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Abstract

Abstract.We study a mathematical model of bacterial growth on a single limiting nutrient in
a chemostat where a virus is present. The assumption is that the virus can infect the population,
resulting in the emergence of two distinct populations: the susceptible and the infected, which
are in competition. The model has the structure of an SIS epidemic model. We assume that the
growth functions are general and not just linear or of the Monod type as in previous works in
the literature. We analyze the local stability of both disease-free and endemic equilibria. The
model can exhibit a multiplicity of endemic equilibria, as well as the appearance of periodic
orbits by supercritical or subcritical Hopf bifurcations. Bistability between several equilibrium
states or limit cycles is also possible. We present an explicit expression for the basic reproduction
number of the epidemic in terms of biologically significant parameters. To better understand
the richness of the model’s behavior, a few bifurcation diagrams with respect to input nutrient
concentration are examined.
Keywords. Chemostat; SIS epidemic model; Hopf bifurcation; Bi-stability; Multiple limit
cycles.
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1 Introduction

The chemostat is a simple laboratory apparatus used for the continuous culture of microorganisms.
It was introduced simultaneously by Novick and Szilard [25], and Monod [18]. For details and
complements on continuous culture, the reader is referred to [13, 19]. The mathematical analysis of
models of growth and competition in the chemostat can be found in [12, 30].

The Competitive Exclusion Principle predicts that in the basic chemostat model, operated at
constant input and dilution rate, coexistence of two or more microbial populations competing for a
single non-reproducing nutrient is not possible, see [12, 14, 27, 30, 32] and the references therein.
However, the coexistence of competing population often occurs in natural ecosystems and, to explain
this, several mechanisms of coexistence have been considered. For example temporal variability in
the environment, may allow two or more species to coexist, see [30, Chapter 7] and [33, Chapter
5] and the references therein. Other hypotheses that explain the coexistence include the density
dependence of growth function (see [1, 10, 20, 21, 22]), the consideration of inhibitory substances
like antibiotic or pesticides (see [30, Chapter 4] and [2, 5, 6, 7, 17, 34]) and the incorporation of
viruses (see [15, 23, 31]). Current research suggests that viruses have a significant impact on bacterial
populations in aquatic environments and may play a role in regulating biodiversity [16]. Indeed,
viral infection can be an important factor in the ecological control of planktonic micro-organisms,
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and studying the role of viruses in aquatic environments is a major challenge [3]. In [23] the authors
considered the model

S′ = (S0 − S)D − 1
ηs
αsSxs − 1

ηi
αiSxi − 1

ηy
αySy,

x′s = (αsS −Ds)xs − δxsxi + γxi,
x′i = (αiS −Di)xi + δxsxi − γxi,
y′ = (αyS −Dy)y.

(1)

This model involves two species that compete for a single non-reproducing growth-limiting nutri-
ent, in a well-stirred chemostat in the presence of a virus. The concentration of the nutrient at time
t is denoted by S(t). One species x, is susceptible to attack by the virus. This species is divided
into two subpopulations, susceptible with concentration at time t denoted by xs(t) and infective
with concentration denoted by xi(t). The second species with concentration denoted by y(t), is not
susceptible to attack by the virus. Since the virus requires a host to replicate, it is not included in
the model explicitly. The disease dynamics are therefore modeled in the form of an SIS epidemic
model. In (1) S0 denotes the input concentration of the nutrient, D > 0 is the dilution rate of the
chemostat, and Ds, Di, Dy are the removal rates of the bacteria, i.e. Ds = D + εs, Di = D + εi
and Dy = D + εy, denote the sum of the dilution rate D and the species-specific death rate. The
parameters ηs, ηi and ηy are the growth yield coefficients, representing the conversion of nutrients
to biomass. The rate of infection of susceptible bacteria in close proximity to infected bacteria is
denoted by δ, and γ denotes the rate of elimination of virus. The parameters αs, αi and αy denote
the growth coefficients of susceptible, infected and non susceptible bacteria, respectively.

If xi = 0 then the system (1) reduces to the usual model of competition of species xs and y in the
chemostat for which competitive exclusion occurs. One of the mains results of [23] is that coexistence
of the competitors xs, xi and y is possible for the system (1). Therefore, while competitive exclusion
occurs for (1) in the absence of the virus (xi = 0), coexistence of competitors becomes possible in
its presence. These findings suggest that the presence of viruses could enhance bacterial diversity,
potentially influencing bacterial species’ survival.

Much of the analysis of (1) is based on understanding the particular subsystem of (1) obtained
by letting y = 0: 

S′ = (S0 − S)D − 1
ηs
αsSxs − 1

ηi
αiSxi,

x′s = (αsS −Ds)xs − δxsxi + γxi,
x′i = (αiS −Di)xi + δxsxi − γxi.

(2)

Subsystem (2) was introduced in [31] who considered the existence and local stability of equilibria
in the special case that D = Ds = Di , ηi < ηs and αi ≈ αs. The global stability of equilibria of
(2) was considered assuming D = Ds = Di and αi = αs in [15]. The results of [15, 31] on the local
and global analysis of the subsystem (2) were extended in [23] in the general case without the above
mentioned restrictions on the removal rates, the yields coefficients and the growth rates. Relaxing
the assumption that D = Ds = Di requires more delicate analysis than previously done in [15, 31]
and results in differences in the number of possible equilibria and the types of bifurcations that they
can undergo. It is shown in [23] that the subsystem (2) has rich dynamics, including multiplicity of
endemic equilibria, as well as the appearance of periodic orbits by supercritical or subcritical Hopf
bifurcations. Bistability between several equilibrium points or limit cycles is also possible.

Our aim in this paper is to relax the hypotheses that the growth functions are linear and to
extend the results of [23] on the existence and local stability of equilibria of (2) to general increasing
growth functions. We also construct some bifurcation diagrams with respect to the nutrient input
concentration S0, when the dilution D and the biological parameters are fixed.

The organization of this paper is as follows. In Section 2, we present the model and assumptions
that we would consider. In Section 3, we present our main result which gives the conditions of
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existence and stability of the equilibrium points. In Section 4 we apply our result to the case where
the growth rates are linear or Monod functions. In Section 5, we present some bifurcation diagrams
as the input concentration varies. These diagrams show the system’s behavior when the biological
parameters are fixed and also the dilution rate. The paper concludes with a discussion. Technical
proofs are given in A, and numerical experiments to support some of our proofs are given in B.

2 Mathematical model, notations and preliminary results

Following [23], we consider an SIS model in the chemostat taking the form
S′ = (S0 − S)D − 1

ηs
fs(S)xs − 1

ηi
fi(S)xi,

x′s = (fs(S)−Ds)xs − δxsxi + γxi,
x′i = (fi(S)−Di)xi + δxsxi − γxi.

(3)

The variables and parameters in this model have the same meaning as in (2) except that the linear
growth functions are replaced by general growth functions fs(S) and fi(S). The removal rates Ds

and Di are given by
Ds = D + εs, Di = D + εi, (4)

where D is the dilution rate and εs, εi the species-specific death rate of susceptible species xs and
infected species xi, respectively. The functions fs and fi, represent the specific growth rates of the
susceptible and infected bacteria, respectively. The system (2) corresponds to the particular case
fs(S) = αsS and fi(S) = αiS. In this work, we do not assume that the growth functions have this
specific form. We only assume that

Hypothesis 1. fs(0) = fi(0) = 0 and, for all S > 0, f ′s(S) > 0 and f ′i(S) > 0.

It is assumed that infective bacteria have a higher death rate than susceptible bacteria, i.e.
εi ≥ εs. It is also assumed that the growth rate of infective bacteria is no better than that of
susceptible bacteria. Therefore we add the following assumptions

Hypothesis 2. For all S ≥ 0, fs(S) ≥ fi(S).

Hypothesis 3. Di ≥ Ds.

We note that the positive cone is positively invariant and all solutions are positively bounded.
The proof is classical and hence omitted. We define the break-even concentrations λs and λi:

λs = f−1
s (Ds), λi = f−1

i (Di). (5)

When equation fs(S) = Ds or fi(S) = Di has no solution, we put λs =∞ or λi =∞.

Lemma 1. If Hypotheses 1, 2 and 3 are satisfied, we have λi ≥ λs.

Proof. From Hypothesis 1 we deduce that f−1
i is increasing. Using Hypothesis 3 we have λi =

f−1
i (Di) ≥ f−1

i (Ds). From Hypothesis 2 we deduce that f−1
i ≥ f−1

s . Therefore, f−1
i (Ds) ≥

f−1
s (Ds) = λs. Hence, λi ≥ λs.

In the rest of the paper, we will distinguish the two following cases:

λi > λs, (6)

λi = λs. (7)
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Case (6) is more likely to occur. However, even if it is non generic, case (7) can occur, especially
if fs = fi and εs = εi, which is biologically meaningful, since the species xs and xi are the same.
We use the following notations

Xs :=
γ +Di − fi

δ
, Xi :=

fs −Ds

Di − fi
Xs, F :=

1

ηs
fsXs +

1

ηi
fiXi. (8)

Remark 1. In the case λs < λi, we denote by I := (λs, λi). We have fs(S) > Ds and fi(S) < Di

for S ∈ I, and fs(λs) = Ds, fi(λi) = Di. Therefore the functions Xs, Xi and F are non negative
on I and we have Xs(λs) > 0, Xi(λs) = 0, Xs(λi) > 0 and Xi(λi) = +∞. Hence, we have
F (λs) = Ds

ηs
Xs(λs) > 0, F (λi) = +∞ and F is positive on I. We use the following notation

G(S) := S + 1
DF (S). (9)

The function G is positive on I and has a vertical asymptote at S = λi (see Figs. 1, 4(a), 5, 7(a),
8(a), 9(a) and 10(a), for illustrative examples).

3 Results

3.1 Existence of equilibria

The existence of equilibria of system (3) is stated by the following result.

Proposition 2. Assume that Hypothesis 1 is satisfied. System (3) has the following equilibria:
The washout equilibrium, E0 = (S0, 0, 0), which always exists.
The disease free equilibrium (DFE), E1 = (S̄, x̄s, 0) of extinction of xi, where

S̄ = λs, x̄s = Dηs
Ds

(S0 − λs). (10)

Here, λs is defined by (5). This equilibrium exists if and only if λs < S0.
An endemic equilibrium, or coexistence equilibrium, E2 = (S∗, x∗s, x

∗
i ), where the components are

assumed to be positive. Two cases must be distinguished.

1. In the case λs < λi, S
∗ is a solution of equation

S0 = G(S), (11)

where the function G is defined by (9), and x∗s, x∗i are given by

x∗s = Xs(S
∗), x∗i = Xi(S

∗), (12)

where the functions Xs and Xi are defined by (8). This equilibrium exists if and only if equation
(11) has a solution S = S∗ such that λs < S∗ < λi. Multiplicity of solution S∗, and hence of
endemic equilibria E2, can occur.

2. In the case λs = λi, we have S∗ = λs and

x∗s = γ
δ , x∗i = ηi

Di

(
D
(
S0 − λs

)
− Dsγ

ηsδ

)
. (13)

This equilibrium exists if and only if S0 > λc := λs + Dsγ
Dδηs

.
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Proof. The proof is given in Appendix A.1.

This proposition says that the washout equilibrium E0 always exists, while the DFE E1 is unique
if it exists. Moreover, in the case (7), the positive equilibrium E2 is also unique if it exists. On the
other hand, in the case (6), any solution S∗ ∈ I of the equation (11) gives a positive equilibrium
E2. Therefore the number of positive equilibria depends on the number of solutions of the equation
(11) belonging to I.

3.2 Multiplicity of positive equilibria in the case λs < λi

As stated in Remark 1, the function G is positive on interval I and tends to infinity when S tends
to λi, see Fig. 1.

Remark 2. A positive equilibrium is given by a solution of the equation (11), belonging to I. A
solution of this equation is the abscissa of a point of intersection of the horizontal line where S0 is
fixed (in red in Fig. 1) and the curve Γ of equation S0 = G(S) (in blue in Fig. 1).

Hence, existence of solutions of the equation (11) and their number is related to the monotonicity
or not of the function G. Therefore, in the case (6), equation

G′(S) = 0 (or, equivalentrly, F ′(S) = −D), (14)

plays a major role in the discussion of the uniqueness or multiplicity of the positive equilibria.
Assume that equation (14) has solutions SSNk (depending on D), where k = 1, 2, · · · is an integer.
See Fig. 1(b) for an example with k = 1, 2.

(a) (b)

SSN1SSN2
λs λiλiλs

S S

S0

λc

S0

λSN1

λSN2

Γ

λc

Γ

S0

S0

E2

E1
2

E2
2

E3
2

Figure 1: Illustration of the existence and multiplicity of positive equilibria. (a) G(S) is increasing.
(b) G(S) is decreasing for SNS2 < S < SNS1 and increasing for λs < S < SNS2 and SNS1 < S < λi.
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Definition 1. We define the following numbers as relevant to the discussion of the existence and
number of positive equilibria:

λc := G(λs) = λs + Ds
Dδηs

(Di − fi(λs) + γ) , (15)

λSNk := G(SSNk ) = SSNk + 1
DF

(
SSNk

)
, k = 1, 2, · · · (16)

The number λc corresponds to a transcritical bifurcation of an endemic equilibrium E2 and
the equilibrium E1, while the numbers λSNk correspond to saddle-node bifurcations of the positive
equilibria.

For example, if G′(S) > 0 for all S ∈ I, then equation (11) has at most one solution, see Fig. 1(a),
where there is one solution if S0 > λc and no solution if S0 < λc. On the other hand, if G′(S) < 0
for some S ∈ I, then equation (11) can have more than one solution. Assume for example that, as
in Fig. 1(b), the equation (14) has two solutions SSN1 and SSN2 such that λi > SSN1 > SSN2 > λs
and λSN1 < λc < λSN2 . Then, if S0 < λSN1 there is no positive equilibrium point, if λSN1 < S0 < λc
there are two, if λc < S0 < λSN2 there are three, and if S0 > λSN2 the positive equilibrium point
exists and is unique.

Remark 3. If λs = λi then Di − fi(λs) = 0 and the number (15) becomes λc = λs + Dsγ
Dδηs

, which

is the number that appears in item (2) of Proposition 2. This is the reason why we have noted the
two numbers by λc.

The following proposition gives the existence and uniqueness of the positive equilibrium of (3)
in the case (6), when equation (14) has no solution in I.

Proposition 3. If equation (14) has no solution in I, then the positive equilibrium E2 = (S∗, x∗s, x
∗
i )

exists if and only if S0 > λc, where λc is defined by (15). If it exists, it is unique.

Proof. As stated in Remark 2, a positive equilibrium corresponds to an intersection of the red and
blue curves in Fig. 1. Since G is increasing, there exists at most one point of intersection. A point
of intersection exists if and only if S0 > λc, where λc is given by (15), see Fig. 1(a).

When equation (14) has a solution in I, a multiplicity of positive equilibria is possible. More
precisely, we have the following result.

Proposition 4. Assume that λs < λi and (14) has solutions SSNk in I. Let λc and λSNk defined by
(15) and (16).
(1) If S0 > λc, then, generically, an odd number of positive equilibria exist (at least one).
(2) If S0 < λc, then, generically, there is either no positive equilibrium or an even number of positive
equilibria exist.
The values S0 = λSNk correspond to saddle node bifurcations of positive equilibria.

Proof. The curve Γ of equation S0 = G(S) and an horizontal line of equation S0 kept constant have,
generically, an odd number of points of intersection if S0 > λc (at least one). If S0 < λc, generically,
an even number of points of intersection exist, with possibly no intersection point, see Fig. 1(b).

Lemma 5. The equation S0 = G(S) (or, equivalently, D(S0 − S) = F (S)) is equivalent to the
equation f(S) = 0 where f is defined by

f(S) := Dδηsηi(Di − fi(S))(S0 − S)
−(Di − fi(S) + γ) (ηi(Di − fi(S))fs(S) + ηs(fs(S)−Ds)fi(S)) .

(17)
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Proof. Using the definitions (8) of the functions Xs, Xi and F , we see that the equation D(S0−S) =
F (S) is equivalent to the equation f(S) = 0.

Since we are looking for the solutions S∗ ∈ (λs, λi) of this equation, it is useful to note that

f(λs) = Dηsηsδ(Di − fi(λs))(S0 − λc),
f(λi) = Diηsγ(Ds − fs(λi)) < 0,

(18)

where λc is defined in (15). Since Di > fi(λs), f(λs, S
0, D) has the same sign as S0 − λc. The

number λc therefore plays an important role in the determination of the number of solutions of the
solutions in the interval (λs, λi), i.e. in the existence and number of positive equilibria. Indeed, we
can make the following remark.

Remark 4. Using the formulas (18) we can solve equation (17) on the interval (λs, λi) and deduce
that

• If S0 > λc, then f(λs) > 0 and hence, generically, an odd number of positive equilibria exist
(at least one).

• If S0 < λc, then f(λs) < 0 and hence, generically, there is either no positive equilibrium or an
even number of positive equilibria exist.

This is the result obtained in Proposition 4, by solving equation S0 = G(S). The advantage of
the equation S0 = G(S) over the equivalent equation f(S) = 0 is that the function G(S) depends
only on the parameter D, and the solutions have a clear geometric interpretation: they are the
abscissas of the points of intersection of the horizontal line defined by S0 with the curve Γ defined as
the graph of the function G(S), see Remark 2 and Fig. 1. On the other hand, when we consider the
equation f(S) = 0, the two parameters S0 and D are intertwined in the equation and the solutions
do not have a nice graphical interpretation.

We now give a sufficient condition for F ′(S) > 0 for all S ∈ I, so that equation (14) has no
solution in I, and the endemic equilibrium is unique, if it exists.

Lemma 6. If ηs ≥ ηi and f ′s(S) ≥ f ′i(S) for all S ∈ I, then F ′(S) > 0 for all S ∈ I. Therefore, if
it exists, the endemic equilibrium is unique.

Proof. The proof is given in Appendix A.2

Straightforward calculation gives

F ′ =
ϕi(ϕi − γ)Asf

′
s +Aif

′
i

δηsηiϕ2
i

, (19)

where ϕs = fs −Ds, ϕi = fi −Di and

As = fi(ηs − ηi) + ηiDi, Ai = ϕsϕ
2
i (ηs − ηi)− ηiϕ2

iDs + γηsϕsDi. (20)

Lemma 7. The equation G′(S) = 0 (or, equivalently, F ′(S) = −D) is equivalent to the equation
g(S) = 0, where g is defined by

g := ϕi(ϕi − γ)Asf
′
s +Aif

′
i +Dδηsηiϕ

2
i , (21)

and As and Ai are given by (20). Note that the condition G′(S) > 0 (which is equivalent to the
condition F ′(S) > −D) is satisfied if and only if g(S) > 0.
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Proof. From (19) we deduce that the condition F ′(S) = −D is equivalent to the equation g(S) = 0,
where g is defined by (21).

Lemma 8. If it exists, the positive equilibrium is unique if and only if we have minS∈I g(S) ≥ 0.

Proof. From ϕi(λi) = 0, we deduce that

g(λi) = γηsDif
′
i(λi)ϕs(λi), g′(λi) = γηsDif

′′
i (λi)ϕs(λi). (22)

Since ϕs(λi) > 0 and f ′i(λi) > 0, we have g(λi) > 0. Therefore, the function g(S) does not change
of sign on I if and only if minS∈I g(S) ≥ 0 .

The sign of g(S) on I can be determined easily, for example by calculating the derivative g′(S)
and studying its variations on the interval I. As nothing can be said in the general case, this study
will be carried out in Section 4.1.3 for linear growth functions.

3.3 Basic reproduction number

Following [23], who considered the case of linear growth functions fs(S) = αsS and fi(S) = αiS,
the basic reproduction number R0 can be given by

R0 =
fi
(
S̄
)

+ δx̄s

Di + γ
, (23)

where S̄ = λs and x̄s = Dηs
Ds

(S0 − λs) are the components of the DFE E1 = (S̄, x̄s, 0), where the
infective species xi is extinct. The biological interpretation of this number is the following, see
[23]: The numerator represents the mean number of infectives produced per unit time from both
horizontal and vertical transmission resulting from the introduction of a single infective into an
otherwise totally susceptible population at equilibrium, and 1

Di+γ
represents the mean amount of

time an infective individual remains in the chemostat as an infective. Using the expression

R0 =
fi(λs) + δDηsDs

(S0 − λs)
Di + γ

, (24)

a simple calculation shows that R0 > 1 is equivalent to S0 > λc and R0 < 1 is equivalent to S0 < λc,
where λc is defined by (15). Therefore our results can be stated using the basic reproduction number.
As a corollary of Propositions 3 and 4 we obtain the following result.

Theorem 9. Assume that R0 > 1 or equivalently S0 > λc.

1. If equation (14) has no solution in I, then the positive equilibrium exists and is unique.

2. If equation (14) has a solution in I, then there exists at least one positive equilibrium and,
generically, an odd number of positive equilibria exist.

Assume that R0 < 1 or equivalently S0 < λc.

1. If equation (14) has no solution in I, then no positive equilibrium exists.

2. If equation (14) has a solution in I, then, generically, there is either no positive equilibrium
or an even number of positive equilibria exist.

9



3.4 Local stability of equilibria

The local stability of the boundary equilibria E0 and E1 are given as follows.

Proposition 10. E0 is stable if and only if S0 < λs, where λs is given by (5). E1 is stable if and
only if S0 < λc where λc is given by (15).

Proof. The proof is given in Appendix A.3

In what follows, we analyze the stability of a positive equilibrium E2. The cases (6) and (7) must
be distinguished.

Proposition 11. Assume that case (6) holds, i.e. λs < λi. An endemic equilibrium E2 =
(S∗, x∗s, x

∗
i ) of (3), where S∗ is a solution of (11), and x∗s, x∗i are given by (12), if it exists, is

stable if and only if F ′(S∗) > −D and a1a2 − a3 > 0, where a1, a2 and a3 are given by

a1 = B + γ
x∗
i

x∗
s
,

a2 = 1
ηs
fs(S

∗)x∗sf
′
s(S
∗) + 1

ηi
fi(S

∗)x∗i f
′
i(S
∗) + δx∗iC +B

γx∗
i

x∗
s
, (25)

a3 = 1
ηi
fi(S

∗)x∗i

(
f ′s(S

∗)δx∗s + f ′i(S
∗)
γx∗
i

x∗
s

)
+ C

(
Bδx∗i − 1

ηs
fs(S

∗)x∗i f
′
i(S
∗)
)
,

where B = D +
x∗
s

ηs
f ′s(S

∗) +
x∗
i

ηi
f ′i(S

∗) and C = δx∗s − γ.

Assume that case (7) holds, i.e. λs = λi. If it exists, the equilibrium E2 = (λs, x
∗
s, x
∗
i ), where

x∗s, x∗i are given by (13), is stable if and only if b1b2 − b3 > 0, where b1, b2 and b3 are given by

b1 = B + δx∗i ,
b2 = Ds

ηs
x∗sf

′
s(λs) + Di

ηi
x∗i f

′
i(λs) +Bδx∗i ,

b3 = Di
ηi
x∗i (γf ′s(λs) + f ′i(λs)δx

∗
i ) ,

(26)

where B = D +
x∗
s

ηs
f ′s(λs) +

x∗
i

ηi
f ′i(λs).

Proof. The proof is given in Appendix A.4

We now give a sufficient condition for the stability condition a1a2 − a3 > 0 or b1b2 − b3 > 0 to
be satisfied.

Lemma 12. Assume that λs < λi. If

f ′s ≥ f ′i and f ′sf
′
i(fs + fi) ≥ δ (ηsfif

′
s − ηifsf ′i) (27)

for S = S∗, where S∗ ∈ I is a solution of (11), then the corresponding equilibrium (S∗, x∗s, x
∗
i )

satisfies a1a2 − a3 > 0. Therefore, it is stable if and only if G′(S∗) > 0.
Assume that λs = λi. If the conditions (27) are satisfied for S = λs then, if it exists, E2 satisfies

b1b2 − b3 > 0. Therefore, it is stable.

Proof. The proof is given in Appendix A.5

We now propose a reformulation of the stability conditions that will be useful for the following
applications. We begin with the case λs < λi. Let

A4(S) = A1(S)A2(S)−A3(S), (28)

10



where A1, A2 and A3 are defined by

A1 = B + γ XiXs ,

A2 = 1
ηs
fsXsf

′
s + 1

ηi
fiXif

′
i + δXiC +B γXi

Xs
,

A3 = 1
ηi
fiXi

(
f ′sδXs + f ′i

γXi
Xs

)
+ C

(
BδXi − 1

ηs
fsXif

′
i

)
,

where B = D+ Xs
ηs
f ′s+ Xi

ηi
f ′i and C = δXs−γ. The coefficients Ai are defined by the same formulas

as the coefficients ai, see (25). The only difference is that S∗ is replaced by S and x∗s and x∗i are
replaced by Xs(S) and Xs(S), defined by (8). Note that the coefficients Ai in (28) depend only on
the operating parameter D and not on the operating parameter S0, unlike the quantities ai in (25),
which also depend on it.

We fix D. To simplify the presentation, consider the case where there exist SH1 and SH2 (depend-
ing on D) such that λs < SH1 < SH2 < λi and A4(S,D) < 0 for S ∈ (SH1 , S

H
2 ), and positive outside

this interval. The more general case where there exist more than two solutions SH1 and SH2 can be
studied similarly. We have the following result.

Proposition 13. Assume that λs < λi. Let

λHk = G(SHk ) := SHk + 1
DF

(
SHk
)
, k = 1, 2. (29)

Then a1a2 − a3 < 0 if and only if λH1 < S0 < λH2 . The numbers λHk correspond to Hopf bifurcations
of a positive equilibrium.

Proof. Using (12), we can write ai = Ai(S
∗(S0)) for i = 1, 2, 3,, where S∗(S0) is a solution of

equation S0 = G(S). Hence, a1a2 − a3 < 0 is equivalent to A(S
∗(S0)) < 0, that is to say SH1 <

S∗(S0) < SH2 , which is equivalent to λH1 < S0 < λH2 .

An illustrative example of how the numbers SH1 and SH2 are determined is given in Section 5.1.3,
see Fig. 5.

We consider now the case λs = λi. Let b4 = b1b2 − b3, where the coefficients b1, b2 and b3 are
defined by (26). Note that b4 is a polynomial of degree 3 in x∗i :

b4 = aX3 + bX2 + cX + d (30)

with X = x∗i and

a = δ2

ηi
f ′i + δ

η2i
f ′2i , b = δ2D + δγ

ηs
f ′s + 2δD

ηi
f ′i + 1

η2i
fif
′2
i + 2γ

ηsηi
f ′sf
′
i ,

c = δD2 + γ
ηs
fsf
′
s + D

ηi
fif
′
i + 2γD

ηs
f ′s + γ

δηsηi
(fs + fi)f

′
if
′
s + γ2

δη2s
f ′2s −

γ
ηi
fif
′
s,

d = Dγ
δηs

fsf
′
s + γ2

δ2η2s
fsf
′2
s .

The coefficients of b4 depend only on the parameter D, and not on S0. This operating parameter
appears in x∗i , see (13). We need to consider the positive roots of b4. Since a > 0 and d > 0, the
polynomial b4 has at least one negative real root. Therefore, the polynomial b4 can have a positive
double root or two distinct positive real roots, or no positive real root. We have the following result

Proposition 14. If b4 has no positive real root then E2 is stable whenever it exists, i.e. if and
only if S0 > λc. If b4 has two positive distinct real roots XH

1 < XH
2 (depending on D), then E2 is

unstable whenever λH1 < S0 < λH2 and is stable if λc < S0 < λH1 or S0 > λH2 , where λHk , k = 1, 2
are defined by

λHk = λc +
Di

Dηi
XH
k , k = 1, 2. (31)

The numbers λH1 and λH2 correspond to Hopf bifurcations of the equilibrium E2.

11



Proof. If b4 has no positive root then b4 > 0 for any S0 > λc. If b4 has two positive real roots
XH

1 < XH
2 then it is negative if XH

1 < x∗i < XH
2 and positive if x∗i < XH

1 or x∗i > XH
2 . Therefore

using the definition (13) of x∗i , we deduce that b4 is negative if λH1 < S0 < λH2 and positive if
λc < S0 < λH1 or S0 > λH2 , where λH1 and λH2 are defined by (31).

An illustrative example of how the numbers XH
1 and XH

2 are determined is given in Section
5.1.1, see Fig. 3(a).

3.5 Summary of the conditions of existence and local stability

The results of Proposition 2 (existence of E0 and E1), Theorem 9 (existence of E2), Proposition 10
(stability of E0 and E1) and Proposition 11 (stability of E2) can be summarized in the following
proposition.

Table 1: Existence and local asymptotic stability of equilibria of system (3) in the case where λs < λi.
Here, λs is defined by (5), λc is defined by (3), S∗ is a solution of equation (11) and a1, a2 and a3

are defined by (25). The multiplicity of endemic equilibria E2 can occur.

Equilibrium Existence Stability
E0 Always exists S0 < λs
E1 S0 > λs S0 < λc
E2 See Theorem 9 F ′(S∗) > −D and a1a2 − a3 > 0

Table 2: Existence and local asymptotic stability of equilibria of system (3) in the case where λs < λi
and equation (14) has no solution in I. The numbers λs, λc, a1, a2 and a3 are defined as in Table
1. The equilibrium E2 is unique if it exists.

Equilibrium Existence Stability
E0 Always exists S0 < λs
E1 S0 > λs S0 < λc
E2 S0 > λc a1a2 − a3 > 0

Table 3: Existence and local asymptotic stability of equilibria of system (3) in the case where λs = λi.
Here, λs is defined by (5), λc is defined by (3) and b1, b2 and b3 are defined by (26). The equilibrium
E2 is unique if it exists.

Equilibrium Existence Stability
E0 Always exists S0 < λs
E1 S0 > λs S0 < λc
E2 S0 > λc b1b2 − b3 > 0

12



Proposition 15. Assume that λs < λi. The necessary and sufficient conditions of existence and
local stability of the equilibria E0, E1 and E2 of (3) are summarized in Table 1. In the case where
F ′(S) > −D for any S ∈ (λs, λi), the conditions of existence and stability in Table 1 simplify as
shown in Table 2.

Assume that λs = λi. The necessary and sufficient conditions of existence and local stability of
the equilibria E0, E1 and E2 of (3) are summarized in Table 3.

4 Applications

4.1 Linear growth functions

In this section we illustrate our results on (1) with linear growth functions

fs(S) = αsS, fi(S) = αiS. (32)

4.1.1 Existence and stability of equilibria

For the growth functions (32), the break-even concentrations λs, λi defined by (5) are given by

λs = Ds
αs
, λi = Di

αi
. (33)

The threshold λc and the basic reproduction number R0, defined by (3) and (24) respectively, are
given by

λc = Ds
αs

+ Ds
δDηs

(
Di − αi Dsαs + γ

)
, R0 =

αi
Ds
αs

+δ DDs ηs(S
0−Dsαs )

Di+γ
. (34)

These formulas for λc and R0 were given in [23, Eqs. (3.6) and (3.5)].
The condition fs(S) ≥ fi(S) in Hypothesis 2 is equivalent to αs ≥ αi. Therefore, f ′s(S) ≥ f ′i(S).

Hence, Lemmas 6 and 12 can be applied. More precisely we have the following results which give
sufficient conditions for the uniqueness of the positive equilibrium and for its stability. We start
with the simplest case, (7).

Proposition 16. Assume that αs ≥ αi and λs = λi, then E2 is unique and exists if and only if
S0 > λc := Ds

αs
+ Dsγ

δDηs
. If αs + αi ≥ δ(ηs − ηi), then it is stable if it exists. If αs + αi < δ(ηs − ηi),

E2 can be unstable. If E2 loses stability, it can only do so through a Hopf bifurcation.

Proof. The necessary and sufficient condition of existence of E2 follows from Proposition 2. For
stability, note that for linear growth functions the sufficient conditions of stability (27) become

αs ≥ αi and (αs + αi) ≥ δ(ηs − ηi). (35)

Hence, the result follows from Lemma 12. If E2 is unstable then b1b2 − b3 < 0 and it is the only
Routh-Hurwitz coefficient that changes sign. The stability of E2 can therefore only be lost by a
Hopf bifurcation.

We now consider the more complex case (6) where multiple endemic equilibria can occur.

Proposition 17. Assume that αs ≥ αi and λs < λi, then:

1. If ηs = ηi, then E2 is unique and stable, if it exists.
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2. If ηs > ηi, then E2 is unique, if it exists. If, in addition, αs + αi ≥ δ(ηs − ηi), then E2 is
stable. If αs +αi < δ(ηs − ηi), then E2 can be unstable. If E2 loses stability, it can only do so
through a Hopf bifurcation.

3. If ηs < ηi, then the multiplicity of positive equilibria (and hence of saddle node bifurcation) is
possible. However, no Hopf bifurcation is possible in this case.

4. If αs + αi ≥ δ(ηs − ηi), then a positive equilibrium is stable if and only if G′(S∗) > 0.

Proof. The uniqueness of E2 in the first item follows from Lemma 6. Its stability can be deduced
from Lemma 12 and the fact that (27) can be written as (35). Indeed, if ηs = ηi, the condition
αs +αi ≥ δ(ηs − ηi) is satisfied. The uniqueness of E2 in the second item follows from Lemma 6. It
is stable if αs+αi ≥ δ(ηs−ηi). If E2 is unstable then a1a2−a3 < 0 and it is the only Routh-Hurwitz
coefficient that changes sign. The stability of E2 can therefore only be lost by a Hopf bifurcation.
To prove the third item, it suffices to note that if ηs < ηi, then condition αs + αi ≥ δ(ηs − ηi) is
satisfied. From Lemma 12 we deduce that a1a2 − a3 > 0, so that no Hopf bifurcation is possible.
Again using the fact that (27) is written as (35), the result of the fourth item can be deduced from
Lemma 12.

If ηs < ηi, an example showing the multiplicity of positive equilibria is given in Figs. 7, 8 and 9.
If αs + αi < δ(ηs − ηi), examples showing the destabilization of E2 are given in Fig. 3, in the case
λs = λi and in Fig. 6, in the case λs < λi.

If fs and fi are linear functions, then the equation f(S) = 0, defined in (17), is a cubic equation.
Therefore there exist at most three positive equilibria, and Proposition 4 and Theorem 9 can be
given more precisely, replacing odd number by one or three and even number by two. More precisely,
using Proposition 17, we have the following result.

Theorem 18. Assume that λs < λi.

1. Assume that Ro > 1 or equivalently S0 > λc.

(i) If ηs = ηi, then E2 exists, is unique and is stable.

(ii) If ηs > ηi, then E2 exists and is unique. It is stable if αs +αi ≥ δ(ηs − ηi). If it loses its
stability, it can only do so through a Hopf bifurcation.

(iii) If ηs < ηi, then at least one and at most three positive equilibria exist. Saddle node
bifurcations of positive equilibria are possible but Hopf bifurcation is not.

2. Assume that Ro < 1 or equivalently S0 < λc.

(i) If ηs ≥ ηi, then no positive equilibrium exists.

(ii) If ηs < ηi, then there is either no positive equilibrium point or generically two positive
equilibria. Saddle node bifurcation of positive equilibria are possible, but Hopf bifurcation
is not.

Proof. The result of item (1i) follows from Theorem 9 and item (1) of Proposition 17. The result of
item (1ii) follows from Theorem 9 and item (2) of Proposition 17. The result of item (1iii) follows
from Theorem 9 and item (3) of Proposition 17. The result of item (2i) follows from Theorem 9.
The result of item (2ii) follows from Theorem 9 and item (3) of Proposition 17.
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4.1.2 Comparison with previous results in the literature

We recover in Theorem 18 all results given in [23, Theorem 3.4], except for the sufficient conditions
of uniqueness of the positive equilibrium [23, (3.7) and (3.8)]. However, in the next section, we give
a necessary and sufficient condition for the uniqueness of the positive equilibrium. Before stating
this result, it’s worth comparing our proof of Theorem 18 with that of [23]. In their proof, these
authors consider the cubic equation f(S) = 0, which is written

f(S) := c0 + c1S + c2S
2 + c3S

3 = 0, (36)

where

c0 = DDiδηsηiS
0,

c1 = −DδηsηiS0αi −DDiδηsηi − αsηiγDi − αsηiD2
i + αiηsDsγ + αiηsDsDi,

c2 = αi(Dδηsηi + αs(ηi − ηs)γ + αs(ηi − ηs)Di + αsηiDi − αiηsDs),
c3 = αsα

2
i (ηs − ηi).

Note that f(0) = DδηsηiDiS
0 > 0 and our formulas (18) become

f(λs) = Dηsηsδ(Di − αiλs)(S0 − λc),
f(λi) = Diηsγ(Ds − αsλi) < 0.

(37)

The cubic equation (36) is the same as [23, Eq. (B.1)] and the formulas (37) are the same as [23,
Eqs. (B.3,B.4)]. As mentioned in Remark 4, the results on the existence and number of equilibria
can be obtained by solving equation (37) directly. This is the method used in [23]. These authors
proceed by considering the cases ηs = ηi, ηs > ηi and ηs < ηi separately. We give the details of their
argument in the ηs = ηi case and refer the reader to [23, Page 1068] for the ηs < ηi and ηs > ηi
cases. Assume that ηs = ηi. Then c3 = 0 and since αs ≥ αi and Di ≥ Ds, we have c2 > 0 in (36).
Therefore f(S) is quadratic, f(0) > 0, f(λi) < 0 and the coefficient of S2 is positive. Therefore both
roots are real and positive, and one root lies to the right of λi. If f(λs) > 0 or equivalently S0 > λc,
there is a unique positive root S∗ ∈ (λs, λi) and hence the equilibrium E2 exists and is unique. If
S0 < λc, no positive equilibrium exists. This proves the existence condition in item ( 1i) of Theorem
18. For the stability condition, they proceeded as we did, of course, by calculating the Jacobian
matrices. They also obtained the sufficient condition (35) to have a1a2−a3 > 0, see [23, Eq. (B.6)].
However, in our approach, this condition is obtained as a special case of the more general condition
(27).

4.1.3 A necessary and sufficient condition for the uniqueness of the positive equilib-
rium

Lemma 8 gives a necessary and sufficient condition so that, if it exists, the endemic equilibrium is
unique. In the case of linear growth functions, the function g(S), given by (21), is a cubic polynomial
function whose sign on I can be determined. Indeed, its derivative g′(S) is a quadratic function
and, since f ′′i = 0, from (22) we have g′(λi) = 0. Consequently, the derivative cancels out only for a
second value, S. A direct calculation shows that

g′(S) = 2α2
i (λi − S)(3αsαi(ηi − ηs)S −B),

where B = αs(ηi − ηs)(Di + γ) + αsηiDi − αiηsDs +Dδηsηi. Therefore,

S =
αs(ηi − ηs)(Di + γ) + αsηiDi − αiηsDs +Dδηsηi

3αsαi(ηi − ηs)
. (38)

We have the following result.
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g(S) g(S) g(S)

SSSλs λi S λs λiS

g(λs)

λs λiS

g(S)

(a) S ≥ λi (b) S ≤ λs (c) λs < S < λi

Figure 2: Case of uniqueness of the endemic equilibrium when the growth functions are linear.

Proposition 19. Assume that the growth functions are linear, fs(S) = αsS and fi(S) = αiS, with
αs ≥ αi. Let S be defined by (38). The endemic equilibrium E2 is unique, if and only ηs ≥ ηi or
ηs < ηi and one of the following conditions holds

1. S ≥ λi,

2. S ≤ λs and g(λs) ≥ 0,

3. S ∈ I and g
(
S
)
≥ 0.

Proof. Using items (1) and (2) of Proposition 17, if ηs ≥ ηi then, if it exists, the endemic equilibrium
E2 is unique. Assume that ηs < ηi. Since g′(S) is quadratic and the coefficient of S2 is negative,
g′(S) is positive for S between the λi and S roots and negative outside them. Therefore, g(S) is
increasing for S between λi and S and decreasing outside them. Therefore g(S) does not cancel in
I if and only if S ≥ λi, see Fig. 2(a), S ≤ λs and g(λs) ≥ 0, see Fig. 2(b), or S ∈ I and g

(
S
)
≥ 0,

see Fig. 2(c).

Note that using (4), λs, λi and S are linear in D. Therefore, g(λs) and g
(
S
)

are cubic in D.
It is therefore possible to determine D, as a function of the biological parameters, such that the
conditions of Proposition 19 are satisfied. We won’t attempt to do this in the general case, as the
conditions obtained are rather cumbersome to write and have no biological interpretation. However,
when the biological parameters are fixed, it is very easy to determine whether the conditions of
Proposition 19 are satisfied or not, see Appendix B.1.

4.2 Monod growth functions

In this section we show how our results can be applied to Monod growth functions:

fs(S) =
msS

Ks + S
, fi(S) =

miS

Ki + S
. (39)

If condition fs(S) ≥ fi(S) in Hypothesis 2 is satisfied we do not necessarily have f ′s(S) ≥ f ′i(S) as
for linear growth functions. Therefore Lemma 6 cannot be applied and the multiplicity of positive
equilibria can occur. We have the following result.

Lemma 20. Assume that fs and fi are given by (39). The condition fs(S) ≥ fi(S) in Hypothesis
2 is equivalent to ms ≥ mi and msKs ≥ miKi. Moreover, the condition f ′s(S) ≥ f ′i(S) in Lemmas
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6 or 12 is satisfied if and only if, in addition, msKi ≥ miKs. The second condition in (27) is
equivalent to

ms
Ks+S

+ mi
Ki+S

≥ δ
(
ηs − ηi + S

(
ηs
Ki
− ηi

Ks

))
. (40)

Proof. We have

fs(S)− fi(S) = (ms−mi)S+msKi−miKs
(Ks+S)(Ki+S) S.

Therefore, for all S ≥ 0, fs(S) ≥ fi(S) if and only if ms ≥ mi and msKi ≥ miKs. On the other
hand, we have

f ′s(S)− f ′i(S) = (msKs−miKi)S2+2KsKi(ms−mi)S+KsKi(msKi−miKs)
(Ks+S)2(Ki+S)2 .

Therefore, for all S ≥ 0, f ′s(S) ≥ f ′i(S) if and only if msKs ≥ miKi, ms ≥ mi and msKi ≥ miKs.
The condition f ′sf

′
i(fs + fi) ≥ δ(ηsfif ′s − ηifsf ′i) in (27) becomes

msKsmiKi
(Ks+S)2(Ki+S)2

(
msS
Ks+S

+ miS
Ki+S

)
≥ δmsKsmiKiS

(Ks+S)2(Ki+S)2

(
ηs
Ki+S
Ki
− ηi Ks+SKs

)
which is the same as (40).

Note that in the limit ms = αsKs, mi = αiKi and Ks = Ki =∞, the Monod growth functions
(39) tend to the linear growth functions (32) and the condition (40) reduces to the condition αs+αi ≥
δ(ηs−ηi) obtained in (35). Section 5.2 shows an example where ηs > ηi, and yet the system does not
admit the uniqueness of the endemic equilibrium. Consequently, the case of Monod functions is more
complicated than the case of linear functions, and presents more situations than those encountered
in Theorem 18. This case will be the subject of a forthcoming work.

5 Bifurcation diagrams

5.1 Linear growth functions

In this section we consider the model (2), where Ds and Di are given by (4). We fix the biological
parameters, i.e. the specific death rates εs and εi of the species, the rates of infection δ and the rate
of elimination of viruses γ, the growth yield coefficients ηs and ηi and the growth rates αs and αi of
the species. We also fix the dilution rate D and we study the behavior of the model with respect to
the input concentration of the nutrient S0.

Remark 5. With the exception of Figs. 10 and 11 (made with Monod growth functions), all the
figures illustrating our results were made with linear growth functions fs(S) = αsS and fi(S) = αiS.
The biological parameter values are depicted in Table 4. These values have no biological meaning.
We chose them only to illustrate our findings and compare them with the results of [23]. In all figures
an equilibrium or a cycle is drawn in red when it is stable and in blue when it is unstable.

5.1.1 A case where λs = λi and E2 is unique and can be unstable

We consider (2) with the biological parameter values depicted in row 1 of Table 4. For these biological
parameter values the sufficient condition of stability αs + αi ≥ δ(ηs − ηi) in Proposition 16 is not
satisfied. Therefore, E2 can be unstable. Let us illustrate this for D = 0.5. The plot of the third
degree polynomial b4, defined by (30), is depicted in Fig. 3(a). This polynomial is negative for
XH

1 < X < XH
2 and positive for 0 < X < XH

1 or X > XH
2 .

17



Table 4: Biological parameter values for the system (2), where Ds and Di are given by (4).

Figures εs εi ηs ηi αs αi δ γ Figures of [23]
Fig. 3 0.2 0.2 10 0.01 3.0 3.0 2 5.5
Fig. 4 2 12 10 5 7 5 0.7 0.2 Figs. 1, 3

Figs. 5, 6 2 192 55 0.5 7 6.5 2 0.01 Fig. 4
Figs. 7, 8, 9 0.01 0.81 0.01 1 0.5 0.4 1 0.02 Fig. 5

(a) (b)

b4

X

XH1↙
XH2↘

S0

xs

E1

E0

E2

LC

λs λc λ
H
1 λH2

Figure 3: The biological parameter values are given Table 4 and D = 0.5. (a) The plot of the
polynomial b4 for X > 0 showing its positive roots XH

1 ≈ 0.0012 and XH
2 ≈ 0.0093. (b) Bifurcation

diagram showing the xs components of the equilibria or limit cycle of (3) with respect of S0. We
have λs = 0.7/3, λc = 1.855/3, λH1 ≈ 0.791 and λH2 ≈ 1.921.

The theoretical results in Table 3 predict that for S0 ∈ (0, λs), E0 is stable and coalesces with E1

when S0 = λs and then stability is transferred to E1. For S0 ∈ (λs, λc), E1 is stable and coalesces
with E2 when S0 = λc and then stability is transferred to E2. E2 is stable for λc < S0 < λH1 or
S0 > λH2 and unstable for λH1 < S0 < λH2 , where λH1 and λH2 are given by (31). These theoretical
predictions are confirmed by the bifurcation diagram shown in Fig. 3(b) and obtained with the
software MATCONT [8]. This diagram shows that a stable limit cycle appears at λH1 and disappears
at λH2 .

5.1.2 A case where λs < λi and E2 is unique and stable

We consider (2) with the biological parameter values in row 2 of Table 4. Since ηs > ηi and
αs +αi > δ(ηs− ηi) we deduce from item (2) of Proposition 17 (see also [23, Theorem 3.4]) that the
positive equilibrium E2 is stable and unique if it exists. The bifurcation diagram depicted in [23,
Fig. 3] corresponds to the behaviour of the system for D = 8. The graph Γ of the function G, for
D = 8, is depicted in Fig. 4(a). This figure illustrates why E2 is unique if it exists. For example, if
S0 = 2 < λc, there is no positive equilibrium and if S0 = 10 > λc, E2 exists.

The theoretical results in Table 2 predict that E0 loses its stability by a transcritical bifurcation
with E1 for S0 = λs and E1 loses its stability by a transcritical bifurcation with E2 for S0 = λc.
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Figure 4: (a) The function S0 = G(S) for the biological parameter values given in Table 4 and
D = 8. We have λs ≈ 1.43 and λc ≈ 3.76. (b) Bifurcation diagram showing the S component of the
equilibria as S0 varies.

The corresponding bifurcation diagram showing the S components of the equilibria or limit cycle of
(2) with respect of S0 is depicted in Fig. 4(b). Actually, the results of [23] concern the coexistence
of species xs and xi with a third species y. Hence, if we compare our Fig. 4 with [23, Fig. 3] we
should notice that our equilibria E0, E1 and E2 correspond to the equilibria E0, E1x and E2 of [23,
Fig. 3]. In this figure, we see that there are also equilibria E1y and E3 which correspond to the
presence of the species y.

(a) (b)
S0

S

Γ

C

λH2

λH1↘
λc→

λs
↗
SH1

↑ SH2

S0

S

Γ

C
λs

λc
λH1

SH1

Figure 5: (a) The curve Γ of G and the curve C of the function A4(S), defined by (28), for the
biological parameter values given in Table 4 and D = 8. We have A4(S) < 0 for SH1 < S < SH2 . (b)
Magnification showing the values λs, S

H
1 , λc and λH1 . We have λs = 10/7, SH1 ≈ 1.463, SH2 ≈ 4.702,

λc ≈ 3.59, λH1 ≈ 3.96 and λH2 ≈ 98.59.

5.1.3 A case where λs < λi and E2 is unique and can be unstable

We consider (2) with the biological parameter values depicted in row 3 of Table 4. For these biological
parameter values the sufficient condition of stability αs + αi ≥ δ(ηs − ηi) in Proposition 16 is not
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S

S0

S
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(a) (b)

Figure 6: (a) Bifurcation diagram of (2) corresponding to Fig. 5, showing the S component of
equilibria and limit cycles. There is a supercritical Hopf bifurcation of E2 at λH1 giving rise to a
stable limit cycle LCs and a subcritical Hopf bifurcation of E2 at λH2 , giving rise to an unstable limit
cycle LCu. In addition, there is a confluence of LCs and LCu at λC ≈ 102.73. (b) Magnification
showing the values λs, λc and λH1 .

satisfied. Therefore, E2 can be unstable. These parameter values were used in [23, Fig. 4], with
S0 = 100, D = 8 and ηs ∈ (0, 150) to illustrate the bifurcation diagram when all parameters are fixed
except ηs which is varying. They proved that there is a range of the parameter ηs for which there
are two limit cycles, the one with larger amplitude orbitally asymptotically stable and the other
one unstable. More precisely, as the parameter ηs is increased from zero, there is a saddle-node
bifurcation of limit cycles resulting in two periodic orbits. As ηs is increased further, the unstable
periodic orbit disappears in a subcritical Hopf bifurcation at E2. Although the demonstration of this
type of bifurcation is very interesting from the point of view of the mathematical understanding of
the model, it is questionable whether it can be encountered in a real situation, since the bifurcation
parameter ηs is a biological parameter. Our aim is to show that these types of bifurcations also
occur when the operating parameter S0 is varying. Therefore, they can be encountered in real life
situations.

Let us construct the bifurcation diagram of (3) when D = 8 and S0 is varying. The curve C of
the function S 7→ A4(S) depicted in Fig. 5 shows that this function change sign at SH1 and SH2 .
Recall that this function is defined for λs < S < λi. The curve Γ of the function S 7→ G(S) is
colored in blue if S ∈ (SH1 , S

H
2 ) and in red if not. This choice of the red and blue color indicates the

stability of E2 (in red) and its instability (in blue). Note that A4(S) takes very large values. This is
the reason why in Fig. 5, the C curve is actually the graph of the function A4/5000, not the graph
of A4.

The theoretical results in Table 3 predict that for S0 ∈ (0, λs), E0 is stable and coalesces with E1

when S0 = λs and then stability is transferred to E1. For S0 ∈ (λs, λc), E1 is stable and coalesces
with E2 when S0 = λc and then stability is transferred to E2. E2 is stable for λc < S0 < λH1 or
S0 > λH2 and unstable for λH1 < S0 < λH2 , where λH1 and λH2 are given by (29). The values λH1 and
λH2 correspond to Hopf bifurcations of E2, see Appendix B.2 for the numerical evidence of a Hopf
bifurcation. These theoretical predictions are confirmed by the bifurcation diagram depicted in Fig.
6 and obtained with the software MATCONT [8]. This diagram shows that, as S0 is decreased from
110 at S0 = λC , there is a confluence of limit cycles resulting in two periodic orbits, the one with
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larger amplitude is orbitally asymptotically stable and the other one unstable. As S0 is decreased
further the unstable periodic orbit disappears in a subcritical Hopf bifurcation of E2 at S0 = λH2 .
Note that the stable limit cycle exists for all S0 ∈ (λH1 , λ

C). Moreover, as S0 is decreased further,
the stable periodic orbit disappears in a supercritical Hopf bifurcation of E2 at S0 = λH1 .

(a) (b) (c)
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S S0 S0

S0 S S

Figure 7: (a) The function S0 = G(S) for the biological parameter values Table 4 and D = 0.19.
We have λs = 0.4, SSN2 ≈ 1.29, SSN1 ≈ 2.47, λi = 2.5, λc ≈ 90.93 λSN1 ≈ 37.52, and λSN2 ≈ 173.64.
(b) Bifurcation diagram showing the S component of the equilibria as S0 varies. (c) Magnification
showing λs and the transcritical bifurcation involving E0 and E1.

5.1.4 Multiplicity of positive equilibria

Let us consider the biological parameter values depicted in row 4 of Table 4. These values were
used in [23, Fig. 5], with S0 ∈ [0, 200] and D = 0.19, to illustrate the multiplicity of coexistence
equilibria of xs and xi and show their bifurcation diagram as S0 varies. Since we have a necessary
and sufficient condition for the existence of a positive equilibrium, we can determine the values of
D for which multiplicity can occur. We have the following result.

Proposition 21. For the biological parameter values depicted in row 4 of Table 4 there exists two
critical values D1 ≈ 0.05993 and D2 ≈ 1.42359, such that, if D = D1 then λSN1 = λc, if D = D2,
then λSN2 = λc and we have

0 < D < D1 =⇒ λc < λSN1 < λSN2 ,
D1 < D < D2 =⇒ λSN1 < λc < λSN2 ,
D2 < D =⇒ λSN1 < λc and λSN2 does not exist.

(41)

Proof. The proof is given in Appendix B.1.

The bifurcation diagram depicted in [23, Fig. 5] corresponds to the behaviour of the system for
D = 0.19. This value satisfies the condition D1 < D < D2. The graph Γ of function G is shown
in Fig. 7(a). We see that multiplicity of positive equilibria occurs when λSN1 < S0 < λSN2 . The
theoretical results in Table 1 predict that for S0 ∈ (0, λs), E0 is stable and coalesces with E1 when
S0 = λs and then stability is transferred to E1. For S0 ∈ (λs, λc), E1 is stable and coalesces with
E1

2 when S0 = λc and then stability is transferred to E1
2 , see Fig. 7(b,c). Besides these transcritical

bifurcations, a saddle node bifurcation of E2
2 and E3

2 occurs at λSN1 and a saddle node bifurcation
of E1

2 and E2
2 occurs at λSN2 . E1

2 is stable for λc < S0 < λSN2 , E3
2 is stable for S0 > λSN1 and E2

2 is
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unstable for λSN1 < S0 < λSN2 , see Fig. 7(b). Proposition 21 shows that the behavior described in
Fig. 7 is not specific to the D = 0.19 value. Indeed, for any D ∈ (D1, D2), we will have the same
behavior since λs < λSN1 < λc < λSN2 . Note that if λSN1 < S0 < λc, E1 and E3

2 are both stable and,
if λc < S0 < λSN2 , E1

2 and E3
2 are both stable.

If D ∈ (0, D1) or D > D2, the bifurcation diagram when S0 varies does not have the same
behavior, as shown in Figs. 8 and 9, respectively.

(a) (b) (c)
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S S0 S0

S0 S S

Figure 8: (a) The function S0 = G(S) for the biological parameter values in Table 4 and D = 1.7.
We have λs = 3.42, SSN1 ≈ 6.236, λi = 6.275, λc ≈ 120.30 and λSN1 ≈ 17.48. (b) Bifurcation
diagram showing the S component of the equilibria as S0 varies. (c) Magnification showing λs and
the transcritical bifurcation involving E0 and E1.
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Figure 9: (a) The function S0 = G(S) for the biological parameter values in Table 4 and D = 0.04.
We have λs = 0.1, SSN2 ≈ 1.10, SSN1 ≈ 2.09, λi = 2.125, λc = 103.85, λSN1 ≈ 141.32, and
λSN2 ≈ 598.12. (b) Bifurcation diagram showing the S component of the equilibria as S0 varies. (c)
Magnification showing λ1 and the transcritical bifurcation involving E0 and E1.

If D = 1.7 > D2, the graph Γ of function G is shown in Fig. 8(a). The theoretical results in
Table 1 predict that for S0 ∈ (0, λs), E0 is stable and coalesces with E1 when S0 = λs and then
stability is transferred to E1. For S0 ∈ (λs, λc), E1 is stable and coalesces with E2

2 when S0 = λc
and loses its stability when S0 > λc, see Fig. 8(b,c). Besides these transcritical bifurcations, a
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saddle node bifurcation of E2
2 and E3

2 occurs at λSN1 . E3
2 is stable for S0 > λSN1 and E2

2 is unstable
for λSN1 < S0 < λc, see Fig. 8(b). Proposition 21 shows that the behavior described in Fig. 8 is
not specific to the D = 1.7 value. Indeed, for any D > D2, we will have the same behavior since
λs < λSN1 < λc and λSN2 does not exist. Note that if λSN1 < S0 < λc, E1 and E3

2 are both stable.
If D = 0.04 ∈ (D1, D2), the graph Γ of function G is shown in Fig. 9(a). The theoretical results

in Table 1 predict that for S0 ∈ (0, λs), E0 is stable and coalesces with E1 when S0 = λs and then
stability is transferred to E1. For S0 ∈ (λs, λc), E1 is stable and coalesces with E1

2 when S0 = λc
and then stability is transferred to E1

2 , see Fig. 9(b,c). Besides these transcritical bifurcations, a
saddle node bifurcation of E2

2 and E3
2 occurs at λSN1 and a saddle node bifurcation of E1

2 and E2
2

occurs at λSN2 . E1
2 is stable for λc < S0 < λSN2 , E3

2 is stable for S0 > λSN1 and E2
2 is unstable for

λSN1 < S0 < λSN2 , see Fig. 9(b). Proposition 21 shows that the behavior described in Fig. 7 is not
specific to the D = 0.04 value. Indeed, for any D ∈ (0, D1), we will have the same behavior since
λs < λc < λSN1 < λSN2 . Note that if λSN1 < S0 < λSN2 , E1

2 and E3
2 are both stable. The difference

with the behavior of the bifurcation diagram of Fig. 7 lies in the absence of the interval
(
λSN1 , λc

)
in which E1 and E3

2 are both stable.

5.2 Monod growth functions

Our aim is to illustrate our findings for (1), with Monod growth functions (39). We plot in Fig.
10(a) the graph of the function G with the parameter values given in the caption of the figure. Note
that for these parameter values we have ηs > ηi and yet there is a multiplicity of positive equilibria,
contrary to what happens for linear growth functions (see item 2 of Proposition 17).

(a) (b)S0

S

S0 = 1.05 106

ΓλSN2

λSN1

λc→
λs SSN2 SSN1

A4

S
λs λi

Figure 10: Multiplity of positive equilibria of (1) with the Monod growth functions (39) and param-
eter values: D = 2, εs = 291.2, εi = 310.6, ms = 575, mi = 515, ηs = 4.560, ηi = 2.943, δ = 0.016,
γ = 0.313, Ks = 0.85 and Ki = 112.9. (a) The curve Γ of the function G(S) showing that equation
S0 = G(S) has three solutions when λSN1 < S0 < λSN2 . We have λs ≈ 0.8843, λi = 174.3703,
SSN1 ≈ 150.686, SSN2 ≈ 17.238, λc ≈ 6.207 105, λSN1 ≈ 9.5851 105, λSN2 ≈ 1.1037 106. (b) The graph
of the function A4(S) showing that A4(S) > 0 for S ∈ I.

Note that the sufficient condition of stability (40) is satisfied in this case but not the condition
msKi ≥ miKs. However, the plot of the graph of the function A4(S) defined by (28) shows that this
function is always positive, see Fig. 10(b). Therefore the positive equilibria E1

2 and E3
2 are stable

whenever they exist while E2
2 is unstable if it exist. The theoretical results in Table 1 predict that for
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Figure 11: (a) Bifurcation diagram showing the S component of the equilibria as S0 varies for the
parameter values considered in Fig. 10. (b) Magnification showing the transcritical bifurcation of
E1 and E1

2 at S0 = λc. (c) Magnification showing λs and the transcritical bifurcation involving E0

and E1.

S0 ∈ (0, λs), E0 is stable and coalesces with E1 when S0 = λs and then stability is transferred to E1.
For S0 ∈ (λs, λc), E1 is stable and coalesces with E1

2 when S0 = λc and then stability is transferred
to E1

2 , see Fig. 11(b,c). Besides these transcritical bifurcations, a saddle node bifurcation of E2
2

and E3
2 occurs at λSN1 and a saddle node bifurcation of E1

2 and E2
2 occurs at λSN2 . E1

2 is stable for
λc < S0 < λSN2 , E3

2 is stable for S0 > λSN1 and E2
2 is unstable for λSN1 < S0 < λSN2 , see Fig. 9(b).

Note that if λSN1 < S0 < λSN2 , E1
2 and E3

2 are both stable.

6 Discussion

This article studies the impact of a virus on two competing populations - one susceptible and the
other resistant - using an SIS epidemic model in a chemostat-like environment. We extend the
SIS model (2) of competition between susceptible and infected bacteria in the chemostat studied in
[15, 23, 31]. Our extension involves considering the model (3) with general growth rate functions
for competitors. Our mathematical analysis highlights various potential behaviors. Proposition 2
provides a complete theoretical description of the outcomes of this competition. Beyond to the
washout equilibrium, where susceptible and infected bacteria disappear, the system may exhibit a
DFE equilibrium, where infected bacteria vanish while susceptible bacteria persist, and endemic
positive equilibria, where both infected and susceptible bacteria coexist. The conditions of the
existence of the DFE and the conditions of existence and uniqueness of the endemic equilibria,
and the stability conditions of all equilibria are established in Section 3. As expected the basic
reproduction number, as given in (23), plays a crucial role in predicting which populations survive,
as discussed in Section 3.3.

Our results apply to the case where the growth functions are linear (see Section 4.1), allowing us
to recover the results of [23] (see Section 4.1.2). We also obtain a necessary and sufficient condition
for the uniqueness of endemic equilibrium, whereas [23] proposed only sufficient conditions. Our
methods contribute significantly in terms of mathematical methodology for addressing a broad class
of growth functions. For example, the examination of model (3) with Monod functions is outlined in
this article (see Section 4.2). We demonstrate that new behaviors can emerge in this case compared
to model (2), where the growth functions are linear. A thorough investigation of the case with
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Monod growth functions demands further exploration and will be the focus of a forthcoming article.
The full competition model (1), which incorporates general growth rates, will be the subject

of future work. Examining this model with the competitor y holds ecological significance. In the
case of linear growth rates, previous studies, such as in [23], have indicated that while competitive
exclusion occurs in the absence of a virus, coexistence of competitors becomes possible in the presence
of a virus. These findings suggest that the presence of viruses could enhance bacterial diversity,
potentially influencing bacterial species’ survival. A critical question remains: do these outcomes
hold true for more general growth functions?

To better understand the richness of the model’s behavior, a few bifurcation diagrams with
respect to input nutrient concentration are examined, see Section 5. We find some of the bifurcation
diagrams described in [23]. Since we have a necessary and sufficient condition of uniqueness of the
endemic equilibrium, we can show that the bifurcation diagram that was given in [23] to illustrate
the multiplicity of equilibria retains the same qualitative behavior when we change the rate D (see
Section 5.1.4). For practical utility, a description of the system in terms of both operating parameters
D and S0 is essential, giving their significance in the model and ease of experimental manipulation.
This diagram, known as the operating diagram is very useful to understand the model from both
the mathematical and biological points of view [12]. It is often constructed both in the biological
literature [17, 26, 28] and in the mathematical literature [1, 2, 4, 5, 6, 7, 9, 10, 20, 21, 24, 29, 34].
The construction of the operating diagram for the SIS model in the chemostat is the subject of a
forthcoming publication.

A Proofs

A.1 Proof of Proposition 2

Equilibria of (3) are the solutions of the set of equations

0 = D(S0 − S)− 1
ηs
fs(S)xs − 1

ηi
fi(S)xi, (42)

0 = (fs(S)−Ds)xs − (δxs − γ)xi, (43)

0 = (fi(S)−Di + δxs − γ)xi. (44)

If xs = 0, then from (43) we have xi = 0, and hence, from (42) we have S = S0. One obtains
the washout equilibrium E0 = (S0, 0, 0), which always exists.

Assume now that xs > 0. If xi = 0 then from (43) we have fs(S) = Ds, so that S = λs, where
λs is given by (5). Therefore, using (42) we have xs = Dηs

Ds
(S0 − λs), which is the expression of x̄s

given in (10). One obtains the DFE. This equilibrium exists if and only if xs > 0, that is, λs < S0.
Assume now that xs > 0 and xi > 0. Adding (43) and (44) one obtains

(fs(S)−Ds)xs + (fi(S)−Di)xi = 0.

This equation implies that

fs(S)−Ds and fi(S)−Di are of opposite signs, (45)

or

fs(S)−Ds = fi(S)−Di = 0. (46)

The condition (45) is satisfied in the case (6), and, as stated in Remark 1, we must have λs <
S < λi. Using (44), we have

fi(S)−Di + δxs − γ = 0,
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from which we deduce that xs = γ+Di−fi(S)
δ = Xs(S), where Xs is the function given in (8). Using

(43) and the relation δxs − γ = Di − fi(S), which is deduced from the above equation, we have

(fs(S)−Ds)xs = (δxs − γ)xi = (Di − fi(S))xi.

Therefore xi = fs(S)−Ds
Di−fi(S) xs = Xi(S), where Xi is the function given in (8). By replacing xs and xi

in (42), we obtain
D(S0 − S) = 1

ηs
fs(S)Xs(S) + 1

ηi
fi(S)Xi(S) =: F (S),

where F is the function given in (8). Hence, we proved that S must be a solution of equation (11),
such that λs < S < λi, and xs = Xs(S), xi = Xi(S), which proves (12).

The condition (46) is satisfied in the case (7) and S = λs = λi. From (43) we have xs = γ
δ .

By replacing S and xs in (42), we obtain xi = ηi
Di

(
D
(
S0 − λs

)
− Dsγ

ηsδ

)
, which proves (13). This

equilibrium exists if and only if xi > 0, that is to say, S0 > λc := λs + Dsγ
Dδηs

.

A.2 Proof of Lemma 6

Note that ϕs > 0 and ϕi < 0 on I. Therefore ϕi(ϕi − γ) is positive. Let N be the numerator of
(19). Assuming f ′s ≥ f ′i , we have

N = ϕi(ϕi − γ)Asf
′
s +Aif

′
i ≥ [ϕi(ϕi − γ)As +Ai]f

′
i .

Using the expression of Ai we have

ϕi(ϕi − γ)As +Ai = ϕi(ϕi − γ)As + ϕsϕ
2
i (ηs − ηi)− ηiϕ2

iDs + γηsϕsDi.

Assume that ηs ≥ ηi. All the terms are positive except −ηiϕ2
iDs. From the definition of As we have

As ≥ Diηi. Therefore

ϕi(ϕi − γ)As ≥ ϕi(ϕi − γ)ηiDi > ϕ2
i ηiDi ≥ ϕ2

i ηiDs.

Hence, ϕi(ϕi − γ)As + Ai > 0, so that N > 0. Therefore F ′(S) > 0 for S ∈ I. This proves that
equation (14) cannot have a solution.

A.3 Proof of Proposition 10

Let J be the Jacobian matrix of (3) at an equilibrium (S, xs, xi). We have

J =

−D − xs
ηs
f ′s(S)− xi

ηi
f ′i(S) − 1

ηs
fs(S) − 1

ηi
fi(S)

xsf
′
s(S) fs(S)−Ds − δxi −δxs + γ

xif
′
i(S) δxi fi(S)−Di + δxs − γ

 . (47)

At E0 = (S0, 0, 0), the Jacobian matrix (47) becomes

J0 =

−D − 1
ηs
fs(S

0) − 1
ηi
fi(S

0)

0 fs(S
0)−Ds γ

0 0 fi(S
0)−Di − γ

 .

The eigenvalues of J0 are given by the diagonal elements. They are all negative when fs(S
0) < Ds

and fi(S
0) < Di + γ, i.e. S0 < λs, where λs = f−1

s (Ds) and S0 < λγ , where λγ = f−1
i (Di + γ).

Using Lemma 1 and f ′i(S) > 0, we have λs ≤ λi < λγ . Hence E0 is stable if and only if S0 < λs.
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At E1 = (λs, x̄s, 0), the Jacobian matrix (47) becomes

J1 =

−D − x̄s
ηs
f ′s(λs) − 1

ηs
fs(λs) − 1

ηi
fi(λs)

x̄sf
′
s(λs) 0 −δx̄s + γ
0 0 fi(λs)−Di + δx̄s − γ

 . (48)

The characteristic polynomial is given by

P (λ) = (fi(λs)−Di + δx̄s − γ − λ)
(
λ2 + c1λ+ c2

)
,

where c1 = x̄s
ηs
f ′s(λs) and c2 = x̄s

ηs
fs(λs)f

′
s(λs). Since c1 > 0 and c2 > 0, the eigenvalues cor-

responding to the quadratic term have negative real parts. The eigenvalue from the linear term
is

λ = fi(λs)−Di + δx̄s − γ = fi(λs)−Di − γ +
δDηs
Ds

(S0 − λs).

It is negative if and only if S0 < λs + Ds
δDηs

(Di − fi(λs) + γ). Therefore E1 is stable if and only if

S0 < λc, where λc is defined by (15).

A.4 Proof of Proposition 11

Let E2 = (S∗, x∗s, x
∗
i ) be a positive equilibrium of (3). The Jacobian matrix (47) becomes

J2 =

−D − x∗
s

ηs
f ′s(S

∗)− x∗
i

ηi
f ′i(S

∗) − 1
ηs
fs(S

∗) − 1
ηi
fi(S

∗)

x∗sf
′
s(S
∗) fs(S

∗)−Ds − δx∗i −δx∗s + γ
x∗i f

′
i(S
∗) δx∗i fi(S

∗)−Di + δx∗s − γ

 .

Since (S∗, x∗s, x
∗
i ) satisfies (43), we have (fs(S

∗)−Ds − δx∗i )x∗s = −γx∗i . Thus,

fs(S
∗)−Ds − δx∗i = −γ x

∗
i

x∗
s
.

Similarly, since (S∗, x∗s, x
∗
i ) satisfies (44), we have

fi(S
∗)−Di + δx∗s − γ = 0.

Therefore, at E2, the Jacobian matrix J2 can be written

J2 =

−m11 −m12 −m13

m21 −m22 m23

m31 m32 0

 (49)

where mij are given by

m11 = D +
x∗
s

ηs
f ′s(S

∗) +
x∗
i

ηi
f ′i(S

∗), m12 = 1
ηs
fs(S

∗), m13 = 1
ηi
fi(S

∗),

m21 = x∗sf
′
s(S
∗), m22 = γ

x∗
i

x∗
s
, m23 = γ − δx∗s,

m31 = x∗i f
′
i(S
∗), m32 = δx∗i .

(50)

The characteristic polynomial is given by

P (λ) = λ3 + c1λ
2 + c2λ+ c3,
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with c1, c2 and c3 are defined by

c1 = m11 +m22,

c2 = m12m21 +m13m31 −m32m23 +m11m22, (51)

c3 = m13(m21m32 +m31m22) +m23(m31m12 −m11m32),

where mij are given by (50). According to the Routh-Hurwitz criteria, E2 is stable if and only if

c1 > 0, c3 > 0 and c1c2 − c3 > 0. (52)

From the definition of c1, we see that c1 > 0. We distinguish now the cases (6) and (7).
In the case (6), i.e. λs < λi, S

∗ is a solution of (11), such that S∗ ∈ J , and x∗s, x
∗
i are given by

(12). Therefore the coefficients c1, c2 and c3 given by (51), where the mij are defined by (50), are
the same as the coefficients a1, a2 and a3 given by (25). Now, using the definitions (8) of Xs and
Xi, we can write

m32m23 = δx∗i (γ − δx∗s) = −δ ϕsϕi
γ−ϕi
δ

(
γ − δ γ−ϕiδ

)
|S=S∗

= ϕs(S
∗)(ϕi(S

∗)− γ).

Since S∗ ∈ J , we have ϕs(S
∗) > 0 and ϕi(S

∗) < 0. Therefore m23m32 6= 0. Hence, using the Lemma
A.1. in [11], we have

det(J2) = −F ′(S∗)m23m32 = F ′(S∗)ϕs(S
∗)(γ − ϕi(S∗)), (53)

where,

h(S) = D(S0 − S)− fs(S)Xs(S)
ηs
− fi(S)Xi(S)

ηi
= D(S0 − S)− F (S). (54)

The development of the determinant of J2, given by (49), with respect to its third column, shows
that c3 = − det(J2). From (54), we have F ′(S) = −D−F ′(S). Therefore, from (53) we deduce that

c3 = −det(J2) = ϕs(S
∗)(γ − ϕi(S∗))(F ′(S∗) +D).

Since ϕs(S
∗) > 0 and ϕi(S

∗) < 0 we deduce that c3 > 0 if and only if F ′(S∗) > −D. Replacing mij

by their expressions (50) shows that for i = 1, 2, 3, ci = ai, where ai are given by (25). From (52)
we obtain that E2 is stable if and only if F ′(S∗) > −D and a1a2 − a3 > 0.

In the case (7), i.e. λs = λi, S
∗ = λs and x∗s, x

∗
i are given by (13). Hence m23 = 0, so that the

coefficients c2 and c3 given by (51) can be written now

c2 = m12m21 +m13m31 +m11m22,
c3 = m13(m21m32 +m31m22),

where the mij are defined by (50). Note that c3 > 0. Using m22 = δx∗i , fs(S
∗) = Ds and

fi(S
∗) = Di, one sees that for i = 1, 2, 3, ci = bi, where bi are given by (26). From (52) we obtain

that E2 is stable if and only if b1b2 − b3 > 0.

A.5 Proof of Lemma 12

Assume that λs < λi. Recall that

a1 = B +
γx∗
i

x∗
s
,

a2 =
x∗
s

ηs
fsf
′
s +

x∗
i

ηi
fif
′
i + δx∗iC +B

γx∗
i

x∗
s
,

a3 =
x∗
i

ηi
fi

(
f ′sδx

∗
s + f ′i

γx∗
i

x∗
s

)
+ C

(
Bδx∗i −

x∗
i

ηs
fsf
′
i

)
,
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where B = D +
x∗
s

ηs
f ′s +

x∗
i

ηi
f ′i , C = δx∗s − γ, and the functions fs, f

′
s, fi, f

′
i are evaluated at S∗. We

have
a1a2 =

(
B +

γx∗
i

x∗
s

)(
x∗
s

ηs
fsf
′
s +B

γx∗
i

x∗
s

)
+

Bx∗
i

ηi
fif
′
i +BCδx∗i +

γx∗
i
2

ηix∗
s
fif
′
i + δC

γx∗
i
2

x∗
s
.

The terms BCδx∗i and
γx∗
i
2

ηix∗
s
fif
′
i in a1a2 and a3 are simplified and we obtain

a1a2 − a3 =
(
B +

γx∗
i

x∗
s

)(
x∗
s

ηs
fsf
′
s +B

γx∗
i

x∗
s

)
+

Bx∗
i

ηi
fif
′
i + δC

γx∗
i
2

x∗
s

+
Cx∗

i

ηs
fsf
′
i −

δx∗
sx

∗
i

ηi
fif
′
s.

Hence,

a1a2 − a3 >
(
B +

γx∗
i

x∗
s

)
x∗
s

ηs
fsf
′
s +

Bx∗
i

ηi
fif
′
i +

Cx∗
i

ηs
fsf
′
i −

δx∗
sx

∗
i

ηi
fif
′
s. (55)

From the definition of B we deduce that(
B +

γx∗i
x∗s

)
x∗s
ηs
fsf
′
s >

x∗sx
∗
i

ηsηi
fsf
′
sf
′
i +

γx∗i
ηs

fsf
′
s,

Bx∗i
ηi

fif
′
i >

x∗sx
∗
i

ηsηi
f ′sfif

′
i .

Using these inequalities and replacing C = δx∗s − γ in (55) gives

a1a2 − a3 >
x∗
sx

∗
i

ηsηi
f ′sf
′
i(fs + fi) +

γx∗
i

ηs
fsf
′
s +

δx∗
sx

∗
i

ηs
fsf
′
i −

γx∗
i

ηs
fsf
′
i −

δx∗
sx

∗
i

ηi
fif
′
s

=
γx∗
i

ηs
fs(f

′
s − f ′i) +

x∗
sx

∗
i

ηsηi
[f ′sf

′
i(fs + fi) + δ(ηifsf

′
i − ηsfif ′s)] .

Therefore a1a2 − a3 > 0 if the condition (27) is satisfied for S = S∗.
Assume that λs = λi. Recall that

b1 = B + δx∗i ,

b2 =
x∗
s

ηs
fsf
′
s +

x∗
i

ηi
fif
′
i +Bδx∗i ,

b3 =
x∗
i

ηi
fi (γf ′s + δx∗i f

′
i) ,

where B = D +
x∗
s

ηs
f ′s +

x∗
i

ηi
f ′i , and the functions fs, f

′
s, fi, f

′
i are evaluated at λs. We have

b1b2 = (B + δx∗i )
(
x∗
s

ηs
fsf
′
s +Bδx∗i

)
+

Bx∗
i

ηi
fif
′
i +

δx∗
i
2

ηi
fif
′
i .

The term
δx∗
i
2

ηi
fif
′
i in b1b2 and b3 is simplified and we obtain

b1b2 − b3 = (B + δx∗i )
(
x∗
s

ηs
fsf
′
s +Bδx∗i

)
+

Bx∗
i

ηi
fif
′
i −

γx∗
i

ηi
fif
′
s.

Hence,

b1b2 − b3 > (B + δx∗i )
x∗s
ηs
fsf
′
s +

Bx∗i
ηi

fif
′
i −

γx∗i
ηi

fif
′
s. (56)

From the definition of B and using δx∗s = γ we deduce that

(B + δx∗i )
x∗s
ηs
fsf
′
s >

γx∗i
δηsηi

fsf
′
sf
′
i +

γx∗i
ηs

fsf
′
s,

Bx∗i
ηi

fif
′
i >

γx∗i
δηsηi

f ′sfif
′
i .

Using these inequalities and adding and subtracting
γx∗
i

ηs
fsf
′
i in (56) gives

b1b2 − b3 >
γx∗
i

δηsηi
f ′sf
′
i(fs + fi) +

γx∗
i

ηs
fsf
′
s +

γx∗
i

ηs
fsf
′
i −

γx∗
i

ηs
fsf
′
i −

γx∗
i

ηi
fif
′
s

=
γx∗
i

ηs
fs(f

′
s − f ′i) +

γx∗
i

δηsηi
[f ′sf

′
i(fs + fi) + δ(ηifsf

′
i − ηsfif ′s)] .

Therefore b1b2 − b3 > 0 if the condition (27) is satisfied for S = λs.
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Figure 12: (a) The functions D 7→ λs, D 7→ λi (in black) and D 7→ S (in red) for the biological
parameters used in Proposition 21. (b) The function D 7→ g(λs).

B Numerical experimentation

B.1 Proof of Proposition 21

For the biological parameter values used in Proposition 21, we have

λs = 2D + 0.02, λi = 2.5D + 2.025, S = 1.6852D + 1.3734,

g(λs) = −0.0114D3 − 0.0755D2 − 0.0533D + 0.2618,

g(S) = −0.0171D3 − 0.0411D2 − 0.0328D − 0.0087.

We have λs < S < λi for 0 < D < D3 where D3 ≈ 4.2991 and S < λs for D > D3, see Fig. 12(a).
Moreover, g(S) < 0 and, since there is one change of sign in the sequence of polynomial coefficients,
Descartes’ rule of signs asserts that the number of positive roots of g(λs) is 1. Numerical computation
shows that g(λs) admits the root D2, where D2 ≈ 1.4236. We have g(λs) > 0 for 0 ≤ D < D2, while
g(λs) < 0 for D > D2, see Fig. 12(b). Therefore, using Proposition 19, for 0 < D < D2, equation
g(S) = 0 admits two solutions SSN2 < SSN1 in I and there is only one solution SSN1 if D > D2. In
addition, there is a unique value D1 such that λc < λSN1 for D < D1, while λSN1 < λc for D > D1.
This proves the properties depicted in (41).

B.2 Numerical evidence for a Hopf bifurcation

We numerically calculate the eigenvalues of the Jacobian matrix (49) at E2 and plot them as S0

varies. Actually, the Jacobian matrix has one real negative eigenvalue and two complexes that are
depicted in Fig. 13. The real part of the conjugate pair of eigenvalues is negative as the operating
parameter S0 < λH1 or S0 > λH2 and positive when λH1 < S0 < λH2 . The transversality condition
dα
dS0 (λH1,2) 6= 0 is checked numerically. Therefore according to the Hopf theorem a limit cycle appears

at S0 = λH1 and S0 = λH2 .

30



(a) (b)

β(S0)

α(S0)

↘

↗

α(S0)

S0

λH1 λH2

Figure 13: The dilution rate D = 8 is fixed together with all biological parameters, as in Fig. 6.
(a) Variation of the conjugate eigenvalues α(S0)± iβ(S0) of the Jacobian matrix of E2 as a function
of S0 ∈ (2, 110). (b) Numerical evidence for a Hopf bifurcation at S0 = λH1 and S0 = λH2 .

B.3 Numerical illustrations

The aim of this section is to provide the trajectories over time in various interesting situations to
illustrate our findings. We consider the biological parameter values used in Fig. 6, D = 8 and various
values of S0. If λc < S0 < λH1 or S0 > λC , all numerical simulations show the global convergence
of (3) toward E2 or toward the limit cycle, as depicted in Fig. 14. However, as predicted by Fig. 6,
since the Hopf bifurcation at S0 = λH2 is sub-critical when λH2 < S0 < λC , the solutions converge
to E2 or to the stable limit cycle, depending on the initial condition, showing the bistability of the
system, see Fig. 15. The convergence to E2 is very slow. If we perform the numerical simulation
until t = 100 we see clearly that the solution depicted in red in the figure tends to E2.
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Vert Numérique : biologie mathématique et écologie théorique. The authors thank the Algerian-
Tunisian research project DGRSDT/DGRS: “Mathematical ecology, modeling and optimization of
depollution bioprocesses” and the Euro-Mediterranean research network TREASURE (Treatment
and Sustainable Reuse of Effluents in semiarid climates, http://www.inrae.fr/treasure) for their
support during the preparation of this work.

References

[1] N. Abdellatif, R. Fekih-Salem and T. Sari, Competition for a single resource and coexistence
of several species in the chemostat, Math. Biosci. Eng. 13 (2016) 631–652. https://doi.org/
10.3934/mbe.2016012

31

https://www.cimpa.info/en/node/7080
http://www.inrae.fr/treasure
https://doi.org/10.3934/mbe.2016012
https://doi.org/10.3934/mbe.2016012


S xs xi

ttt
(a)

S xs xi

ttt
(b)

S xs xi

ttt
(c)

Figure 14: Numerical illustration of the global convergence of (3) toward E2 or toward the limit
cycle, for the biological parameter values used in Fig. 6 and D = 8. (a) S0 = 3.8 ∈ (λc, λ

H
1 ) with

initial condition (S(0), xs(0), xi(0)) = (4, 50, 1) : global convergence to E2. (b) S0 = 60 ∈ (λH1 , λ
H
2 )

with initial condition (S(0), xs(0), xi(0)) = (8, 86, 20) : global convergence to the limit cycle. (c)
S0 = 150 > λC with initial condition (S(0), xs(0), xi(0)) = (31, 115, 15) : global convergence to E2.

[2] B. Bar and T. Sari, The operating diagram for a model of competition in a chemostat with an
external lethal inhibitor. Discrete Contin. Dyn. Syst. B 25 (2020) 2093–2120. https://doi.
org/10.3934/dcdsb.2019203

[3] O. Bergh, K. Y. Borsheim, G. Bratbak and M. Heldal, High abundance of viruses found in
aquatic environments, Nature 340 (1989) 467–468. https://doi.org/10.1038/340467a0

[4] M. Dali-Youcef and T. Sari, The productivity of two serial chemostats, Int. J. Biomath. 16, 6
(2023) 2250113. https://doi.org/10.1142/S1793524522501133

[5] M. Dellal and B. Bar, Global analysis of a model of competition in the chemostat with internal
inhibitor. Discrete Contin. Dyn. Syst-Series B 26 (2021) 1129–1148. https://doi.org/10.

3934/dcdsb.2020156

32

https://doi.org/10.3934/dcdsb.2019203
https://doi.org/10.3934/dcdsb.2019203
https://doi.org/10.1038/340467a0
https://doi.org/10.1142/S1793524522501133
https://doi.org/10.3934/dcdsb.2020156
https://doi.org/10.3934/dcdsb.2020156


S xs xi

ttt

Figure 15: Numerical illustration of the bistability of (3), for the biological parameter values used
in Fig. 6 and D = 8, S0 = 101 ∈ (λH2 , λ

C). With initial condition (in black) (S(0), xs(0), xi(0)) =
(15, 350, 12), convergence to the limit cycle; with initial condition (in red) (S(0), xs(0), xi(0)) =
(15, 100, 12), convergence to E2.

[6] M. Dellal, B. Bar and M. Lakrib, A competition model in the chemostat with allelopathy
and substrate inhibition. Discrete Contin. Dyn. Syst-Series B 27 (2022) 2025–2050. https:
//doi.org/10.3934/dcdsb.2021120

[7] M. Dellal, M. Lakrib and T. Sari, The operating diagram of a model of two competitors in a
chemostat with an external inhibitor, Math. Biosci. 302 (2018) 27–45. https://doi.org/10.
1016/j.mbs.2018.05.004

[8] A. Dhooge, W. Govaerts and Y. A. Kuznetsov, Matcont: A matlab package for numerical
bifurcation analysis of ODEs, ACM Trans. Math. Softw. 29 (2003) 141–164. https://doi.

org/10.1145/980175.980184

[9] R. Fekih-Salem, Y. Daoud, N. Abdellatif and T. Sari, A mathematical model of anaerobic
digestion with syntrophic relationship, substrate inhibition and distinct removal rates, SIAM
J. Appl. Dyn. Syst. 20 (2021) 621–1654. https://doi.org/10.1137/20M1376480

[10] R. Fekih-Salem, C. Lobry and T. Sari, A density-dependent model of competition for one
resource in the chemostat. Math. Biosci. 286 (2017) 104–122. https://doi.org/10.1016/j.
mbs.2017.02.007

[11] R. Fekih-Salem and T. Sari, Properties of the chemostat model with aggregated biomass and
distinct removal rates, SIAM J. Appl. Dyn. Syst. 18 (2019) 481–509. https://doi.org/10.
1137/18M1171801

[12] J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of
Microorganism Cultures (Wiley-ISTE, 2017). http://doi.org/10.1002/9781119437215

[13] P. A. Hoskisson and G. Hobbs, Continuous culture–making a comeback?, Microbiol. 151
(2005) 3153–3159. https://doi.org/10.1099/mic.0.27924-0

[14] S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math. 34 (1978) 760–763.
https://doi.org/10.1137/0134064

[15] M. Imran and H. L. Smith, A mathematical model of gene transfer in a biofilm, in Mathematics
for ecology and environmental sciences. Biological and medical physics, biomedical engineering,
Vol 1 (Springer, Berlin, 2007), pp. 93–123. https://doi.org/10.1007/978-3-540-34428-5_6

33

https://doi.org/10.3934/dcdsb.2021120
https://doi.org/10.3934/dcdsb.2021120
https://doi.org/10.1016/j.mbs.2018.05.004
https://doi.org/10.1016/j.mbs.2018.05.004
https://doi.org/10.1145/980175.980184
https://doi.org/10.1145/980175.980184
https://doi.org/10.1137/20M1376480
https://doi.org/10.1016/j.mbs.2017.02.007
https://doi.org/10.1016/j.mbs.2017.02.007
https://doi.org/10.1137/18M1171801
https://doi.org/10.1137/18M1171801
http://doi.org/10.1002/9781119437215
https://doi.org/10.1099/mic.0.27924-0 
https://doi.org/10.1137/0134064
https://doi.org/10.1007/978-3-540-34428-5_6


[16] A. Larsen, T. Castberg, R.A. Sandaa, C.P.D Brussaard, J. Egge, M. Heldal, A. Paulino, R.
Thyrhaug, E.J. van Hannen and G. Bratbak, Population dynamics and diversity of phyto-
plankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser. 221 (2001) 47–57.
https://doi.org/10.3354/meps221047

[17] R. E. Lenski and S. E. Hattingh, Coexistence of two competitors on one resource and one
inhibitor: A chemostat model based on bacteria and antibiotics, J. Theor. Biol. 122 (1986)
83–93. https://doi.org/10.1016/S0022-5193(86)80226-0

[18] J. Monod, La technique de culture continue: théorie et applications, Ann. Inst. Pasteur 79
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