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Figure 1: MALEFIC model architecture
Modality Attentive Late Embracenet Fusion with Interpretable Modality Contribution (MALEFIC)

Seeing and hearing what has not been said
A multimodal client behavior classifier in Motivational Interviewing with interpretable fusion

Lucie Galland Catherine Pelachaud Florian Pecune
ISIR, Sorbonne University CNRS - ISIR, Sorbonne University Bordeaux University

ABSTRACT Motivational Interviewing (MI) is an approach to therapy that emphasizes collaboration and
encourages behavioral change. To evaluate the quality of an MI conversation, client utterances can be classified
using the MISC code as either change talk, sustain talk, or follow/neutral talk. The proportion of change talk in a
MI conversation is positively correlated with therapy outcomes, making accurate classification of client utterances
essential.
In this paper, we present a classifier that accurately distinguishes between the three MISC classes (change talk,

sustain talk, and follow/neutral talk) leveraging multimodal features such as text, prosody, facial expressivity, and
body expressivity. To train our model, we perform annotations on the publicly available AnnoMI dataset to collect
multimodal information, including text, audio, facial expressivity, and body expressivity. Furthermore, we identify
the most important modalities in the decision-making process, providing valuable insights into the interplay of
different modalities during a MI conversation.

1 INTRODUCTION
Motivational Interviewing (MI) is an approach to therapy that emphasizes collaboration and encourages behavioral
change. During Motivational Interviews, therapists rely on a set of strategies to guide clients toward expressing
motivation toward change [21]. Assessment of the quality of the therapy interaction is classically done by annotating
therapist’s and client’s behaviors. To this intent, various annotations schema have been developed such as the
Motivational Interviewing Skill Code (MISC) [20] that classifies both therapist and client behaviors into three
relevant categories:

• Change talk (CT): reflecting actions toward behavior change
• Sustain talk (ST): reflecting actions away from behavior change
• Follow/Neutral (F/N): unrelated to the target behavior
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This classification of client language is of interest as it is a predictor of the therapy outcome. Indeed, [18] revealed
that sustain-talk was associated with poorer treatment results. Furthermore, [17] showed that change talk was
linked to reductions in risk behavior during follow-up assessments. This correlation makes MISC a promising tool
for studying the efficacy of Motivational Interviewing (MI).
The labeling of client utterances is usually done by training coders to manually encode utterances into these

three categories. However, this process of annotation can be resource-intensive, as it requires trained annotators
to carefully review videos. Furthermore, it can not be done in real-time and can not be used in the context of a
human-agent dialogue for instance. As a result, there has been growing interest in developing automatic annotation
methods for MISC using various modalities and approaches. These efforts aim to streamline the annotation process
and reduce the time and resources required for the analysis.
In this paper, we continue these efforts by presenting a classifier that can distinguish automatically between the

three MISC classes. This classifier is based on multimodal features of face-to-face conversations, including (spoken)
text, prosody, facial expressivity, and body expressivity. Our classifier is designed to be interpretable, meaning that
it is possible to identify the modality that was most important in its decision-making process.
In the remaining of the paper, we first present the data we used to train our MISC classifier, then we present our

modality attentive fusion architecture. We explore the performance of different models and compare our results
with existing work. Finally, we present a way to interpret the results of the classification to shed a light on the
contribution of modalities in the classification process.

2 RELATEDWORK
The correlation between MISC codes and therapy outcomes has motivated several studies to develop their own
classification systems for client language, categorizing it as change talk, sustain talk, or follow neutral. These studies
use various modalities as inputs.
Text-based modalities have been widely investigated in the context of MISC annotation on different temporal

levels. For example, [13] used topic modeling to predict therapy outcomes at the session level, while [14] incorporated
topic angles and session timing (beginning or end) to predict MISC codes at the utterance level. In their work,
an utterance represents a turn by either the client or the therapist. More recent advances have been made using
deep learning-based approaches, such as those presented in [11], which leveraged word-level features, and in [8],
which incorporated additional utterance-level features like Linguistic Inquiry and Word Count (LIWC) for improved
annotation accuracy. In the latter work, utterances were segmented after a pause of at least two seconds. While
these advancements highlight the ongoing exploration of various feature sets and modalities in the automatic
annotation of MISC codes, they also expose a variety of ways to decide the level used for coding as well as the
specification of an utterance.
Text is not the only modality that can convey the nuances of change talk. Several studies have incorporated

prosody or acoustic features to improve MISC classification. For instance, [1] combined acoustic features with
linguistic features to slightly improve the accuracy of change talk detection. Deep learning methods such as Long
Short-TermMemory (LSTM) [25] has also been employed to predict change talk using both text and audio modalities.
In this work, the addition of the audio modality improves the prediction score. More recently, such classification
was performed using Transformers [27]. The use of audio generates a loss in performance that can be explained by
the low quality of the recordings.
In addition to acoustic cues, other social signals such as laughter have been explored. [12] demonstrated that

adding laughter as input improved the accuracy of change talk prediction compared to text alone. Furthermore,
non-verbal cues such as facial Action Units have been utilized as predictors for change talk, as shown in [22] which
resulted in improving the prediction.
While the text remains a commonly studied modality, incorporating prosody, non-verbal, and other multimodal

information alongside text has shown promising potential for improving the accuracy and robustness of MISC
annotation and prediction tasks.
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Although using different modalities can improve classifier performance, one limitation of the above works is that
they rely on at most two modalities at a time. Furthermore, understanding the contribution of each modality to the
decision process remains a challenge. Only [25] addressed this by examining attention weights of the fusion layer,
revealing that prosody information have more influence at the end of utterances.
To overcome these limitations, the main contributions of our work include:

• Developing a MISC classifier using 3 different modalities: text, prosody, and nonverbal behavior
• Developing a classifier that identifies the specific modalities that played a key role in the decision-making
process. This feature enables practitioners to determine why the classifier made a particular decision.

3 DATA
Motivational interviewing data that could be used to train a MISC classifier is difficult to find due to the sensitive
nature of the discussed topics. Most of the existing corpora are either private for medical reasons [3, 5] or owned
privately and payable. Because of this, most studies need to collect a new dataset first and models can not be
compared. For instance, [22] collected their own non public corpus over Zoom and developed a classifier on the
resulting corpus. However, Two corpora of MI conversations have recently been published and are publicly available.
The High Low-quality MI dataset [24] is composed of 249 videos of MI annotations available on YouTube. Some
errors remain in the automatic transcription of the videos and even though MISC annotations have been performed,
they are not currently available. The second public corpus is AnnoMI [29], a corpus of MI conversations transcribed
and annotated with MISC with publicly available annotations. These datasets do not provide multimodal annotations.

3.1 AnnoMI corpus
In our work, we rely on the AnnoMI dataset [29] to train ou MISC classifier. AnnoMI is a publicly available dataset
of MI videos of 7 minutes on average that have been annotated by 133 experts. The videos are designed as a
demonstration of either high or low-quality therapy. Each video is transcribed and each utterance is annotated in
term of primary therapist behavior (question, reflection, therapist input, and others) and client talk type (neutral,
change, sustain) using MISC. In this work, we are interested in the client side of MISC. A client utterance can
be annotated into three categories: Change Talk (CT), Sustain Talk (ST), or Follow/Neutral (F/N). An utterance
classified as CT conveys movement towards the behavior of change while ST conveys a movement away from the
behavior of change. A F/N utterance does not indicate a preference towards or against change. The data is annotated
by MI practitioners into these 3 classes with 0.9 inter-annotators agreement.
From this corpus we use 121 videos: 3 videos were removed because of outdated URLs and 9 were removed for the

poor quality of the video stream. The original transcriptions of the AnnoMI dataset are separated into utterances
where a new utterance starts every time a new interlocutor is speaking, only the timestamp of the start of each of
these utterances is provided.

3.2 Dataset preprocessing
In this paper, we take advantage of the publicly available videos of AnnoMI to train a classifier that predicts client’s
MISC category relying on multimodal behavior. Multimodality gives valuable insights for various tasks such as
sentiment analysis [30]. Moreover [23] shows that visual cues such as facial Action Unit occurrences, head pose,
eye gaze, and body gestures can be a sign of depression. Therefore in this paper, we study multiple modalities such
as (spoken) text, audio (prosody), and facial and body expressivity.

Text. In the original AnnoMI transcriptions, sentences were cut into two utterances whenever a listener’s
backchannel occurred during their production. However, backchannels are not aimed to take the speaking turn.
In our model, backchannels are removed from the original transcript and utterances are reorganized to recreate
sentences corresponding to speaking turns. We updated the MISC coding whenever utterances of the same sentence
received different labels in the original AnnoMI annotation. The only conflicts involved utterances annotated as
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Figure 2: Example of transcript reorganization

neutral and change or as neutral and sustain. The resulting sentence is coded as change, respectively sustain. They
were no change / sustain conflicts. We illustrate our changes in the Fig.2.

Facial expressivity. The facial expressivity is extracted using OpenFace [2]. As the performance of the OpenFace
model is significantly better on videos containing only one face, we produce two new videos from the original ones:
one with the therapist only, and one with the patient only. In most cases, the camera focuses mainly on the person
talking, leaving out of focus the other interlocutor. Yet, speaking makes the detection of mouth-related action units
by OpenFace noisy. Therefore, we extract the action units of the upper face (AU 1 2 4 5 6 7 9 and 45). OpenFace is
also applied to extract gaze angles and head positions and rotations. The action units are smoothed using a median
filter with a kernel of size 5 and missing data are interpolated.

Body expressivity. Body expressivity can convey information on one’s affective state [7]. Two interesting measures
of body expressivity are Amplitude of movement [7] and Quantity of motion [6]. Amplitude is defined as the width
of a movement and Quantity of motion is defined as an approximation of the amount of detected movement.
Raw body joints position data are extracted using OpenPose [4]. From these raw skeleton data of the client and

the therapist, we compute the Amplitude and Quantity of motion for each frame.
The Amplitude is defined as the bounding box around the speaker for a given time frame. It is computed by

dividing the length between the two wrists by the height 𝐻 of the bust in the current framing. Dividing by 𝐻

accounts for the different sizes in framing.
The quantity of motion QoM is computed following a simplified version of the method described in [6]. Given a

silhouette 𝑡 that moves over 𝑛 frames, QoM is defined as: ‘

𝑄𝑜𝑀 = 𝐴𝑟𝑒𝑎(𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 (𝑡 + 𝑛)) −𝐴𝑟𝑒𝑎(𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 (𝑡)) (1)
4
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text and audio visible face visible body
CT 1279 : 0.24% 1059 : 0.26% 483 : 0.23%
F/N 3167 : 0. 60% 2340 : 0.57% 1200 : 0.60%
ST 817 :0.16% 718: 0.17% 353 : 0.17%
Total 5263 : 100% 4117 : 0.78% 2036:0.39%

Table 1: AnnoMI distribution

We define 𝐴𝑟𝑒𝑎(𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 (𝑡)) as the bounding box used for the Amplitude and we set n=10 frames. This simplifi-
cation is chosen as the interlocutors are seated and the motion is mainly focused on the arms. As the bounding box
only takes into account the upper body, the simplification is acceptable.
On both Amplitude and Quantity of motion, missing data are interpolated and a Median filter of size 5 is applied

to reduce detection errors from OpenPose.

3.3 Data distribution
Similar to other MI datasets [22, 27], our corpus is unbalanced: the Follow/Neutral class is significantly more
prevalent than the Change Talk or Sustain Talk classes (see Table 1). However, our data are more balanced than
some previous studies, since we considered speakers’ sentences and removed listeners’ backchannels.
The proportion of each class in the corpus is similar for all modalities, which means that the available modalities

are independent of the classes and therefore will not affect the model.

4 ARCHITECTURE
Our MISC classifier relies on the following architecture: each modality of the client input is first prepossessed
individually by an adapted network. These encoding networks represent each of the modalities as an embedding
vector. The different modalities represented are merged using a modified version of Embracenet [9], a fusion
architecture that allows missing modalities. We modify Embracenet by adding attention to modalities and call this
new architecture MALEFIC (see Section 4.2) The optimal sizes of the models are determined using a grid search.

4.1 Modalities pre processing
Text preprocessing. The text is preprocessed using a frozen Bert pre-trained model from the HuggingFace library

(bert-base-uncased) followed by two linear layers of size 30 interposed with dropout layers, Leaky-Relu activations
and one skip connection. We choose to use a frozen Bert model to avoid overfitting.

Text and context preprocessing. According to the findings of previous works [22, 27], we take into account both
the therapist’s and the client’s behaviors. We take as input the previous turn of the therapist, the previous sentences
that make up the turn of the client, and the actual client sentence to classify. Each of these sentences is processed
sequentially through an un-frozen Bert, and the embeddings obtained from average pooling are concatenated.

Audio preprocessing. The Audio modality is preprocessed using the pre-trained Beats model [? ]. It takes as input
the Mel filter bank of the audio and outputs an embedding of size 758.

Facial expressivity preprocessing. Action Units and head pose values are preprocessed using an encoder composed
of two 2-dimensional convolutional layers with 16 filters and a 1-layer Transformer encoder. The encoding of the
transformer is then combined to compute an embedding for the entire sequence of size 256.

Body expressivity preprocessing. Amplitude and Quantity of motion are preprocessed using an encoder composed
of 2 convolutional layers and a 1 layer transformer encoder. The encoding of the transformer is then combined to
compute an embedding for the entire sequence of size 8.
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4.2 Fusion
The fusion of modalities is achieved using a modified version of Embracenet. This method is useful for handling
missing modalities. First, each preprocessing network’s output is reduced to the size of the final embedding by
a linear layer. Then, Embracenet combines the embeddings by randomly selecting one modality per embedding
dimension. In addition, dropout of modality is used during training to prevent over fitting on modalities. During
training, modality dropout involves randomly removing available modalities.
This approach enables each preprocessing network to efficiently learn the data structure while also taking

advantage of multimodality. Furthermore, it enables us to address missing data in our corpus (namely, the face and
body information that are not available for every sentence). In fact, as a result of this training, any missing modality
can be easily ignored.
We improve the EmbraceNet architecture by incorporating self-attention. Self-attention is used to determine the

significance of a given modality. If a modality is deemed important by the self-attention module, then this modality
will be more likely to be selected (see Fig. 1).
The output of the self-attention layer gives the weight of each modality for each embedding dimension. During

training, the output of the self-attention layer for a given embedding dimension is used as the probability of selecting
each modality. During the evaluation, the selected modality for a given embedding dimension is the modality with
the highest probability. We choose to use probabilistic selection during training to avoid over fitting.
We enhance the Embracenet framework with self-attention, as some of the modalities in our problem contribute

more to the classification. (for instance, the Text modality has a more substantial classification power than the
nonverbal modality, see Tab.2).
The resulting architecture also estimates the usefulness of each modality, which allows for interpretation (see

Section 6)
In the following, we use this architecture that we call : Modality Attentive Late Embracenet Fusion with Inter-

pretable Modality Contribution (MALEFIC), with diffrerent combinations of modalities : Facial and body expressivity;
Text and context; Text, context and audio; Text, context and facial expressivity; and Text, context, audio and facial
expressivity. For Text and context, we previously took the context into account by concatenating the Bert embed-
dings of the surrounding sentences. Here, we take advantage of our fusion architecture and treat the context as
another modality. A self-attention layer will decide whether in this case the client-therapist context is relevant.

5 CLASSIFICATION RESULTS
To explore the performance of our architecture to predict the MISC classes, we train and evaluate different models
using the data described in Section 3. The unbalanced data set is handled using a weighted random sampler. First,
we evaluate the performance of each modality regarding the classification by training different unimodal classifiers.
Then, we investigate whether multimodality improves the performance of our best unimodal model. Finally, we
compare our results to existing multimodal MISC classification models.

5.1 Single modality models
Our first objective is to evaluate which modality allows for the best MISC classification score. To that extent,
we train different models that take as input a single modality. These models are composed of the preprocessing
networks described above, followed by a linear classifier. The results summarized in Table 2 show that the text +
context modality appears to be the most efficient. On the other hand, body expressivity has low prediction power.
Confidence intervals are calculated using the bootstrap method [10]. Training details are provided below.

Text based model. The text preprocessing model is trained for 150 epochs with an AdamW optimizer[16] and a
Cosine Aligned scheduler [15] with a maximum learning rate of 2 ∗ 10−4.

Text and context based model. The text and context preprocessing model is trained for 25 epochs with an AdamW
optimizer [16] and a learning rate of 2 ∗ 10−5.
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modality : Text without context Text + context (linear) Audio Facial expressivity Body expressivity
F1 - CT 0.62[0.56,0.68] 0.72[0.66,0.77] 0.32[0.26,0.39] 0.30 [0.23,0.36] 0.14[0.05,0.22]
F1 - ST 0.63[0.58,0.67] 0.71[0.67,0.75] 0.44[0.39,0.5] 0.36 [0.31,0.42] 0.25[0.17,0.35]
F1 - F/N 0.79[0.77,0.82] 0.85[0.83,0.87] 0.74[0.71,0.76] 0.58 [0.54,0.61] 0.67[0.63,0.72]
F1 - micro 0.73[0.70,0.75] 0.80[0.76,0.82] 0.62[0.59,0.65] 0.46 [0.43,0.49] 0.51[0.46,0.55]
F1 - macro 0.68[0.65,0.71] 0.76[0.74,0.79] 0.51[0.47,0.54] 0.41[0.38,0.45] 0.36[0.31,0.40]

Table 2: F1 score of single-modality models

Predicted
ST F/N CT

A
ct
ua
l ST 0.65 0.29 0.06

F/N 0.07 0.79 0.14
CT 0.04 0.27 0.69

Table 3: Confusion matrix of the model Text+Audio+Face

Audio based model. The audio preprocessing model is trained for 25 epochs with an AdamW optimizer [16] and a
learning rate of 10−5.

Facial expressivity based model. The facial expressivity preprocessing model is trained for 150 epochs with an
AdamW optimizer [16] and a One Cycle LR scheduler [26]with a maximum learning rate of 10−4.

Body expressivity based model. The body expressivity preprocessing model is trained for 1500 epochs with an
AdamW optimizer [16] and a learning rate of 5 ∗ 10−5.

5.2 Multimodal models
Now that we learned more about our unimodal models performance, we investigate whether multimodality could
improve the performance of our MISC classification model. Using the fusion architecture described above, we train
several multimodal models. We use a frozen Bert and Beats models to improve training time and avoid over fitting.
As a mean of comparaison, we also train the model using text and context linearly from the previous section with a
frozen-Bert transformer. These multimodal models are trained for 150 epochs with AdamW optimizer [16] and
Cosine Aligned scheduler [15] with a maximum learning rate of 2 ∗ 10−4. The results are displayed in Table 4.
Because of the low diversity of body expressivity (clients are seated in the videos and do not move much) and the
large number of missing data (a quarter of sentences are provided with body expressivity information), the addition
of body expressivity decreases the accuracy of change talk detection, which is the most important classe. Therefore,
in the following, we decide not to use body expressivity in the model.
In all cases, using theMALEFIC architecture improves classification results over themost performant preprocessing

network (Text + context linear) Particularly, combining text, context, audio, and facial expressivity outperforms all
models with frozen Bert and Beats embeddings. Meaning that the combination of visual, vocal, and verbal modalities
improves the classification performance. MALEFIC is able to take advantage of the new modalities and to select
relevant multimodal information. For a MISC classifier, we especially want to be able to classify change talk and
avoid classifying change talk as sustain talk and vice versa. The confusion matrix in Tab.3 shows that our model
makes few change talk/sustain talk mistakes.

5.3 Comparison with existing studies
We compare our results with three existing studies [22, 27, 28]. However, the data set used in these studies is not
available, so the conclusion of the comparison should be made with care. The Table 5 summarizes our comparisons.
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modalities: Text + context
(linear)

Text + context
(MALEFIC) Face + Body Text + Face Text + Audio Text + Audio + Face

F1 - CT 0.61[0.54,0.66] 0.63[0.57,0.68] 0.24[0.18,0.31] 0.64[0.58,0.69] 0.65[0.59,0.70] 0.65[0.59,0.71]
F1 - ST 0.58[0.53,0.63] 0.63[0.58,0.68] 0.41[0.35,0.47] 0.60[0.55,0.66] 0.66[0.62,0.70] 0.66[0.61,0.71]
F1 - F/N 0.78[0.75,0.80] 0.80[0.77,0.82] 0.63[0.60,0.67] 0.80[0.78,0.83] 0.81[0.78,0.83] 0.81[0.77,0.82]
F1 - micro 0.71[0.68,0.73] 0.73[0.70,0.76] 0.51[0.47,0.54] 0.74[0.71,0.76] 0.74[0.72,0.77] 0.76[0.72,0.77]
F1 - macro 0.65[0.62,0.69] 0.69[0.65,0.72] 0.43[0.40,0.46] 0.68[0.65,0.71] 0.71[0.67,0.73] 0.70[0.67,0.73]

Table 4: F1 score of models trained with frozen Bert and Beats models

modalities Text Audio Text + Audio Facial expressivity Text + Facial expressivity
metric CT ST F/N Micro Macro Micro CT ST F/N Micro CT ST F/N Macro CT ST F/N Macro
MALEFIC*
Our model

u: 0.62
c: 0.72

u: 0.63
c: 0.85

u: 0.79
c: 0.71

u: 0.73
c: 0.80

u: 0.68
c: 0.76 0.62 0.65 0.66 0.80 0.74 0.36 0.30 0.58 0.41 0.64 0.60 0.80 0.74

Wu, Zixiu, et al*[29] u: 0.51 u: 0.39 u: 0.74 - u: 0.55 - - - - - - - - - - - - -

Tavabi et al [27] - - - u: 0.701
c: 0.721 - 0.531 0.63 0.47 0.81 0.714 - - - - - - - -

Nakanao et al. [22] u: 0.544
c: 0.600

u: 0.874
c: 0.826 - u: 0.709

c: 0.666 - - - - - 0.151 0.836 0.493 0.600 0.873 0.735

Table 5: Comparison with other studies (* = trained using the same corpus, u = without context, c = with context)

5.3.1 Text based model. In [29], a Bert model is trained on AnnoMI to predict MISC classes only on the current
utterance (text without context). This model is similar to the one we described in section 5.1 and is trained on
the same dataset. The only difference with our work is the reorganization of the transcripts performed in Section
3.2. The model in [29] reaches a 0.55 F1 macro score, which is significantly lower than the score achieved by our
approach (0.68), which uses a similar architecture.
One factor that may explain the performance gap is the preprocessing of the text performed in our approach,

as discussed in Section 3.2. By providing full sentences with semantic meaning, our approach is able to capture
more nuanced linguistic features, enabling a more accurate classification of MISC classes. These results provide a
validation of the effectiveness of our text preprocessing.

5.3.2 Text and audio-based model. In [27], audio and text are used to classify utterances into the 3 MISC classes,
change talk, sustain talk, and follow / neutral. Our approach achieves a significantly higher F1 micro score of 0.62
compared to their score of 0.53, based solely on audio input (see Table 5). However, this accuracy gap may be
attributed to the poor quality of audio recordings in their corpus, which is not the case in ours.
Moreover, in their approach, adding the audio modality results in a small drop in precision, where, using our

fusion method, we are able to slightly improve accuracy by adding the audio modality.

5.3.3 Text and Facial expressivity based model. In [22], text and facial expressivity (action units, head positions, and
eye direction) are used to predict whether an utterance displays change talk or not. They looked at a two-label
classification problem when we classify utterances into 3 categories. Their corpus was collected using Zoom,
meaning that participants are always facing the camera, whereas our corpus shows a greater variety of body
orientations and, therefore, noisier OpenFace outputs. However, we are able to classify change talk significantly
better.
In their approach, adding facial expressivity improves the F1 scores on the not change talk class, but does not

change the change talk F1 score. Our approach allows us to slightly improve the F1 score on change talk and to
produce a higher overall F1 score despite the variety of positions of the clients in the videos and the missing data
(when the camera does not show the client’s face).
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6 INTERPRETATION
The ability to quantify the contribution of each modality in the classification process is a key advantage of our
approach. By utilizing multiple modalities, such as text, prosody and facial expressivity, we can gain a more
comprehensive understanding of the client’s communication and behavior during an MI conversation.
Identifying which modality is relevant to the classification of a given sentence can offer valuable insights into

the client’s state of mind. For example, if facial expressivity or prosody are found to be more influential in the
classification process, it may suggest that the client is trying to conceal their true thoughts. Several elements of our
model offer the bases to draw explanations of the model outputs. We can name the use of dropout and random
selection of embeddings during training allows the final embeddings of each modality to be computed in the same
embedding space as the fusion embedding. This ensures that all modalities are represented consistently.
Furthermore, the self-attention layers included in our approach allow the model to dynamically weigh the

importance of each modality for each sentence. These layers give a sense of the relevance of each modality not only
for each embedding but also for each sentence to be classified.
In this section, we take advantage of these properties to visualize and quantify the contribution of each modality.

All the following statistics are computed on the part of the validation set where all modalities are available.

6.1 Overall modality contributions
To quantify the contribution of each modality within the corpus, we examine the average number of times a modality
is selected by the self-attention module over all embedding dimensions. Our analysis reveals the following overall
contribution: text (26%), audio (16%), face (26%), previous client sentence in the turn (16%), and previous therapist
turn (16%). This distribution shows that all modalities are considered by the model with more weight given to
the Text and Facial expressivity. These results demonstrate that the model considers all modalities, with a greater
weight placed on text and facial expressivity. This aligns with our finding that text is the strongest predictor when
taken as a single input (see Table 2). The fact that facial expressivity has a strong weight despite its low predictive
powers can be explained in the following sections (see Section 6.3).

6.2 Embedding specialization
To understand the role of each embedding dimension, we examine the average number of times a modality was
selected for a given embedding dimension. Figure 3 shows the distributions of the modality contribution averaged
over each embedding dimension.
This figure shows that some embedding dimensions have a modality contribution of 1 for the text and facial

expressivity modalities. This means that this dimension has specialized into a certain modality. This modality will be
systematically selected if available. The two modalities that have the greater weight in the overall corpus (text and
facial expressivity) are the two modalities with specialized embeddings. The fact that the dimensions are specialized
in the text modality aligns with our finding that the text is the strongest predictor when taken as a single input (see
Table 2).
On the other hand, there are, for every modality, some dimensions with a contribution of 0 meaning that this

modality is never selected for this dimension.

6.3 Quantification of modality contribution for each sentence
To quantify the contribution of each modality to the classification of a given sentence, we examine the number
of dimensions of the fusion embedding that have been selected from this modality for a particular sentence.
This provides insights, for a given instance of the client’s speech (a sentence), of the amount of information of a
modality that is used to make a decision. Figure 4 shows the distribution of the modality contribution averaged
over each sentence. Our analysis indicates that the contribution of each modality is highly dependent on sentences.
Specifically, we observed that the distribution of text, audio, and context from both the client and the therapist can
be characterized by two Gaussian distributions, indicating that these modalities are more informative for some
sentences than for others.
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Figure 3: Distribution of modalities contribution for each embedding dimension

Cluster Important modality Context
1 Therapist turn Therapist: Okay So you were thinking that maybe exposing Lilly naturally to these diseases would be a better choice than using vaccines to help her get stronger?

Client: Well, yeah
2 Therapist turn Therapist: You decided to drink more than you intended because you were disappointed at how the Vikings

were playing, and when your roommate couldn’t give you a ride home, you decided to drive yourself home...
Client: Yeah, that’s, that’s exactly how it happened

3 Previous client sentence Therapist: Um, I did wanna talk to you though I’m a little bit concerned looking through his chart
at how many ear infections he’s had recently, and I, I noticed that you had checked the box that someone’s ...
Client: Well, It’s just me and him, and I do smoke Um, I try really hard not to smoke around him, but I, I’ve been smoking for 10 years except when I was pregnant with him
Client: But it, everything, it’s so stressful being a single mom and, and my having a full-timejob

4 Current sentence Therapist: This what, what, what was different?
Client: Uh, I don’t wanna lose my license
Client: You know, I don’t, you know, I don’t wanna lose my license

5 Audio Therapist: Yeah, it sounds like you’d be willing to do whatever you can to try to prevent that from happening
Client : Okay

Table 6: Example of transcript for each cluster

In contrast, only one Gaussian distribution is visible for facial expressivity, suggesting that this modality is used
more consistently across the dataset. This may be because facial expressivity is not a strong predictor for classifying
MISC classes. Indeed, because of the use of modality dropout, the model is not able to completely ignore a modality.
Therefore, in case of weak predictor, the model has a harder time determining when the modality is useful and
takes it into account consistently across the corpus. This can also explain why facial expressivity has a weight as
large as the text modality in the overall contribution and why some embeddings are specialized in this modality.
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Figure 4: Distribution of modalities contribution for each sentence

Indeed, the face modality is always selected as the model is not able to detect the sentences where it is really useful
and the other modalities are selected only when they are relevant.
To better understand the differences in the sentences that lead to the above results, we perform a clustering of

the contribution of each of the considered modalities using the elbow method and K-means and find five clusters
with a silhouette score of 0.96.
Sentences can be clustered into groups where the contributions of the modalities are different (see Fig. 5). The

five clusters can be interpreted as five types of sentences:
• Cluster 1: The text and the context of both, the client and the therapist are relevant: 57%
• Cluster 2: The previous speaking turn of the therapist is relevant: 16%
• Cluster 3: The previous sentences of the client in the speaking turn are relevant: 12%
• Cluster 4: The current sentence is relevant: 9%
• Cluster 5: The audio is relevant: 6%

Table 6 shows an example of sentences for each group.
These clusters confirm that facial expressivity contributes consistently across the dataset. Additionally, they

demonstrate the importance of considering multiple modalities. By revealing which modality is most relevant for a
given sentence, this analysis provides a valuable tool for validating decisions and could be used by the therapist to
provide feedback to the client in real-time. It could also be used by a virtual agent acting as the therapist to detect
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change talk and to use this information for its next dialog move. For example, the agent could explain its decisions
by saying something like “From your tone of voice, it sounds like you are not ready to change.”. As foreseen, the
cluster distributions display that text and context are the most important features in most cases.

Figure 5: Proportion of modalities contribution within each cluster

6.4 Embedding visualization
The embedding space is visualized using UMAP [19], a framework used for dimensionality reduction that is
reversible. Due to its reversible quality, we are able to create a map of the embedding space showing how each
embedding point would be classified. This visualization visible in Figure 6 allows us to determine how confident
the classification is for every modality. The text is indeed the most expressive modality (see Fig. 6b) and that most
of the other modalities are pertinent to accurately classify only in some cases, as seen in the previous sections.
This visualization illustrates also which modalities contributed and in which direction to the classification of each
sentence. Figure 7 shows example of sentences where the text embedding alone does not classify accurately but is
improved by other modalities (Figure 7a). On the left, the text alone classifies as change, on the right as sustain, when
the true classification is neutral. It also shows an example where only text alone classifies the sentence correctly as
change, and the model is not misled by other modalities (see Figure 7b).

7 CONCLUSION AND FUTUREWORK
In this paper, we present a multimodal classifier for the three MISC classes of client behavior: change talk, sustain
talk, and follow neutral. Our classifier is based on AnnoMI, an open access Motivational Interviewing database
that is annotated in MISC classes and has been transcribed. We reorganized the transcript into sentences with
lexical meaning and performed multimodal annotations of facial and body expressivity. Taking advantage of these
multimodal inputs, we train a classifier that achieves greater accuracy than a unimodal approach and outperforms
the existing approaches. We also use self-attention layers to determine the contribution of each modality, allowing
us to interpret the results of our classifier and identify the most informative modality for a given sentence.
In future work, we plan to improve the model’s performance by fine-tuning the Bert and Beats transformers. In

addition, we envision endowing a virtual therapist agent with this model to enable it to detect whether the client is
12



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

, ,

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

(a) Fusion (b) Text (c) Client context

(d) Therapist context (e) Audio (f) Facial expressivity

Figure 6: Visualization of modalities embeddings with UMAP projection

responding to therapy and is producing change talk. The agent could also provide feedback to the user regarding
why it detected that the client may not be ready to change (e.g., tone of voice). Finally, we aim to make the model
publicly available to facilitate the annotation of new MI videos and serve as a baseline for future work. Overall,
our approach demonstrates the value of multimodal input in improving the accuracy of MISC classification while
providing interpretable features.
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