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ABSTRACT

This paper addresses the challenge of transferring the behavior expressivity style of a virtual agent to
another one while preserving behaviors shape as they carry communicative meaning. Behavior ex-
pressivity style is viewed here as the qualitative properties of behaviors. We propose TranSTYLer, a
multimodal transformer-based model that synthesizes the multimodal behaviors of a source speaker
with the style of a target speaker. We assume that behavior expressivity style is encoded across vari-
ous modalities of communication, including text, speech, body gestures, and facial expressions. The
model employs a style-content disentanglement schema to ensure that the transferred style does not
interfere with the meaning conveyed by the source’s behaviors. Our approach eliminates the need
for style labels and allows the generalization to styles that have not been seen during the training
phase. We train our model on the PATS corpus, which we extended to include dialog acts and 2D
facial landmarks. Objective and subjective evaluations show that our model outperforms state-of-
the-art models in style transfer for both seen and unseen styles during training. To tackle the issues
of style and content leakage that may arise, we propose a methodology to assess the degree to which
behavior and gestures associated with the target style are successfully transferred, while ensuring
the preservation of the ones related to the source content.

1 Introduction

Human communication is a complex phenomenon that involves various modes of expression beyond speech pro-
duction. It is inherently multimodal, as it relies on the interplay of verbal and non-verbal signals to con-
vey semantic and pragmatic content and facilitate the communication process [Knapp et al.(2013), Argyle(2013),
Feyereisen et al.(1991), Armstrong et al.(1995)]. Human behavior expressivity style refers to the unique and character-
istic pattern of behavior exhibited by an individual in various social and communicative contexts [Knapp et al.(2013)].
It is not a fixed attribute of the speaker but rather is constantly adjusted, accomplished, and co-created with the
audience [Mendoza-Denton(1999)]. It involves the way an individual communicates verbally and non-verbally, in-
cluding verbal skills, body language, gestures, and self-expression. Variability in speakers’ gesturing is influenced by
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Figure 1: Overview of TranSTYler, an approach driven by the content of a source speaker’s speech - text semantics
(Xsource

text ) and Mel spectrogram (Xsource
speech ) - and conditioned on a target speaker’s style vector hstyle generated from

the target’s multimodal input data - Mel spectrogram (Xtarget
speech), 2D facial landmarks (Xtarget

face ), 2D poses (Xtarget
pose ),

and dialog tags (Xtarget
tags ). The network is composed of: (1) a style encoder that encodes the target’s multimodal data

and generates the style vector hstyle, (2) a content encoder that encodes the source’s speech content and generates the
content vector hcontent, and (3) a discriminator Dis used during training time to disentangle hcontent and hstyle. A
generator G is used to generate body Ẑpose and facial Ẑface gestures.

factors such as their personality traits [McCrae and Costa Jr(1997)], verbal skills [Hostetter and Alibali(2007)], age
[Alibali et al.(2009), Feyereisen and Havard(1999)], and culture [Kita(2009)]. The topic and context of the conversa-
tion, speaker’s role, and relationship with the interlocutor also play a role [Hostetter and Potthoff(2012)]. For example,
extroverts tend to use larger spatial gestures[Hostetter and Potthoff(2012)]. Behavior expressivity style can vary be-
tween formal and spontaneous speech. In formal settings, a controlled and structured speaking style is used, with
formal language and restrained gestures to convey professionalism and respect. In contrast, in spontaneous speech,
individuals adopt a more relaxed communication style with informal gestures. In this paper, we propose a novel
machine learning approach to synthesize facial and upper-body gestures driven by prosodic features and text in the
style of different speakers including those unseen during training. We view behavior expressivity style as a pervasive
factor during speech, influencing the expressiveness of communicative behaviors, while speech content is conveyed
through a combination of multimodal behaviors and text. We propose TranSTYLer a transformer-based model that
can synthesize facial and body gestures of a source speaker in the style of any target speaker, while ensuring that the
transferred style does not interfere with the meaning conveyed by the source gestures. Our approach incorporates a
disentanglement scheme that separates content and style, enabling us to directly infer the style representation even
for speakers who were not part of the training process, without requiring additional training or fine-tuning. Our sys-
tem comprises two main components. Firstly, we have a speaker style encoder network, which learns to generate a
fixed-dimensional embedding that represents the style of a target speaker. This embedding is derived from the target
speaker’s multimodal data (facial and body gestures, audio, and text). Secondly, we employ a synthesis network that
synthesizes gestures based on the content provided by the input modalities (text and audio) of a source speaker. This
synthesis process is conditioned on the target speaker style embedding, ensuring that the generated gestures exhibit the
target style characteristics. We also introduce a new methodology to measure the transferred style and the preservation
of gestures that convey meaning. We evaluate the performance of TranSTYLer in terms of style transfer and content
preservation. Objective and subjective evaluations confirm the quality of our approach, outperforming two state-of-
the-art models.This paper is organized as follows. We start by providing a review of the existing behavior expressivity
style modeling approaches, discussing their limitations. We then explain our contributions and the architecture we
propose. Finally, we present objective and subjective evaluations and discuss the results.
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2 Related Works

Gesture style modeling and control have gained significance in proposing expressive behaviors for virtual agents that
can be adjusted and tailored to specific audiences or interlocutors. A first model to generate communicative behaviors
with different styles was proposed by Neff et al.[Neff et al.(2008)]. The authors developed a system that generates
full body gesture animation based on text, mimicking the style of a specific performer. They focused mainly on
hand movements. In recent years, Alexanderson et al. [Alexanderson et al.(2020)] proposed a generative model that
synthesizes speech-driven gesticulation while exerting control over the output style, such as gesture level and speed.
Karras et al. [Karras et al.(2017)] created a model that generates 3D facial animation from audio to capture the style
of a single actor. Similarly, Cudeiro et al. [Cudeiro et al.(2019)] developed a model, called VOCA, that synthesizes
3D facial animation driven by speech signal, allowing for a wide range of speaking styles to be realistically ani-
mated, even in languages other than English. On the other hand, Ginosar et al. [Ginosar et al.(2019a)] proposed
an approach for generating gestures using models trained on individual speakers. Yoon et al [Yoon et al.(2020)]
developed a method to generate gestures that matched a speaker’s style by using their speaker identity. Their ap-
proach involved processing the input audio and text with separate audio and text encoders and using the speaker
identity to select a style embedding from a learned space. These features were then fed to a gesture generator to
produce a sequence of poses that matched the content and rhythm of the speech. On the other hand, Ghorbani et al.
[Ghorbani et al.(2022a), Ghorbani et al.(2022b)] proposed a framework that improved on high-level style portrayal by
using exemplar motion sequences to demonstrate the intended stylistic expression of gesture motion. Their method
could extract style parameters in a zero-shot manner, only requiring a single example motion and was able to gen-
eralize to example motions (and therefore styles) not seen during training. The works just mentioned have focused
on generating behaviors from one modality, either facial expressions, head movements or gestures. However, they
have not considered multimodal data when modeling style or synthesizing gestures. Additionally, their generative
models were only trained on single-speaker data. Recently, Ahuja et al. [Ahuja et al.(2020)] have attempted to model
and transfer style from a multi-speaker database. They proposed Mix-StAGE, a speech-driven approach that trains
a model using data from multiple speakers while learning a unique style embedding for each speaker. Their neural
architecture uses a content and style encoder to extract content and style information from pose. A style embedding
matrix is used to represent the style associated with each specific speaker in the training set. Their approach presents
several limitations. First, behavior expressivity style is only encoded by means of upper-body motion, ignoring the
other possible modes of style expression, such as text, speech, and facial expresions. Second, speakers are associ-
ated with a unique speaker identity "ID", considered as style labels, which hinder their ability to generalize to new
speakers. Later on, Ahuja et al. [Ahuja et al.(2022)] presented a few-shot style transfer strategy based on neural do-
main adaptation to transfer style with only a few examples, considering the shift in cross-modal grounding between
the source speaker and the target style. However, this approach still requires to have at least 2 minutes of the style
to be transferred. Fares et. al [Fares et al.(2022), Fares et al.(2023)] proposed an approach to synthesize upper body
gestures of a source speaker in the style of any target speaker. The authors do not consider faces in their model. Their
approach can be applied to speakers whose style behaviors have been learned or not during the training phase. Overall,
the recent models proposed to capture behavior expressivity style have several limitations: they do not exploit mul-
timodal data [Ye et al.(2022), Neff et al.(2008), Alexanderson et al.(2020), Karras et al.(2017), Cudeiro et al.(2019),
Ginosar et al.(2019a), Ginosar et al.(2019b), Fares et al.(2022)]; their generative models are trained on single speaker
data; style is associated with speaker "IDs", which limits their ability to generalize to new speakers without additional
training [Cudeiro et al.(2019), Karras et al.(2017), Ginosar et al.(2019a)]; they require additional training to model un-
seen target speaker style [Ahuja et al.(2022)]. In addition, they lack a methodology to evaluate properly the behavior
expressivity style transfer. In particular, during the style transfer from a target style to a source content, the resulting
behavior should ideally preserve the gesture related to the source content (e.g., idiomatic gestures) while modifying
its expression accordingly to the target style. Practically, it is a common pitfall in style transfer to observe leakage
between the source content and the target style, i.e. partially preserving the source style or transferring the target
content.

3 Our contributions

To address the limitations, we introduce TranSTYLer a transformer-based model for the generating facial and body
gestures of a source speaker in the style of a target speaker, while preserving the intended meaning of the source
gestures. Our contributions are:

1. To the best of our knowledge, TranSTYLer is the first behavior expressivity style transfer approach that jointly
synthesizes 2D upper-body gestures and 2D facial landmarks of source speakers, in the style of any target
speakers, and without requiring additional training, making our approach zero-shot.
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2. We propose a novel methodology for assessing behavior expressivity style transfer for generating commu-
nicative behaviors for virtual agents. Our methodology measures content preservation and style transfer and
gives insights about potential leakages between style and content information.

3. We have extended the PATS corpus, by including 2D Facial Landmarks and Dialog Tags.

4 TranSTYler

We present TranSTYler, a novel approach for modelling behavior expressivity style in virtual agents.TranSTYler is
a multimodal style transfer approach for generating 2D facial and pose synthesis corresponding to the content of a
source speaker and in the style of a target speaker. During inference, an embedding style vector can be directly
inferred from any target speaker’s multimodal data - text, speech, poses, 2D facial landmarks - by simple projection
into TranSTYler’s embedding style space (similar to the one used in [Jia et al.(2018)] and [Fares et al.(2023)]). Our
approach allows for style transfer from any unseen speakers, without requiring further training or fine-tuning of our
trained model. This means that our method is not restricted to the styles of the speakers in the training dataset.
TranSTYler is trained on PATS corpus [Ahuja et al.(2020)] which we extended to include additional facial and text
features.

4.1 Problem Positioning

The goal is to learn to generate facial and upper-body gestures based on the source speaker’s content information and
conditioned on the style information of the target speaker. A transformer-based generator is used to generate facial
and body gestures from content and style information. An adversarial component in the form of a fader network
[Lample et al.(2017)] is used for disentangling style and content from the multimodal data. At inference time, it is
discarded, and the model can generate different versions of facial and body gestures when fed with different style
vectors. Gesture styles for the same input speech can be directly controlled by switching the value of style vector or
by calculating it from a target speaker’s multimodal data fed as input to the style encoder. Our approach is based on
the following hypotheses:

• Our primary hypothesis is that behavior involves the modulation of communicative gestures associated with
content, through the specific gestures associated with an individual. We propose to disentangle this informa-
tion and encode it in a differentiated manner.

• Behavior expressivity style is encoded across text semantics, dialog tags, speech, face and pose and varies little
or not over time. The reason we consider dialog tags is to capture further semantic information. Moreover,
studies on communicative gestures have shown the link between the meaning carried by dialog acts and the
one carried by gestures ([Calbris(2011), Cienki(2005)]).

• Speech content is encoded across the verbal and nonverbal modalities. That is, the meaning of what is being
said is conveyed by the text and by the nonverbal communicative behaviors.

To implement theses assumptions, we propose an architecture for encoding and disentangling the source speaker’s con-
tent and the target speaker’s style information from multiple modalities. Style and content information are entangled
in each utterance produced by a speaker. On one side, a content encoder Econtent is used to encode a content matrix
from the source’s text and speech signal; on the other hand, a style encoder Estyle is used to encode a style vector from
the text, acoustic features, dialog tags, facial and body gestures data of the target. A fader loss ([Lample et al.(2017)])
is introduced to effectively disentangle content and style encodings. The network processes source and target input
data at the segment level, where each segment S consists of 64 frames. For each segment S, the network takes as input:

1. The source speaker’s audio and text semantics represented by the Mel spectrogram (Xsource
speech ) and Bert em-

beddings (Xsource
text ).

2. The target speaker’s facial gestures, body gestures, audio, text and dialog tags represented by 2D facial land-
marks (Xtarget

face ), 2D poses (Xtarget
body ), Mel spectrogram (Xtarget

speech), Bert embeddings (Xtarget
text ), and dialog

tags (Xtarget
tags ).

For each S, the output of the network is the generation of behaviors that correspond to the content of the source speaker
with the style of the target speaker, namely:

1. Facial gestures (Ẑface) represented by 2D facial landmarks.

2. The corresponding upper-body gestures represented by 2D poses (Ẑbody).
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4.2 Neural Formulation

The network has an embedding size dmodel equals to 64.

Content Encoder. Econtent encodes the source speaker’s speech content information from the variables Xsource
text

and Xsource
speech corresponding to each S. Xsource

text is represented by BERT embeddings of dimension 768. Xsource
speech is

encoded using Econtent
speech , a pre-trained Mel Spectrogram Transformer (AST) base384 model ([Gong et al.(2021)]), and

then concatenated with Xsource
text . A self-attention mechanism is then applied on the resulting vector. The multi-head

attention layer has Nh equals to 4 attention heads, and an embedding size datt equals to datt = dmodel + 768. The
output of the attention layer is the vector hcontent, a content representation of the source speaker’s speech, which can
be written as follows:

hcontent = sa
([
Econtent

speech (Xsource
speech ), X

source
text

])
(1)

where: sa(.) denotes self-attention.

Style Encoder. We consider that behavior expressivity style is encoded in a speaker’s multimodal behavior. As
illustrated in Figure 1, Estyle encodes the behavior expressivity style information from the target speaker’s variables
Xtarget

speech, Xtarget
text , Xtarget

pose , Xtarget
face , and Xtarget

tags ; which are encoded by Estyle
speech, Estyle

text , Estyle
pose , Estyle

face , and Estyle
tags

respectively. Estyle
pose and Estyle

face are composed of Nlay equals to 3 layers of LSTMs with a hidden-size equal to dmodel.
Estyle

tags is a One Hot Encoder that considers the 38 dialog tags as categorical features. The input features are encoded
using a one-hot encoding scheme. The output is a sparse array containing binary values representing the presence or
the absence of each tag in the segment S. Xtarget

speech is encoded by Estyle
speech, which is the pre-trained AST. The output

vector is concatenated with Xtext and a self attention mechanism is applied on the resulting vector. This attention layer
has Nh equals to 4 attention heads and an embedding size equals to datt. Finally, the output vector is concatenated
with the other encoded modalities. The resulting vector hstyle is the output speaker style embedding that serves to
condition the network with the speaker style. The final style embedding hstyle can therefore be written as follows:

hstyle =
[
sa

([
Xtarget

text , Estyle
speech(X

target
speech)

])
,

Estyle
pose (X

target
pose ), Estyle

face (X
target
face ), Estyle

tags (X
target
tags )

] (2)

where: sa(.) denotes self-attention.

Generator. For decoding Ẑpose, and Ẑface, the sequence hcontent and the vector hstyle are concatenated (by repeating
the hstyle vector for each segment of the sequence), and passed through a Dense layer of size dmodel. We then give the
resulting vector as input to two Transformer Decoders. Each Transformer Decoder is composed of Ndec = 1 decoding
layer, with Nh = 2 attention heads, and an embedding size equal to dmodel. The resulting output vectors are sequences
of 2D facial landmarks and 2D-poses which corresponds to:

Ẑpose = Gpose(hcontent, hstyle)

Ẑface = Gface(hcontent, hstyle)
(3)

where Gface and Gpose are the transformer decoders corresponding to face and pose modalities. The generator loss
can therefore be written as:

Lgen
rec (Econtent, Estyle, G) = EẐpose

||Zpose −Gpose(hcontent, hstyle)||2
+EẐface

||Zface −Gface(hcontent, hstyle)||2
(4)

Adversarial Component. Our approach of disentangling style from content relies on the fader network disentangling
approach ([Lample et al.(2017)]), where a fader loss is introduced to effectively separate hstyle and hcontent. The la-
tent space of hcontent is constrained to be independent of hstyle embeddings. Concretely, it means that the distribution
over hcontent of the latent representations should not contain the style information. We formulate this discriminator
Dis as a regression on the conditional variable hstyle. Dis learns to predict hstyle from hcontent, as:

ĥstyle = Dis(hcontent) (5)

While optimizing the discriminator, the discriminator loss Ldis must be as low as possible, such as:

Ldis(Dis) = Eĥstyle
||hstyle −Dis(hcontent)||2 (6)

In turn, while optimizing the generator loss including the fader loss Lgen
adv , the discriminator must not be able to predict

correctly hstyle from hcontent conducting to a high discriminator error and thus a low fader loss. The adversarial loss
can be written as:

Lgen
adv(Econtent, Estyle) = Ehstyle

||1− (hstyle −Dis(hcontent))||2 (7)
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The style prediction error is preliminary normalized within 0 and 1 range. The total G loss can therefore be written as
follows:

Lgen
total(Econtent, Estyle, G) = Lgen

rec (Econtent, Estyle, G)+

λLgen
adv(Econtent, Estyle, G)

(8)

where λ is the adversarial weight that starts off at 0 and is linearly incremented by 0.01 after each training step.
The discriminator Dis and the generator G are then optimized alternatively as described in [Lample et al.(2017)].
All TranSTYler hyperparameters were chosen empirically and are listed in the implementation details section of the
appendix.

5 Experimental Evaluations

5.1 Material and Model setups

PATS 2.0 Corpus. The PATS Corpus [Ahuja et al.(2020), Ginosar et al.(2019a)] originally includes 2D upper-body
joints keypoints, aligned with the given speech, Mel spectrogram and Bert embeddings, of 25 speakers, categorized
as follows: 15 talk show hosts, 5 lecturers, 3 YouTubers, and 2 televangelists. Each speaker has his/her own commu-
nicative style, and lexical and gesture diversity. It has 251 hours of data, with 84, 000 intervals and a mean duration
equal to 10.7 seconds per interval. The standard deviation is 13.5 seconds per interval. An interval corresponds to
an utterance consisting of 64 timesteps. We have extended PATS to include 2D facial landmarks,and dialog tags,
More specifically, we extracted 70 2D facial landmarks for all PATS speakers using OpenPose [Cao et al.(2017)] and
aligned with PATS’s features. Dialog acts correspond to the communicative functions expressed by the spoken text
[Bunt et al.(2010)]. We used the tool "DialogTag" [bha([n. d.])] to extract 38 dialog tags from PATS utterances. We
refer the readers to the supplementary materials for the complete list of dialog tags.

TranSTYler Training and Testing. We trained our network using PATS 2.0. Although fingers are included in PATS,
we have chosen not to model finger data in our work. The quality of the extracted fingers data is very noisy and
lacks accuracy. Instead, we focus on modeling and predicting the 2D joints of the upper body and arms, using 11
joints to represent these areas. We also model 15 facial landmarks, which are illustrated in our Appendix. We use
less keypoints than those originally extracted to have less input parameters and fasten the training phase. We took
out some keypoints from the face contour and 2 keypoints on each eyebrow, and we used only 2 keypoints for the
eyelids. In total, we model 11 body and arm joints, and 15 facial landmarks. An utterance is associated to one or more
dialog acts. We consider all the 38 different tags that are listed in our appendix. Our testing comprises two conditions:
Seen Speaker and Unseen Speaker. The Seen Speaker condition evaluates how accurately our model can perform style
transfer when presented with target speakers seen during training. In contrast, the Unseen Speaker condition evaluates
our model’s ability to perform zero-shot style transfer when presented with target speakers that were not seen during
training. We carefully selected both seen and unseen speakers from PATS to cover a range of stylistic behaviors in
terms of lexical diversity and spatial extent which is the amplitude of body movements. The PATS database already
defines the train, validation, and test sets for each speaker. We train our model on 16 PATS speakers. To test the Seen
Speaker condition, we use the test sets of the 16 PATS speakers as our test set. For the Unseen Speaker condition,
we select 6 other speakers and use their test sets for our experiments. Each training batch has BS = 24 pairs of word
embeddings, Mel spectrogram, dialog acts, and their corresponding sequence of (x, y) joints of the skeleton of the
upper-body pose and 2D facial landmarks. We use Adam optimizer with β1 = 0.95, β2 = 0.999, and a Cyclical
Learning Rate (CLR) scheduler to render the learning balanced. The initial learning rate Lrinit of the CLR is equal to
1e− 7, the end learning rate Lre is equal to 0.1, and the step size Stsize is equal to 196. We train the network for Nit

equals to 78, 400 iterations. All features values are normalized so that the dataset mean and standard deviation are 0
and 0.5, respectively. All hyperparameters used for training are summarized in our appendix.

5.2 Objective Evaluation

We objectively measure the performance of TranSTYler in terms of two key aspects: style transfer accuracy and
content preservation.Moreover, to measure the degree of similarity of the generated facial and body gestures with
the source and target styles, we computed the distance between our model’s predictions and each of the source and
target styles. Additionally, we assess and compare the unique dynamic movement patterns of the source, target, and
prediction by measuring their velocity, acceleration, and jerk. This allows us to quantify and analyze the specific
characteristics of their movement dynamics.

Metrics. We have followed the recommendations put forth by Fu et al. [Fu et al.(2018)] in order to evaluate the
characteristics of style transfer in our study. We employed their proposed evaluation metrics, Transfer Strength Accu-
racy and Content Preservation, to assess the performance of TranSTYler. These metrics measure quantitatively the
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accuracy of style transfer and the extent to which content is preserved during the process.

Transfer Strength Accuracy. Transfer Strength is a metric that assesses the degree with which the style is transferred.
As proposed by Fu et al. [Fu et al.(2018)], this metric is implemented using a classifier C. We consider that behavior
expressivity style is defined as follows:

Behavior expressivity style =

{
Source (positive) output ≤ 0.5
Target (negative) output > 0.5

(9)

Transfer Strength Accuracy is defined as follows:

Transfer Strength Accuracy =
Nright

Ntotal
× 100 (10)

where Nright is the number of correct cases which are transferred from target to source style, and Ntotal is the number
of test set data. We developed C as a neural network consisting of three LSTM layers and a dense output layer, with
the complete architecture shown in the appendix. The network’s hyperparameters were chosen empirically and are
also listed in the appendix. To train C, we used the train sets of the speakers included in the train sets of both the
Seen and Unseen conditions, as defined in the PATS Corpus. Specifically, we trained C using a batch size of 256
and Adam optimizer, and a Binary Cross Entropy loss over 15, 000 epochs. After training, C achieved an accuracy of
96%.

Content Preservation. Content Preservation is a metric that reflects the preservation of source content, that is, in this
work, the meaning conveyed by the nonverbal communicative behaviors, in predictions. It is defined as the cosine
distance between predictions Ẑgestures and initial source gestures (Xsource), as follows:

Cosine Distance = 1−
X⊺

source · Ẑgestures

∥Xsource∥∥Ẑgestures∥
(11)

Minkowski distance. We also measure the Minkowski distance between the upper-body gestures and facial expres-
sions produced by our model, and the ones of the source and target speakers. We additionally experimented with
alternative distance metrics, including cityblock, Chi2 distance, Euclidean distance, and cosine distance. However, we
found that all these metrics yielded identical results, leading us to retain only the Minkowski distance. More specif-
ically, for both conditions, Seen and Unseen, we define two sets of distances: (1) Dist.(TranSTYler, Source) which is
the average distance between TranSTYler’s predictions and the source’s 2D facial landmarks and body joint; and (2)
Dist.(TranSTYler, Target) which is the average distance between TranSTYler’s predictions and the target data.

Velocity, Acceleration, Jerk. We evaluate the velocity, acceleration, and jerk of the source, target, and prediction to
quantify and compare their distinct dynamic movement patterns. This analysis enables us to determine whether the
prediction aligns more closely with the behavior expressivity style of the source or of the target. Velocity provides
insights into the overall speed and rhythm of the movement, while acceleration measures the rate of change in motion
velocity. Jerk indicates the smoothness of motion transitions over time. By examining these metrics, we can gain
valuable information about the characteristics of the movement dynamics and utilize it to assess the degree to which
the predicted animation captures the behavior expressivity style of the source or target.

5.3 Human Perceptual Studies

Following previous research [Ahuja et al.(2022), Ahuja et al.(2020)], we contribute to the definition of a compre-
hensive methodology to assess behavior expressivity style transfer. We focus on differentiating between behaviors
associated with the linguistic content of speech (i.e communicative gestures), and the unique style exhibited by a
speaker. The desired outcome is to preserve the gestures form associated with the source content while adjusting their
expressivity to match the target style. The proposed methodology is defined as follows:

• To assess behavioral expressivity style transfer, we evaluate the resemblance of our model’s predictions to
the target style.

• To assess content preservation, we study the coherence of gestures by assessing their coordination with
speech content and the synchronization with speech rhythm.

We conduct three studies and compare the perception of stimuli generated by our model and by the two baselines
Mix-Stage and DiffGAN.

Study 1. The first study aims to assess the behavior expressivity style produced by our model w.r.t the behavior expres-
sivity style of the seen or unseen target speakers. We additionally compare our model to Mix-Stage[Ahuja et al.(2020)],
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Figure 2: Behavioral expressivity style transfer from target speaker Oliver to source speaker Conan. Fingers are not
generated by our model but extracted from OpenPose. They are displayed for sake of visualisation.

which we consider our first baseline. We present 75 stimuli of 2D stick animation (like the 2D sticks in Fig.2) to eval-
uate our model’s predictions with seen target styles (condition 1, 30 stimuli), our model’s predictions with unseen
target styles (condition 2, 30 stimuli), and the baseline Mix-StAGE (condition 3, 15 stimuli). Each stimulus consists
of a triplet of 2D animations composed of: (1) a 2D animation of the source speaker, (2) a 2D animation of the target
speaker, and (3) a 2D animation of TranSTYler’s prediction after performing the behavioral style transfer. Participants
rate on a 5-point Likert scale the overall resemblance, resemblance of the left and right arms gesturing, body orien-
tation, head orientation, gesture amplitude, gesture frequency, and gesture velocity of the target style animation with
respect to the source style animation and our predictions’ animation. The rating scale ranges from 1 (reference is very
similar to A) to 5 (reference is very similar to B).

Study 2. We conduct a second study to investigate the coherence of the generated facial and body gestures. Previous
research has focused on evaluating the appropriateness of generated gestures [Kucherenko et al.(2023)]. In this work,
we place greater emphasis on evaluating the coherence of gestures by assessing their coordination with speech content
and synchronization with speech rhythm. By doing so, we aim to subjectively evaluate the extent to which content is
preserved after performing behavioral style transfer. We evaluate the coherence of facial and body gestures in relation
to speech content and rhythm. We present 90 stimuli of 2D stick animations, comprising 30 stimuli of TranSTYler’s
stylized predictions (condition 1), 30 stimuli of TranSTYler’s predictions where we change the original audio with the
audio from other speakers (condition 2), and 30 stimuli of the source style ground truth (condition 3). Condition 2 is
included as an error and control condition. On a 5-point Likert scale, participants rate the synchronization of gestures
with speech rhythm, the overall coherence of behavior, the coordination of the agent’s gestures with speech content,
and the human-likeness of the animations.

Study 3. A third study is conducted to compare the similarity of our model’s predictions to the target style, as well as
to those generated by our second baseline, DiffGAN [Ahuja et al.(2022)]. We present 15 stimuli, each comprising a
triplet of 2D animations corresponding to the same source-target behavioral style transfer. The first animation is gen-
erated by TranSTYler (condition 1). The second animation represents the reference, and it is target speakers’ ground
truth. The third animation is generated by DiffGAN (condition 2). For each stimulus, we ask participants to identify
which video between condition 1 and condition 2 has the same behavior expressivity style as the reference video based
on the arm gesture’s extent, frequency, timing, and position of the body in relation to speech. We recruited 150 partic-
ipants through the online crowd-sourcing website Prolific for our evaluation studies. Participants were selected based
on their fluency in English. Attention checks were included at the beginning and middle of each study to filter out
inattentive participants. Prior to each study, participants received training to introduce them to the 2D facial landmarks
and upper-body skeleton and to familiarize them with 2D stick animations.
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Figure 3: Visualization of facial motion of source, seen or unseen target and TranSTYLer’s predictions.

Figure 4: Visualization of upper-body motion of source, seen or unseen target and TranSTYLer’s predictions.

Condition Transfer Strength
Accuracy (%)

Content
Preservation (%)

Dist.
w.r.t. Source

Dist.
w.r.t. Target

Seen 93.282 95.842 83.189 75.882
Unseen 85.195 90.723 80.284 73.934

Table 1: Objective evaluation results: transfer strength accuracy, content preservation, and minkowski distances for
Seen and Unseen conditions.
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Figure 5: Left: T-SNE visualization of the style embeddings on the test sets of 5 speakers. Right: T-SNE visualization
of the content embeddings on the same test sets.

Figure 6: Results of perceptual human study 1 (a), study 2 (b), and study 3 (c). Significant differences between pairs
of all conditions for the same factor are marked with (∗). If there are significant results between only two pairs of
conditions for the same factor, (∗) is used.

6 Results and Discussion

6.1 Objective Evaluation

Objective evaluation results are presented in Table 1 for both Seen and Unseen conditions. In the Seen condition,
TranSTYler achieves a style transfer strength accuracy of 93.282%, indicating a high level of accuracy in transferring
the style from the target speakers to the source speakers. For the Unseen condition, the accuracy is still high at
85.195%, although slightly lower than the accuracy for the Seen condition. This was expected since TranSTYler had
not seen the target speakers during training. Nonetheless, the model demonstrated the ability to generalize the style to
new, unseen speakers. In both the Seen and Unseen conditions, our model is able to preserve a high percentage of the
source speakers’ content, with 95.842% and 90.723% content preservation, respectively. The distance between our
model’s predictions and the source speakers’ gestures - Dist.(TranSTYler, Source) - is higher than the one between
our model’s predictions and the target speakers’ gestures - Dist.(TranSTYler, Target). These results confirm that
the behavior expressivity style is successfully transferred from target to source speakers for both conditions. These
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results are further illustrated in Figures 3 and 4 that illustrate the facial and body motion of a same source speaker
(Ellen) as well as different target speakers that were either seen or unseen during training, alongside TranSTYler’s
predictions after performing style transfer. Figure 2 illustrates the motion of a source speaker Oliver, a target (seen)
speaker Conan, and that of TranSTYler’s predictions at the frame level. The source speaker Oliver gestures mainly
with his right hand while Conan makes ample arm movements as shown toward the end of his sentence. The predicted
animation displays the communicative gestures of Oliver (similar vertical movement of the arm) and the amplitude
extent of Conan toward the end of the sentence. To explore the relationships and patterns between the content and
style vectors generated by our model, a 2D T-SNE analysis was conducted. This analysis projects the vectors onto a
two-dimensional space, where their proximity indicated similarity. The TSNE plots in Figure 5 showcase the content
embeddings (hcontent) and style embeddings (hstyle) after disentangling the style-content information. By examining
the distribution of features in the content and style space, it was observed that content and style were effectively
separated. The style space exhibited clustering of features belonging to the same speaker, suggesting discernible
patterns. However, in the content space, features from all speakers were mixed together without clear patterns or
clusters. These results demonstrate the success of our disentangling approach in effectively separating style-content
information. We additionally computed the velocity, acceleration, and jerk of TranSTYler’s predictions, source style,
and target style for source-target style transfers where the target is either Seen or Unseen. The results for style transfers
performed on four source-target pairs, with two Seen targets (Angelica and Lec_hist) and two Unseen targets (Almaram
and Minhaj) indicate that, for both Seen and Unseen targets, TranSTYler’s velocity is closer to the target than to the
source. Regarding the acceleration metric, we observed similar results for all style transfers except for the transfer from
source Bee to the unseen target Minhaj, where the predictions’ acceleration is closer to the source style. However, for
the same Bee - Minhaj style transfer, our predictions’ jerkness is closer to the target than the source style. For the style
transfer Lec_law - angelica, TranSTYler produces a velocity that is close to the target style and far from the source
style, an acceleration that is in between the source and target style, and a jerkness closer to the source style. Overall,
these findings show that TranSTYler effectively transfers the behavior expressivity style from the target to the source
speakers, as evidenced by the high style transfer accuracy, content preservation, and the observed patterns in velocity,
acceleration, and jerk metrics.

6.2 Subjective Evaluation

Figure 6 (a) shows the mean scores obtained for all factors for all conditions (Mix-StAGE, Seen and Unseen); the higher
the mean score, the closer the condition is w.r.t the target style. For all factors, our model obtained the mean scores
higher than those of the baseline. For all factors, Mix-StAGE received lower scores than the Seen condition and higher
scores than the Unseen condition. This may be due to the fact that speakers are visible during training in the Mix-StAGE
condition, whereas TranSTYler is unseen in the Unseen condition. We conducted post-hoc paired t-tests for each
factor between the three conditions and found significant differences (p < 0.007) between Mix-StAGE and Seen, and
Unseen and Seen for all factors. We found significant results for Mix-StAGE and Unseen for all factors except ’body
orientation’. Our prediction model in both Seen and Unseen conditions outperforms the baseline for all factors. The
Seen condition also surpasses the Unseen one. Our prediction model in both Seen and Unseen conditions outperforms
the baseline for all factors. The Seen condition also surpasses the Unseen one. The goal of Study 2 is to assess
the preservation of the speech content during the style transfer. It evaluates the coherence of gestures by examining
their coordination with speech content and synchronization with speech rhythm. Results of Study 2 are presented
in Figure 6(b). We conducted paired t-tests for each factor between the following conditions: TranSTYler and Error,
TranSTYler and Ground Truth, and Ground Truth and Error. The results showed significant differences (p < 0.001)
between each pair of conditions for all factors. TranSTYler achieved scores that are significantly (p < 0.001) very
similar to the ground truth scores. In contrast, the control condition, error, obtained a significantly (p < 0.001)
lower mean score than the scores obtained by our model. Thus the gestures computed by our model maintained
adequacy with the speech content as predicted gestures are highly similar to those in the original video. However,
we are aware that further study ought to be conducted on measuring more precisely the semantic and pragmatic
information conveyed by the predicted behaviors. The third study aimed to compare our model, TranSTYler, with
a second baseline, DiffGAN[Ahuja et al.(2022)], and results are shown in Figure 6 (c). Participants were asked to
identify which animation, between condition 1 (TranSTYler) and condition 2 (DiffGAN), had the most similar behavior
expressivity style as the reference video (target style) based on the arm gesture’s extent, frequency, timing, and position
of the body in relation to speech. A post-hoc binomial test was also conducted, and significant results were found for
both conditions (p < 0.001). Thus, overall, our model generates animations that significantly capture better the
behavior expressivity style of the target speaker than does DiffGAN.
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7 Conclusion

We present TranSTYLer for synthesizing body and facial gestures of source speakers in the style of target speak-
ers, without additional training. We propose a novel methodology for evaluating behavior expressivity style transfer,
measuring content preservation and style transfer while identifying potential leakages between style and content in-
formation. Furthermore, we expand the PATS corpus by including 2D Facial Landmarks and Dialog Tags.
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