An SIS model in the Chemostat

Hayat Berhoune, Bachir Bar, Mustapha Lakrib, Tewfik Sari

To cite this version:

Hayat Berhoune, Bachir Bar, Mustapha Lakrib, Tewfik Sari. An SIS model in the Chemostat. 2023. hal-04293111

HAL Id: hal-04293111
 https://hal.science/hal-04293111

Preprint submitted on 18 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An SIS model in the Chemostat

Hayat Berhoune * Bachir Bar ${ }^{\dagger}$ Mustapha Lakrib ${ }^{\ddagger}$ Tewfik Sari ${ }^{\S}$

November 18, 2023

Abstract

Abstract.We study a mathematical model of bacterial growth on a single limiting nutrient in a chemostat where a virus is present. The assumption is that the virus can infect the population, resulting in the emergence of two distinct populations: the susceptible and the infected, which are in competition. The model has the structure of an SIS epidemic model. We assume that the growth functions are general and not just linear or of the Monod type as in previous works in the literature. We analyze the local stability of both disease-free and endemic equilibria. The model can exhibit a multiplicity of endemic equilibria, as well as the appearance of periodic orbits by supercritical or subcritical Hopf bifurcations. Bistability between several equilibrium states or limit cycles is also possible. We present an explicit expression for the basic reproduction number of the epidemic in terms of biologically significant parameters. To better understand the richness of the model's behavior, a few bifurcation diagrams with respect to input nutrient concentration are examined.

Keywords. Chemostat; SIS epidemic model; Hopf bifurcation; Bi-stability; Multiple limit cycles.

Contents

1 Introduction

2 Mathematical model, notations and preliminary results 4
3 Results 5
3.1 Existence of equilibria . 5
3.2 Multiplicity of positive equilibria in the case $\lambda_{s}<\lambda_{i}$. 6
3.3 Basic reproduction number . 9
3.4 Local stability of equilibria . 10
3.5 Summary of the conditions of existence and local stability 12
*hayat.berhoune1@gmail.com Laboratoire Systèmes Dynamiques et Applications, Université Abou Bekr Belkaid, Tlemcen, Algérie.
\dagger bachir.bar1@gmail.com Ecole Normale Supérieure, Mostaganem, Algérie.
\pm m.lakrib@univ-sba.dz Laboratoire de Mathématiques, Université Djillali Liabès, Sidi Bel Abbès, Algérie.
${ }^{\S}$ Corresponding author. tewfik.sari@inrae.fr ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
4 Applications 13
4.1 Linear growth functions 13
4.1.1 \quad Existence and stability of equilibria 13
4.1.2 Comparison with previous results in the literature 15
4.1.3 \quad A necessary and sufficient condition for the uniqueness of the positive equilibrium 15
4.2 Monod growth functions 16
5 Bifurcation diagrams 17
5.1 Linear growth functions 17
5.1.1 A case where $\lambda_{s}=\lambda_{i}$ and E_{2} is unique and can be unstable 17
5.1.2 A case where $\lambda_{s}<\lambda_{i}$ and E_{2} is unique and stable 18
5.1.3 A case where $\lambda_{s}<\lambda_{i}$ and E_{2} is unique and can be unstable 19
5.1.4 Multiplicity of positive equilibria 21
5.2 Monod growth functions 23
6 Discussion 24
A Proofs 25
A. 1 Proof of Proposition 2 25
A. 2 Proof of Lemmal6 26
A. 3 Proof of Proposition 10 26

| A. 4 Proof of Proposition 11 |
| :--- | :--- | 27

A. 5 Proof of Lemmal12 28
B Numerical experimentation 30
B. 1 Proof of Proposition 21 30
B. 2 Numerical evidence for a Hopf bifurcation 30
B. 3 Numerical illustrations 31

1 Introduction

The chemostat is a simple laboratory apparatus used for the continuous culture of microorganisms. It was introduced simultaneously by Novick and Szilard [25], and Monod [18. For details and complements on continuous culture, the reader is referred to [13, 19. The mathematical analysis of models of growth and competition in the chemostat can be found in 12, 30.

The Competitive Exclusion Principle predicts that in the basic chemostat model, operated at constant input and dilution rate, coexistence of two or more microbial populations competing for a single non-reproducing nutrient is not possible, see [12, 14, 27, 30, 32] and the references therein. However, the coexistence of competing population often occurs in natural ecosystems and, to explain this, several mechanisms of coexistence have been considered. For example temporal variability in the environment, may allow two or more species to coexist, see [30, Chapter 7] and [33, Chapter 5] and the references therein. Other hypotheses that explain the coexistence include the density dependence of growth function (see [1, 10, 20, 21, 22]), the consideration of inhibitory substances like antibiotic or pesticides (see [30, Chapter 4] and [2, 5, 6, 7, [17, 34]) and the incorporation of viruses (see [15, 23, 31). Current research suggests that viruses have a significant impact on bacterial populations in aquatic environments and may play a role in regulating biodiversity [16]. Indeed, viral infection can be an important factor in the ecological control of planktonic micro-organisms,
and studying the role of viruses in aquatic environments is a major challenge 3]. In 23] the authors considered the model

$$
\left\{\begin{align*}
S^{\prime} & =\left(S^{0}-S\right) D-\frac{1}{\eta_{s}} \alpha_{s} S x_{s}-\frac{1}{\eta_{i}} \alpha_{i} S x_{i}-\frac{1}{\eta_{y}} \alpha_{y} S y \tag{1}\\
x_{s}^{\prime} & =\left(\alpha_{s} S-D_{s}\right) x_{s}-\delta x_{s} x_{i}+\gamma x_{i} \\
x_{i}^{\prime} & =\left(\alpha_{i} S-D_{i}\right) x_{i}+\delta x_{s} x_{i}-\gamma x_{i} \\
y^{\prime} & =\left(\alpha_{y} S-D_{y}\right) y
\end{align*}\right.
$$

This model involves two species that compete for a single non-reproducing growth-limiting nutrient, in a well-stirred chemostat in the presence of a virus. The concentration of the nutrient at time t is denoted by $S(t)$. One species x, is susceptible to attack by the virus. This species is divided into two subpopulations, susceptible with concentration at time t denoted by $x_{s}(t)$ and infective with concentration denoted by $x_{i}(t)$. The second species with concentration denoted by $y(t)$, is not susceptible to attack by the virus. Since the virus requires a host to replicate, it is not included in the model explicitly. The disease dynamics are therefore modeled in the form of an SIS epidemic model. In (1) S^{0} denotes the input concentration of the nutrient, $D>0$ is the dilution rate of the chemostat, and D_{s}, D_{i}, D_{y} are the removal rates of the bacteria, i.e. $D_{s}=D+\epsilon_{s}, D_{i}=D+\epsilon_{i}$ and $D_{y}=D+\epsilon_{y}$, denote the sum of the dilution rate D and the species-specific death rate. The parameters η_{s}, η_{i} and η_{y} are the growth yield coefficients, representing the conversion of nutrients to biomass. The rate of infection of susceptible bacteria in close proximity to infected bacteria is denoted by δ, and γ denotes the rate of elimination of virus. The parameters α_{s}, α_{i} and α_{y} denote the growth coefficients of susceptible, infected and non susceptible bacteria, respectively.

If $x_{i}=0$ then the system (1) reduces to the usual model of competition of species x_{s} and y in the chemostat for which competitive exclusion occurs. One of the mains results of [23] is that coexistence of the competitors x_{s}, x_{i} and y is possible for the system (1). Therefore, while competitive exclusion occurs for (1) in the absence of the virus $\left(x_{i}=0\right)$, coexistence of competitors becomes possible in its presence. These findings suggest that the presence of viruses could enhance bacterial diversity, potentially influencing bacterial species' survival.

Much of the analysis of (11) is based on understanding the particular subsystem of (1) obtained by letting $y=0$:

$$
\left\{\begin{align*}
S^{\prime} & =\left(S^{0}-S\right) D-\frac{1}{\eta_{s}} \alpha_{s} S x_{s}-\frac{1}{\eta_{i}} \alpha_{i} S x_{i} \tag{2}\\
x_{s}^{\prime} & =\left(\alpha_{s} S-D_{s}\right) x_{s}-\delta x_{s} x_{i}+\gamma x_{i}, \\
x_{i}^{\prime} & =\left(\alpha_{i} S-D_{i}\right) x_{i}+\delta x_{s} x_{i}-\gamma x_{i} .
\end{align*}\right.
$$

Subsystem (2) was introduced in [31] who considered the existence and local stability of equilibria in the special case that $D=D_{s}=D_{i}, \eta_{i}<\eta_{s}$ and $\alpha_{i} \approx \alpha_{s}$. The global stability of equilibria of (2) was considered assuming $D=D_{s}=D_{i}$ and $\alpha_{i}=\alpha_{s}$ in [15]. The results of [15, 31] on the local and global analysis of the subsystem (2) were extended in [23] in the general case without the above mentioned restrictions on the removal rates, the yields coefficients and the growth rates. Relaxing the assumption that $D=D_{s}=D_{i}$ requires more delicate analysis than previously done in [15, 31] and results in differences in the number of possible equilibria and the types of bifurcations that they can undergo. It is shown in [23] that the subsystem (2] has rich dynamics, including multiplicity of endemic equilibria, as well as the appearance of periodic orbits by supercritical or subcritical Hopf bifurcations. Bistability between several equilibrium points or limit cycles is also possible.

Our aim in this paper is to relax the hypotheses that the growth functions are linear and to extend the results of [23] on the existence and local stability of equilibria of (2) to general increasing growth functions. We also construct some bifurcation diagrams with respect to the nutrient input concentration S^{0}, when the dilution D and the biological parameters are fixed.

The organization of this paper is as follows. In Section 2, we present the model and assumptions that we would consider. In Section 3, we present our main result which gives the conditions of
existence and stability of the equilibrium points. In Section 4 we apply our result to the case where the growth rates are linear or Monod functions. In Section 5, we present some bifurcation diagrams as the input concentration varies. These diagrams show the system's behavior when the biological parameters are fixed and also the dilution rate. The paper concludes with a discussion. Technical proofs are given in A, and numerical experiments to support some of our proofs are given in B

2 Mathematical model, notations and preliminary results

Following [23], we consider an SIS model in the chemostat taking the form

$$
\left\{\begin{align*}
S^{\prime} & =\left(S^{0}-S\right) D-\frac{1}{\eta_{s}} f_{s}(S) x_{s}-\frac{1}{\eta_{i}} f_{i}(S) x_{i} \tag{3}\\
x_{s}^{\prime} & =\left(f_{s}(S)-D_{s}\right) x_{s}-\delta x_{s} x_{i}+\gamma x_{i} \\
x_{i}^{\prime} & =\left(f_{i}(S)-D_{i}\right) x_{i}+\delta x_{s} x_{i}-\gamma x_{i}
\end{align*}\right.
$$

The variables and parameters in this model have the same meaning as in (2) except that the linear growth functions are replaced by general growth functions $f_{s}(S)$ and $f_{i}(S)$. The removal rates D_{s} and D_{i} are given by

$$
\begin{equation*}
D_{s}=D+\epsilon_{s}, \quad D_{i}=D+\epsilon_{i} \tag{4}
\end{equation*}
$$

where D is the dilution rate and $\epsilon_{s}, \epsilon_{i}$ the species-specific death rate of susceptible species x_{s} and infected species x_{i}, respectively. The functions f_{s} and f_{i}, represent the specific growth rates of the susceptible and infected bacteria, respectively. The system (2) corresponds to the particular case $f_{s}(S)=\alpha_{s} S$ and $f_{i}(S)=\alpha_{i} S$. In this work, we do not assume that the growth functions have this specific form. We only assume that

Hypothesis 1. $f_{s}(0)=f_{i}(0)=0$ and, for all $S>0, f_{s}^{\prime}(S)>0$ and $f_{i}^{\prime}(S)>0$.
It is assumed that infective bacteria have a higher death rate than susceptible bacteria, i.e. $\epsilon_{i} \geq \epsilon_{s}$. It is also assumed that the growth rate of infective bacteria is no better than that of susceptible bacteria. Therefore we add the following assumptions

Hypothesis 2. For all $S \geq 0, f_{s}(S) \geq f_{i}(S)$.
Hypothesis 3. $D_{i} \geq D_{s}$.
We note that the positive cone is positively invariant and all solutions are positively bounded. The proof is classical and hence omitted. We define the break-even concentrations λ_{s} and λ_{i} :

$$
\begin{equation*}
\lambda_{s}=f_{s}^{-1}\left(D_{s}\right), \quad \lambda_{i}=f_{i}^{-1}\left(D_{i}\right) \tag{5}
\end{equation*}
$$

When equation $f_{s}(S)=D_{s}$ or $f_{i}(S)=D_{i}$ has no solution, we put $\lambda_{s}=\infty$ or $\lambda_{i}=\infty$.
Lemma 1. If Hypotheses 1, 2 and 3 are satisfied, we have $\lambda_{i} \geq \lambda_{s}$.
Proof. From Hypothesis 1 we deduce that f_{i}^{-1} is increasing. Using Hypothesis 3 we have $\lambda_{i}=$ $f_{i}^{-1}\left(D_{i}\right) \geq f_{i}^{-1}\left(D_{s}\right)$. From Hypothesis 2 we deduce that $f_{i}^{-1} \geq f_{s}^{-1}$. Therefore, $f_{i}^{-1}\left(D_{s}\right) \geq$ $f_{s}^{-1}\left(D_{s}\right)=\lambda_{s}$. Hence, $\lambda_{i} \geq \lambda_{s}$.

In the rest of the paper, we will distinguish the two following cases:

$$
\begin{align*}
& \lambda_{i}>\lambda_{s} \tag{6}\\
& \lambda_{i}=\lambda_{s} . \tag{7}
\end{align*}
$$

Case (6) is more likely to occur. However, even if it is non generic, case (7) can occur, especially if $f_{s}=f_{i}$ and $\varepsilon_{s}=\varepsilon_{i}$, which is biologically meaningful, since the species x_{s} and x_{i} are the same. We use the following notations

$$
\begin{equation*}
X_{s}:=\frac{\gamma+D_{i}-f_{i}}{\delta}, \quad X_{i}:=\frac{f_{s}-D_{s}}{D_{i}-f_{i}} X_{s}, \quad F:=\frac{1}{\eta_{s}} f_{s} X_{s}+\frac{1}{\eta_{i}} f_{i} X_{i} . \tag{8}
\end{equation*}
$$

Remark 1. In the case $\lambda_{s}<\lambda_{i}$, we denote by $I:=\left(\lambda_{s}, \lambda_{i}\right)$. We have $f_{s}(S)>D_{s}$ and $f_{i}(S)<D_{i}$ for $S \in I$, and $f_{s}\left(\lambda_{s}\right)=D_{s}, f_{i}\left(\lambda_{i}\right)=D_{i}$. Therefore the functions X_{s}, X_{i} and F are non negative on I and we have $X_{s}\left(\lambda_{s}\right)>0, X_{i}\left(\lambda_{s}\right)=0, X_{s}\left(\lambda_{i}\right)>0$ and $X_{i}\left(\lambda_{i}\right)=+\infty$. Hence, we have $F\left(\lambda_{s}\right)=\frac{D_{s}}{\eta_{s}} X_{s}\left(\lambda_{s}\right)>0, F\left(\lambda_{i}\right)=+\infty$ and F is positive on I. We use the following notation

$$
\begin{equation*}
G(S):=S+\frac{1}{D} F(S) \tag{9}
\end{equation*}
$$

The function G is positive on I and has a vertical asymptote at $S=\lambda_{i}$ (see Figs. 1, 4(a), 5, 7(a), 8(a), 9(a) and $10($ a), for illustrative examples).

3 Results

3.1 Existence of equilibria

The existence of equilibria of system (3) is stated by the following result.
Proposition 2. Assume that Hypothesis 1 is satisfied. System (3) has the following equilibria:
The washout equilibrium, $E_{0}=\left(S^{0}, 0,0\right)$, which always exists.
The disease free equilibrium $(D F E), E_{1}=\left(\bar{S}, \bar{x}_{s}, 0\right)$ of extinction of x_{i}, where

$$
\begin{equation*}
\bar{S}=\lambda_{s}, \quad \bar{x}_{s}=\frac{D \eta_{s}}{D_{s}}\left(S^{0}-\lambda_{s}\right) \tag{10}
\end{equation*}
$$

Here, λ_{s} is defined by (5). This equilibrium exists if and only if $\lambda_{s}<S^{0}$.
An endemic equilibrium, or coexistence equilibrium, $E_{2}=\left(S^{*}, x_{s}^{*}, x_{i}^{*}\right)$, where the components are assumed to be positive. Two cases must be distinguished.

1. In the case $\lambda_{s}<\lambda_{i}$, S^{*} is a solution of equation

$$
\begin{equation*}
S^{0}=G(S) \tag{11}
\end{equation*}
$$

where the function G is defined by (9), and x_{s}^{*}, x_{i}^{*} are given by

$$
\begin{equation*}
x_{s}^{*}=X_{s}\left(S^{*}\right), \quad x_{i}^{*}=X_{i}\left(S^{*}\right) \tag{12}
\end{equation*}
$$

where the functions X_{s} and X_{i} are defined by (8). This equilibrium exists if and only if equation (11) has a solution $S=S^{*}$ such that $\lambda_{s}<S^{*}<\lambda_{i}$. Multiplicity of solution S^{*}, and hence of endemic equilibria E_{2}, can occur.
2. In the case $\lambda_{s}=\lambda_{i}$, we have $S^{*}=\lambda_{s}$ and

$$
\begin{equation*}
x_{s}^{*}=\frac{\gamma}{\delta}, \quad x_{i}^{*}=\frac{\eta_{i}}{D_{i}}\left(D\left(S^{0}-\lambda_{s}\right)-\frac{D_{s} \gamma}{\eta_{s} \delta}\right) . \tag{13}
\end{equation*}
$$

This equilibrium exists if and only if $S^{0}>\lambda_{c}:=\lambda_{s}+\frac{D_{s} \gamma}{D \delta \eta_{s}}$.

Proof. The proof is given in Appendix A.1.
This proposition says that the washout equilibrium E_{0} always exists, while the $\operatorname{DFE} E_{1}$ is unique if it exists. Moreover, in the case (7), the positive equilibrium E_{2} is also unique if it exists. On the other hand, in the case (6), any solution $S^{*} \in I$ of the equation (11) gives a positive equilibrium E_{2}. Therefore the number of positive equilibria depends on the number of solutions of the equation (11) belonging to I.

3.2 Multiplicity of positive equilibria in the case $\lambda_{s}<\lambda_{i}$

As stated in Remark 1 the function G is positive on interval I and tends to infinity when S tends to λ_{i}, see Fig. 1.

Remark 2. A positive equilibrium is given by a solution of the equation (11), belonging to I. A solution of this equation is the abscissa of a point of intersection of the horizontal line where S^{0} is fixed (in red in Fig. 1) and the curve Γ of equation $S^{0}=G(S)$ (in blue in Fig. 1).

Hence, existence of solutions of the equation (11) and their number is related to the monotonicity or not of the function G. Therefore, in the case (6), equation

$$
\begin{equation*}
G^{\prime}(S)=0 \quad\left(\text { or, equivalentrly, } F^{\prime}(S)=-D\right) \tag{14}
\end{equation*}
$$

plays a major role in the discussion of the uniqueness or multiplicity of the positive equilibria. Assume that equation (14) has solutions $S_{k}^{S N}$ (depending on D), where $k=1,2, \cdots$ is an integer. See Fig. 1(b) for an example with $k=1,2$.

Figure 1: Illustration of the existence and multiplicity of positive equilibria. (a) $G(S)$ is increasing. (b) $G(S)$ is decreasing for $S_{2}^{N S}<S<S_{1}^{N S}$ and increasing for $\lambda_{s}<S<S_{2}^{N S}$ and $S_{1}^{N S}<S<\lambda_{i}$.

Definition 1. We define the following numbers as relevant to the discussion of the existence and number of positive equilibria:

$$
\begin{align*}
\lambda_{c} & :=G\left(\lambda_{s}\right)=\lambda_{s}+\frac{D_{s}}{D \delta \eta_{s}}\left(D_{i}-f_{i}\left(\lambda_{s}\right)+\gamma\right), \tag{15}\\
\lambda_{k}^{S N} & :=G\left(S_{k}^{S N}\right)=S_{k}^{S N}+\frac{1}{D} F\left(S_{k}^{S N}\right), \quad k=1,2, \cdots \tag{16}
\end{align*}
$$

The number λ_{c} corresponds to a transcritical bifurcation of an endemic equilibrium E_{2} and the equilibrium E_{1}, while the numbers $\lambda_{k}^{S N}$ correspond to saddle-node bifurcations of the positive equilibria.

For example, if $G^{\prime}(S)>0$ for all $S \in I$, then equation (11) has at most one solution, see Fig. 1(a), where there is one solution if $S^{0}>\lambda_{c}$ and no solution if $S^{0}<\lambda_{c}$. On the other hand, if $G^{\prime}(S)<0$ for some $S \in I$, then equation (11) can have more than one solution. Assume for example that, as in Fig. 1(b), the equation (14) has two solutions $S_{1}^{S N}$ and $S_{2}^{S N}$ such that $\lambda_{i}>S_{1}^{S N}>S_{2}^{S N}>\lambda_{s}$ and $\lambda_{1}^{S N}<\lambda_{c}<\lambda_{2}^{S N}$. Then, if $S^{0}<\lambda_{1}^{S N}$ there is no positive equilibrium point, if $\lambda_{1}^{S N}<S^{0}<\lambda_{c}$ there are two, if $\lambda_{c}<S^{0}<\lambda_{2}^{S N}$ there are three, and if $S^{0}>\lambda_{2}^{S N}$ the positive equilibrium point exists and is unique.

Remark 3. If $\lambda_{s}=\lambda_{i}$ then $D_{i}-f_{i}\left(\lambda_{s}\right)=0$ and the number 15 becomes $\lambda_{c}=\lambda_{s}+\frac{D_{s} \gamma}{D \delta \eta_{s}}$, which is the number that appears in item (2) of Proposition 2. This is the reason why we have noted the two numbers by λ_{c}.

The following proposition gives the existence and uniqueness of the positive equilibrium of (3) in the case (6), when equation (14) has no solution in I.

Proposition 3. If equation (14) has no solution in I, then the positive equilibrium $E_{2}=\left(S^{*}, x_{s}^{*}, x_{i}^{*}\right)$ exists if and only if $S^{0}>\lambda_{c}$, where λ_{c} is defined by 15). If it exists, it is unique.

Proof. As stated in Remark 2, a positive equilibrium corresponds to an intersection of the red and blue curves in Fig. 1. Since G is increasing, there exists at most one point of intersection. A point of intersection exists if and only if $S^{0}>\lambda_{c}$, where λ_{c} is given by 15), see Fig. 11(a).

When equation (14) has a solution in I, a multiplicity of positive equilibria is possible. More precisely, we have the following result.

Proposition 4. Assume that $\lambda_{s}<\lambda_{i}$ and (14) has solutions $S_{k}^{S N}$ in I. Let λ_{c} and $\lambda_{k}^{S N}$ defined by (15) and (16).
(1) If $S^{0}>\lambda_{c}$, then, generically, an odd number of positive equilibria exist (at least one).
(2) If $S^{0}<\lambda_{c}$, then, generically, there is either no positive equilibrium or an even number of positive equilibria exist.
The values $S^{0}=\lambda_{k}^{S N}$ correspond to saddle node bifurcations of positive equilibria.
Proof. The curve Γ of equation $S^{0}=G(S)$ and an horizontal line of equation S^{0} kept constant have, generically, an odd number of points of intersection if $S^{0}>\lambda_{c}$ (at least one). If $S^{0}<\lambda_{c}$, generically, an even number of points of intersection exist, with possibly no intersection point, see Fig. 1(b).
Lemma 5. The equation $S^{0}=G(S)$ (or, equivalently, $D\left(S^{0}-S\right)=F(S)$) is equivalent to the equation $f(S)=0$ where f is defined by

$$
\begin{align*}
f(S):= & D \delta \eta_{s} \eta_{i}\left(D_{i}-f_{i}(S)\right)\left(S^{0}-S\right) \tag{17}\\
& -\left(D_{i}-f_{i}(S)+\gamma\right)\left(\eta_{i}\left(D_{i}-f_{i}(S)\right) f_{s}(S)+\eta_{s}\left(f_{s}(S)-D_{s}\right) f_{i}(S)\right) .
\end{align*}
$$

Proof. Using the definitions (8) of the functions X_{s}, X_{i} and F, we see that the equation $D\left(S^{0}-S\right)=$ $F(S)$ is equivalent to the equation $f(S)=0$.

Since we are looking for the solutions $S^{*} \in\left(\lambda_{s}, \lambda_{i}\right)$ of this equation, it is useful to note that

$$
\begin{align*}
& f\left(\lambda_{s}\right)=D \eta_{s} \eta_{s} \delta\left(D_{i}-f_{i}\left(\lambda_{s}\right)\right)\left(S^{0}-\lambda_{c}\right), \\
& f\left(\lambda_{i}\right)=D_{i} \eta_{s} \gamma\left(D_{s}-f_{s}\left(\lambda_{i}\right)\right)<0, \tag{18}
\end{align*}
$$

where λ_{c} is defined in (15). Since $D_{i}>f_{i}\left(\lambda_{s}\right), f\left(\lambda_{s}, S^{0}, D\right)$ has the same sign as $S^{0}-\lambda_{c}$. The number λ_{c} therefore plays an important role in the determination of the number of solutions of the solutions in the interval $\left(\lambda_{s}, \lambda_{i}\right)$, i.e. in the existence and number of positive equilibria. Indeed, we can make the following remark.

Remark 4. Using the formulas (18) we can solve equation 17) on the interval $\left(\lambda_{s}, \lambda_{i}\right)$ and deduce that

- If $S^{0}>\lambda_{c}$, then $f\left(\lambda_{s}\right)>0$ and hence, generically, an odd number of positive equilibria exist (at least one).
- If $S^{0}<\lambda_{c}$, then $f\left(\lambda_{s}\right)<0$ and hence, generically, there is either no positive equilibrium or an even number of positive equilibria exist.

This is the result obtained in Proposition 4, by solving equation $S^{0}=G(S)$. The advantage of the equation $S^{0}=G(S)$ over the equivalent equation $f(S)=0$ is that the function $G(S)$ depends only on the parameter D, and the solutions have a clear geometric interpretation: they are the abscissas of the points of intersection of the horizontal line defined by S^{0} with the curve Γ defined as the graph of the function $G(S)$, see Remark 2 and Fig. 1. On the other hand, when we consider the equation $f(S)=0$, the two parameters S^{0} and D are intertwined in the equation and the solutions do not have a nice graphical interpretation.

We now give a sufficient condition for $F^{\prime}(S)>0$ for all $S \in I$, so that equation (14) has no solution in I, and the endemic equilibrium is unique, if it exists.

Lemma 6. If $\eta_{s} \geq \eta_{i}$ and $f_{s}^{\prime}(S) \geq f_{i}^{\prime}(S)$ for all $S \in I$, then $F^{\prime}(S)>0$ for all $S \in I$. Therefore, if it exists, the endemic equilibrium is unique.
Proof. The proof is given in Appendix A. 2
Straightforward calculation gives

$$
\begin{equation*}
F^{\prime}=\frac{\varphi_{i}\left(\varphi_{i}-\gamma\right) A_{s} f_{s}^{\prime}+A_{i} f_{i}^{\prime}}{\delta \eta_{s} \eta_{i} \varphi_{i}^{2}} \tag{19}
\end{equation*}
$$

where $\varphi_{s}=f_{s}-D_{s}, \varphi_{i}=f_{i}-D_{i}$ and

$$
\begin{equation*}
A_{s}=f_{i}\left(\eta_{s}-\eta_{i}\right)+\eta_{i} D_{i}, \quad A_{i}=\varphi_{s} \varphi_{i}^{2}\left(\eta_{s}-\eta_{i}\right)-\eta_{i} \varphi_{i}^{2} D_{s}+\gamma \eta_{s} \varphi_{s} D_{i} \tag{20}
\end{equation*}
$$

Lemma 7. The equation $G^{\prime}(S)=0$ (or, equivalently, $F^{\prime}(S)=-D$) is equivalent to the equation $g(S)=0$, where g is defined by

$$
\begin{equation*}
g:=\varphi_{i}\left(\varphi_{i}-\gamma\right) A_{s} f_{s}^{\prime}+A_{i} f_{i}^{\prime}+D \delta \eta_{s} \eta_{i} \varphi_{i}^{2} \tag{21}
\end{equation*}
$$

and A_{s} and A_{i} are given by 20). Note that the condition $G^{\prime}(S)>0$ (which is equivalent to the condition $\left.F^{\prime}(S)>-D\right)$ is satisfied if and only if $g(S)>0$.

Proof. From (19) we deduce that the condition $F^{\prime}(S)=-D$ is equivalent to the equation $g(S)=0$, where g is defined by (21).

Lemma 8. If it exists, the positive equilibrium is unique if and only if we have $\min _{S \in I} g(S) \geq 0$.
Proof. From $\varphi_{i}\left(\lambda_{i}\right)=0$, we deduce that

$$
\begin{equation*}
g\left(\lambda_{i}\right)=\gamma \eta_{s} D_{i} f_{i}^{\prime}\left(\lambda_{i}\right) \varphi_{s}\left(\lambda_{i}\right), \quad g^{\prime}\left(\lambda_{i}\right)=\gamma \eta_{s} D_{i} f_{i}^{\prime \prime}\left(\lambda_{i}\right) \varphi_{s}\left(\lambda_{i}\right) \tag{22}
\end{equation*}
$$

Since $\varphi_{s}\left(\lambda_{i}\right)>0$ and $f_{i}^{\prime}\left(\lambda_{i}\right)>0$, we have $g\left(\lambda_{i}\right)>0$. Therefore, the function $g(S)$ does not change of sign on I if and only if $\min _{S \in I} g(S) \geq 0$.

The sign of $g(S)$ on I can be determined easily, for example by calculating the derivative $g^{\prime}(S)$ and studying its variations on the interval I. As nothing can be said in the general case, this study will be carried out in Section 4.1.3 for linear growth functions.

3.3 Basic reproduction number

Following [23], who considered the case of linear growth functions $f_{s}(S)=\alpha_{s} S$ and $f_{i}(S)=\alpha_{i} S$, the basic reproduction number \mathcal{R}_{0} can be given by

$$
\begin{equation*}
\mathcal{R}_{0}=\frac{f_{i}(\bar{S})+\delta \bar{x}_{s}}{D_{i}+\gamma} \tag{23}
\end{equation*}
$$

where $\bar{S}=\lambda_{s}$ and $\bar{x}_{s}=\frac{D \eta_{s}}{D_{s}}\left(S^{0}-\lambda_{s}\right)$ are the components of the DFE $E_{1}=\left(\bar{S}, \bar{x}_{s}, 0\right)$, where the infective species x_{i} is extinct. The biological interpretation of this number is the following, see [23]: The numerator represents the mean number of infectives produced per unit time from both horizontal and vertical transmission resulting from the introduction of a single infective into an otherwise totally susceptible population at equilibrium, and $\frac{1}{D_{i}+\gamma}$ represents the mean amount of time an infective individual remains in the chemostat as an infective. Using the expression

$$
\begin{equation*}
\mathcal{R}_{0}=\frac{f_{i}\left(\lambda_{s}\right)+\delta \frac{D \eta_{s}}{D_{s}}\left(S^{0}-\lambda_{s}\right)}{D_{i}+\gamma} \tag{24}
\end{equation*}
$$

a simple calculation shows that $\mathcal{R}_{0}>1$ is equivalent to $S^{0}>\lambda_{c}$ and $\mathcal{R}_{0}<1$ is equivalent to $S^{0}<\lambda_{c}$, where λ_{c} is defined by 15 . Therefore our results can be stated using the basic reproduction number. As a corollary of Propositions 3 and 4 we obtain the following result.
Theorem 9. Assume that $\mathcal{R}_{0}>1$ or equivalently $S^{0}>\lambda_{c}$.

1. If equation (14) has no solution in I, then the positive equilibrium exists and is unique.
2. If equation (14) has a solution in I, then there exists at least one positive equilibrium and, generically, an odd number of positive equilibria exist.

Assume that $\mathcal{R}_{0}<1$ or equivalently $S^{0}<\lambda_{c}$.

1. If equation (14) has no solution in I, then no positive equilibrium exists.
2. If equation has a solution in I, then, generically, there is either no positive equilibrium or an even number of positive equilibria exist.

3.4 Local stability of equilibria

The local stability of the boundary equilibria E_{0} and E_{1} are given as follows.
Proposition 10. E_{0} is stable if and only if $S^{0}<\lambda_{s}$, where λ_{s} is given by (5). E_{1} is stable if and only if $S^{0}<\lambda_{c}$ where λ_{c} is given by 15 .

Proof. The proof is given in Appendix A. 3
In what follows, we analyze the stability of a positive equilibrium E_{2}. The cases (6) and (7) must be distinguished.

Proposition 11. Assume that case (6) holds, i.e. $\lambda_{s}<\lambda_{i}$. An endemic equilibrium $E_{2}=$ $\left(S^{*}, x_{s}^{*}, x_{i}^{*}\right)$ of (3), where S^{*} is a solution of 11), and x_{s}^{*}, x_{i}^{*} are given by 12), if it exists, is stable if and only if $F^{\prime}\left(S^{*}\right)>-D$ and $a_{1} a_{2}-a_{3}>0$, where a_{1}, a_{2} and a_{3} are given by

$$
\begin{align*}
& a_{1}=B+\gamma \frac{x_{i}^{*}}{x_{s}^{*}}, \\
& a_{2}=\frac{1}{\eta_{s}} f_{s}\left(S^{*}\right) x_{s}^{*} f_{s}^{\prime}\left(S^{*}\right)+\frac{1}{\eta_{i}} f_{i}\left(S^{*}\right) x_{i}^{*} f_{i}^{\prime}\left(S^{*}\right)+\delta x_{i}^{*} C+B \frac{\gamma x_{i}^{*}}{x_{s}^{*}}, \tag{25}\\
& a_{3}=\frac{1}{\eta_{i}} f_{i}\left(S^{*}\right) x_{i}^{*}\left(f_{s}^{\prime}\left(S^{*}\right) \delta x_{s}^{*}+f_{i}^{\prime}\left(S^{*}\right) \frac{\gamma x_{i}^{*}}{x_{s}^{*}}\right)+C\left(B \delta x_{i}^{*}-\frac{1}{\eta_{s}} f_{s}\left(S^{*}\right) x_{i}^{*} f_{i}^{\prime}\left(S^{*}\right)\right),
\end{align*}
$$

where $B=D+\frac{x_{s}^{*}}{\eta_{s}} f_{s}^{\prime}\left(S^{*}\right)+\frac{x_{i}^{*}}{\eta_{i}} f_{i}^{\prime}\left(S^{*}\right)$ and $C=\delta x_{s}^{*}-\gamma$.
Assume that case (7) holds, i.e. $\lambda_{s}=\lambda_{i}$. If it exists, the equilibrium $E_{2}=\left(\lambda_{s}, x_{s}^{*}, x_{i}^{*}\right)$, where x_{s}^{*}, x_{i}^{*} are given by (13), is stable if and only if $b_{1} b_{2}-b_{3}>0$, where b_{1}, b_{2} and b_{3} are given by

$$
\begin{align*}
b_{1} & =B+\delta x_{i}^{*} \\
b_{2} & =\frac{D_{s}}{\eta_{s}} x_{s}^{*} f_{s}^{\prime}\left(\lambda_{s}\right)+\frac{D_{i}}{\eta_{i}} x_{i}^{*} f_{i}^{\prime}\left(\lambda_{s}\right)+B \delta x_{i}^{*} \tag{26}\\
b_{3} & =\frac{D_{i}}{\eta_{i}} x_{i}^{*}\left(\gamma f_{s}^{\prime}\left(\lambda_{s}\right)+f_{i}^{\prime}\left(\lambda_{s}\right) \delta x_{i}^{*}\right)
\end{align*}
$$

where $B=D+\frac{x_{s}^{*}}{\eta_{s}} f_{s}^{\prime}\left(\lambda_{s}\right)+\frac{x_{i}^{*}}{\eta_{i}} f_{i}^{\prime}\left(\lambda_{s}\right)$.
Proof. The proof is given in Appendix A. 4
We now give a sufficient condition for the stability condition $a_{1} a_{2}-a_{3}>0$ or $b_{1} b_{2}-b_{3}>0$ to be satisfied.

Lemma 12. Assume that $\lambda_{s}<\lambda_{i}$. If

$$
\begin{equation*}
f_{s}^{\prime} \geq f_{i}^{\prime} \quad \text { and } \quad f_{s}^{\prime} f_{i}^{\prime}\left(f_{s}+f_{i}\right) \geq \delta\left(\eta_{s} f_{i} f_{s}^{\prime}-\eta_{i} f_{s} f_{i}^{\prime}\right) \tag{27}
\end{equation*}
$$

for $S=S^{*}$, where $S^{*} \in I$ is a solution of (11), then the corresponding equilibrium $\left(S^{*}, x_{s}^{*}, x_{i}^{*}\right)$ satisfies $a_{1} a_{2}-a_{3}>0$. Therefore, it is stable if and only if $G^{\prime}\left(S^{*}\right)>0$.

Assume that $\lambda_{s}=\lambda_{i}$. If the conditions (27) are satisfied for $S=\lambda_{s}$ then, if it exists, E_{2} satisfies $b_{1} b_{2}-b_{3}>0$. Therefore, it is stable.

Proof. The proof is given in Appendix A. 5
We now propose a reformulation of the stability conditions that will be useful for the following applications. We begin with the case $\lambda_{s}<\lambda_{i}$. Let

$$
\begin{equation*}
A_{4}(S)=A_{1}(S) A_{2}(S)-A_{3}(S) \tag{28}
\end{equation*}
$$

where A_{1}, A_{2} and A_{3} are defined by

$$
\begin{aligned}
& A_{1}=B+\gamma \frac{X_{i}}{X_{s}} \\
& A_{2}=\frac{1}{\eta_{s}} f_{s} X_{s} f_{s}^{\prime}+\frac{1}{\eta_{i}} f_{i} X_{i} f_{i}^{\prime}+\delta X_{i} C+B \frac{\gamma X_{i}}{X_{s}} \\
& A_{3}=\frac{1}{\eta_{i}} f_{i} X_{i}\left(f_{s}^{\prime} \delta X_{s}+f_{i}^{\prime} \frac{\gamma X_{i}}{X_{s}}\right)+C\left(B \delta X_{i}-\frac{1}{\eta_{s}} f_{s} X_{i} f_{i}^{\prime}\right),
\end{aligned}
$$

where $B=D+\frac{X_{s}}{\eta_{s}} f_{s}^{\prime}+\frac{X_{i}}{\eta_{i}} f_{i}^{\prime}$ and $C=\delta X_{s}-\gamma$. The coefficients A_{i} are defined by the same formulas as the coefficients a_{i}, see (25). The only difference is that S^{*} is replaced by S and x_{s}^{*} and x_{i}^{*} are replaced by $X_{s}(S)$ and $X_{s}(S)$, defined by (8). Note that the coefficients A_{i} in 28) depend only on the operating parameter D and not on the operating parameter S^{0}, unlike the quantities a_{i} in (25), which also depend on it.

We fix D. To simplify the presentation, consider the case where there exist S_{1}^{H} and S_{2}^{H} (depending on D) such that $\lambda_{s}<S_{1}^{H}<S_{2}^{H}<\lambda_{i}$ and $A_{4}(S, D)<0$ for $S \in\left(S_{1}^{H}, S_{2}^{H}\right)$, and positive outside this interval. The more general case where there exist more than two solutions S_{1}^{H} and S_{2}^{H} can be studied similarly. We have the following result.
Proposition 13. Assume that $\lambda_{s}<\lambda_{i}$. Let

$$
\begin{equation*}
\lambda_{k}^{H}=G\left(S_{k}^{H}\right):=S_{k}^{H}+\frac{1}{D} F\left(S_{k}^{H}\right), \quad k=1,2 \tag{29}
\end{equation*}
$$

Then $a_{1} a_{2}-a_{3}<0$ if and only if $\lambda_{1}^{H}<S^{0}<\lambda_{2}^{H}$. The numbers λ_{k}^{H} correspond to Hopf bifurcations of a positive equilibrium.
Proof. Using (12), we can write $a_{i}=A_{i}\left(S^{*}\left(S^{0}\right)\right)$ for $i=1,2,3$, where $S^{*}\left(S^{0}\right)$ is a solution of equation $S^{0}=G(S)$. Hence, $a_{1} a_{2}-a_{3}<0$ is equivalent to $\left.A_{(} S^{*}\left(S^{0}\right)\right)<0$, that is to say $S_{1}^{H}<$ $S^{*}\left(S^{0}\right)<S_{2}^{H}$, which is equivalent to $\lambda_{1}^{H}<S^{0}<\lambda_{2}^{H}$.

An illustrative example of how the numbers S_{1}^{H} and S_{2}^{H} are determined is given in Section 5.1.3. see Fig. 5.

We consider now the case $\lambda_{s}=\lambda_{i}$. Let $b_{4}=b_{1} b_{2}-b_{3}$, where the coefficients b_{1}, b_{2} and b_{3} are defined by (26). Note that b_{4} is a polynomial of degree 3 in x_{i}^{*} :

$$
\begin{equation*}
b_{4}=a X^{3}+b X^{2}+c X+d \tag{30}
\end{equation*}
$$

with $X=x_{i}^{*}$ and

$$
\begin{aligned}
& a=\frac{\delta^{2}}{\eta_{i}} f_{i}^{\prime}+\frac{\delta}{\eta_{i}^{2}} f_{i}^{\prime 2}, \quad b=\delta^{2} D+\frac{\delta \gamma}{\eta_{s}} f_{s}^{\prime}+\frac{2 \delta D}{\eta_{i}} f_{i}^{\prime}+\frac{1}{\eta_{i}^{2}} f_{i} f_{i}^{\prime 2}+\frac{2 \gamma}{\eta_{s} \eta_{i}} f_{s}^{\prime} f_{i}^{\prime}, \\
& c=\delta D^{2}+\frac{\gamma}{\eta_{s}} f_{s} f_{s}^{\prime}+\frac{D}{\eta_{i}} f_{i} f_{i}^{\prime}+\frac{2 \gamma D}{\eta_{s}} f_{s}^{\prime}+\frac{\gamma}{\delta \eta_{s} \eta_{i}}\left(f_{s}+f_{i}\right) f_{i}^{\prime} f_{s}^{\prime}+\frac{\gamma^{2}}{\delta \eta_{s}^{2}} f_{s}^{\prime 2}-\frac{\gamma}{\eta_{i}} f_{i} f_{s}^{\prime}, \\
& d=\frac{D \gamma}{\delta \eta_{s}} f_{s} f_{s}^{\prime}+\frac{\gamma^{2}}{\delta^{2} \eta_{s}^{2}} f_{s} f_{s}^{\prime 2} .
\end{aligned}
$$

The coefficients of b_{4} depend only on the parameter D, and not on S^{0}. This operating parameter appears in x_{i}^{*}, see 133 . We need to consider the positive roots of b_{4}. Since $a>0$ and $d>0$, the polynomial b_{4} has at least one negative real root. Therefore, the polynomial b_{4} can have a positive double root or two distinct positive real roots, or no positive real root. We have the following result

Proposition 14. If b_{4} has no positive real root then E_{2} is stable whenever it exists, i.e. if and only if $S^{0}>\lambda_{c}$. If b_{4} has two positive distinct real roots $X_{1}^{H}<X_{2}^{H}$ (depending on D), then E_{2} is unstable whenever $\lambda_{1}^{H}<S^{0}<\lambda_{2}^{H}$ and is stable if $\lambda_{c}<S^{0}<\lambda_{1}^{H}$ or $S^{0}>\lambda_{2}^{H}$, where λ_{k}^{H}, $k=1,2$ are defined by

$$
\begin{equation*}
\lambda_{k}^{H}=\lambda_{c}+\frac{D_{i}}{D \eta_{i}} X_{k}^{H}, \quad k=1,2 \tag{31}
\end{equation*}
$$

The numbers λ_{1}^{H} and λ_{2}^{H} correspond to Hopf bifurcations of the equilibrium E_{2}.

Proof. If b_{4} has no positive root then $b_{4}>0$ for any $S^{0}>\lambda_{c}$. If b_{4} has two positive real roots $X_{1}^{H}<X_{2}^{H}$ then it is negative if $X_{1}^{H}<x_{i}^{*}<X_{2}^{H}$ and positive if $x_{i}^{*}<X_{1}^{H}$ or $x_{i}^{*}>X_{2}^{H}$. Therefore using the definition (13) of x_{i}^{*}, we deduce that b_{4} is negative if $\lambda_{1}^{H}<S^{0}<\lambda_{2}^{H}$ and positive if $\lambda_{c}<S^{0}<\lambda_{1}^{H}$ or $S^{0}>\lambda_{2}^{H}$, where λ_{1}^{H} and λ_{2}^{H} are defined by (31).

An illustrative example of how the numbers X_{1}^{H} and X_{2}^{H} are determined is given in Section 5.1.1 see Fig. 3(a).

3.5 Summary of the conditions of existence and local stability

The results of Proposition 2 (existence of E_{0} and E_{1}), Theorem 9 (existence of E_{2}), Proposition 10 (stability of E_{0} and E_{1}) and Proposition 11 (stability of E_{2}) can be summarized in the following proposition.

Table 1: Existence and local asymptotic stability of equilibria of system (3) in the case where $\lambda_{s}<\lambda_{i}$. Here, λ_{s} is defined by (5), λ_{c} is defined by (3), S^{*} is a solution of equation (11) and a_{1}, a_{2} and a_{3} are defined by 25 . The multiplicity of endemic equilibria E_{2} can occur.

Equilibrium	Existence	Stability
E_{0}	Always exists	$S^{0}<\lambda_{s}$
E_{1}	$S^{0}>\lambda_{s}$	$S^{0}<\lambda_{c}$
E_{2}	See Theorem 9	$F^{\prime}\left(S^{*}\right)>-D$ and $a_{1} a_{2}-a_{3}>0$

Table 2: Existence and local asymptotic stability of equilibria of system (3) in the case where $\lambda_{s}<\lambda_{i}$ and equation (14) has no solution in I. The numbers $\lambda_{s}, \lambda_{c}, a_{1}, a_{2}$ and a_{3} are defined as in Table 1. The equilibrium E_{2} is unique if it exists.

Equilibrium	Existence	Stability
E_{0}	Always exists	$S^{0}<\lambda_{s}$
E_{1}	$S^{0}>\lambda_{s}$	$S^{0}<\lambda_{c}$
E_{2}	$S^{0}>\lambda_{c}$	$a_{1} a_{2}-a_{3}>0$

Table 3: Existence and local asymptotic stability of equilibria of system (3) in the case where $\lambda_{s}=\lambda_{i}$. Here, λ_{s} is defined by (5), λ_{c} is defined by (3) and b_{1}, b_{2} and b_{3} are defined by (26). The equilibrium E_{2} is unique if it exists.

Equilibrium	Existence	Stability
E_{0}	Always exists	$S^{0}<\lambda_{s}$
E_{1}	$S^{0}>\lambda_{s}$	$S^{0}<\lambda_{c}$
E_{2}	$S^{0}>\lambda_{c}$	$b_{1} b_{2}-b_{3}>0$

Proposition 15. Assume that $\lambda_{s}<\lambda_{i}$. The necessary and sufficient conditions of existence and local stability of the equilibria E_{0}, E_{1} and E_{2} of (3) are summarized in Table 1. In the case where $F^{\prime}(S)>-D$ for any $S \in\left(\lambda_{s}, \lambda_{i}\right)$, the conditions of existence and stability in Table 1 simplify as shown in Table 2

Assume that $\lambda_{s}=\lambda_{i}$. The necessary and sufficient conditions of existence and local stability of the equilibria E_{0}, E_{1} and E_{2} of (3) are summarized in Table 3.

4 Applications

4.1 Linear growth functions

In this section we illustrate our results on (1) with linear growth functions

$$
\begin{equation*}
f_{s}(S)=\alpha_{s} S, \quad f_{i}(S)=\alpha_{i} S \tag{32}
\end{equation*}
$$

4.1.1 Existence and stability of equilibria

For the growth functions (32), the break-even concentrations λ_{s}, λ_{i} defined by (5) are given by

$$
\begin{equation*}
\lambda_{s}=\frac{D_{s}}{\alpha_{s}}, \quad \lambda_{i}=\frac{D_{i}}{\alpha_{i}} . \tag{33}
\end{equation*}
$$

The threshold λ_{c} and the basic reproduction number \mathcal{R}_{0}, defined by (3) and 24 respectively, are given by

$$
\begin{equation*}
\lambda_{c}=\frac{D_{s}}{\alpha_{s}}+\frac{D_{s}}{\delta D \eta_{s}}\left(D_{i}-\alpha_{i} \frac{D_{s}}{\alpha_{s}}+\gamma\right), \quad \mathcal{R}_{0}=\frac{\alpha_{i} \frac{D_{s}}{\alpha_{s}}+\delta \frac{D}{D_{s}} \eta_{s}\left(S^{0}-\frac{D_{s}}{\alpha_{s}}\right)}{D_{i}+\gamma} . \tag{34}
\end{equation*}
$$

These formulas for λ_{c} and \mathcal{R}_{0} were given in [23, Eqs. (3.6) and (3.5)].
The condition $f_{s}(S) \geq f_{i}(S)$ in Hypothesis 2 is equivalent to $\alpha_{s} \geq \alpha_{i}$. Therefore, $f_{s}^{\prime}(S) \geq f_{i}^{\prime}(S)$. Hence, Lemmas 6 and 12 can be applied. More precisely we have the following results which give sufficient conditions for the uniqueness of the positive equilibrium and for its stability. We start with the simplest case, (7).

Proposition 16. Assume that $\alpha_{s} \geq \alpha_{i}$ and $\lambda_{s}=\lambda_{i}$, then E_{2} is unique and exists if and only if $S^{0}>\lambda_{c}:=\frac{D_{s}}{\alpha_{s}}+\frac{D_{s} \gamma}{\delta D \eta_{s}}$. If $\alpha_{s}+\alpha_{i} \geq \delta\left(\eta_{s}-\eta_{i}\right)$, then it is stable if it exists. If $\alpha_{s}+\alpha_{i}<\delta\left(\eta_{s}-\eta_{i}\right)$, E_{2} can be unstable. If E_{2} loses stability, it can only do so through a Hopf bifurcation.

Proof. The necessary and sufficient condition of existence of E_{2} follows from Proposition 2, For stability, note that for linear growth functions the sufficient conditions of stability (27) become

$$
\begin{equation*}
\alpha_{s} \geq \alpha_{i} \quad \text { and } \quad\left(\alpha_{s}+\alpha_{i}\right) \geq \delta\left(\eta_{s}-\eta_{i}\right) \tag{35}
\end{equation*}
$$

Hence, the result follows from Lemma 12. If E_{2} is unstable then $b_{1} b_{2}-b_{3}<0$ and it is the only Routh-Hurwitz coefficient that changes sign. The stability of E_{2} can therefore only be lost by a Hopf bifurcation.

We now consider the more complex case (6) where multiple endemic equilibria can occur.
Proposition 17. Assume that $\alpha_{s} \geq \alpha_{i}$ and $\lambda_{s}<\lambda_{i}$, then:

1. If $\eta_{s}=\eta_{i}$, then E_{2} is unique and stable, if it exists.
2. If $\eta_{s}>\eta_{i}$, then E_{2} is unique, if it exists. If, in addition, $\alpha_{s}+\alpha_{i} \geq \delta\left(\eta_{s}-\eta_{i}\right)$, then E_{2} is stable. If $\alpha_{s}+\alpha_{i}<\delta\left(\eta_{s}-\eta_{i}\right)$, then E_{2} can be unstable. If E_{2} loses stability, it can only do so through a Hopf bifurcation.
3. If $\eta_{s}<\eta_{i}$, then the multiplicity of positive equilibria (and hence of saddle node bifurcation) is possible. However, no Hopf bifurcation is possible in this case.
4. If $\alpha_{s}+\alpha_{i} \geq \delta\left(\eta_{s}-\eta_{i}\right)$, then a positive equilibrium is stable if and only if $G^{\prime}\left(S^{*}\right)>0$.

Proof. The uniqueness of E_{2} in the first item follows from Lemma 6. Its stability can be deduced from Lemma 12 and the fact that 27 can be written as 35 . Indeed, if $\eta_{s}=\eta_{i}$, the condition $\alpha_{s}+\alpha_{i} \geq \delta\left(\eta_{s}-\eta_{i}\right)$ is satisfied. The uniqueness of E_{2} in the second item follows from Lemma 6. It is stable if $\alpha_{s}+\alpha_{i} \geq \delta\left(\eta_{s}-\eta_{i}\right)$. If E_{2} is unstable then $a_{1} a_{2}-a_{3}<0$ and it is the only Routh-Hurwitz coefficient that changes sign. The stability of E_{2} can therefore only be lost by a Hopf bifurcation. To prove the third item, it suffices to note that if $\eta_{s}<\eta_{i}$, then condition $\alpha_{s}+\alpha_{i} \geq \delta\left(\eta_{s}-\eta_{i}\right)$ is satisfied. From Lemma 12 we deduce that $a_{1} a_{2}-a_{3}>0$, so that no Hopf bifurcation is possible. Again using the fact that (27) is written as (35), the result of the fourth item can be deduced from Lemma 12

If $\eta_{s}<\eta_{i}$, an example showing the multiplicity of positive equilibria is given in Figs. 7,8 and 9 , If $\alpha_{s}+\alpha_{i}<\delta\left(\eta_{s}-\eta_{i}\right)$, examples showing the destabilization of E_{2} are given in Fig. 33, in the case $\lambda_{s}=\lambda_{i}$ and in Fig. 6, in the case $\lambda_{s}<\lambda_{i}$.

If f_{s} and f_{i} are linear functions, then the equation $f(S)=0$, defined in 17), is a cubic equation. Therefore there exist at most three positive equilibria, and Proposition 4 and Theorem 9 can be given more precisely, replacing odd number by one or three and even number by two. More precisely, using Proposition 17, we have the following result.

Theorem 18. Assume that $\lambda_{s}<\lambda_{i}$.

1. Assume that $\mathcal{R}_{o}>1$ or equivalently $S^{0}>\lambda_{c}$.
(i) If $\eta_{s}=\eta_{i}$, then E_{2} exists, is unique and is stable.
(ii) If $\eta_{s}>\eta_{i}$, then E_{2} exists and is unique. It is stable if $\alpha_{s}+\alpha_{i} \geq \delta\left(\eta_{s}-\eta_{i}\right)$. If it loses its stability, it can only do so through a Hopf bifurcation.
(iii) If $\eta_{s}<\eta_{i}$, then at least one and at most three positive equilibria exist. Saddle node bifurcations of positive equilibria are possible but Hopf bifurcation is not.
2. Assume that $\mathcal{R}_{o}<1$ or equivalently $S^{0}<\lambda_{c}$.
(i) If $\eta_{s} \geq \eta_{i}$, then no positive equilibrium exists.
(ii) If $\eta_{s}<\eta_{i}$, then there is either no positive equilibrium point or generically two positive equilibria. Saddle node bifurcation of positive equilibria are possible, but Hopf bifurcation is not.

Proof. The result of item (1i) follows from Theorem 9 and item (1) of Proposition 17 . The result of item (1ii) follows from Theorem 9 and item (2) of Proposition 17 . The result of item (1iii) follows from Theorem 9 and item (3) of Proposition 17. The result of item (2i) follows from Theorem 9 . The result of item (2ii) follows from Theorem 99 and item (3) of Proposition 17 .

4.1.2 Comparison with previous results in the literature

We recover in Theorem 18 all results given in [23, Theorem 3.4], except for the sufficient conditions of uniqueness of the positive equilibrium [23, (3.7) and (3.8)]. However, in the next section, we give a necessary and sufficient condition for the uniqueness of the positive equilibrium. Before stating this result, it's worth comparing our proof of Theorem 18 with that of [23]. In their proof, these authors consider the cubic equation $f(S)=0$, which is written

$$
\begin{equation*}
f(S):=c_{0}+c_{1} S+c_{2} S^{2}+c_{3} S^{3}=0 \tag{36}
\end{equation*}
$$

where

$$
\begin{aligned}
c_{0} & =D D_{i} \delta \eta_{s} \eta_{i} S^{0} \\
c_{1} & =-D \delta \eta_{s} \eta_{i} S^{0} \alpha_{i}-D D_{i} \delta \eta_{s} \eta_{i}-\alpha_{s} \eta_{i} \gamma D_{i}-\alpha_{s} \eta_{i} D_{i}^{2}+\alpha_{i} \eta_{s} D_{s} \gamma+\alpha_{i} \eta_{s} D_{s} D_{i}, \\
c_{2} & =\alpha_{i}\left(D \delta \eta_{s} \eta_{i}+\alpha_{s}\left(\eta_{i}-\eta_{s}\right) \gamma+\alpha_{s}\left(\eta_{i}-\eta_{s}\right) D_{i}+\alpha_{s} \eta_{i} D_{i}-\alpha_{i} \eta_{s} D_{s}\right) \\
c_{3} & =\alpha_{s} \alpha_{i}^{2}\left(\eta_{s}-\eta_{i}\right)
\end{aligned}
$$

Note that $f(0)=D \delta \eta_{s} \eta_{i} D_{i} S^{0}>0$ and our formulas (18) become

$$
\begin{align*}
f\left(\lambda_{s}\right) & =D \eta_{s} \eta_{s} \delta\left(D_{i}-\alpha_{i} \lambda_{s}\right)\left(S^{0}-\lambda_{c}\right) \tag{37}\\
f\left(\lambda_{i}\right) & =D_{i} \eta_{s} \gamma\left(D_{s}-\alpha_{s} \lambda_{i}\right)<0
\end{align*}
$$

The cubic equation (36) is the same as [23, Eq. (B.1)] and the formulas (37) are the same as [23, Eqs. (B.3,B.4)]. As mentioned in Remark 4, the results on the existence and number of equilibria can be obtained by solving equation (37) directly. This is the method used in [23. These authors proceed by considering the cases $\eta_{s}=\eta_{i}, \eta_{s}>\eta_{i}$ and $\eta_{s}<\eta_{i}$ separately. We give the details of their argument in the $\eta_{s}=\eta_{i}$ case and refer the reader to [23, Page 1068] for the $\eta_{s}<\eta_{i}$ and $\eta_{s}>\eta_{i}$ cases. Assume that $\eta_{s}=\eta_{i}$. Then $c_{3}=0$ and since $\alpha_{s} \geq \alpha_{i}$ and $D_{i} \geq D_{s}$, we have $c_{2}>0$ in (36). Therefore $f(S)$ is quadratic, $f(0)>0, f\left(\lambda_{i}\right)<0$ and the coefficient of S^{2} is positive. Therefore both roots are real and positive, and one root lies to the right of λ_{i}. If $f\left(\lambda_{s}\right)>0$ or equivalently $S^{0}>\lambda_{c}$, there is a unique positive root $S^{*} \in\left(\lambda_{s}, \lambda_{i}\right)$ and hence the equilibrium E_{2} exists and is unique. If $S^{0}<\lambda_{c}$, no positive equilibrium exists. This proves the existence condition in item (1i) of Theorem 18. For the stability condition, they proceeded as we did, of course, by calculating the Jacobian matrices. They also obtained the sufficient condition (35) to have $a_{1} a_{2}-a_{3}>0$, see [23, Eq. (B.6)]. However, in our approach, this condition is obtained as a special case of the more general condition (27).

4.1.3 A necessary and sufficient condition for the uniqueness of the positive equilibrium

Lemma 8 gives a necessary and sufficient condition so that, if it exists, the endemic equilibrium is unique. In the case of linear growth functions, the function $g(S)$, given by (21), is a cubic polynomial function whose sign on I can be determined. Indeed, its derivative $g^{\prime}(S)$ is a quadratic function and, since $f_{i}^{\prime \prime}=0$, from 22 we have $g^{\prime}\left(\lambda_{i}\right)=0$. Consequently, the derivative cancels out only for a second value, \bar{S}. A direct calculation shows that

$$
g^{\prime}(S)=2 \alpha_{i}^{2}\left(\lambda_{i}-S\right)\left(3 \alpha_{s} \alpha_{i}\left(\eta_{i}-\eta_{s}\right) S-B\right)
$$

where $B=\alpha_{s}\left(\eta_{i}-\eta_{s}\right)\left(D_{i}+\gamma\right)+\alpha_{s} \eta_{i} D_{i}-\alpha_{i} \eta_{s} D_{s}+D \delta \eta_{s} \eta_{i}$. Therefore,

$$
\begin{equation*}
\bar{S}=\frac{\alpha_{s}\left(\eta_{i}-\eta_{s}\right)\left(D_{i}+\gamma\right)+\alpha_{s} \eta_{i} D_{i}-\alpha_{i} \eta_{s} D_{s}+D \delta \eta_{s} \eta_{i}}{3 \alpha_{s} \alpha_{i}\left(\eta_{i}-\eta_{s}\right)} \tag{38}
\end{equation*}
$$

We have the following result.

Figure 2: Case of uniqueness of the endemic equilibrium when the growth functions are linear.

Proposition 19. Assume that the growth functions are linear, $f_{s}(S)=\alpha_{s} S$ and $f_{i}(S)=\alpha_{i} S$, with $\alpha_{s} \geq \alpha_{i}$. Let \bar{S} be defined by (38). The endemic equilibrium E_{2} is unique, if and only $\eta_{s} \geq \eta_{i}$ or $\eta_{s}<\eta_{i}$ and one of the following conditions holds

1. $\bar{S} \geq \lambda_{i}$,
2. $\bar{S} \leq \lambda_{s}$ and $g\left(\lambda_{s}\right) \geq 0$,
3. $\bar{S} \in I$ and $g(\bar{S}) \geq 0$.

Proof. Using items (1) and (2) of Proposition 17 , if $\eta_{s} \geq \eta_{i}$ then, if it exists, the endemic equilibrium E_{2} is unique. Assume that $\eta_{s}<\eta_{i}$. Since $g^{\prime}(S)$ is quadratic and the coefficient of S^{2} is negative, $g^{\prime}(S)$ is positive for S between the λ_{i} and \bar{S} roots and negative outside them. Therefore, $g(S)$ is increasing for S between λ_{i} and \bar{S} and decreasing outside them. Therefore $g(S)$ does not cancel in I if and only if $\bar{S} \geq \lambda_{i}$, see Fig. 2 (a), $\bar{S} \leq \lambda_{s}$ and $g\left(\lambda_{s}\right) \geq 0$, see Fig. 2 (b), or $\bar{S} \in I$ and $g(\bar{S}) \geq 0$, see Fig. 2(c).

Note that using (4), λ_{s}, λ_{i} and \bar{S} are linear in D. Therefore, $g\left(\lambda_{s}\right)$ and $g(\bar{S})$ are cubic in D. It is therefore possible to determine D, as a function of the biological parameters, such that the conditions of Proposition 19 are satisfied. We won't attempt to do this in the general case, as the conditions obtained are rather cumbersome to write and have no biological interpretation. However, when the biological parameters are fixed, it is very easy to determine whether the conditions of Proposition 19 are satisfied or not, see Appendix B.1.

4.2 Monod growth functions

In this section we show how our results can be applied to Monod growth functions:

$$
\begin{equation*}
f_{s}(S)=\frac{m_{s} S}{K_{s}+S}, \quad f_{i}(S)=\frac{m_{i} S}{K_{i}+S} \tag{39}
\end{equation*}
$$

If condition $f_{s}(S) \geq f_{i}(S)$ in Hypothesis 2 is satisfied we do not necessarily have $f_{s}^{\prime}(S) \geq f_{i}^{\prime}(S)$ as for linear growth functions. Therefore Lemma 6 cannot be applied and the multiplicity of positive equilibria can occur. We have the following result.
Lemma 20. Assume that f_{s} and f_{i} are given by (39). The condition $f_{s}(S) \geq f_{i}(S)$ in Hypothesis 2 is equivalent to $m_{s} \geq m_{i}$ and $m_{s} K_{s} \geq m_{i} K_{i}$. Moreover, the condition $f_{s}^{\prime}(S) \geq f_{i}^{\prime}(S)$ in Lemmas
(6) or 12 is satisfied if and only if, in addition, $m_{s} K_{i} \geq m_{i} K_{s}$. The second condition in (27) is equivalent to

$$
\begin{equation*}
\frac{m_{s}}{K_{s}+S}+\frac{m_{i}}{K_{i}+S} \geq \delta\left(\eta_{s}-\eta_{i}+S\left(\frac{\eta_{s}}{K_{i}}-\frac{\eta_{i}}{K_{s}}\right)\right) \tag{40}
\end{equation*}
$$

Proof. We have

$$
f_{s}(S)-f_{i}(S)=\frac{\left(m_{s}-m_{i}\right) S+m_{s} K_{i}-m_{i} K_{s}}{\left(K_{s}+S\right)\left(K_{i}+S\right)} S
$$

Therefore, for all $S \geq 0, f_{s}(S) \geq f_{i}(S)$ if and only if $m_{s} \geq m_{i}$ and $m_{s} K_{i} \geq m_{i} K_{s}$. On the other hand, we have

$$
f_{s}^{\prime}(S)-f_{i}^{\prime}(S)=\frac{\left(m_{s} K_{s}-m_{i} K_{i}\right) S^{2}+2 K_{s} K_{i}\left(m_{s}-m_{i}\right) S+K_{s} K_{i}\left(m_{s} K_{i}-m_{i} K_{s}\right)}{\left(K_{s}+S\right)^{2}\left(K_{i}+S\right)^{2}}
$$

Therefore, for all $S \geq 0, f_{s}^{\prime}(S) \geq f_{i}^{\prime}(S)$ if and only if $m_{s} K_{s} \geq m_{i} K_{i}, m_{s} \geq m_{i}$ and $m_{s} K_{i} \geq m_{i} K_{s}$. The condition $f_{s}^{\prime} f_{i}^{\prime}\left(f_{s}+f_{i}\right) \geq \delta\left(\eta_{s} f_{i} f_{s}^{\prime}-\eta_{i} f_{s} f_{i}^{\prime}\right)$ in 27) becomes

$$
\frac{m_{s} K_{s} m_{i} K_{i}}{\left(K_{s}+S\right)^{2}\left(K_{i}+S\right)^{2}}\left(\frac{m_{s} S}{K_{s}+S}+\frac{m_{i} S}{K_{i}+S}\right) \geq \frac{\delta m_{s} K_{s} m_{i} K_{i} S}{\left(K_{s}+S\right)^{2}\left(K_{i}+S\right)^{2}}\left(\eta_{s} \frac{K_{i}+S}{K_{i}}-\eta_{i} \frac{K_{s}+S}{K_{s}}\right)
$$

which is the same as (40).
Note that in the limit $m_{s}=\alpha_{s} K_{s}, m_{i}=\alpha_{i} K_{i}$ and $K_{s}=K_{i}=\infty$, the Monod growth functions (39) tend to the linear growth functions (32) and the condition (40) reduces to the condition $\alpha_{s}+\alpha_{i} \geq$ $\bar{\delta}\left(\eta_{s}-\eta_{i}\right)$ obtained in (35). Section 5.2 shows an example where $\eta_{s}>\eta_{i}$, and yet the system does not admit the uniqueness of the endemic equilibrium. Consequently, the case of Monod functions is more complicated than the case of linear functions, and presents more situations than those encountered in Theorem 18. This case will be the subject of a forthcoming work.

5 Bifurcation diagrams

5.1 Linear growth functions

In this section we consider the model (2), where D_{s} and D_{i} are given by (4). We fix the biological parameters, i.e. the specific death rates ϵ_{s} and ϵ_{i} of the species, the rates of infection δ and the rate of elimination of viruses γ, the growth yield coefficients η_{s} and η_{i} and the growth rates α_{s} and α_{i} of the species. We also fix the dilution rate D and we study the behavior of the model with respect to the input concentration of the nutrient S^{0}.

Remark 5. With the exception of Figs. 10 and 11 (made with Monod growth functions), all the figures illustrating our results were made with linear growth functions $f_{s}(S)=\alpha_{s} S$ and $f_{i}(S)=\alpha_{i} S$. The biological parameter values are depicted in Table 4 These values have no biological meaning. We chose them only to illustrate our findings and compare them with the results of [23]. In all figures an equilibrium or a cycle is drawn in red when it is stable and in blue when it is unstable.

5.1.1 A case where $\lambda_{s}=\lambda_{i}$ and E_{2} is unique and can be unstable

We consider (2) with the biological parameter values depicted in row 1 of Table 4 For these biological parameter values the sufficient condition of stability $\alpha_{s}+\alpha_{i} \geq \delta\left(\eta_{s}-\eta_{i}\right)$ in Proposition 16 is not satisfied. Therefore, E_{2} can be unstable. Let us illustrate this for $D=0.5$. The plot of the third degree polynomial b_{4}, defined by (30), is depicted in Fig. 3(a). This polynomial is negative for $X_{1}^{H}<X<X_{2}^{H}$ and positive for $0<X<X_{1}^{H}$ or $X>X_{2}^{H}$.

Table 4: Biological parameter values for the system (2), where D_{s} and D_{i} are given by (4).

Figures	ϵ_{s}	ϵ_{i}	η_{s}	η_{i}	α_{s}	α_{i}	δ	γ	Figures of [23]
Fig.	3	0.2	0.2	10	0.01	3.0	3.0	2	5.5
Fig.	2	12	10	5	7	5	0.7	0.2	Figs. 1, 3
Figs. $5 \cdot 6$	2	192	55	0.5	7	6.5	2	0.01	Fig. 4
Figs. 7.	8	9.01	0.81	0.01	1	0.5	0.4	1	0.02

(a)

(b)

Figure 3: The biological parameter values are given Table 4 and $D=0.5$. (a) The plot of the polynomial b_{4} for $X>0$ showing its positive roots $X_{1}^{H} \approx 0.0012$ and $X_{2}^{H} \approx 0.0093$. (b) Bifurcation diagram showing the x_{s} components of the equilibria or limit cycle of (3) with respect of S_{0}. We have $\lambda_{s}=0.7 / 3, \lambda_{c}=1.855 / 3, \lambda_{1}^{H} \approx 0.791$ and $\lambda_{2}^{H} \approx 1.921$.

The theoretical results in Table 3 predict that for $S^{0} \in\left(0, \lambda_{s}\right), E_{0}$ is stable and coalesces with E_{1} when $S^{0}=\lambda_{s}$ and then stability is transferred to E_{1}. For $S^{0} \in\left(\lambda_{s}, \lambda_{c}\right), E_{1}$ is stable and coalesces with E_{2} when $S^{0}=\lambda_{c}$ and then stability is transferred to E_{2}. E_{2} is stable for $\lambda_{c}<S_{0}<\lambda_{1}^{H}$ or $S_{0}>\lambda_{2}^{H}$ and unstable for $\lambda_{1}^{H}<S_{0}<\lambda_{2}^{H}$, where λ_{1}^{H} and λ_{2}^{H} are given by 31). These theoretical predictions are confirmed by the bifurcation diagram shown in Fig. 3(b) and obtained with the software MATCONT [8. This diagram shows that a stable limit cycle appears at λ_{1}^{H} and disappears at λ_{2}^{H}.

5.1.2 \quad A case where $\lambda_{s}<\lambda_{i}$ and E_{2} is unique and stable

We consider (2) with the biological parameter values in row 2 of Table 4. Since $\eta_{s}>\eta_{i}$ and $\alpha_{s}+\alpha_{i}>\delta\left(\eta_{s}-\eta_{i}\right)$ we deduce from item (2) of Proposition 17 (see also [23, Theorem 3.4]) that the positive equilibrium E_{2} is stable and unique if it exists. The bifurcation diagram depicted in [23, Fig. 3] corresponds to the behaviour of the system for $D=8$. The graph Γ of the function G, for $D=8$, is depicted in Fig. [4(a). This figure illustrates why E_{2} is unique if it exists. For example, if $S^{0}=2<\lambda_{c}$, there is no positive equilibrium and if $S^{0}=10>\lambda_{c}, E_{2}$ exists.

The theoretical results in Table 2 predict that E_{0} loses its stability by a transcritical bifurcation with E_{1} for $S^{0}=\lambda_{s}$ and E_{1} loses its stability by a transcritical bifurcation with E_{2} for $S^{0}=\lambda_{c}$.

Figure 4: (a) The function $S^{0}=G(S)$ for the biological parameter values given in Table 4 and $D=8$. We have $\lambda_{s} \approx 1.43$ and $\lambda_{c} \approx 3.76$. (b) Bifurcation diagram showing the S component of the equilibria as S^{0} varies.

The corresponding bifurcation diagram showing the S components of the equilibria or limit cycle of (2) with respect of S_{0} is depicted in Fig. 4(b). Actually, the results of [23] concern the coexistence of species x_{s} and x_{i} with a third species y. Hence, if we compare our Fig. 4 with [23, Fig. 3] we should notice that our equilibria E_{0}, E_{1} and E_{2} correspond to the equilibria $E_{0}, E_{1 x}$ and E_{2} of [23] Fig. 3]. In this figure, we see that there are also equilibria $E_{1 y}$ and E_{3} which correspond to the presence of the species y.

Figure 5: (a) The curve Γ of G and the curve \mathcal{C} of the function $A_{4}(S)$, defined by (28), for the biological parameter values given in Table 4 and $D=8$. We have $A_{4}(S)<0$ for $S_{1}^{H}<S<S_{2}^{H}$. (b) Magnification showing the values $\lambda_{s}, S_{1}^{H}, \lambda_{c}$ and λ_{1}^{H}. We have $\lambda_{s}=10 / 7, S_{1}^{H} \approx 1.463, S_{2}^{H} \approx 4.702$, $\lambda_{c} \approx 3.59, \lambda_{1}^{H} \approx 3.96$ and $\lambda_{2}^{H} \approx 98.59$.

5.1.3 A case where $\lambda_{s}<\lambda_{i}$ and E_{2} is unique and can be unstable

We consider (2) with the biological parameter values depicted in row 3 of Table 4 For these biological parameter values the sufficient condition of stability $\alpha_{s}+\alpha_{i} \geq \delta\left(\eta_{s}-\eta_{i}\right)$ in Proposition 16 is not

Figure 6: (a) Bifurcation diagram of (2) corresponding to Fig. 5 showing the S component of equilibria and limit cycles. There is a supercritical Hopf bifurcation of E_{2} at λ_{1}^{H} giving rise to a stable limit cycle $L C_{s}$ and a subcritical Hopf bifurcation of E_{2} at λ_{2}^{H}, giving rise to an unstable limit cycle $L C_{u}$. In addition, there is a confluence of $L C_{s}$ and $L C_{u}$ at $\lambda^{C} \approx 102.73$. (b) Magnification showing the values λ_{s}, λ_{c} and λ_{1}^{H}.
satisfied. Therefore, E_{2} can be unstable. These parameter values were used in [23, Fig. 4], with $S^{0}=100, D=8$ and $\eta_{s} \in(0,150)$ to illustrate the bifurcation diagram when all parameters are fixed except η_{s} which is varying. They proved that there is a range of the parameter η_{s} for which there are two limit cycles, the one with larger amplitude orbitally asymptotically stable and the other one unstable. More precisely, as the parameter η_{s} is increased from zero, there is a saddle-node bifurcation of limit cycles resulting in two periodic orbits. As η_{s} is increased further, the unstable periodic orbit disappears in a subcritical Hopf bifurcation at E_{2}. Although the demonstration of this type of bifurcation is very interesting from the point of view of the mathematical understanding of the model, it is questionable whether it can be encountered in a real situation, since the bifurcation parameter η_{s} is a biological parameter. Our aim is to show that these types of bifurcations also occur when the operating parameter S^{0} is varying. Therefore, they can be encountered in real life situations.

Let us construct the bifurcation diagram of (3) when $D=8$ and S^{0} is varying. The curve \mathcal{C} of the function $S \mapsto A_{4}(S)$ depicted in Fig. 5 shows that this function change sign at S_{1}^{H} and S_{2}^{H}. Recall that this function is defined for $\lambda_{s}<S<\lambda_{i}$. The curve Γ of the function $S \mapsto G(S)$ is colored in blue if $S \in\left(S_{1}^{H}, S_{2}^{H}\right)$ and in red if not. This choice of the red and blue color indicates the stability of E_{2} (in red) and its instability (in blue). Note that $A_{4}(S)$ takes very large values. This is the reason why in Fig. 5 the \mathcal{C} curve is actually the graph of the function $A_{4} / 5000$, not the graph of A_{4}.

The theoretical results in Table 3 predict that for $S^{0} \in\left(0, \lambda_{s}\right), E_{0}$ is stable and coalesces with E_{1} when $S^{0}=\lambda_{s}$ and then stability is transferred to E_{1}. For $S^{0} \in\left(\lambda_{s}, \lambda_{c}\right), E_{1}$ is stable and coalesces with E_{2} when $S^{0}=\lambda_{c}$ and then stability is transferred to E_{2}. E_{2} is stable for $\lambda_{c}<S_{0}<\lambda_{1}^{H}$ or $S_{0}>\lambda_{2}^{H}$ and unstable for $\lambda_{1}^{H}<S_{0}<\lambda_{2}^{H}$, where λ_{1}^{H} and λ_{2}^{H} are given by 29 . The values λ_{1}^{H} and λ_{2}^{H} correspond to Hopf bifurcations of E_{2}, see Appendix B. 2 for the numerical evidence of a Hopf bifurcation. These theoretical predictions are confirmed by the bifurcation diagram depicted in Fig. 6 and obtained with the software MATCONT [8. This diagram shows that, as S^{0} is decreased from 110 at $S^{0}=\lambda^{C}$, there is a confluence of limit cycles resulting in two periodic orbits, the one with
larger amplitude is orbitally asymptotically stable and the other one unstable. As S^{0} is decreased further the unstable periodic orbit disappears in a subcritical Hopf bifurcation of E_{2} at $S^{0}=\lambda_{2}^{H}$. Note that the stable limit cycle exists for all $S^{0} \in\left(\lambda_{1}^{H}, \lambda^{C}\right)$. Moreover, as S^{0} is decreased further, the stable periodic orbit disappears in a supercritical Hopf bifurcation of E_{2} at $S^{0}=\lambda_{1}^{H}$.

Figure 7: (a) The function $S^{0}=G(S)$ for the biological parameter values Table 4 and $D=0.19$. We have $\lambda_{s}=0.4, S_{2}^{S N} \approx 1.29, S_{1}^{S N} \approx 2.47, \lambda_{i}=2.5, \lambda_{c} \approx 90.93 \lambda_{1}^{S N} \approx 37.52$, and $\lambda_{2}^{S N} \approx 173.64$. (b) Bifurcation diagram showing the S component of the equilibria as S^{0} varies. (c) Magnification showing λ_{s} and the transcritical bifurcation involving E_{0} and E_{1}.

5.1.4 Multiplicity of positive equilibria

Let us consider the biological parameter values depicted in row 4 of Table 4 . These values were used in [23, Fig. 5], with $S^{0} \in[0,200]$ and $D=0.19$, to illustrate the multiplicity of coexistence equilibria of x_{s} and x_{i} and show their bifurcation diagram as S^{0} varies. Since we have a necessary and sufficient condition for the existence of a positive equilibrium, we can determine the values of D for which multiplicity can occur. We have the following result.

Proposition 21. For the biological parameter values depicted in row 4 of Table 4 there exists two critical values $D_{1} \approx 0.05993$ and $D_{2} \approx 1.42359$, such that, if $D=D_{1}$ then $\lambda_{1}^{S N}=\lambda_{c}$, if $D=D_{2}$, then $\lambda_{2}^{S N}=\lambda_{c}$ and we have

$$
\begin{array}{ll}
0<D<D_{1} & \Longrightarrow \lambda_{c}<\lambda_{1}^{S N}<\lambda_{2}^{S N}, \\
D_{1}<D<D_{2} & \Longrightarrow \lambda_{1}^{S N}<\lambda_{c}<\lambda_{2}^{S N}, \tag{41}\\
D_{2}<D & \Longrightarrow \lambda_{1}^{S N}<\lambda_{c} \text { and } \lambda_{2}^{S N} \text { does not exist. }
\end{array}
$$

Proof. The proof is given in Appendix B.1.
The bifurcation diagram depicted in [23, Fig. 5] corresponds to the behaviour of the system for $D=0.19$. This value satisfies the condition $D_{1}<D<D_{2}$. The graph Γ of function G is shown in Fig. 7(a). We see that multiplicity of positive equilibria occurs when $\lambda_{1}^{S N}<S^{0}<\lambda_{2}^{S N}$. The theoretical results in Table 1 predict that for $S^{0} \in\left(0, \lambda_{s}\right), E_{0}$ is stable and coalesces with E_{1} when $S^{0}=\lambda_{s}$ and then stability is transferred to E_{1}. For $S^{0} \in\left(\lambda_{s}, \lambda_{c}\right), E_{1}$ is stable and coalesces with E_{2}^{1} when $S^{0}=\lambda_{c}$ and then stability is transferred to E_{2}^{1}, see Fig. 7 (b,c). Besides these transcritical bifurcations, a saddle node bifurcation of E_{2}^{2} and E_{2}^{3} occurs at $\lambda_{1}^{S N}$ and a saddle node bifurcation of E_{2}^{1} and E_{2}^{2} occurs at $\lambda_{2}^{S N}$. E_{2}^{1} is stable for $\lambda_{c}<S_{0}<\lambda_{2}^{S N}, E_{2}^{3}$ is stable for $S_{0}>\lambda_{1}^{S N}$ and E_{2}^{2} is
unstable for $\lambda_{1}^{S N}<S_{0}<\lambda_{2}^{S N}$, see Fig. 7(b). Proposition 21 shows that the behavior described in Fig. 7 is not specific to the $D=0.19$ value. Indeed, for any $D \in\left(D_{1}, D_{2}\right)$, we will have the same behavior since $\lambda_{s}<\lambda_{1}^{S N}<\lambda_{c}<\lambda_{2}^{S N}$. Note that if $\lambda_{1}^{S N}<S^{0}<\lambda_{c}, E_{1}$ and E_{2}^{3} are both stable and, if $\lambda_{c}<S^{0}<\lambda_{2}^{S N}, E_{2}^{1}$ and E_{2}^{3} are both stable.

If $D \in\left(0, D_{1}\right)$ or $D>D_{2}$, the bifurcation diagram when S^{0} varies does not have the same behavior, as shown in Figs. 8 and 9 , respectively.

Figure 8: (a) The function $S^{0}=G(S)$ for the biological parameter values in Table 4 and $D=1.7$. We have $\lambda_{s}=3.42, S_{1}^{S N} \approx 6.236, \lambda_{i}=6.275, \lambda_{c} \approx 120.30$ and $\lambda_{1}^{S N} \approx 17.48$. (b) Bifurcation diagram showing the S component of the equilibria as S^{0} varies. (c) Magnification showing λ_{s} and the transcritical bifurcation involving E_{0} and E_{1}.

Figure 9: (a) The function $S^{0}=G(S)$ for the biological parameter values in Table 4 and $D=0.04$. We have $\lambda_{s}=0.1, S_{2}^{S N} \approx 1.10, S_{1}^{S N} \approx 2.09, \lambda_{i}=2.125, \lambda_{c}=103.85, \lambda_{1}^{S N} \approx 141.32$, and $\lambda_{2}^{S N} \approx 598.12$. (b) Bifurcation diagram showing the S component of the equilibria as S^{0} varies. (c) Magnification showing λ_{1} and the transcritical bifurcation involving E_{0} and E_{1}.

If $D=1.7>D_{2}$, the graph Γ of function G is shown in Fig. 8(a). The theoretical results in Table 1 predict that for $S^{0} \in\left(0, \lambda_{s}\right), E_{0}$ is stable and coalesces with E_{1} when $S^{0}=\lambda_{s}$ and then stability is transferred to E_{1}. For $S^{0} \in\left(\lambda_{s}, \lambda_{c}\right), E_{1}$ is stable and coalesces with E_{2}^{2} when $S^{0}=\lambda_{c}$ and loses its stability when $S^{0}>\lambda_{c}$, see Fig. 8 (b,c). Besides these transcritical bifurcations, a
saddle node bifurcation of E_{2}^{2} and E_{2}^{3} occurs at $\lambda_{1}^{S N}$. E_{2}^{3} is stable for $S_{0}>\lambda_{1}^{S N}$ and E_{2}^{2} is unstable for $\lambda_{1}^{S N}<S_{0}<\lambda_{c}$, see Fig. 8(b). Proposition 21 shows that the behavior described in Fig. 8 is not specific to the $D=1.7$ value. Indeed, for any $D>D_{2}$, we will have the same behavior since $\lambda_{s}<\lambda_{1}^{S N}<\lambda_{c}$ and $\lambda_{2}^{S N}$ does not exist. Note that if $\lambda_{1}^{S N}<S^{0}<\lambda_{c}, E_{1}$ and E_{2}^{3} are both stable.

If $D=0.04 \in\left(D_{1}, D_{2}\right)$, the graph Γ of function G is shown in Fig. 9(a). The theoretical results in Table 1 predict that for $S^{0} \in\left(0, \lambda_{s}\right), E_{0}$ is stable and coalesces with E_{1} when $S^{0}=\lambda_{s}$ and then stability is transferred to E_{1}. For $S^{0} \in\left(\lambda_{s}, \lambda_{c}\right), E_{1}$ is stable and coalesces with E_{2}^{1} when $S^{0}=\lambda_{c}$ and then stability is transferred to E_{2}^{1}, see Fig. 9 (b,c). Besides these transcritical bifurcations, a saddle node bifurcation of E_{2}^{2} and E_{2}^{3} occurs at $\lambda_{1}^{S N}$ and a saddle node bifurcation of E_{2}^{1} and E_{2}^{2} occurs at $\lambda_{2}^{S N} . E_{2}^{1}$ is stable for $\lambda_{c}<S_{0}<\lambda_{2}^{S N}, E_{2}^{3}$ is stable for $S_{0}>\lambda_{1}^{S N}$ and E_{2}^{2} is unstable for $\lambda_{1}^{S N}<S_{0}<\lambda_{2}^{S N}$, see Fig. 9 (b). Proposition 21 shows that the behavior described in Fig. 7 is not specific to the $D=0.04$ value. Indeed, for any $D \in\left(0, D_{1}\right)$, we will have the same behavior since $\lambda_{s}<\lambda_{c}<\lambda_{1}^{S N}<\lambda_{2}^{S N}$. Note that if $\lambda_{1}^{S N}<S^{0}<\lambda_{2}^{S N}, E_{2}^{1}$ and E_{2}^{3} are both stable. The difference with the behavior of the bifurcation diagram of Fig. 7 lies in the absence of the interval $\left(\lambda_{1}^{S N}, \lambda_{c}\right)$ in which E_{1} and E_{2}^{3} are both stable.

5.2 Monod growth functions

Our aim is to illustrate our findings for (1), with Monod growth functions (39). We plot in Fig. 10 (a) the graph of the function G with the parameter values given in the caption of the figure. Note that for these parameter values we have $\eta_{s}>\eta_{i}$ and yet there is a multiplicity of positive equilibria, contrary to what happens for linear growth functions (see item 2 of Proposition 17).

Figure 10: Multiplity of positive equilibria of (1) with the Monod growth functions (39) and parameter values: $D=2, \epsilon_{s}=291.2, \epsilon_{i}=310.6, m_{s}=575, m_{i}=515, \eta_{s}=4.560, \eta_{i}=2.943, \delta=0.016$, $\gamma=0.313, K_{s}=0.85$ and $K_{i}=112.9$. (a) The curve Γ of the function $G(S)$ showing that equation $S^{0}=G(S)$ has three solutions when $\lambda_{1}^{S N}<S^{0}<\lambda_{2}^{S N}$. We have $\lambda_{s} \approx 0.8843, \lambda_{i}=174.3703$, $S_{1}^{S N} \approx 150.686, S_{2}^{S N} \approx 17.238, \lambda_{c} \approx 6.20710^{5}, \lambda_{1}^{S N} \approx 9.585110^{5}, \lambda_{2}^{S N} \approx 1.103710^{6}$. (b) The graph of the function $A_{4}(S)$ showing that $A_{4}(S)>0$ for $S \in I$.

Note that the sufficient condition of stability (40) is satisfied in this case but not the condition $m_{s} K_{i} \geq m_{i} K_{s}$. However, the plot of the graph of the function $A_{4}(S)$ defined by (28) shows that this function is always positive, see Fig. 10 (b). Therefore the positive equilibria E_{2}^{1} and E_{2}^{3} are stable whenever they exist while E_{2}^{2} is unstable if it exist. The theoretical results in Table 1 predict that for

Figure 11: (a) Bifurcation diagram showing the S component of the equilibria as S^{0} varies for the parameter values considered in Fig. 10. (b) Magnification showing the transcritical bifurcation of E_{1} and E_{2}^{1} at $S^{0}=\lambda_{c}$. (c) Magnification showing λ_{s} and the transcritical bifurcation involving E_{0} and E_{1}.
$S^{0} \in\left(0, \lambda_{s}\right), E_{0}$ is stable and coalesces with E_{1} when $S^{0}=\lambda_{s}$ and then stability is transferred to E_{1}. For $S^{0} \in\left(\lambda_{s}, \lambda_{c}\right), E_{1}$ is stable and coalesces with E_{2}^{1} when $S^{0}=\lambda_{c}$ and then stability is transferred to E_{2}^{1}, see Fig. 11(b,c). Besides these transcritical bifurcations, a saddle node bifurcation of E_{2}^{2} and E_{2}^{3} occurs at $\lambda_{1}^{S N}$ and a saddle node bifurcation of E_{2}^{1} and E_{2}^{2} occurs at $\lambda_{2}^{S N}$. E_{2}^{1} is stable for $\lambda_{c}<S_{0}<\lambda_{2}^{S N}, E_{2}^{3}$ is stable for $S_{0}>\lambda_{1}^{S N}$ and E_{2}^{2} is unstable for $\lambda_{1}^{S N}<S_{0}<\lambda_{2}^{S N}$, see Fig. 9(b). Note that if $\lambda_{1}^{S N}<S^{0}<\lambda_{2}^{S N}, E_{2}^{1}$ and E_{2}^{3} are both stable.

6 Discussion

This article studies the impact of a virus on two competing populations - one susceptible and the other resistant - using an SIS epidemic model in a chemostat-like environment. We extend the SIS model (2) of competition between susceptible and infected bacteria in the chemostat studied in [15, 23, 31. Our extension involves considering the model (3) with general growth rate functions for competitors. Our mathematical analysis highlights various potential behaviors. Proposition 2 provides a complete theoretical description of the outcomes of this competition. Beyond to the washout equilibrium, where susceptible and infected bacteria disappear, the system may exhibit a DFE equilibrium, where infected bacteria vanish while susceptible bacteria persist, and endemic positive equilibria, where both infected and susceptible bacteria coexist. The conditions of the existence of the DFE and the conditions of existence and uniqueness of the endemic equilibria, and the stability conditions of all equilibria are established in Section 3. As expected the basic reproduction number, as given in (23), plays a crucial role in predicting which populations survive, as discussed in Section 3.3.

Our results apply to the case where the growth functions are linear (see Section 4.1), allowing us to recover the results of [23] (see Section 4.1.2). We also obtain a necessary and sufficient condition for the uniqueness of endemic equilibrium, whereas [23] proposed only sufficient conditions. Our methods contribute significantly in terms of mathematical methodology for addressing a broad class of growth functions. For example, the examination of model (3) with Monod functions is outlined in this article (see Section 4.2). We demonstrate that new behaviors can emerge in this case compared to model (22, where the growth functions are linear. A thorough investigation of the case with

Monod growth functions demands further exploration and will be the focus of a forthcoming article.
The full competition model (1), which incorporates general growth rates, will be the subject of future work. Examining this model with the competitor y holds ecological significance. In the case of linear growth rates, previous studies, such as in [23], have indicated that while competitive exclusion occurs in the absence of a virus, coexistence of competitors becomes possible in the presence of a virus. These findings suggest that the presence of viruses could enhance bacterial diversity, potentially influencing bacterial species' survival. A critical question remains: do these outcomes hold true for more general growth functions?

To better understand the richness of the model's behavior, a few bifurcation diagrams with respect to input nutrient concentration are examined, see Section 5. We find some of the bifurcation diagrams described in [23]. Since we have a necessary and sufficient condition of uniqueness of the endemic equilibrium, we can show that the bifurcation diagram that was given in [23] to illustrate the multiplicity of equilibria retains the same qualitative behavior when we change the rate D (see Section 5.1.4. For practical utility, a description of the system in terms of both operating parameters D and S^{0} is essential, giving their significance in the model and ease of experimental manipulation. This diagram, known as the operating diagram is very useful to understand the model from both the mathematical and biological points of view [12. It is often constructed both in the biological literature [17, 26, 28, and in the mathematical literature [1, 2, 4, 5, 6, 7, 9, 10, 20, 21, 24, 29, 34, The construction of the operating diagram for the SIS model in the chemostat is the subject of a forthcoming publication.

A Proofs

A. 1 Proof of Proposition 2

Equilibria of (3) are the solutions of the set of equations

$$
\begin{align*}
& 0=D\left(S^{0}-S\right)-\frac{1}{\eta_{s}} f_{s}(S) x_{s}-\frac{1}{\eta_{i}} f_{i}(S) x_{i} \tag{42}\\
& 0=\left(f_{s}(S)-D_{s}\right) x_{s}-\left(\delta x_{s}-\gamma\right) x_{i} \tag{43}\\
& 0=\left(f_{i}(S)-D_{i}+\delta x_{s}-\gamma\right) x_{i} \tag{44}
\end{align*}
$$

If $x_{s}=0$, then from (43) we have $x_{i}=0$, and hence, from we have $S=S^{0}$. One obtains the washout equilibrium $\overline{E_{0}}=\left(S^{0}, 0,0\right)$, which always exists.

Assume now that $x_{s}>0$. If $x_{i}=0$ then from (43) we have $f_{s}(S)=D_{s}$, so that $S=\lambda_{s}$, where λ_{s} is given by 5 . Therefore, using (42) we have $x_{s}=\frac{D \eta_{s}}{D_{s}}\left(S^{0}-\lambda_{s}\right)$, which is the expression of \bar{x}_{s} given in (10). One obtains the DFE. This equilibrium exists if and only if $x_{s}>0$, that is, $\lambda_{s}<S^{0}$.

Assume now that $x_{s}>0$ and $x_{i}>0$. Adding (43) and (44) one obtains

$$
\left(f_{s}(S)-D_{s}\right) x_{s}+\left(f_{i}(S)-D_{i}\right) x_{i}=0
$$

This equation implies that

$$
\begin{align*}
& \quad f_{s}(S)-D_{s} \quad \text { and } \quad f_{i}(S)-D_{i} \text { are of opposite signs, } \tag{45}\\
& \text { or } \\
& \quad f_{s}(S)-D_{s}=f_{i}(S)-D_{i}=0 \tag{46}
\end{align*}
$$

The condition (45) is satisfied in the case (6), and, as stated in Remark 1, we must have $\lambda_{s}<$ $S<\lambda_{i}$. Using (44), we have

$$
f_{i}(S)-D_{i}+\delta x_{s}-\gamma=0
$$

from which we deduce that $x_{s}=\frac{\gamma+D_{i}-f_{i}(S)}{\delta}=X_{s}(S)$, where X_{s} is the function given in (8). Using (43) and the relation $\delta x_{s}-\gamma=D_{i}-f_{i}(S)$, which is deduced from the above equation, we have

$$
\left(f_{s}(S)-D_{s}\right) x_{s}=\left(\delta x_{s}-\gamma\right) x_{i}=\left(D_{i}-f_{i}(S)\right) x_{i}
$$

Therefore $x_{i}=\frac{f_{s}(S)-D_{s}}{D_{i}-f_{i}(S)} x_{s}=X_{i}(S)$, where X_{i} is the function given in (8). By replacing x_{s} and x_{i} in 42, we obtain

$$
D\left(S^{0}-S\right)=\frac{1}{\eta_{s}} f_{s}(S) X_{s}(S)+\frac{1}{\eta_{i}} f_{i}(S) X_{i}(S)=: F(S)
$$

where F is the function given in (8). Hence, we proved that S must be a solution of equation 11), such that $\lambda_{s}<S<\lambda_{i}$, and $x_{s}=X_{s}(S), x_{i}=X_{i}(S)$, which proves 12 .

The condition (46) is satisfied in the case (7) and $S=\lambda_{s}=\lambda_{i}$. From (43) we have $x_{s}=\frac{\gamma}{\delta}$. By replacing S and x_{s} in 42), we obtain $x_{i}=\frac{\eta_{i}}{D_{i}}\left(D\left(S^{0}-\lambda_{s}\right)-\frac{D_{s} \gamma}{\eta_{s} \delta}\right)$, which proves (13). This equilibrium exists if and only if $x_{i}>0$, that is to say, $S^{0}>\lambda_{c}:=\lambda_{s}+\frac{D_{s} \gamma}{D \delta \eta_{s}}$.

A. 2 Proof of Lemma 6

Note that $\varphi_{s}>0$ and $\varphi_{i}<0$ on I. Therefore $\varphi_{i}\left(\varphi_{i}-\gamma\right)$ is positive. Let N be the numerator of (19). Assuming $f_{s}^{\prime} \geq f_{i}^{\prime}$, we have

$$
N=\varphi_{i}\left(\varphi_{i}-\gamma\right) A_{s} f_{s}^{\prime}+A_{i} f_{i}^{\prime} \geq\left[\varphi_{i}\left(\varphi_{i}-\gamma\right) A_{s}+A_{i}\right] f_{i}^{\prime}
$$

Using the expression of A_{i} we have

$$
\varphi_{i}\left(\varphi_{i}-\gamma\right) A_{s}+A_{i}=\varphi_{i}\left(\varphi_{i}-\gamma\right) A_{s}+\varphi_{s} \varphi_{i}^{2}\left(\eta_{s}-\eta_{i}\right)-\eta_{i} \varphi_{i}^{2} D_{s}+\gamma \eta_{s} \varphi_{s} D_{i}
$$

Assume that $\eta_{s} \geq \eta_{i}$. All the terms are positive except $-\eta_{i} \varphi_{i}^{2} D_{s}$. From the definition of A_{s} we have $A_{s} \geq D_{i} \eta_{i}$. Therefore

$$
\varphi_{i}\left(\varphi_{i}-\gamma\right) A_{s} \geq \varphi_{i}\left(\varphi_{i}-\gamma\right) \eta_{i} D_{i}>\varphi_{i}^{2} \eta_{i} D_{i} \geq \varphi_{i}^{2} \eta_{i} D_{s}
$$

Hence, $\varphi_{i}\left(\varphi_{i}-\gamma\right) A_{s}+A_{i}>0$, so that $N>0$. Therefore $F^{\prime}(S)>0$ for $S \in I$. This proves that equation (14) cannot have a solution.

A. 3 Proof of Proposition 10

Let J be the Jacobian matrix of (3) at an equilibrium $\left(S, x_{s}, x_{i}\right)$. We have

$$
J=\left(\begin{array}{ccc}
-D-\frac{x_{s}}{\eta_{s}} f_{s}^{\prime}(S)-\frac{x_{i}}{\eta_{i}} f_{i}^{\prime}(S) & -\frac{1}{\eta_{s}} f_{s}(S) & -\frac{1}{\eta_{i}} f_{i}(S) \tag{47}\\
x_{s} f_{s}^{\prime}(S) & f_{s}(S)-D_{s}-\delta x_{i} & -\delta x_{s}+\gamma \\
x_{i} f_{i}^{\prime}(S) & \delta x_{i} & f_{i}(S)-D_{i}+\delta x_{s}-\gamma
\end{array}\right)
$$

At $E_{0}=\left(S^{0}, 0,0\right)$, the Jacobian matrix 47 becomes

$$
J_{0}=\left(\begin{array}{ccc}
-D & -\frac{1}{\eta_{s}} f_{s}\left(S^{0}\right) & -\frac{1}{\eta_{i}} f_{i}\left(S^{0}\right) \\
0 & f_{s}\left(S^{0}\right)-D_{s} & \gamma \\
0 & 0 & f_{i}\left(S^{0}\right)-D_{i}-\gamma
\end{array}\right)
$$

The eigenvalues of J_{0} are given by the diagonal elements. They are all negative when $f_{s}\left(S^{0}\right)<D_{s}$ and $f_{i}\left(S^{0}\right)<D_{i}+\gamma$, i.e. $S^{0}<\lambda_{s}$, where $\lambda_{s}=f_{s}^{-1}\left(D_{s}\right)$ and $S^{0}<\lambda_{\gamma}$, where $\lambda_{\gamma}=f_{i}^{-1}\left(D_{i}+\gamma\right)$. Using Lemma 1 and $f_{i}^{\prime}(S)>0$, we have $\lambda_{s} \leq \lambda_{i}<\lambda_{\gamma}$. Hence E_{0} is stable if and only if $S^{0}<\lambda_{s}$.

At $E_{1}=\left(\lambda_{s}, \bar{x}_{s}, 0\right)$, the Jacobian matrix (47) becomes

$$
J_{1}=\left(\begin{array}{ccc}
-D-\frac{\bar{x}_{s}}{\eta_{s}} f_{s}^{\prime}\left(\lambda_{s}\right) & -\frac{1}{\eta_{s}} f_{s}\left(\lambda_{s}\right) & -\frac{1}{\eta_{i}} f_{i}\left(\lambda_{s}\right) \tag{48}\\
\bar{x}_{s} f_{s}^{\prime}\left(\lambda_{s}\right) & 0 & -\delta \bar{x}_{s}+\gamma \\
0 & 0 & f_{i}\left(\lambda_{s}\right)-D_{i}+\delta \bar{x}_{s}-\gamma
\end{array}\right) .
$$

The characteristic polynomial is given by

$$
P(\lambda)=\left(f_{i}\left(\lambda_{s}\right)-D_{i}+\delta \bar{x}_{s}-\gamma-\lambda\right)\left(\lambda^{2}+c_{1} \lambda+c_{2}\right),
$$

where $c_{1}=\frac{\bar{x}_{s}}{\eta_{s}} f_{s}^{\prime}\left(\lambda_{s}\right)$ and $c_{2}=\frac{\bar{x}_{s}}{\eta_{s}} f_{s}\left(\lambda_{s}\right) f_{s}^{\prime}\left(\lambda_{s}\right)$. Since $c_{1}>0$ and $c_{2}>0$, the eigenvalues corresponding to the quadratic term have negative real parts. The eigenvalue from the linear term is

$$
\lambda=f_{i}\left(\lambda_{s}\right)-D_{i}+\delta \bar{x}_{s}-\gamma=f_{i}\left(\lambda_{s}\right)-D_{i}-\gamma+\frac{\delta D \eta_{s}}{D_{s}}\left(S^{0}-\lambda_{s}\right)
$$

It is negative if and only if $S^{0}<\lambda_{s}+\frac{D_{s}}{\delta D \eta_{s}}\left(D_{i}-f_{i}\left(\lambda_{s}\right)+\gamma\right)$. Therefore E_{1} is stable if and only if $S^{0}<\lambda_{c}$, where λ_{c} is defined by (15).

A. 4 Proof of Proposition 11

Let $E_{2}=\left(S^{*}, x_{s}^{*}, x_{i}^{*}\right)$ be a positive equilibrium of (3). The Jacobian matrix 47) becomes

$$
J_{2}=\left(\begin{array}{ccc}
-D-\frac{x_{s}^{*}}{\eta_{s}} f_{s}^{\prime}\left(S^{*}\right)-\frac{x_{i}^{*}}{\eta_{i}} f_{i}^{\prime}\left(S^{*}\right) & -\frac{1}{\eta_{s}} f_{s}\left(S^{*}\right) & -\frac{1}{\eta_{i}} f_{i}\left(S^{*}\right) \\
x_{s}^{*} f_{s}^{\prime}\left(S^{*}\right) & f_{s}\left(S^{*}\right)-D_{s}-\delta x_{i}^{*} & -\delta x_{s}^{*}+\gamma \\
x_{i}^{*} f_{i}^{\prime}\left(S^{*}\right) & \delta x_{i}^{*} & f_{i}\left(S^{*}\right)-D_{i}+\delta x_{s}^{*}-\gamma
\end{array}\right) .
$$

Since $\left(S^{*}, x_{s}^{*}, x_{i}^{*}\right)$ satisfies 43), we have $\left(f_{s}\left(S^{*}\right)-D_{s}-\delta x_{i}^{*}\right) x_{s}^{*}=-\gamma x_{i}^{*}$. Thus,

$$
f_{s}\left(S^{*}\right)-D_{s}-\delta x_{i}^{*}=-\gamma \frac{x_{i}^{*}}{x_{s}^{*}} .
$$

Similarly, since $\left(S^{*}, x_{s}^{*}, x_{i}^{*}\right)$ satisfies (44), we have

$$
f_{i}\left(S^{*}\right)-D_{i}+\delta x_{s}^{*}-\gamma=0 .
$$

Therefore, at E_{2}, the Jacobian matrix J_{2} can be written

$$
J_{2}=\left(\begin{array}{ccc}
-m_{11} & -m_{12} & -m_{13} \tag{49}\\
m_{21} & -m_{22} & m_{23} \\
m_{31} & m_{32} & 0
\end{array}\right)
$$

where $m_{i j}$ are given by

$$
\begin{array}{lll}
m_{11}=D+\frac{x_{s}^{*}}{\eta_{s}} f_{s}^{\prime}\left(S^{*}\right)+\frac{x_{i}^{*}}{\eta_{i}} f_{i}^{\prime}\left(S^{*}\right), & m_{12}=\frac{1}{\eta_{s}} f_{s}\left(S^{*}\right), & m_{13}=\frac{1}{\eta_{i}} f_{i}\left(S^{*}\right), \\
m_{21}=x_{s}^{*} f_{s}^{\prime}\left(S^{*}\right), & m_{22}=\gamma \frac{x_{i}^{*}}{x_{s}^{*}}, & m_{23}=\gamma-\delta x_{s}^{*}, \tag{50}\\
m_{31}=x_{i}^{*} f_{i}^{\prime}\left(S^{*}\right), & m_{32}=\delta x_{i}^{*} . &
\end{array}
$$

The characteristic polynomial is given by

$$
P(\lambda)=\lambda^{3}+c_{1} \lambda^{2}+c_{2} \lambda+c_{3}
$$

with c_{1}, c_{2} and c_{3} are defined by

$$
\begin{align*}
& c_{1}=m_{11}+m_{22} \\
& c_{2}=m_{12} m_{21}+m_{13} m_{31}-m_{32} m_{23}+m_{11} m_{22} \tag{51}\\
& c_{3}=m_{13}\left(m_{21} m_{32}+m_{31} m_{22}\right)+m_{23}\left(m_{31} m_{12}-m_{11} m_{32}\right)
\end{align*}
$$

where $m_{i j}$ are given by 50. According to the Routh-Hurwitz criteria, E_{2} is stable if and only if

$$
\begin{equation*}
c_{1}>0, \quad c_{3}>0 \quad \text { and } \quad c_{1} c_{2}-c_{3}>0 . \tag{52}
\end{equation*}
$$

From the definition of c_{1}, we see that $c_{1}>0$. We distinguish now the cases (6) and (7).
In the case (6), i.e. $\lambda_{s}<\lambda_{i}, S^{*}$ is a solution of (11), such that $S^{*} \in J$, and x_{s}^{*}, x_{i}^{*} are given by (12). Therefore the coefficients c_{1}, c_{2} and c_{3} given by (51), where the $m_{i j}$ are defined by (50), are the same as the coefficients a_{1}, a_{2} and a_{3} given by (25). Now, using the definitions (8) of X_{s} and X_{i}, we can write

$$
\begin{aligned}
m_{32} m_{23}=\delta x_{i}^{*}\left(\gamma-\delta x_{s}^{*}\right) & =-\delta \frac{\varphi_{s}}{\varphi_{i}} \frac{\gamma-\varphi_{i}}{\delta}\left(\gamma-\delta \frac{\gamma-\varphi_{i}}{\delta}\right)_{\left.\right|_{S=S^{*}}} \\
& =\varphi_{s}\left(S^{*}\right)\left(\varphi_{i}\left(S^{*}\right)-\gamma\right) .
\end{aligned}
$$

Since $S^{*} \in J$, we have $\varphi_{s}\left(S^{*}\right)>0$ and $\varphi_{i}\left(S^{*}\right)<0$. Therefore $m_{23} m_{32} \neq 0$. Hence, using the Lemma A.1. in [11, we have

$$
\begin{equation*}
\operatorname{det}\left(J_{2}\right)=-F^{\prime}\left(S^{*}\right) m_{23} m_{32}=F^{\prime}\left(S^{*}\right) \varphi_{s}\left(S^{*}\right)\left(\gamma-\varphi_{i}\left(S^{*}\right)\right) \tag{53}
\end{equation*}
$$

where,

$$
\begin{equation*}
h(S)=D\left(S^{0}-S\right)-f_{s}(S) \frac{X_{s}(S)}{\eta_{s}}-f_{i}(S) \frac{X_{i}(S)}{\eta_{i}}=D\left(S^{0}-S\right)-F(S) \tag{54}
\end{equation*}
$$

The development of the determinant of J_{2}, given by 49), with respect to its third column, shows that $c_{3}=-\operatorname{det}\left(J_{2}\right)$. From (54), we have $F^{\prime}(S)=-D-F^{\prime}(S)$. Therefore, from (53) we deduce that

$$
c_{3}=-\operatorname{det}\left(J_{2}\right)=\varphi_{s}\left(S^{*}\right)\left(\gamma-\varphi_{i}\left(S^{*}\right)\right)\left(F^{\prime}\left(S^{*}\right)+D\right)
$$

Since $\varphi_{s}\left(S^{*}\right)>0$ and $\varphi_{i}\left(S^{*}\right)<0$ we deduce that $c_{3}>0$ if and only if $F^{\prime}\left(S^{*}\right)>-D$. Replacing $m_{i j}$ by their expressions (50) shows that for $i=1,2,3, c_{i}=a_{i}$, where a_{i} are given by (25). From (52) we obtain that E_{2} is stable if and only if $F^{\prime}\left(S^{*}\right)>-D$ and $a_{1} a_{2}-a_{3}>0$.

In the case (7), i.e. $\lambda_{s}=\lambda_{i}, S^{*}=\lambda_{s}$ and x_{s}^{*}, x_{i}^{*} are given by (13). Hence $m_{23}=0$, so that the coefficients c_{2} and c_{3} given by (51) can be written now

$$
\begin{aligned}
c_{2} & =m_{12} m_{21}+m_{13} m_{31}+m_{11} m_{22} \\
c_{3} & =m_{13}\left(m_{21} m_{32}+m_{31} m_{22}\right)
\end{aligned}
$$

where the $m_{i j}$ are defined by 50). Note that $c_{3}>0$. Using $m_{22}=\delta x_{i}^{*}, f_{s}\left(S^{*}\right)=D_{s}$ and $f_{i}\left(S^{*}\right)=D_{i}$, one sees that for $i=1,2,3, c_{i}=b_{i}$, where b_{i} are given by 26). From (52) we obtain that E_{2} is stable if and only if $b_{1} b_{2}-b_{3}>0$.

A. 5 Proof of Lemma 12

Assume that $\lambda_{s}<\lambda_{i}$. Recall that

$$
\begin{aligned}
& a_{1}=B+\frac{\gamma x_{i}^{*}}{x_{*}^{*}}, \\
& a_{2}=\frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}+\frac{x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}+\delta x_{i}^{*} C+B \frac{\gamma x_{i}^{*}}{x_{s}^{*}}, \\
& a_{3}=\frac{x_{i}^{*}}{\eta_{i}} f_{i}\left(f_{s}^{\prime} \delta x_{s}^{*}+f_{i}^{\prime} \frac{\gamma x_{i}^{*}}{x_{s}^{*}}\right)+C\left(B \delta x_{i}^{*}-\frac{x_{i}^{*}}{\eta_{s}} f_{s} f_{i}^{\prime}\right),
\end{aligned}
$$

where $B=D+\frac{x_{s}^{*}}{\eta_{s}} f_{s}^{\prime}+\frac{x_{i}^{*}}{\eta_{i}} f_{i}^{\prime}, C=\delta x_{s}^{*}-\gamma$, and the functions $f_{s}, f_{s}^{\prime}, f_{i}, f_{i}^{\prime}$ are evaluated at S^{*}. We have

$$
a_{1} a_{2}=\left(B+\frac{\gamma x_{i}^{*}}{x_{s}^{*}}\right)\left(\frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}+B \frac{\gamma x_{i}^{*}}{x_{s}^{*}}\right)+\frac{B x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}+B C \delta x_{i}^{*}+\frac{\gamma x_{i}^{* 2}}{\eta_{i} x_{s}^{*}} f_{i} f_{i}^{\prime}+\delta C \frac{\gamma x_{i}^{* 2}}{x_{s}^{*}} .
$$

The terms $B C \delta x_{i}^{*}$ and $\frac{\gamma x_{i}^{* 2}}{\eta_{i} x_{s}^{*}} f_{i} f_{i}^{\prime}$ in $a_{1} a_{2}$ and a_{3} are simplified and we obtain

$$
a_{1} a_{2}-a_{3}=\left(B+\frac{\gamma x_{i}^{*}}{x_{s}^{*}}\right)\left(\frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}+B \frac{\gamma x_{i}^{*}}{x_{s}^{*}}\right)+\frac{B x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}+\delta C \frac{\gamma x_{i}^{* 2}}{x_{s}^{*}}+\frac{C x_{i}^{*}}{\eta_{s}} f_{s} f_{i}^{\prime}-\frac{\delta x_{s}^{*} x_{i}^{*}}{\eta_{i}} f_{i} f_{s}^{\prime} .
$$

Hence,

$$
\begin{equation*}
a_{1} a_{2}-a_{3}>\left(B+\frac{\gamma x_{i}^{*}}{x_{s}^{*}}\right) \frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}+\frac{B x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}+\frac{C x_{i}^{*}}{\eta_{s}} f_{s} f_{i}^{\prime}-\frac{\delta x_{s}^{*} x_{i}^{*}}{\eta_{i}} f_{i} f_{s}^{\prime} . \tag{55}
\end{equation*}
$$

From the definition of B we deduce that

$$
\left(B+\frac{\gamma x_{i}^{*}}{x_{s}^{*}}\right) \frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}>\frac{x_{s}^{*} x_{i}^{*}}{\eta_{s} \eta_{i}} f_{s} f_{s}^{\prime} f_{i}^{\prime}+\frac{\gamma x_{i}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}, \quad \frac{B x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}>\frac{x_{s}^{*} x_{i}^{*}}{\eta_{s} \eta_{i}} f_{s}^{\prime} f_{i} f_{i}^{\prime}
$$

Using these inequalities and replacing $C=\delta x_{s}^{*}-\gamma$ in (55) gives

$$
\begin{aligned}
a_{1} a_{2}-a_{3} & >\frac{x_{s}^{*} x_{i}^{*}}{\eta_{s} \eta_{i}} f_{s}^{\prime} f_{i}^{\prime}\left(f_{s}+f_{i}\right)+\frac{\gamma x_{i}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}+\frac{\delta x_{s}^{*} x_{i}^{*}}{\eta_{s}} f_{s} f_{i}^{\prime}-\frac{\gamma x_{i}^{*}}{\eta_{s}} f_{s} f_{i}^{\prime}-\frac{\delta x_{s}^{*} x_{i}^{*}}{\eta_{i}} f_{i} f_{s}^{\prime} \\
& =\frac{\gamma x_{i}^{*}}{\eta_{s}} f_{s}\left(f_{s}^{\prime}-f_{i}^{\prime}\right)+\frac{x_{s}^{*} x_{i}^{*}}{\eta_{s} \eta_{i}}\left[f_{s}^{\prime} f_{i}^{\prime}\left(f_{s}+f_{i}\right)+\delta\left(\eta_{i} f_{s} f_{i}^{\prime}-\eta_{s} f_{i} f_{s}^{\prime}\right)\right] .
\end{aligned}
$$

Therefore $a_{1} a_{2}-a_{3}>0$ if the condition (27) is satisfied for $S=S^{*}$.
Assume that $\lambda_{s}=\lambda_{i}$. Recall that

$$
\begin{aligned}
& b_{1}=B+\delta x_{i}^{*}, \\
& b_{2}=\frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}+\frac{x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}+B \delta x_{i}^{*}, \\
& b_{3}=\frac{x_{i}^{*}}{\eta_{i}} f_{i}\left(\gamma f_{s}^{\prime}+\delta x_{i}^{*} f_{i}^{\prime}\right),
\end{aligned}
$$

where $B=D+\frac{x_{s}^{*}}{\eta_{s}} f_{s}^{\prime}+\frac{x_{i}^{*}}{\eta_{i}} f_{i}^{\prime}$, and the functions $f_{s}, f_{s}^{\prime}, f_{i}, f_{i}^{\prime}$ are evaluated at λ_{s}. We have

$$
b_{1} b_{2}=\left(B+\delta x_{i}^{*}\right)\left(\frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}+B \delta x_{i}^{*}\right)+\frac{B x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}+\frac{\delta x_{i}^{* 2}}{\eta_{i}} f_{i} f_{i}^{\prime} .
$$

The term $\frac{\delta x_{i}^{* 2}}{\eta_{i}} f_{i} f_{i}^{\prime}$ in $b_{1} b_{2}$ and b_{3} is simplified and we obtain

$$
b_{1} b_{2}-b_{3}=\left(B+\delta x_{i}^{*}\right)\left(\frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}+B \delta x_{i}^{*}\right)+\frac{B x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}-\frac{\gamma x_{i}^{*}}{\eta_{i}} f_{i} f_{s}^{\prime} .
$$

Hence,

$$
\begin{equation*}
b_{1} b_{2}-b_{3}>\left(B+\delta x_{i}^{*}\right) \frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}+\frac{B x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}-\frac{\gamma x_{i}^{*}}{\eta_{i}} f_{i} f_{s}^{\prime} . \tag{56}
\end{equation*}
$$

From the definition of B and using $\delta x_{s}^{*}=\gamma$ we deduce that

$$
\left(B+\delta x_{i}^{*}\right) \frac{x_{s}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}>\frac{\gamma x_{i}^{*}}{\delta \eta_{s} \eta_{i}} f_{s} f_{s}^{\prime} f_{i}^{\prime}+\frac{\gamma x_{i}^{*}}{\eta_{s}} f_{s} f_{s}^{\prime}, \quad \frac{B x_{i}^{*}}{\eta_{i}} f_{i} f_{i}^{\prime}>\frac{\gamma x_{i}^{*}}{\delta \eta_{s} \eta_{i}} f_{s}^{\prime} f_{i} f_{i}^{\prime}
$$

Using these inequalities and adding and subtracting $\frac{\gamma x_{i}^{*}}{\eta_{s}} f_{s} f_{i}^{\prime}$ in 56) gives

$$
\begin{aligned}
b_{1} b_{2}-b_{3} & >\frac{\gamma x_{i}^{*}}{\delta \eta_{s} \eta_{i}} f_{s}^{\prime} f_{i}^{\prime}\left(f_{s}+f_{i}\right)+\frac{\gamma x_{i}^{*}}{s_{s}} f_{s} f_{s}^{\prime}+\frac{\gamma x_{i}^{*}}{\eta_{s}} f_{s} f_{i}^{\prime}-\frac{\gamma x_{i}^{*}}{\eta_{s}} f_{s} f_{i}^{\prime}-\frac{\gamma x_{i}^{*}}{\eta_{i}} f_{i} f_{s}^{\prime} \\
& =\frac{\gamma x_{i}^{*}}{\eta_{s}} f_{s}\left(f_{s}^{\prime}-f_{i}^{\prime}\right)+\frac{\gamma x_{i}^{*}}{\delta \eta_{s} \eta_{i}}\left[f_{s}^{\prime} f_{i}^{\prime}\left(f_{s}+f_{i}\right)+\delta\left(\eta_{i} f_{s} f_{i}^{\prime}-\eta_{s} f_{i} f_{s}^{\prime}\right)\right] .
\end{aligned}
$$

Therefore $b_{1} b_{2}-b_{3}>0$ if the condition (27) is satisfied for $S=\lambda_{s}$.

Figure 12: (a) The functions $D \mapsto \lambda_{s}, D \mapsto \lambda_{i}$ (in black) and $D \mapsto \bar{S}$ (in red) for the biological parameters used in Proposition 21. (b) The function $D \mapsto g\left(\lambda_{s}\right)$.

B Numerical experimentation

B. 1 Proof of Proposition 21

For the biological parameter values used in Proposition 21, we have

$$
\begin{gathered}
\lambda_{s}=2 D+0.02, \quad \lambda_{i}=2.5 D+2.025, \quad \bar{S}=1.6852 D+1.3734, \\
g\left(\lambda_{s}\right)=-0.0114 D^{3}-0.0755 D^{2}-0.0533 D+0.2618 \\
g(\bar{S})=-0.0171 D^{3}-0.0411 D^{2}-0.0328 D-0.0087
\end{gathered}
$$

We have $\lambda_{s}<\bar{S}<\lambda_{i}$ for $0<D<D_{3}$ where $D_{3} \approx 4.2991$ and $\bar{S}<\lambda_{s}$ for $D>D_{3}$, see Fig. 12 (a). Moreover, $g(\bar{S})<0$ and, since there is one change of sign in the sequence of polynomial coefficients, Descartes' rule of signs asserts that the number of positive roots of $g\left(\lambda_{s}\right)$ is 1 . Numerical computation shows that $g\left(\lambda_{s}\right)$ admits the root D_{2}, where $D_{2} \approx 1.4236$. We have $g\left(\lambda_{s}\right)>0$ for $0 \leq D<D_{2}$, while $g\left(\lambda_{s}\right)<0$ for $D>D_{2}$, see Fig. 12(b). Therefore, using Proposition 19 for $0<D<D_{2}$, equation $g(S)=0$ admits two solutions $S_{2}^{S N}<S_{1}^{S N}$ in I and there is only one solution $S_{1}^{S N}$ if $D>D_{2}$. In addition, there is a unique value D_{1} such that $\lambda_{c}<\lambda_{1}^{S N}$ for $D<D_{1}$, while $\lambda_{1}^{S N}<\lambda_{c}$ for $D>D_{1}$. This proves the properties depicted in 41).

B. 2 Numerical evidence for a Hopf bifurcation

We numerically calculate the eigenvalues of the Jacobian matrix 49 at E_{2} and plot them as S^{0} varies. Actually, the Jacobian matrix has one real negative eigenvalue and two complexes that are depicted in Fig. 13. The real part of the conjugate pair of eigenvalues is negative as the operating parameter $S^{0}<\lambda_{1}^{H}$ or $S^{0}>\lambda_{2}^{H}$ and positive when $\lambda_{1}^{H}<S^{0}<\lambda_{2}^{H}$. The transversality condition $\frac{d \alpha}{d S^{0}}\left(\lambda_{1,2}^{H}\right) \neq 0$ is checked numerically. Therefore according to the Hopf theorem a limit cycle appears at $S^{0}=\lambda_{1}^{H}$ and $S^{0}=\lambda_{2}^{H}$.

Figure 13: The dilution rate $D=8$ is fixed together with all biological parameters, as in Fig. 6. (a) Variation of the conjugate eigenvalues $\alpha\left(S^{0}\right) \pm i \beta\left(S^{0}\right)$ of the Jacobian matrix of E_{2} as a function of $S^{0} \in(2,110)$. (b) Numerical evidence for a Hopf bifurcation at $S^{0}=\lambda_{1}^{H}$ and $S^{0}=\lambda_{2}^{H}$.

B. 3 Numerical illustrations

The aim of this section is to provide the trajectories over time in various interesting situations to illustrate our findings. We consider the biological parameter values used in Fig. 6, $D=8$ and various values of S^{0}. If $\lambda_{c}<S^{0}<\lambda_{1}^{H}$ or $S^{0}>\lambda^{C}$, all numerical simulations show the global convergence of (3) toward E_{2} or toward the limit cycle, as depicted in Fig. 14. However, as predicted by Fig. 6 , since the Hopf bifurcation at $S^{0}=\lambda_{2}^{H}$ is sub-critical when $\lambda_{2}^{H}<S^{0}<\lambda^{C}$, the solutions converge to E_{2} or to the stable limit cycle, depending on the initial condition, showing the bistability of the system, see Fig. 15 The convergence to E_{2} is very slow. If we perform the numerical simulation until $t=100$ we see clearly that the solution depicted in red in the figure tends to E_{2}.

Acknowledgments

The first author warmly thanks ITAP for hosting her in 2019 and 2022 during the preparation of this work, the UNESCO ICIREWARD ANUMAB project for its financial support during her stay in Montpellier in 2022, and CIMPA for allowing her to participate in the summer school Vert Numérique : biologie mathématique et écologie théorique. The authors thank the AlgerianTunisian research project DGRSDT/DGRS: "Mathematical ecology, modeling and optimization of depollution bioprocesses" and the Euro-Mediterranean research network TREASURE (Treatment and Sustainable Reuse of Effluents in semiarid climates, http://www.inrae.fr/treasure) for their support during the preparation of this work.

References

[1] N. Abdellatif, R. Fekih-Salem and T. Sari, Competition for a single resource and coexistence of several species in the chemostat, Math. Biosci. Eng. 13 (2016) 631-652. https://doi.org/ $10.3934 / \mathrm{mbe} .2016012$

Figure 14: Numerical illustration of the global convergence of (3) toward E_{2} or toward the limit cycle, for the biological parameter values used in Fig. 6 and $D=8$. (a) $S^{0}=3.8 \in\left(\lambda_{c}, \lambda_{1}^{H}\right)$ with initial condition $\left(S(0), x_{s}(0), x_{i}(0)\right)=(4,50,1)$: global convergence to E_{2}. (b) $S^{0}=60 \in\left(\lambda_{1}^{H}, \lambda_{2}^{H}\right)$ with initial condition $\left(S(0), x_{s}(0), x_{i}(0)\right)=(8,86,20)$: global convergence to the limit cycle. (c) $S^{0}=150>\lambda^{C}$ with initial condition $\left(S(0), x_{s}(0), x_{i}(0)\right)=(31,115,15):$ global convergence to E_{2}.
[2] B. Bar and T. Sari, The operating diagram for a model of competition in a chemostat with an external lethal inhibitor. Discrete Contin. Dyn. Syst. B 25 (2020) 2093-2120. https://doi. org/10.3934/dcdsb. 2019203
[3] O. Bergh, K. Y. Borsheim, G. Bratbak and M. Heldal, High abundance of viruses found in aquatic environments, Nature 340 (1989) 467-468. https://doi.org/10.1038/340467a0
[4] M. Dali-Youcef and T. Sari, The productivity of two serial chemostats, Int. J. Biomath. 16, 6 (2023) 2250113. https://doi.org/10.1142/S1793524522501133
[5] M. Dellal and B. Bar, Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete Contin. Dyn. Syst-Series B 26 (2021) 1129-1148. https://doi.org/10. 3934/dcdsb. 2020156

Figure 15: Numerical illustration of the bistability of (3), for the biological parameter values used in Fig. 6 and $D=8, S^{0}=101 \in\left(\lambda_{2}^{H}, \lambda^{C}\right)$. With initial condition (in black) $\left(S(0), x_{s}(0), x_{i}(0)\right)=$ $(15,350,12)$, convergence to the limit cycle; with initial condition (in red) $\left(S(0), x_{s}(0), x_{i}(0)\right)=$ $(15,100,12)$, convergence to E_{2}.
[6] M. Dellal, B. Bar and M. Lakrib, A competition model in the chemostat with allelopathy and substrate inhibition. Discrete Contin. Dyn. Syst-Series B 27 (2022) 2025-2050. https: //doi.org/10.3934/dcdsb. 2021120
[7] M. Dellal, M. Lakrib and T. Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Math. Biosci. 302 (2018) 27-45. https://doi.org/10. 1016/j.mbs.2018.05.004
[8] A. Dhooge, W. Govaerts and Y. A. Kuznetsov, Matcont: A matlab package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw. 29 (2003) 141-164. https://doi. org/10.1145/980175.980184
[9] R. Fekih-Salem, Y. Daoud, N. Abdellatif and T. Sari, A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates, SIAM J. Appl. Dyn. Syst. 20 (2021) 621-1654. https://doi.org/10.1137/20M1376480
[10] R. Fekih-Salem, C. Lobry and T. Sari, A density-dependent model of competition for one resource in the chemostat. Math. Biosci. 286 (2017) 104-122. https://doi.org/10.1016/j. mbs.2017.02.007
[11] R. Fekih-Salem and T. Sari, Properties of the chemostat model with aggregated biomass and distinct removal rates, SIAM J. Appl. Dyn. Syst. 18 (2019) 481-509. https://doi.org/10. 1137/18M1171801
[12] J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures (Wiley-ISTE, 2017). http://doi.org/10.1002/9781119437215
[13] P. A. Hoskisson and G. Hobbs, Continuous culture-making a comeback?, Microbiol. 151 (2005) 3153-3159. https://doi.org/10.1099/mic.0.27924-0
[14] S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math. 34 (1978) 760-763. https://doi.org/10.1137/0134064
[15] M. Imran and H. L. Smith, A mathematical model of gene transfer in a biofilm, in Mathematics for ecology and environmental sciences. Biological and medical physics, biomedical engineering, Vol 1 (Springer, Berlin, 2007), pp. 93-123. https://doi.org/10.1007/978-3-540-34428-5_6
[16] A. Larsen, T. Castberg, R.A. Sandaa, C.P.D Brussaard, J. Egge, M. Heldal, A. Paulino, R. Thyrhaug, E.J. van Hannen and G. Bratbak, Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser. 221 (2001) 47-57. https://doi.org/10.3354/meps221047
[17] R. E. Lenski and S. E. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, J. Theor. Biol. 122 (1986) 83-93. https://doi.org/10.1016/S0022-5193(86)80226-0
[18] J. Monod, La technique de culture continue: théorie et applications, Ann. Inst. Pasteur 79 (1950) 390-410. https://doi.org/10.1016/B978-0-12-460482-7.50023-3
[19] J. Monod, Recherches sur la croissance des cultures bactériennes (Hermann, Paris, 1958).
[20] T. Mtar, R. Fekih-Salem and T. Sari, Interspecific density-dependent model of predator-prey relationship in the chemostat, Inter. J. Biomath. 14 (2021) 2050086. https://doi.org/10. 1142/S1793524520500862
[21] T. Mtar, R. Fekih-Salem and T. Sari, Mortality can produce limit cycles in density-dependent models with a predator-prey relationship, Discrete Contin. Dyn. Syst. B 27 (2022) 7445-7467 https://doi.org/10.3934/dcdsb. 2022049
[22] C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of n species in the presence of a single resource, C. R. Biol. 329 (2006) 40-46. https://doi.org/10.1016/j. Crvi.2005.10.004
[23] K. Northcott, M. Imran and G. S. K. Wolkowicz, Competition in the presence of a virus in an aquatic system: an SIS model in the chemostat, J. Math. Biol. 64 (2012) 1043-1086. https://doi.org/10.1007/s00285-011-0439-z
[24] S. Nouaoura, R. Fekih-Salem, N. Abdellatif and T. Sari Operating diagrams for a three-tiered microbial food web in the chemostat, J. Math. Biol. 8544 (2022). https://doi.org/10.1007/ s00285-022-01812-5
[25] A. Novick and L. Szilard, Description of the chemostat, Science 112 (1950) 715-716. https: //doi.org/10.1126/science.112.2920.715
[26] S. Pavlou, Computing operating diagrams of bioreactors, J. Biotech. 71 (1999) 7-16. https: //doi.org/10.1016/S0168-1656(99)00011-5
[27] T. Sari, Competitive Exclusion for Chemostat Equations with Variable Yields, Acta Appl. Math. 123 (2013) 201-219. https://doi.org/10.1007/s10440-012-9761-8
[28] T. Sari, Best operating conditions for biogas production in some simple anaerobic digestion models, Processes 10 (2022) 258. https://doi.org/10.3390/pr10020258
[29] T. Sari and B. Benyahia, The operating diagram for a two-step anaerobic digestion model, Nonlinear Dyn. 105 (2021) 2711-2737. https://doi.org/10.1007/s11071-021-06722-7
[30] H. L. Smith and P. Waltman, The theory of the chemostat: Dynamics of microbial competition (Cambridge University Press, 1995).
[31] M. F. Stewart and B. R. Levin, The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors, Genetics 87 (1977) 209-228. https: //doi.org/10.1093/genetics/87.2.209
[32] G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat:general response functions and differential death rates, SIAM J. Appl. Math. 52 (1992) 222-233. https://doi.org/10.1137/0152012
[33] X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics, Springer Cham, 2017. https://doi.org/10.1007/978-3-319-56433-3
[34] N.E.H. Zitouni, M. Dellal and M. Lakrib, Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy. J. Math. Biol. 87, 7 (2023). https: //doi.org/10.1007/s00285-023-01943-3

