)



ASAP: Endowing Adaptation Capability to Agent in Human-Agent Interaction IUI ’23, March 27–31, 2023, Sydney, NSW, Australia

The KS test is applied for each feature feature and the average score
is calculated.
Point to point metrics and statistical measures for density distribu-
tion do not capture the temporal dependencies that exist between
partners. To better observe the temporal dependencies between the
interlocutors, we employ the Dynamic TimeWarping (DTW). DTW
measures the similarity between two temporal sequences that may
vary in speed and length.
DTW, like the RMSE, can be used between ˜𝑃𝐴&𝑃𝐴, where ˜𝑃𝐴 is
the generated agent’s behavior and 𝑃𝐴 is the human ground truth
behavior. Instead of having another precision measure, we want
to measure whether the reciprocal adaptation is well captured.
The presence of reciprocal adaptation (interpersonal temporal de-
pendency) is verified by seeing if the interlocutors show similar
behaviors, responding to each other. We check the proximity (re-
semblance) of the generated agent’s behavior and that of the inter-
acting human ( ˜𝑃𝐴&𝑃𝐵) and the proximity of the behaviors between
both humans (𝑃𝐴&𝑃𝐵) to see if the agent behavior shows the same
adaptation trends as seen in the ground truth.
The DTW distance does not have to be small. Actually, it would be
easy to copy the behavior of the human at the previous moment to
have a DTW almost zero. This high resemblance between partners
can be perceived as an everlasting imitation (like a parrot) and
thus may rather hinder the perception of human-like behavior.
Thus, DTW between ˜𝑃𝐴&𝑃𝐵 must be similar to the DTW between
𝑃𝐴&𝑃𝐵 and not necessary small.
As our interactions are very long (around 20𝑚𝑖𝑛 for each interac-
tion), we compute the DTW in small chunks of 1𝑚𝑖𝑛 and a stride
of 30𝑠 . Applying DTW in chunks speeds up the computation. All
the chunks cover the whole interaction.
Smile is an key socio-emotional signal that can be observed fre-
quently during an interaction [35]. Previous studies have demon-
strated that smile helps SIAs to better manage their interaction
with their human users [51, 69]. Thus, for DTW distance evaluation
of ˜𝑃𝐴&𝑃𝐵, we focus on the smile.

5.2.2 Results and discussions. To compare our model with that
of the literature, we need to use the same features. As a result,
we firstly evaluate our model with the features presented in [15]
(features set 1) and then with those in [70] (features set 2). The
features set are composed as the following:

• Features set 1: only visual features (eyes movement, head rota-
tion, and AU12 intensity and activation) of both interlocutors
along with conversational state inputted to predict visual fea-
tures of the SIA at 5𝑓 𝑝𝑠 ;

• Features set 2: visual and acoustic features (eyes movement,
head rotation, upper face AUs and AU12 intensities, fundamen-
tal frequency, loudness, voicing probability, and 13 MFCCs)
of both interlocutors to predict the visual features (including
upper face AUs) of the SIA at 25𝑓 𝑝𝑠 .

Concerning the evaluation of the eyes movement, we evaluate the
value of the eyes angles like we do for the head rotation. However,
we cannot assess if the predicted eyes movement correspond to
looking at the same target (e.g. its interlocutor) as in the ground
truth as this information is not available in the NoXi dataset (both
cameras recording the two interlocutors are not calibrated).

Methods RMSE KS test

Features set 1
Dermouche et al., 2019 0.172 0.298

Woo et al., 2021 0.171 0.293
ASAP 0.131 0.115

Features set 2
Dermouche et al., 2019 0.444 0.559

Woo et al., 2021 0.374 0.415
ASAP 0.239 0.301

Table 1: Average RMSE and KS test results for features set 1
and 2.

All models were trained and their behaviors were generated for
each features sets. We conduct an objective evaluation for the two
sets of features.
The performance of ASAP is compared with the baseline models for
each features set using the proposed objective evaluation measures.
In Table 1, the threemodels of each features set are evaluated quanti-
tatively by computing the RMSE and performing the KS two-sample
test. The KS test was used as it statistically measures the proba-
bility distribution similarity between our predictions and ground
truth (real interaction). The average score of the output features
is calculated (average of 6 output features scores (2 eyes angles, 3
head rotations, and AU12 intensity) for features set 1 and that of
12 output features scores (2 eyes angles, 3 head rotations, and the
intensities of 6 upper face AUs and AU12) for features set 2). From
both features set 1 and 2, we can observe that the RMSE and the KS
test scores have better values for ASAP than the baseline models.
The DTW between 𝑃𝐴&𝑃𝐵 represents distance (resemblance) be-
tween the signals of the two human participants’ interlocutor iden-
tities of 𝑃𝐴 and 𝑃𝐵. The DTW distance is interpreted as the closer
the distance gets, the more the two signals of 𝑃𝐴 and 𝑃𝐵 are similar.
We check if the models’ DTW distance ˜𝑃𝐴&𝑃𝐵 is close to that of
the ground truth interaction (human-human interaction) 𝑃𝐴&𝑃𝐵.
As stated above, smile is a key social signal that is apparent to
improve SIA’s interaction which leads us to focus on smile. We can
see, in Table 2, that for smile of features set 1, our ASAP performs
better than the baselinemodels in terms of having theDTWdistance
the closest to the ground truth DTW (26.9, 21.7 respectively). The
same conclusion can be drawn for features set 2 (1399.3, 1317.5
respectively). Note that the small value of obtained with Woo et al.
model can be interpreted as a close imitation of the behavior of its
interlocutor that may deter the perception of the behavior to be
human-like.
Therefore, we can conclude that our ASAP model outperforms
the baseline models for the three objective evaluation methods,
that is RMSE, KS test, and resemblance via DTW distance between
𝑃𝐴&𝑃𝐵.

5.3 Subjective evaluation
Relying only on objective evaluations is not enough to fully assess
the quality of the generated agent’s behavior.We perform a user per-
ceptive study to complement the objective evaluationwherewe look
more particularly on how the generated multimodal signals and the
modeling of the reciprocal adaptation (interpersonal relationship)
by our model influence: 1) the perception of the generated agent



IUI ’23, March 27–31, 2023, Sydney, NSW, Australia Woo, et al.

Features set Method DTW 𝑃𝐴&𝑃𝐵 (Ground truth) DTW ˜𝑃𝐴&𝑃𝐵

Features set 1
Dermouche et al., 2019

21.7
27.3

Woo et al., 2021 27.2
ASAP 26.9

Features set 2
Dermouche et al., 2019

1317.5
1562.7

Woo et al., 2021 257.5
ASAP 1399.3

Table 2: DTW of smile for features set 1 and 2.

behaviors’ naturalness and human-likeliness; 2) the perception of
the interpersonal dynamics such as the synchrony between the
interlocutors and the perception of their engagement. To evaluate
these aspects of human-agent interaction, we ask the participants to
score the interacting SIA along 4 measurement constructs: behavior
naturalness, behavior human-likeliness, interaction synchrony, and
engagement.
Questionnaires to evaluate the perception of behavior naturalness
(e.g. "Is the behavior of the virtual character artificial?"), behavior
human-likeliness ("Does the virtual character behave like a hu-
man?"), and engagement ("Is the virtual character engaged in the
conversation?") are formulated based on existing questionnaires
of human-agent interaction evaluation [23, 67]. We use a set of
three synonyms and antonyms for each dimension. To evaluate
the perception of synchrony, we use the dyadic stances of mutual
understanding, attention, agreement, interest, and pleasantness (e.g.
“Are the human and the virtual character agreeing to each other?”)
proposed by [41, 55].
A set of 14 questions (3 for each construct of behavior naturalness,
behavior human-likeliness, and engagement, and 5 for interaction
synchrony) are used. The users are asked to answer to each question
using a Likert scale of 5 points (ranging from 1 (strongly disagree),
2 (disagree), 3 (neutral), 4 (agree), to 5 (strongly agree)).

5.3.1 Hypothesis. In human-human interaction, behaviors are in-
terpersonally coordinated [57], which is also referred to as inter-
personal synchrony [14]. It is also shown that being in sync im-
proves the engagement level [14, 28]. Thus, we hypothesize that
our ASAP model improves interpersonal dynamics (synchrony and
engagement) of the generated agent behaviors as well as its qual-
ity (naturalness and human-likeliness) compared to the baseline
models. The perceptive study enables us to validate the hypothesis
that our model generates a more interactive and adaptive SIA for
dyadic conversations.

5.3.2 Procedure. The evaluation is done via Prolific, an online
crowd-sourcing platform. 20 video clips of an approximate dura-
tion of 7 seconds are extracted from the human-human videos of
NoXi. In each video clip a human participant has the speaking
turn (talking about a common subject) or is the listener (express-
ing nonverbal behaviors with visual and acoustic feedbacks which
include backchannels such as "ok" and "yes") and the other human
participant is either, respectively, listener or speaker.
For our study, we compare four conditions (the three models which
are: ASAP and our two baseline models of Dermouche et al. and

Woo et al.) with the features set 2 and the ground truth). To evalu-
ate the quality of these conditions, we replace one of the human
participant (being the speaker in 10 video clips and listener in the
other 10 video clips) by a SIA whose behavior is driven by the
computational models or the ground truth. The SIA was animated
using the open source Greta SIA platform [49] by passing visual
features (predictions of the computational models or the ground
truth) along with the audio of the ground truth. An image of a
video is shown in Figure 3 in which it displays a SIA (left side of
the screen) and a human participant (right side of the screen). The
lower face was blurred so that the mouth movements won’t hinder
the evaluators’ perception during the study.

Figure 3: User perception test video clip example of an inter-
action between a SIA (left) and a human participant (right).

Four videos (the agent displaying the behavior of the agent in
one of the four conditions) are created for each of the 20 human-
human video clips of the NoXi database. So, we have a total of 80
videos where the SIA replaces one of the human interlocutors (see
Figure 3). The behaviors of ground truth condition is also shown
by replacing the selected human with the SIA. We use the same
setting when comparing videos of the ground truth with videos
of the computational models. As such we eliminate any impact a
participant may have toward the virtual character [58].
Not to make an evaluation that lasts too long which may deteriorate
the concentration of the perception study participants and thus
hinder the study, we split the perception test into four groups. Each
group has 5 human-human interaction video clips to evaluate (i.e.
each participant evaluates 20 short videos of 7s of human-agent
interaction for all four conditions). All the videos are shuffled so
that their order does not impact our perception study.
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Figure 4: Distribution of behavior naturalness (∗∗∗𝑝 < 0.001).

Figure 5: Distribution of behavior human-likeliness (∗∗∗𝑝 <

0.001).

For each perception test group, we recruit 30 participants and ask
them to evaluate each video (20 videos per group) with the afore-
mentioned set of questions. To filter out inattentive participants, for
each video we randomly include attention check questions (e.g. "Is
the virtual character playing tennis with the human interlocutor?").

5.3.3 Results and discussions. The participants’ responses are grouped
together according to their corresponding construct (behavior nat-
uralness, behavior human-likeliness, synchrony, and engagement)
for each condition (ground truth, our two baseline models of Der-
mouche et al. and Woo et al., and ASAP). We visualize the distribu-
tion for each construct, in Figure 4, 5, 6, and 7.
One-way ANOVA report significant differences among all anima-
tion conditions for all four constructs: behavior naturalness (𝐹 =

41.5, 𝑝 < 0.001), behavior human-likeliness (𝐹 = 43.1, 𝑝 < 0.001),
synchrony (𝐹 = 66.9, 𝑝 < 0.001), and engagement (𝐹 = 90.0, 𝑝 <

0.001). A post-hoc pairwise comparison analysis is performed by

Figure 6: Distribution of synchrony (∗∗∗𝑝 < 0.001).

Figure 7: Distribution of engagement (∗∗∗𝑝 < 0.001).

running the Tukey’s honestly significantly differenced (HSD) test.
Tukey’s HSD reveal the following. Statistical significant differences
were found between all pairs (𝑝 < 0.001) except between Woo et
al. [70] and ASAP for the constructs of behavior naturalness and
human-likeliness (𝑝 = 0.9 and 𝑝 = 0.9 respectively). Concerning the
constructs of synchrony and engagement, all pairs were reported
to be significantly different (𝑝 < 0.003). A two-tailed t-test was
performed between all possible pairs of compared animations for
each construct to test the statistical significance. The t-test p-values
reported significant differences between all pairs (𝑝 < 0.001) except
between Woo et al. [70] and ASAP for the constructs of behavior
naturalness and human-likeliness (𝑝 = 0.7 and 𝑝 = 0.5 respectively).
T-test yields significant differences among all conditions for syn-
chrony and engagement constructs. The t-test p-values are shown
on the construct distribution figures (Figures 4, 5, 6, and 7).
From the subjective results, the simulation with ground truth values
receives the highest values for all four constructs, namely behavior
naturalness (3.0), behavior human-likeliness (3.0), synchrony (3.4),
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and engagement (4.0). Via the constructs of behavior naturalness
and human-likeliness, a rise in quality can be noticed between that
of Dermouche et al. (2.3, 2.3 respectively) and the other two compu-
tational models of Woo et al. (2.7, 2.7 respectively) and our ASAP
model (2.7, 2.7 respectively). We assume that this difference is due
to the application of adaptive online prediction, instead of sliding
window prediction as in Dermouche et al., which enables the gener-
ation of continuous motions which may lead to a higher perception
of naturalness and human-likeliness. The quality of the generated
agent behavior along the constructs of synchrony and engagement
increases from the Dermouche et al. (2.6, 2.7 respectively), to Woo
et al. (2.8, 3.0 respectively), to ASAP (3.0, 3.3 respectively). We can
remark that modeling of reciprocal adaptation allows SIA to be
more in sync and engaged with it’s interlocutor.

Figure 8: Distribution of behavior naturalness.

Figure 9: Distribution of behavior human-likeliness.

We also want to evaluate if our ASAP model can produce behaviors
for SIA being both a listener and a speaker. We check the quality
of the generated agent behavior of ASAP along the four constructs

Figure 10: Distribution of synchrony (∗∗𝑝 < 0.01).

Figure 11: Distribution of engagement (∗𝑝 < 0.05).

by comparing the produced behaviors as a listener and a speaker,
as shown in Figure 8, 9, 10, and 11.
For the SIA being either a listener or a speaker or both combined,
one-way ANOVA reported significant differences for the construct
of synchrony (𝑝 = 0.02) but no significance for the other three
constructs of behavior naturalness, behavior human-likeliness, and
engagement. Tukey’s HSD on synchrony revealed significant dif-
ference between listener and speaker (𝑝 = 0.01). A two-tailed t-test
was performed and showed significant differences between listener
and speaker for the constructs of synchrony (𝑝 = 0.005) and engage-
ment (𝑝 = 0.02) as indicated on the construct distribution figures
(Figures 10 and 11).
We can remark that ASAP generates both listener (2.5, 2.3, 3.0, 3.3
respectively) and speaker (2.7, 2.7, 3.2, 3.3 respectively) behaviors
with similar qualities which indicates that ASAP can be used to
generate SIA behaviors for an entire interaction.
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Our subjective evaluation results are inline with the results of the
objective evaluation. Our ASAP model performs better than that
of the baseline models of Dermouche et al. and Woo et al.. Thus,
ASAP outmatches the baselines, notably in terms of synchrony and
engagement, and is the most similar to the ground truth both quan-
titatively and qualitatively. Moreover, ASAP can serve to produce
SIA behavior for both speaker and listener.

6 CONCLUSION
Having the goal to create an expressive SIA capable of interacting
with the user while maintaining his/her attention, we develop a
predictive model that produces the agent’s nonverbal behaviors
serving as both active speaker and listener. We modelize the recip-
rocal adaptation of our ASAP model by focusing on the aspects of
interpersonal temporality, multimodality by encoding multimodal
signals, and behavior prediction continuity with the autoregressive
adaptive online prediction. Our model outperforms the baseline
models through both objective and subjective evaluations. ASAP
shows great promise in rendering natural and human-like behav-
iors that are engaging and in sync with the interlocutor. As for our
next step, we aim to better modelize the reciprocal adaptation be-
tween the two interlocutors by modeling each interacting partner’s
intrapersonal temporality along the multimodality aspect and also
capturing their interpersonal temporality to generate behaviors
that are livelier. In a near future, we intend to assess the perfor-
mance of the SIA with reciprocal adaptation capability through live
human-agent interaction. Another direction of research is to study
the aspect of explicability of the reciprocal adaptation to see how
the dynamics of the adaptation play in the behavior generation as
the conversation evolves.

7 PRACTICAL AND SOCIAL IMPLICATIONS
In this paper, we discussed the endowment of reciprocal adaptation
capability to SIAs. The endowment of such capacity has shown
an increase in the perception of the SIA’s naturalness, human-
likeliness, conversational engagement and synchrony. In a more
practical point of view, such SIAs may provide better and a wider
range of services. By showing adaptation skills, SIAs adapting to its
interaction user can enhance the perception of interaction quality,
the relation created with its interlocutor, etc. This renders a positive
impact on the SIA’s task performance (e.g. for a tutoring system,
the learning is reinforced [34]). SIAs can be used for a variety of
applications and improve people’s lives by providing assistance and
support. However, with the development of intelligent UIs, some
people may tend to avoid human-human interaction and rely on
them. This shrink of interactions with other humans is not healthy
and is not what SIAs were designed for. To avoid such happening,
we should always have in mind that SIAs are here to assist us and
not to replace human interaction.
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