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Socially Interactive Agents (SIAs) offer users with interactive faceto-face conversations. They can take the role of a speaker and communicate verbally and nonverbally their intentions and emotional states; but they should also act as active listener and be an interactive partner. In human-human interaction, interlocutors adapt their behaviors reciprocally and dynamically. The endowment of such adaptation capability can allow SIAs to show social and engaging behaviors. In this paper, we focus on modelizing the reciprocal adaptation to generate SIA behaviors for both conversational roles of speaker and listener. We propose the Augmented Self-Attention Pruning (ASAP) neural network model. ASAP incorporates recurrent neural network, attention mechanism of transformers, and pruning technique to learn the reciprocal adaptation via multimodal social signals. We evaluate our work objectively, via several metrics, and subjectively, through a user perception study where the SIA behaviors generated by ASAP is compared with those of other state-of-the-art models. Our results demonstrate that ASAP significantly outperforms the state-of-the-art models and thus shows the importance of reciprocal adaptation modeling.

to being a companion [START_REF] Kim | An embodied agent helps anxious students in mathematics learning[END_REF][START_REF] Prendinger | THE EMPATHIC COMPANION: A CHARACTER-BASED INTERFACE THAT ADDRESSES USERS'AFFECTIVE STATES[END_REF]. To carry out interactive and natural conversations, they are often designed with friendly or human-like appearances and communicative capabilities are given. While the process of starting a conversation and interacting with other people comes naturally to us, it is challenging to endow the same capability of communicating thoughts and intentions to SIAs as it involves complex mechanisms such as planning what to say and how, while talking into account its human interlocutor's behavior. During an interaction, we constantly coordinate our behavior by perceiving and responding to social signals [START_REF] Judee K Burgoon | Interpersonal adaptation: Dyadic interaction patterns[END_REF]. This behavior coordination happens with a specific temporality and appears between the signals of a same person (intrapersonally, such as the coordination of facial expression, gesture, and prosody) and between the interlocutors (interpersonally, for example when participants mirror each other's behaviors). The interpersonal coordination (or synchrony) is mutual and evolves during the entire interaction [START_REF] Richard | Dynamics of interpersonal coordination[END_REF]. It can also maintain interlocutors' engagement [START_REF] Delaherche | Interpersonal synchrony: A survey of evaluation methods across disciplines[END_REF][START_REF] Gupta | Blink as you sync: Uncovering eye and nod synchrony in conversation using wearable sensing[END_REF]. Due to the mutuality, temporality, and everlasting facade seen during humanhuman interactions, human interlocutors can adapt their behaviors continuously to those of the others reciprocally and dynamically. We refer to this adaptation as reciprocal adaptation. It arises in real-time following a looped process. Communication consists of verbal and nonverbal signals [START_REF] Judee K Burgoon | Nonverbal signals. The SAGE handbook of interpersonal communication[END_REF]. Nonverbal signals, which are also referred to as body language (including gestures, facial expressions, body movement, and gaze), constitute a major part of communication signals. When generating SIA behaviors, the generation of words (i.e. verbal behavior) might be essential for conveying intentions but nonverbal behavior generation is also important for communicating intentions and to be socially interactive. Recent works on multimodal behavior generation (where only one person is concerned) show promising results for the generation of communicative nonverbal behaviors focusing on Deep Learning (DL) techniques from classical Feed-Forward Neural Network (FFN) to latest Transformers model [START_REF] Simon Alexanderson | Style-Controllable Speech-Driven Gesture Synthesis Using Normalising Flows[END_REF][START_REF] Bhattacharya | Text2Gestures: A Transformer-Based Network for Generating Emotive Body Gestures for Virtual Agents** This work has been supported in part by ARO Grants W911NF1910069 and W911NF1910315, and Intel[END_REF][START_REF] Ding | Head motion synthesis from speech using deep neural networks[END_REF][START_REF] Fares | Transformer Network for Semantically-Aware and Speech-Driven Upper-Face Generation[END_REF][START_REF] Ferstl | Multi-objective adversarial gesture generation[END_REF][START_REF] Greenwood | Predicting head pose from speech with a conditional variational autoencoder[END_REF][START_REF] Hasegawa | Evaluation of speech-to-gesture generation using bi-directional LSTM network[END_REF][START_REF] Karras | Audio-driven facial animation by joint end-to-end learning of pose and emotion[END_REF][START_REF] Sadoughi | Novel realizations of speech-driven head movements with generative adversarial networks[END_REF][START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF]. These works model the communicative behaviors linked to speech but do not pay attention to the social signals arising between interaction participants. In this paper, we focus on generating nonverbal behavior for dyadic interactions. We aim to provide SIAs with this capacity of reciprocal adaptation to enhance its behaviors so that they can behave naturally like a human-being. We use multimodal features (visual and acoustic) and produce SIA behaviors of an active interactant as both listener and speaker. We hold attention to the aspect of behavior coherence, synchrony, and continuity. Behaviors are made up of continuous values which evolve over time (for example for human motion the body landmark positions change smoothly in time). We also intend to assure the production of continuous behaviors by looking at their temporal continuity which motivates us to look into different prediction approaches of offline and online prediction to better model the motion fluidity. Behavior motions should not only be continuous but also coherent and in sync with those shown by the interactant. We are thus interested in the temporal alignment and the appropriateness of the generated SIA behavior type (e.g. a smile in response of an interlocutor's smile). We also look into how the quality (continuity, temporal alignment, and type of behavior) of the generated behaviors could be quantified via objective measures that are used to evaluate the generated behavior sequences. With the goal to create a SIA capable of adapting its behaviors to its interlocutor, we propose the Augmented Self-Attention Pruning (ASAP) model that models the reciprocal adaptation of interaction partners throughout the interaction. The multimodal signal information of both interaction partners along with the interpersonal relationship between them are captured. Specifically, ASAP allows us to: (1) capture multimodal information of visual and acoustic features; (2) learn from both interactants through data augmentation technique; (3) better select key features within the interaction via the self-attention mechanism with pruning; (4) generate continuous nonverbal behaviors by updating cells' memories at each step of the inference phase with autoregressive adaptive online prediction; [START_REF] Sadegh Aliakbarian | A stochastic conditioning scheme for diverse human motion prediction[END_REF] generate behaviors as both active listener and speaker; [START_REF] Baltrušaitis | Openface: an open source facial behavior analysis toolkit[END_REF] and train without needing a massive amount of data. Our paper makes the following contributions:

• We propose the modeling of reciprocal adaptation and show how the endowment of such capability can make SIAs behave more social and engaged as both speaker and listener; • Our results show that ASAP out-performs state-of-the-art models quantitatively and qualitatively notably for interaction synchrony and engagement.

The rest of the paper is structured as the following: Section 2 presents state-of-the-art of related techniques for continuous nonverbal behavior prediction and evaluation measures; Section 3 introduces the database and feature extraction; Section 4 details the implementation of our ASAP model; Section 5 provides objective and subjective evaluation results; Section 6 summarizes our findings; and Section 7 discusses the practical and social implications of our work of endowing SIAs with reciprocal adaptation capability.

RELATED WORK

Related works that are key to our interest of generating social and engaging nonverbal behaviors of SIAs and methods of evaluating these behaviors within interactions quantitatively are outlined in this section.

Sequence prediction techniques

Generating nonverbal behaviors can be considered as a similar problem as forecasting future non-linguistic action sequences. It is thus interesting to investigate existing sequence prediction techniques that could be applicable to nonverbal behaviors. The methods of sequence prediction can be broadly split into two: offline and online prediction. Offline prediction predicts by giving a sequence data all at once while online prediction refers to the inference method in which data is predicted sequentially one after another.

Offline prediction.

Offline prediction infers with the whole input data given from the start. The prediction is done in chunks and is done independently without considering the previously outputted prediction. Its application can be easily seen for sequence to sequence predictions. Models for such predictions generally have the structure of an autoencoder which consists of an encoder that encodes the inputted sequence and a decoder that predicts the resulting sequence by decoding the output of the encoder. Sequence to sequence prediction models produce good results for machine translation [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF] and speech recognition [START_REF] Li | Multidialect speech recognition with a single sequence-to-sequence model[END_REF]. The representative models that can be seen in the literature are Bidirectional Long Short-Term Memory (BLSTM) [START_REF] Graves | Framewise phoneme classification with bidirectional LSTM and other neural network architectures[END_REF], Conditional Variational Autoencoder(CVAE) [START_REF] Greenwood | Predicting head pose from speech with a conditional variational autoencoder[END_REF][START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF], Generative Adversarial Network (GAN) [START_REF] Ferstl | Multi-objective adversarial gesture generation[END_REF][START_REF] Goodfellow | Generative Adversarial Nets[END_REF], normalizing flow [START_REF] Henter | Moglow: Probabilistic and controllable motion synthesis using normalising flows[END_REF][START_REF] Papamakarios | Normalizing flows for probabilistic modeling and inference[END_REF], and Transformers [START_REF] Bhattacharya | Text2Gestures: A Transformer-Based Network for Generating Emotive Body Gestures for Virtual Agents** This work has been supported in part by ARO Grants W911NF1910069 and W911NF1910315, and Intel[END_REF][START_REF] Fares | Transformer Network for Semantically-Aware and Speech-Driven Upper-Face Generation[END_REF][START_REF] Vaswani | Attention is all you need[END_REF].

2.1.2 Online prediction. Unlike offline prediction, online prediction renders the output in a sequential manner predicting for each time-step separately. Among the appliance domains of online prediction, the most representative one is the time series forecasting. Time series forecasting has a wide range of applications such as weather forecasting [START_REF] Kumar | A time series ann approach for weather forecasting[END_REF][START_REF] Wan | Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting[END_REF], traffic flow forecasting [START_REF] Lippi | Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning[END_REF][START_REF] Tian | Predicting short-term traffic flow by long shortterm memory recurrent neural network[END_REF], and stock market prediction [START_REF] Kim | Financial time series forecasting using support vector machines[END_REF][START_REF] Tsantekidis | Forecasting stock prices from the limit order book using convolutional neural networks[END_REF]. Various models based on online prediction can be seen in the literature such as Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Convolutional Neural Network (CNN), and Temporal Convolutional Network (TCN) [START_REF] Mohammadi | Small-scale building load forecast based on hybrid forecast engine[END_REF][START_REF] Palmer | Designing an artificial neural network for forecasting tourism time series[END_REF][START_REF] Tian | Predicting short-term traffic flow by long shortterm memory recurrent neural network[END_REF][START_REF] Tsantekidis | Forecasting stock prices from the limit order book using convolutional neural networks[END_REF][START_REF] Wan | Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting[END_REF][START_REF] Woo | Creating an interactive human/agent loop using multimodal recurrent neural networks[END_REF]. Online prediction can be separated into two types which are sliding window prediction and adaptive online prediction. For sliding window prediction, predictions are made for each time-step in an independent manner with a pre-trained weight without considering its previous output data. Adaptive online prediction also predicts sequentially for every time-step but its predictor's weights are updated for each prediction step. As the prediction of the next step is made based on the previous time stamped data, continuous values are rendered.

For cases where online prediction is applied, such as the time series forecasting, the data is often not available to make the future prediction. To resolve such problem, observations from previous time-steps can be used as input to a regression equation to predict the value at the next time-step. Such technique that predicts by feeding the output back to the model is called to be autoregressive. Both online prediction techniques of sliding window prediction and adaptive online prediction can be autoregressive. The generation of nonverbal signals is time-dependent like time series problems. As previous SIA behaviors, which are needed to produce its next behavior, are unavailable as in time series forecasting, the aspect of predicting based on the previous time stamped data in an autoregressive manner can be useful for our case. The memory retention present within recurrent networks such as RNN, LSTM and TCN, has shown great promise in time series forecasting.

As human behaviors heavily depend on previously performed ones, this aspect of memory is also important for our situation. Moreover, as behavior must be continuous, it is preferable to employ the adaptive online prediction.

Nonverbal behavior generation models

The For our study, we focus on dyadic interactions which leads us to concentrate on modeling the temporal relationship between participants during an interaction. We will look into the literature that considers both interpersonal and intrapersonal temporalities using multimodal signals (only for dyadic interaction). The modeling of nonverbal behaviors for dyadic interactions started off with rule-based systems such as manually designed rules that were used for predicting backchannels [START_REF] Truong | A rule-based backchannel prediction model using pitch and pause information[END_REF], decision trees for chatbot systems generating natural responses and their timing [START_REF] Nishimura | A Spoken Dialog System for Chat-Like Conversations Considering Response Timing[END_REF], and multimodal probabilistic models that predict backchannels via multimodal signals [START_REF] Morency | A probabilistic multimodal approach for predicting listener backchannels[END_REF]. The generation of nonverbal behavior such as facial expression, head and body motion started to flourish with the rise of DL models. As far as we are aware, Feng et al. [START_REF] Feng | Learn2Smile: Learning non-verbal interaction through observation[END_REF] were the pioneers to consider the relationship between a human user and a SIA. They generate the agent's facial gestures using the agent's and human's previously predicted facial gestures by creating a Feed-Forward Neural Network (FFN) model. They solely use visual features (facial landmarks) and do not make use of the multimodal information present in the interaction. Also, it is exposed to the problem of outputting discontinuous predictions between two time-steps. Grafsgaard et al. [START_REF] Grafsgaard | Generative multimodal models of nonverbal synchrony in close relationships[END_REF] learn by encoding the multimodal signals (facial expression, body motion, and speech) using a Long Short-Term Memory (LSTM) model to predict the facial expression and motion of a partner with the speech of both partners and their facial expression and motion features. The interpersonal relationship is modeled by encoding both partners' behaviors; the multimodality is considered but their behavior predictions risk to be not fluid. Dermouche et al. [START_REF] Dermouche | Generative model of agent's behaviors in human-agent interaction[END_REF] also study the interpersonal relationship by referring it as the interactive loop to generate the agent's behavior. They additionally modelize the temporality of nonverbal signals by introducing their Interactive Loop LSTM (IL-LSTM) that considers both agent's and user's upper face behaviors to model the agent's nonverbal behaviors. Similarly, to the model in [START_REF] Feng | Learn2Smile: Learning non-verbal interaction through observation[END_REF], the IL-LSTM has the same issue of only taking unimodal input features (facial gestures) and as it generates using the sliding window prediction it produce jerky movements. Woo et al. [START_REF] Woo | Creating an interactive human/agent loop using multimodal recurrent neural networks[END_REF] address the problem of discontinuous motion prediction of the IL-LSTM in [START_REF] Dermouche | Generative model of agent's behaviors in human-agent interaction[END_REF] by proposing the use of online LSTM (an adaptive online prediction) which continuously updates memory cells during the whole interaction and leverage multimodal information of visual and acoustic features.

For motion generation, several works use generative models such as Generative Adversarial Network (GAN) [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] and normalizing flow-based models to generate motions that are more diverse and realistic. An extended system of MoGlow [START_REF] Henter | Moglow: Probabilistic and controllable motion synthesis using normalising flows[END_REF] is used by Jonell et al. [START_REF] Jonell | Let's face it: Probabilistic multi-modal interlocutor-aware generation of facial gestures in dyadic settings[END_REF] to predict the agent's facial expression based on the audio of both partners and the facial expression of the human by encoding all modalities using a RNN and passing their concatenation to a neural network at each time-step of the flow. Tuyen et al. [START_REF] Tan | Understanding Social Behavior in Dyadic and Small Group Interactions[END_REF] forecast the upper body motion (face, body, and hand landmarks) with a context aware model that consists of three components of context encoder, generator, and discriminator. The context encoder encodes the interacting partner's nonverbal behaviors (body motion and audio) and passes the encoded contextual information to the generator along with the target person's body motion. Then the actions outputted by the generator is injected into the discriminator with the contextual information to validate the motion. The two generative models employed in [START_REF] Jonell | Let's face it: Probabilistic multi-modal interlocutor-aware generation of facial gestures in dyadic settings[END_REF][START_REF] Tan | Understanding Social Behavior in Dyadic and Small Group Interactions[END_REF] create various possible behaviors by modeling the two facades of interpersonal temporality and multimodality. Nevertheless, they face the same problem of not establishing a continuous link between two sequentially but separately predicted outputs. With the emerging trend of the Transformers model [START_REF] Vaswani | Attention is all you need[END_REF], Ng et al. [START_REF] Ng | Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion[END_REF] generate a continuous 3D facial motion of the listener via an autoregressive transformationbased predictor taking the output of the cross-modal attention that combines the speaker's facial motion and audio inputs and that of Vector Quantised Variational AutoEncoder (VQ-VAE) [START_REF] Van Den | Neural discrete representation learning[END_REF] which discretizes the listener's past facial motion. Their architecture allows the modeling of interpersonal temporality and multimodality, and render continuous predictions via the autoregression. One point that could be hindersome about the model is that transformer-like models require massive amount of data to train. Thus, it might not be suitable for all applications that do not have sufficient amount of data.

The aforementioned models show how the relationship between the interlocutors and the multimodal signals can be modeled. For our work, we want to model the reciprocal adaptation by considering the two facets of temporality (both intrapersonal and interpersonal) and multimodality along with the continuity aspect for the generation of our agent's nonverbal behavior. The multimodality modeling is absent in [START_REF] Dermouche | Generative model of agent's behaviors in human-agent interaction[END_REF][START_REF] Feng | Learn2Smile: Learning non-verbal interaction through observation[END_REF] and the continuity is not assured for [START_REF] Dermouche | Generative model of agent's behaviors in human-agent interaction[END_REF][START_REF] Feng | Learn2Smile: Learning non-verbal interaction through observation[END_REF][START_REF] Grafsgaard | Generative multimodal models of nonverbal synchrony in close relationships[END_REF][START_REF] Jonell | Let's face it: Probabilistic multi-modal interlocutor-aware generation of facial gestures in dyadic settings[END_REF][START_REF] Tan | Understanding Social Behavior in Dyadic and Small Group Interactions[END_REF]. While [START_REF] Ng | Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion[END_REF] meets all three of our criteria, it requires a lot of training data. In our case, we have a small database making their model not suitable for our application. We propose a new model structure, in Section 4, that renders continuous nonverbal behaviors (for both speaker and listener) performing with a small dataset. It also learns to capture interpersonal relationship between the interlocutors from the exchanged multimodal signals to endow SIAs with the reciprocal adaptation capability.

Objective evaluation measures

The evaluation of SIA's non-verbal behavior sequences is a difficult and ill-posed problem: depending on the person, the time of day, our mood, we communicate and react differently to our interlocutor. For example, we may or may not respond to a nonverbal signal (e.g. smile), with more or less intensity and more or less latency.

In the same way, head movements are important in maintaining engagement but they do not obey to strict and precise laws, and a multitude of movements are possible in response to an interlocutor. However, not all occurring movements are perceived as social, convincing, informative or even carrying meaningful information. This is what we want to learn during sequence generation: to generate multimodal behavior sequences that convey the intended intention (e.g. maintaining engagement) and is perceived as such by the human interlocutors.

But how do we evaluate the quality of the generative behaviors models? There is no unanimous answer to this question today. We present here some quantitative measures used in the literature and propose other ones more adapted to our problem. While there is a large literature on subjective measures (see Fitrianie and colleagues' work [START_REF] Fitrianie | Questionnaire Items for Evaluating Artificial Social Agents-Expert Generated, Content Validated and Reliability Analysed[END_REF][START_REF] Fitrianie | The 19 unifying questionnaire constructs of artificial social agents: An iva community analysis[END_REF]), we focus on objective evaluation measures in this section.

Behaviors can be interpreted as temporal sequences as their values change in time such as the position in the relative or absolute place for head and body motion or the intensity for Action Units (AUs) [START_REF] Ekman | Measuring facial movement[END_REF], which are fundamental actions of facial muscle movements. Thus, we look at sequence comparison measures to evaluate the behaviors in term of accuracy and quality. One way to assess the accurateness of a generated behavior sequence is to compare its values against the ground truth sequence at each time-step (under the condition that they have the same length). This kind of measure is also often used as a loss function during neural networks learning. Among these measures, we can cite the Mean Squared Error (MSE) [START_REF] Ding | Head motion synthesis from speech using deep neural networks[END_REF][START_REF] Sadoughi | Novel realizations of speech-driven head movements with generative adversarial networks[END_REF], the Root Mean Squared Error (RMSE) [START_REF] Dermouche | Generative model of agent's behaviors in human-agent interaction[END_REF], or the Average Position Error (APE) [START_REF] Ahuja | To react or not to react: End-to-end visual pose forecasting for personalized avatar during dyadic conversations[END_REF][START_REF] Ahuja | Language2pose: Natural language grounded pose forecasting[END_REF][START_REF] Hasegawa | Evaluation of speech-to-gesture generation using bi-directional LSTM network[END_REF].

Similarly, other authors focus on correlation [START_REF] Ding | Head motion synthesis from speech using deep neural networks[END_REF][START_REF] Grafsgaard | Generative multimodal models of nonverbal synchrony in close relationships[END_REF][START_REF] Sadoughi | Novel realizations of speech-driven head movements with generative adversarial networks[END_REF]. These measures allow us to define loss functions for neural network learning by presenting examples of ground truth sequences. However, they cannot be used to evaluate objectively a multimodal sequence generation model for the reasons mentioned above: there is not a fixed behavior (the ground truth) for a given situation and there are multiple plausible answers. In addition, the occurrence timing of a particular behavior can be temporally shifted by a few seconds (for example the behavioral mimicry generally occurs after 2 to 4 seconds [START_REF] Leander | You give me the chills: Embodied reactions to inappropriate amounts of behavioral mimicry[END_REF]) and still be perceived as synchronized [START_REF] Tanya | The chameleon effect: the perceptionbehavior link and social interaction[END_REF]. A lot of solutions are used to estimate the quality of sequences generated using Generative Adversarial Network (GAN). They are often based on the principle that several sequences are generated for the same testing example. A solution [START_REF] Jonell | Let's face it: Probabilistic multi-modal interlocutor-aware generation of facial gestures in dyadic settings[END_REF][START_REF] Mao | Generating Smooth Pose Sequences for Diverse Human Motion Prediction[END_REF][START_REF] Sadoughi | Novel realizations of speech-driven head movements with generative adversarial networks[END_REF] consists to estimate the distribution over generated sequences and then, to calculate the log-likelihood of the ground truth sequence. Another solution is to measure the smallest distance between the generated sequences and the ground truth one, and average these distances along the testing sequences. Aliakbarian et al. [START_REF] Sadegh Aliakbarian | Contextually plausible and diverse 3d human motion prediction[END_REF] estimate the diversity of the generated sequences as the average distance between all pairs of generated sequences. At the same time, they measure the quality using a binary classifier that discriminates between real and generated sequences. Other authors use statistical measures of Inception Score (ID) or Frechet Inception Distance (FID) to measure the generation fidelity of the human motion [START_REF] Sadegh Aliakbarian | A stochastic conditioning scheme for diverse human motion prediction[END_REF][START_REF] Cai | A unified 3d human motion synthesis model via conditional variational auto-encoder[END_REF].

All the previous measures assume that several sequences are generated for a same test sequence or that we can estimate the distribution of real sequences. The reciprocal adaptation leads us to a very specific case where the previous measures cannot be applied.

More importantly, a lot of temporal dependencies exist between both partners and these phenomena are not observed using the previous measures. Thus, we are also interested in the interpersonal relationship and how to measure it. While conversing, the speech and movement of the interlocutors are dynamically coordinated (i.e. interpersonal synchrony). However, the detection of such coordination is not so simple as in a real conversation the signals do not happen simultaneously as they result from an exchange. Each interlocutor can send or respond to a signal with a certain time delay (after a perception time [START_REF] Tanya | The chameleon effect: the perceptionbehavior link and social interaction[END_REF]). For example, when a person smiles, the interacting person can respond to this smile or not. This response is be perceived as a mimic of the first smile if it happens within a time delay of 2 to 4 seconds [START_REF] Leander | You give me the chills: Embodied reactions to inappropriate amounts of behavioral mimicry[END_REF]. Thus, we need to take into account time shifts. The mimicking behaviors can also differ in terms of duration and intensity. This implies that the sequence comparison also needs to be invariant to dilations when comparing the signals. A well-known technique that deals with such aspects is the Dynamic Time Warping (DTW) [START_REF] Müller | Dynamic time warping[END_REF].

The similarity between two temporal sequences of different speed and length can be measured.

Various efforts have been done to quantify the quality of nonverbal behaviors. Nevertheless, there is not yet a perfect metric to evaluate them. Especially several aspects of behavior quality such as naturalness and human-likeness might be trivial for a human, but still very hard to access for a machine [START_REF] Fitrianie | Questionnaire Items for Evaluating Artificial Social Agents-Expert Generated, Content Validated and Reliability Analysed[END_REF][START_REF] Fitrianie | The 19 unifying questionnaire constructs of artificial social agents: An iva community analysis[END_REF]. Thus, human evaluation remains as a critical part of behavior evaluation [START_REF] Simon Alexanderson | Style-Controllable Speech-Driven Gesture Synthesis Using Normalising Flows[END_REF][START_REF] Cai | A unified 3d human motion synthesis model via conditional variational auto-encoder[END_REF][START_REF] Chu | A Face-to-Face Neural Conversation Model[END_REF][START_REF] Feng | Learn2Smile: Learning non-verbal interaction through observation[END_REF][START_REF] Fitrianie | The 19 unifying questionnaire constructs of artificial social agents: An iva community analysis[END_REF][START_REF] Jonell | Let's face it: Probabilistic multi-modal interlocutor-aware generation of facial gestures in dyadic settings[END_REF][START_REF] Karras | Audio-driven facial animation by joint end-to-end learning of pose and emotion[END_REF][START_REF] Sadoughi | Novel realizations of speech-driven head movements with generative adversarial networks[END_REF][START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF].

DATABASE AND FEATURE EXTRACTION

We chose to use the NoXi database [START_REF] Cafaro | The NoXi database: multimodal recordings of mediated novice-expert interactions[END_REF], which is a corpus of screenmediated face-to-face interactions containing human-human conversations around a common topic. The database is made up of 3 parts depending on the recording location (France, Germany, and UK). We focus on the recording from the French location that includes 21 dyadic interactions performed by 28 participants with a total duration of 7h22. We obtain nonverbal behavior features for both interacting participants through feature extraction. For each time-step, the visual features of eye movements (around the x and y axes), head rotations (around the x, y, and z axes), 6 upper face Action Units (AUs) [START_REF] Ekman | Measuring facial movement[END_REF] (which are AU1, AU2, AU4, AU5, AU6, and AU7) along with that of the smile (AU12) are extracted via the opensource toolkit Open-Face [START_REF] Baltrušaitis | Openface: an open source facial behavior analysis toolkit[END_REF]. The audio features are also obtained for each time-step, after a denoising phase, using the opensource toolkit openSMILE [START_REF] Eyben | Opensmile: the munich versatile and fast open-source audio feature extractor[END_REF]. We consider the following acoustic features: fundamental frequency, loudness, voicing probability, and 13 Mel-frequency cepstral coefficients (MFCCs) [START_REF] Logan | Mel frequency cepstral coefficients for music modeling[END_REF]. To clean up the data, we apply a median filter and a linear interpolation on all extracted features. All features are adjusted to 25𝑓 𝑝𝑠.

MODELS

We hold interest in generating social and engaging nonverbal behavior of a SIA (be a speaker or a listener) when interacting with its human interlocutor. In particular, we aim to model the reciprocal adaptation, by capturing the behavior coordination of both interactants, notably the interpersonal relationship. We propose a new architecture that models the reciprocal adaptation which is our Augmented Self-Attention Pruning (ASAP) model 1 , as illustrated in Figure 1. It takes 100 previous frames (𝑡 -99 : 𝑡) for both human and agent to predict the agent behavior of the next frame (𝑡 + 1). ASAP consists of three key techniques: data augmentation technique, self-attention pruning, and autoregressive adaptive online prediction.

Data augmentation

Since our database is not that large, we make use of a data augmentation technique. To learn the reciprocal adaptation we need accurate data of both participants. Which leads us to propose a data augmentation technique which learns from both interlocutors in an equal manner, instead of using classical data augmentation techniques, such as adding noise or dropouts. That is, we learn from the characteristics of both interacting partners. For each batch of the training phase, we assign randomly the interlocutor identity that will be played by the agent to one of the interlocutors. We learn to predict the behaviors for this interlocutor. Then, we follow by alternating and assigning the interlocutor identity for the agent to the other interlocutor and continue the learning process. For a better understanding, we refer to each interacting person of a dyad as 𝑃𝐴 for person A and 𝑃𝐵 for person B. There are two possible choices of giving the agent the interlocutor identity of either 𝑃𝐴 or 𝑃𝐵. During each batch, the interlocutor identity of the agent is reassigned randomly (to either maintain the same identity of the previous batch or to switch identities from 𝑃𝐴 to 𝑃𝐵 or 𝑃𝐵 to 𝑃𝐴). The agent learns to generate the behavior of the corresponding interlocutor identity. The data augmentation simulates the interlocutors' behaviors without separating whether it's those of a speaker or a listener. It only takes into account the interlocutor identity (either 𝑃𝐴 or 𝑃𝐵). By doing so, the model learns to predict equally the behaviors of both participants and focuses on modeling the interaction between the two rather than the specific characteristics of a single person.

Self-Attention Pruning

To better model the reciprocal adaptation, we want to capture interpersonal relationship (of interpersonal behavior coherence and synchrony) and multimodality from key features. The selection of relevant features is done via an attention mechanism. A selfattention, using the multi-head attention of the Transformers [START_REF] Vaswani | Attention is all you need[END_REF], is performed using all the features (2 eyes movements, 3 head rotations, smile (AU12), and 6 upper face AUs) of all interlocutors and (visual and acoustic) modalities. The self-attention layer captures key information to model which behaviors should occur along with mimicry and synchronization mechanisms all at once. However, most attention heads within the multi-head attention (MHA) contain redundant information [START_REF] Michel | Are sixteen heads really better than one? Advances in neural information processing systems[END_REF][START_REF] Voita | Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned[END_REF] which lead the model to overfit. Michel et al. [START_REF] Michel | Are sixteen heads really better than one? Advances in neural information processing systems[END_REF] and Voita et al. [START_REF] Voita | Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned[END_REF] demonstrate the overfitting problem caused by redundant attention heads can be solved by applying pruning (i.e. pruning removes redundant heads). Our aim is to modelize the reciprocal adaptation, by retrieving key information via pruning. Pruning allows us to drop repetitive heads only rendering attention to dissimilar heads encoded with unique information and it also increases the inference speed. The pruning 1 The code is available here: https://github.com/jieywoo/ASAP.

of attention heads is similar to structured pruning where neurons are pruned. An example of structured pruning is given in Figure 2. Instead of pruning the neurons, we prune the attention heads. Our technique differs from the conventional pruning technique which prunes a given percentage of less significant neurons or connections (for unstructured pruning). Once the model is trained, the same neurons/connections are pruned out disregarding the input. For our pruning technique, we learn to choose which head(s) are meaningful for each specific frame via a pruning mask. For each input sequence, a custom pruning mask is applied. To detail, as seen in Figure 1, the input sequence that consists of 𝑇 = 100 frames from 𝑡 -𝑇 + 1 to 𝑡 are passed through the MHA (with the depth of 𝑑 and 𝑁 attention heads). A custom pruning mask is learned to minimize the loss of the network for each input sequence to prune the attention heads (each with the dimension of 𝑑 ×𝑇 where 𝑑 is the depth). The custom pruning mask selects to learn from a certain number of attention heads 𝑁 ′ out of 𝑁 heads. In this way, the pruned attention heads vary for each prediction. For each head, the significance factor is obtained by applying a sigmoid function 𝜎 (𝑥) = 1 1+𝑒 -𝑥 elementwise and then binarized (by rounding) within the pruning mask. To detail, the pruning mask is a vector of dimension 𝑁 where each element corresponds to the significance factor of each 𝑁 MHA heads which is obtained via the sigmoid function. The significance factor is binarized for each element to only leave significant heads as 1 and the rest as 0. Non-significant heads are removed after applying the pruning mask to the attention heads outputted by the MHA. Then, the information of the key heads are grouped together (dimension reduced from 𝑁 × 𝑑 × 𝑇 to 𝑁 ′ × 𝑑 × 𝑇 ) and then the essential information among the information of the key heads are obtained via a fully connected layer (the self-attention pruning module rendering the final dimension of 𝑑 × 𝑇 ). With our pruning technique, we can assure that our model accesses only unique and relevant information for each prediction.

Autoregressive adaptive online prediction

We want to generate continuous SIA behaviors which is assured by applying the adaptive online prediction. During the whole course of the interaction the model updates its memory in a continuous way as in [START_REF] Yang | Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory[END_REF]. Non-continuous values come from the predictions that are made independently for each input sequence without conserving previous memories (i.e. temporal sliding window). By applying adaptive online prediction during the inference, we circumvent this problem as the past information is kept within the memory cells and used to make new predictions. Also, the prediction is made in an autoregressive fashion by feeding back the predicted values of previous time-steps as input for the prediction at the next time-step.

EVALUATIONS

Our goal is to evaluate if ASAP captures the reciprocal adaptation between participants, that is the interpersonal relationship encoded with multimodal signals. Also, we check the quality of our generated SIA behavior with both roles as listener and speaker. We compare the performance of ASAP to that of two recent state-of-the-art models, which are the works of Dermouche et al. [START_REF] Dermouche | Generative model of agent's behaviors in human-agent interaction[END_REF] and Woo et al. [START_REF] Woo | Creating an interactive human/agent loop using multimodal recurrent neural networks[END_REF], by evaluating their generated nonverbal behaviors both quantitatively and qualitatively. 

Settings

All models are implemented in Tensorflow and trained for 1000 epochs on 2.20GHz Intel Xeon Linux server with NVIDIA GeForce GTX TITAN X and 64GB RAM. They all share the same parameters: batch size of 32 and Adam optimizer with a linear learning rate scheduler (learning rate starting from 0.001, factor 0.2 decay on plateau, and patience 3). For ASAP, after fine-tuning the MHA, four attention heads with the depth of 16 was used and MSE was used as the objective function in the autoregressive stage. The dataset is splitted for training:validation:testing in the ratio of 70:10:20 and ensured that the test set contains pairs of dyads that were never seen in the train and validation sets. To assure that the training and test sets do not include the same person, we have manually excluded participant pairs for the test set.

Objective evaluation

As mentioned above in Section 2, evaluating nonverbal behaviors has always been a challenge. Until now there is no perfect measure that can thoroughly quantify the dynamics of the behaviors. To assess our model, we propose to use several objective measures, one metric for each measuring type (i.e. point to point, statistical, and resemblance).

Applied measures.

As point to point measure, we use the Root Mean Square Error (RMSE), as in the literature [START_REF] Dermouche | Generative model of agent's behaviors in human-agent interaction[END_REF], to evaluate our generated nonverbal behaviors. The Mean Square Error (MSE) or RMSE between training and testing databases is often used as point to point measure. RMSE, which calculates the error of the generated time series sequence ŷ (𝑡) against the real one 𝑦 (𝑡), is defined by:

𝑅𝑀𝑆𝐸 = 1 𝑇 𝑇 ∑︁ 𝑡 =1 ( ŷ (𝑡) -𝑦 (𝑡)) 2 (1)
This measure provides information on the quality of learning. However, it is not always pertinent to compute the exact behaviors that may arise during an interaction, as different reactions (behaviors) of a participant may arise. Indeed, it is difficult to exactly reproduce the same behavior of a person from a database that contains various participants (excluding the targeted person) each possessing a personality and showing different behaviors. We chose to use another measure to further evaluate our model. We are interested to measure if the behaviors generated by our model have similar distributions as in the NoXi database. That is we check if both, predicted behaviors and ground truth have similar number of occurrences.

Taking the smile as an example, during the course of a conversation the smile intensity of a participant varies continuously. In the NoXi database, the intensity distribution of smiles is more concentrated around subtle and low level (with the percentage of 84%). We want to assess the quality of the produced nonverbal behaviors globally not on the sequence level but on the entire interaction. Using the example of smiles, we want to see if smiles are predicted through out the interaction in terms of the distribution of smile intensity level.

For this purpose, we check the probability distribution similarity using statistical measures.

The quality of nonverbal behaviors can be quantified by verifying their probability distribution. The distribution estimation measures of log-likelihood and density comparison [START_REF] Sadegh Aliakbarian | Contextually plausible and diverse 3d human motion prediction[END_REF][START_REF] Jonell | Let's face it: Probabilistic multi-modal interlocutor-aware generation of facial gestures in dyadic settings[END_REF][START_REF] Mao | Generating Smooth Pose Sequences for Diverse Human Motion Prediction[END_REF][START_REF] Sadoughi | Novel realizations of speech-driven head movements with generative adversarial networks[END_REF] evaluate the difference between predicted and ground truth sequences; but as stated above we want to compare the distribution of the interaction as a whole. In general, when measuring the similarity, statistical measures are used. Aforementioned measures of Inception Score (ID) or the Frechet Inception Distance (FID), which are distributionbased metrics used for scoring the generation fidelity, can not be used for our work since they require an external classifier for ID or to compare the distributions of generated and real objects for FID.

As previously presented measures, in Section 2, do not suit our case, we propose the usage of Kolmogorov-Smirnov (KS) two-sample test [START_REF] Frank | The Kolmogorov-Smirnov test for goodness of fit[END_REF]. Its use is new to behavior quality evaluation. The KS test is a statistical measure that estimates the quality in a quantitative manner by measuring the difference in density probability between the ground truth and the generated sequence for each output dimension. The KS test measures the distance between the generated g(x) and real r(x) data distributions (or more precisely the cumulative distributions G(x) and R(x)):

𝑑 = max 𝑥 |𝐺 (𝑥) -𝑅(𝑥)| (2) 
The KS test is applied for each feature feature and the average score is calculated. Point to point metrics and statistical measures for density distribution do not capture the temporal dependencies that exist between partners. To better observe the temporal dependencies between the interlocutors, we employ the Dynamic Time Warping (DTW). DTW measures the similarity between two temporal sequences that may vary in speed and length. DTW, like the RMSE, can be used between P 𝐴&𝑃𝐴, where P 𝐴 is the generated agent's behavior and 𝑃𝐴 is the human ground truth behavior. Instead of having another precision measure, we want to measure whether the reciprocal adaptation is well captured. The presence of reciprocal adaptation (interpersonal temporal dependency) is verified by seeing if the interlocutors show similar behaviors, responding to each other. We check the proximity (resemblance) of the generated agent's behavior and that of the interacting human ( P 𝐴&𝑃𝐵) and the proximity of the behaviors between both humans (𝑃𝐴&𝑃𝐵) to see if the agent behavior shows the same adaptation trends as seen in the ground truth. The DTW distance does not have to be small. Actually, it would be easy to copy the behavior of the human at the previous moment to have a DTW almost zero. This high resemblance between partners can be perceived as an everlasting imitation (like a parrot) and thus may rather hinder the perception of human-like behavior. Thus, DTW between P 𝐴&𝑃𝐵 must be similar to the DTW between 𝑃𝐴&𝑃𝐵 and not necessary small. As our interactions are very long (around 20𝑚𝑖𝑛 for each interaction), we compute the DTW in small chunks of 1𝑚𝑖𝑛 and a stride of 30𝑠. Applying DTW in chunks speeds up the computation. All the chunks cover the whole interaction.

Smile is an key socio-emotional signal that can be observed frequently during an interaction [START_REF] Mark L Knapp | Nonverbal communication in human interaction[END_REF]. Previous studies have demonstrated that smile helps SIAs to better manage their interaction with their human users [START_REF] Ochs | Socially aware virtual characters: The social signal of smiles[END_REF][START_REF] Wang | Examining the use of nonverbal communication in virtual agents[END_REF]. Thus, for DTW distance evaluation of P 𝐴&𝑃𝐵, we focus on the smile.

Results and discussions.

To compare our model with that of the literature, we need to use the same features. As a result, we firstly evaluate our model with the features presented in [START_REF] Dermouche | Generative model of agent's behaviors in human-agent interaction[END_REF] (features set 1) and then with those in [START_REF] Woo | Creating an interactive human/agent loop using multimodal recurrent neural networks[END_REF] (features set 2). The features set are composed as the following:

• Features set 1: only visual features (eyes movement, head rotation, and AU12 intensity and activation) of both interlocutors along with conversational state inputted to predict visual features of the SIA at 5𝑓 𝑝𝑠; • Features set 2: visual and acoustic features (eyes movement, head rotation, upper face AUs and AU12 intensities, fundamental frequency, loudness, voicing probability, and 13 MFCCs) of both interlocutors to predict the visual features (including upper face AUs) of the SIA at 25𝑓 𝑝𝑠.

Concerning the evaluation of the eyes movement, we evaluate the value of the eyes angles like we do for the head rotation. However, we cannot assess if the predicted eyes movement correspond to looking at the same target (e.g. its interlocutor) as in the ground truth as this information is not available in the NoXi dataset (both cameras recording the two interlocutors are not calibrated).

Methods

RMSE KS test

Features set 1 All models were trained and their behaviors were generated for each features sets. We conduct an objective evaluation for the two sets of features. The performance of ASAP is compared with the baseline models for each features set using the proposed objective evaluation measures. In Table 1, the three models of each features set are evaluated quantitatively by computing the RMSE and performing the KS two-sample test. The KS test was used as it statistically measures the probability distribution similarity between our predictions and ground truth (real interaction). The average score of the output features is calculated (average of 6 output features scores (2 eyes angles, 3 head rotations, and AU12 intensity) for features set 1 and that of 12 output features scores (2 eyes angles, 3 head rotations, and the intensities of 6 upper face AUs and AU12) for features set 2). From both features set 1 and 2, we can observe that the RMSE and the KS test scores have better values for ASAP than the baseline models.

The DTW between 𝑃𝐴&𝑃𝐵 represents distance (resemblance) between the signals of the two human participants' interlocutor identities of 𝑃𝐴 and 𝑃𝐵. The DTW distance is interpreted as the closer the distance gets, the more the two signals of 𝑃𝐴 and 𝑃𝐵 are similar. We check if the models' DTW distance P 𝐴&𝑃𝐵 is close to that of the ground truth interaction (human-human interaction) 𝑃𝐴&𝑃𝐵. As stated above, smile is a key social signal that is apparent to improve SIA's interaction which leads us to focus on smile. We can see, in Table 2, that for smile of features set 1, our ASAP performs better than the baseline models in terms of having the DTW distance the closest to the ground truth DTW (26.9, 21.7 respectively). The same conclusion can be drawn for features set 2 (1399.3, 1317.5 respectively). Note that the small value of obtained with Woo et al. model can be interpreted as a close imitation of the behavior of its interlocutor that may deter the perception of the behavior to be human-like. Therefore, we can conclude that our ASAP model outperforms the baseline models for the three objective evaluation methods, that is RMSE, KS test, and resemblance via DTW distance between 𝑃𝐴&𝑃𝐵.

Subjective evaluation

Relying only on objective evaluations is not enough to fully assess the quality of the generated agent's behavior. We perform a user perceptive study to complement the objective evaluation where we look more particularly on how the generated multimodal signals and the modeling of the reciprocal adaptation (interpersonal relationship) by our model influence: behaviors' naturalness and human-likeliness; 2) the perception of the interpersonal dynamics such as the synchrony between the interlocutors and the perception of their engagement. To evaluate these aspects of human-agent interaction, we ask the participants to score the interacting SIA along 4 measurement constructs: behavior naturalness, behavior human-likeliness, interaction synchrony, and engagement. Questionnaires to evaluate the perception of behavior naturalness (e.g. "Is the behavior of the virtual character artificial?"), behavior human-likeliness ("Does the virtual character behave like a human?"), and engagement ("Is the virtual character engaged in the conversation?") are formulated based on existing questionnaires of human-agent interaction evaluation [START_REF] Fitrianie | The 19 unifying questionnaire constructs of artificial social agents: An iva community analysis[END_REF][START_REF] Der Pütten | It doesn't matter what you are!" explaining social effects of agents and avatars[END_REF]. We use a set of three synonyms and antonyms for each dimension. To evaluate the perception of synchrony, we use the dyadic stances of mutual understanding, attention, agreement, interest, and pleasantness (e.g. "Are the human and the virtual character agreeing to each other?") proposed by [START_REF] Max M Louwerse | Behavior matching in multimodal communication is synchronized[END_REF][START_REF] Prepin | Beyond backchannels: co-construction of dyadic stancce by reciprocal reinforcement of smiles between virtual agents[END_REF]. A set of 14 questions (3 for each construct of behavior naturalness, behavior human-likeliness, and engagement, and 5 for interaction synchrony) are used. The users are asked to answer to each question using a Likert scale of 5 points (ranging from 1 (strongly disagree), 2 (disagree), 3 (neutral), 4 (agree), to 5 (strongly agree)).

Hypothesis.

In human-human interaction, behaviors are interpersonally coordinated [START_REF] Richard | Dynamics of interpersonal coordination[END_REF], which is also referred to as interpersonal synchrony [START_REF] Delaherche | Interpersonal synchrony: A survey of evaluation methods across disciplines[END_REF]. It is also shown that being in sync improves the engagement level [START_REF] Delaherche | Interpersonal synchrony: A survey of evaluation methods across disciplines[END_REF][START_REF] Gupta | Blink as you sync: Uncovering eye and nod synchrony in conversation using wearable sensing[END_REF]. Thus, we hypothesize that our ASAP model improves interpersonal dynamics (synchrony and engagement) of the generated agent behaviors as well as its quality (naturalness and human-likeliness) compared to the baseline models. The perceptive study enables us to validate the hypothesis that our model generates a more interactive and adaptive SIA for dyadic conversations.

5.3.2

Procedure. The evaluation is done via Prolific, an online crowd-sourcing platform. 20 video clips of an approximate duration of 7 seconds are extracted from the human-human videos of NoXi. In each video clip a human participant has the speaking turn (talking about a common subject) or is the listener (expressing nonverbal behaviors with visual and acoustic feedbacks which include backchannels such as "ok" and "yes") and the other human participant is either, respectively, listener or speaker. For our study, we compare four conditions (the three models which are: ASAP and our two baseline models of Dermouche et al. and Woo et al.) with the features set 2 and the ground truth). To evaluate the quality of these conditions, we replace one of the human participant (being the speaker in 10 video clips and listener in the other 10 video clips) by a SIA whose behavior is driven by the computational models or the ground truth. The SIA was animated using the open source Greta SIA platform [START_REF] Niewiadomski | Greta: an interactive expressive ECA system[END_REF] by passing visual features (predictions of the computational models or the ground truth) along with the audio of the ground truth. An image of a video is shown in Figure 3 in which it displays a SIA (left side of the screen) and a human participant (right side of the screen). The lower face was blurred so that the mouth movements won't hinder the evaluators' perception during the study. Four videos (the agent displaying the behavior of the agent in one of the four conditions) are created for each of the 20 humanhuman video clips of the NoXi database. So, we have a total of 80 videos where the SIA replaces one of the human interlocutors (see Figure 3). The behaviors of ground truth condition is also shown by replacing the selected human with the SIA. We use the same setting when comparing videos of the ground truth with videos of the computational models. As such we eliminate any impact a participant may have toward the virtual character [START_REF] Shiban | The appearance effect: Influences of virtual agent features on performance and motivation[END_REF]. Not to make an evaluation that lasts too long which may deteriorate the concentration of the perception study participants and thus hinder the study, we split the perception test into four groups. Each group has 5 human-human interaction video clips to evaluate (i.e. each participant evaluates 20 short videos of 7s of human-agent interaction for all four conditions). All the videos are shuffled so that their order does not impact our perception study. For each perception test group, we recruit 30 participants and ask them to evaluate each video (20 videos per group) with the aforementioned set of questions. To filter out inattentive participants, for each video we randomly include attention check questions (e.g. "Is the virtual character playing tennis with the human interlocutor?").

Results and discussions.

The participants' responses are grouped together according to their corresponding construct (behavior naturalness, behavior human-likeliness, synchrony, and engagement) for each condition (ground truth, our two baseline models of Dermouche et al. and Woo et al., and ASAP). We visualize the distribution for each construct, in Figure 4, 5, 6, and 7. One-way ANOVA report significant differences among all animation conditions for all four constructs: behavior naturalness (𝐹 = 41.5, 𝑝 < 0.001), behavior human-likeliness (𝐹 = 43.1, 𝑝 < 0.001), synchrony (𝐹 = 66.9, 𝑝 < 0.001), and engagement (𝐹 = 90.0, 𝑝 < 0.001). A post-hoc pairwise comparison analysis is performed by running the Tukey's honestly significantly differenced (HSD) test. Tukey's HSD reveal the following. Statistical significant differences were found between all pairs (𝑝 < 0.001) except between Woo et al. [START_REF] Woo | Creating an interactive human/agent loop using multimodal recurrent neural networks[END_REF] and ASAP for the constructs of behavior naturalness and human-likeliness (𝑝 = 0.9 and 𝑝 = 0.9 respectively). Concerning the constructs of synchrony and engagement, all pairs were reported to be significantly different (𝑝 < 0.003). A two-tailed t-test was performed between all possible pairs of compared animations for each construct to test the statistical significance. The t-test p-values reported significant differences between all pairs (𝑝 < 0.001) except between Woo et al. [START_REF] Woo | Creating an interactive human/agent loop using multimodal recurrent neural networks[END_REF] and ASAP for the constructs of behavior naturalness and human-likeliness (𝑝 = 0.7 and 𝑝 = 0.5 respectively). T-test yields significant differences among all conditions for synchrony and engagement constructs. We also want to evaluate if our ASAP model can produce behaviors for SIA being both a listener and a speaker. We check the quality of the generated agent behavior of ASAP along the four constructs by comparing the produced behaviors as a listener and a speaker, as shown in Figure 8, 9, 10, and 11. For the SIA being either a listener or a speaker or both combined, one-way ANOVA reported significant differences for the construct of synchrony (𝑝 = 0.02) but no significance for the other three constructs of behavior naturalness, behavior human-likeliness, and engagement. Tukey's HSD on synchrony revealed significant difference between listener and speaker (𝑝 = 0.01). A two-tailed t-test was performed and showed significant differences between listener and speaker for the constructs of synchrony (𝑝 = 0.005) and engagement (𝑝 = 0.02) as indicated on the construct distribution figures (Figures 10 and11). We can remark that ASAP generates both listener (2.5, 2.3, 3.0, 3.3 respectively) and speaker (2.7, 2.7, 3.2, 3.3 respectively) behaviors with similar qualities which indicates that ASAP can be used to generate SIA behaviors for an entire interaction.

Our subjective evaluation results are inline with the results of the objective evaluation. Our ASAP model performs better than that of the baseline models of Dermouche et al. and Woo et al.. Thus, ASAP outmatches the baselines, notably in terms of synchrony and engagement, and is the most similar to the ground truth both quantitatively and qualitatively. Moreover, ASAP can serve to produce SIA behavior for both speaker and listener.

CONCLUSION

Having the goal to create an expressive SIA capable of interacting with the user while maintaining his/her attention, we develop a predictive model that produces the agent's nonverbal behaviors serving as both active speaker and listener. We modelize the reciprocal adaptation of our ASAP model by focusing on the aspects of interpersonal temporality, multimodality by encoding multimodal signals, and behavior prediction continuity with the autoregressive adaptive online prediction. Our model outperforms the baseline models through both objective and subjective evaluations. ASAP shows great promise in rendering natural and human-like behaviors that are engaging and in sync with the interlocutor. As for our next step, we aim to better modelize the reciprocal adaptation between the two interlocutors by modeling each interacting partner's intrapersonal temporality along the multimodality aspect and also capturing their interpersonal temporality to generate behaviors that are livelier. In a near future, we intend to assess the performance of the SIA with reciprocal adaptation capability through live human-agent interaction. Another direction of research is to study the aspect of explicability of the reciprocal adaptation to see how the dynamics of the adaptation play in the behavior generation as the conversation evolves.

PRACTICAL AND SOCIAL IMPLICATIONS

In this paper, we discussed the endowment of reciprocal adaptation capability to SIAs. The endowment of such capacity has shown an increase in the perception of the SIA's naturalness, humanlikeliness, conversational engagement and synchrony. In a more practical point of view, such SIAs may provide better and a wider range of services. By showing adaptation skills, SIAs adapting to its interaction user can enhance the perception of interaction quality, the relation created with its interlocutor, etc. This renders a positive impact on the SIA's task performance (e.g. for a tutoring system, the learning is reinforced [START_REF] Kim | An embodied agent helps anxious students in mathematics learning[END_REF]). SIAs can be used for a variety of applications and improve people's lives by providing assistance and support. However, with the development of intelligent UIs, some people may tend to avoid human-human interaction and rely on them. This shrink of interactions with other humans is not healthy and is not what SIAs were designed for. To avoid such happening, we should always have in mind that SIAs are here to assist us and not to replace human interaction.
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 1 Figure 1: Architecture of ASAP model.
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 2 Figure 2: Example of structured pruning.
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 3 Figure 3: User perception test video clip example of an interaction between a SIA (left) and a human participant (right).
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 4 Figure 4: Distribution of behavior naturalness ( * * * 𝑝 < 0.001).
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 5 Figure 5: Distribution of behavior human-likeliness ( * * * 𝑝 < 0.001).
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 6 Figure 6: Distribution of synchrony ( * * * 𝑝 < 0.001).

Figure 7 :

 7 Figure 7: Distribution of engagement ( * * * 𝑝 < 0.001).

  The t-test p-values are shown on the construct distribution figures (Figures 4, 5, 6, and 7). From the subjective results, the simulation with ground truth values receives the highest values for all four constructs, namely behavior naturalness (3.0), behavior human-likeliness (3.0), synchrony (3.4), and engagement (4.0). Via the constructs of behavior naturalness and human-likeliness, a rise in quality can be noticed between that of Dermouche et al. (2.3, 2.3 respectively) and the other two computational models of Woo et al. (2.7, 2.7 respectively) and our ASAP model (2.7, 2.7 respectively). We assume that this difference is due to the application of adaptive online prediction, instead of sliding window prediction as in Dermouche et al., which enables the generation of continuous motions which may lead to a higher perception of naturalness and human-likeliness. The quality of the generated agent behavior along the constructs of synchrony and engagement increases from the Dermouche et al. (2.6, 2.7 respectively), to Woo et al. (2.8, 3.0 respectively), to ASAP (3.0, 3.3 respectively). We can remark that modeling of reciprocal adaptation allows SIA to be more in sync and engaged with it's interlocutor.
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 8 Figure 8: Distribution of behavior naturalness.
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 9 Figure 9: Distribution of behavior human-likeliness.
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 10 Figure 10: Distribution of synchrony ( * * 𝑝 < 0.01).
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 11 Figure 11: Distribution of engagement ( * 𝑝 < 0.05).

Table 1 :

 1 Average RMSE and KS test results for features set 1 and 2.

		Dermouche et al., 2019 0.172	0.298
		Woo et al., 2021	0.171	0.293
		ASAP	0.131	0.115
		Dermouche et al., 2019 0.444	0.559
	Features set 2	Woo et al., 2021	0.374	0.415
		ASAP	0.239	0.301

Table 2 :

 2 1) the perception of the generated agent DTW of smile for features set 1 and 2.

	Features set	Method	DTW 𝑃𝐴&𝑃𝐵 (Ground truth) DTW P 𝐴&𝑃𝐵
		Dermouche et al., 2019		27.3
	Features set 1	Woo et al., 2021	21.7	27.2
		ASAP		26.9
		Dermouche et al., 2019		1562.7
	Features set 2	Woo et al., 2021	1317.5	257.5
		ASAP		1399.3
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