
HAL Id: hal-04293086
https://hal.science/hal-04293086v1

Submitted on 18 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blind Side Channel Analysis against AEAD with a
Belief Propagation Approach

Hélène Le Bouder, Modou Sarry, Eïd Maalouf, Gaël Thomas

To cite this version:
Hélène Le Bouder, Modou Sarry, Eïd Maalouf, Gaël Thomas. Blind Side Channel Analysis against
AEAD with a Belief Propagation Approach. CARDIS (Smart Card Research and Advanced Appli-
cation Conference), Nov 2023, Amsteram, Netherlands. �hal-04293086�

https://hal.science/hal-04293086v1
https://hal.archives-ouvertes.fr

1

Blind Side Channel Analysis against AEAD with
a Belief Propagation Approach

Modou Sarry1, Hélène Le Bouder1, Eïd Maaloouf1, and Gaël Thomas2

1 IMT-Atlantique, OCIF, IRISA, Rennes, France
2 DGA Maîtrise de l’Information, Bruz, France

Keywords: authenticated encryption with associated data (AEAD), side chan-
nel analysis (SCA), blind side channel analysis (BSCA), belief propagation (BP),
Sparkle, Alzette, LFSR, Elephant

Abstract. This paper present two new attacks on two lightweight au-
thenticated encryption with associated data (AEAD): Sparkle and
Elephant. These attacks are blind side channel analysis (BSCA). The
leakage is considered as an Hamming weight (HW) with a Gaussian
noise. In both attacks, a belief propagation (BP) algorithm is used to
link the different leaks. Another objective is to present BSCA as a new
tool for evaluating the robustness of a symmetric cryptographic primitive
subfunctions.

1 Introduction

Today, the Internet of things (IoT) interconnects every aspect of our lives, leading
to a proliferation of embedded systems. These devices play an essential role in
many sectors such as industry, intelligent transport, smart cities and healthcare,
to name but a few. However, due to the sensitive nature of the data they process,
it is imperative to ensure the security of these systems. Protecting confidential
information and preventing cyber-attacks are major concerns when deploying
these circuits. Securing these systems is therefore of crucial importance.

In this context, the National Institute of Standards and Technology (NIST)
started a competition [1] for the standardization of a lightweight authenticated
encryption with associated data (AEAD).

Physical attacks rely on the interaction of the computing unit with the phys-
ical environment. They are mainly divided in two families: side channel analysis
(SCA) and fault injection attacks. SCA [2] are based on observations of the cir-
cuit behaviour during the computation. They exploit the fact that some physical
values of a circuit depend on intermediary values of the computation. This is
the so-called leakage of information of the circuit. Blind side channel analysis
(BSCA) is a new family of SCA, where no inputs nor outputs are used to recover
a cryptographic key, only the traces and the knowledge of the algorithm is used.

Motivation Many attacks already exist on older symmetric cryptography
algorithms like the advanced encryption standard (AES) [3]. Since many AEAD
algorithms are relatively new, there are far fewer attacks against them [4,5,6,7].
Moreover, these new algorithms are often designed to be more resistant to physi-
cal attacks than AES. Therefore, one motivation is to test the resistance of these
new algorithms against SCA.

Another main motivation is to build an attack which uses only traces, no text
and no profiling. We are in the case of an attacker who can just observe a leakage
but has no access to the device’s input/output, hence the name of blind side
channel analysis (BSCA). Once has to remark that retrieving the key without the
ciphertext in BSCA may seem absurd in the context of confidentiality. However,
in the context of integrity, an attacker could forge a tag for their message after
obtaining the secret key.

The last motivation is to show that the BSCA context can be seen as a new
tool to evaluate cryptosystems. This method is a good way to select the sub-
function of an algorithm at a mathematical level. Thinking about the security
of the cryptographic algorithm is an important approach.

Contribution In this paper, we evaluate the security of two AEADs:
Elephant [8] and Sparkle [9] against BSCA. The attack on Elephant is a major
improvement of a first BSCA [10,11]. The attack on Sparkle is a new attack.
The results are based on a belief propagation (BP) algorithm [12].

Organization Targeted algorithms Sparkle and Elephant are described
in section 2. State of the art of BSCA attacks are summarised in section 3.
Our attack methodology is described in section 4. The application of this at-
tack against the Elephant algorithm and the corresponding results are presented
in section 5. Similarly, the application of this attack against the Sparkle algo-
rithm is discussed in section 6. Finally, the conclusion is drawn in section 7.

2 Authenticated encryption with associated data (AEAD)

2.1 NIST Competition

Authenticated encryption with associated data (AEAD), illustrated in Figure 1,
should ensure confidentiality and integrity. It takes as input different parameters:
a plaintext denoted M , the associated data denoted A, a secret key K, and an
initialisation vector N also called a nonce. The nonce is public but must be
different for each new plaintext. The algorithms ensure confidentiality of the
plaintext M and integrity of both the plaintext M and the associated data A.
It returns a ciphertext C and a tag T .

In this context, the NIST started the competition [1] for lightweight cryp-
tography candidates for AEAD. In August 2019, NIST received 57 submissions
to be considered for standardization. In March 2021, only 10 finalists remained

AEAD

M

A

K N

C

T

Fig. 1. Overview of AEAD.

of which Elephant [8] and Sparkle [9] which are targeted in this paper. Finally,
in February 2023, NIST decided to standardize ASCON [13].

2.2 Elephant

Elephant [8,14] was a finalist to the NIST lightweight cryptography competition.
It is a nonce-based AEAD. Its construction is based on an Encrypt-then-MAC
that combines counter (CTR) mode encryption with a variant of the protected
counter sum [15,16]. Elephant uses a cryptographic permutation masked with
linear feedback shift registers (LFSRs) in an Even-Mansour-like fashion [17] in
place of a block cipher.

Let P be an n-bit cryptographic permutation, and φ an n-bit LFSR. The
function mask : {0, 1}128×N×{0, 1, 2} → {0, 1}n used to mask the permutation
P is defined as follows:

maskj,iK = (φ⊕ id)i ◦ φj ◦ P(K||0n−128); (1)

where id is the identity function. One important thing to note is that the values of
maskj,iK depend only on the secret key K and not on any other input of Elephant.

Encryption enc under Elephant gets as input a 128-bit key K, a 96-bit
nonce N , associated data A ∈ {0, 1}∗, and a plaintext M ∈ {0, 1}∗. It out-
puts a ciphertext C as large as M , and a τ -bit tag T . The algorithm is depicted
on Figure 2.

Elephant comes in three flavours which differ on the n-bit cryptographic per-
mutation P and the n-bit LFSR φ used, as well as the tag size τ .

In this paper, we focus on the smallest and main instance Dumbo. It uses the
160-bit permutation Spongent-π[160] [18], the 160-bit LFSR φDumbo, and has tag
size τ = 64 bits.

Let ≪, �, and � denote the left rotation, left shift, and right shift operators
respectively. The update equation of LFSR φDumbo is given at the byte level by
equation (2) and illustrated on Figure 3.

φDumbo : (x0, · · · , x19) 7→ (x1, · · · , x19, x0 ≪ 3⊕ x3 � 7⊕ x13 � 7) (2)

K || 0∗

P

mask0,0K

ϕ

N || A1

mask1,0K
ϕ

A2

P

•

•

· · · mask`−1,0K

· · ·

· · ·

A` || 10∗

P

•

•

ϕ ⊕ id

mask0,1K
N || 0∗

P

•

•

•

ϕ ⊕ id

mask1,1K
N || 0∗

P

•

•

ϕ ⊕ id

mask`−1,1K
N || 0∗

P

•

•

Trunc|M`|

M`

C`

M1

C1

M2

C2

· · ·

· · ·

C` || 10∗

P

mask`−1,2K

ϕ ⊕ id

•

P

mask1,2K

ϕ ⊕ id

•

P

mask0,2K

ϕ ⊕ id

•

· · ·

· · ·

P

Trunct

T

•

Fig. 2. Elephant associated data authentication (left), plaintext encryption (middle),
and ciphertext authentication (right). This figure comes from [10,11] according to the
description of Elephant [8].

x0 x1 x2 x3 x4 . . . x12 x13 x14 . . . x18 x19

≪ 3 � 7 � 7

Fig. 3. The 160-bit LFSR φDumbo. This figure comes from [10,11] according to the
description of Elephant [8].

2.3 Sparkle

S
pa

r
k
l
e
38

4
1
1

K

N

/

128

/

256

ρ

M0 C0

W

•

/

256

/

256

/

256

/

256

S
pa

r
k
l
e
38

4
7

/

128

ρ

M1 C1

W

•

S
pa

r
k
l
e
38

4
7

· · ·

· · ·

ρ

ML−1 CL−1

W

•

ConstM

S
pa

r
k
l
e
3
84

1
1

K

T/

128

/

256

Fig. 4. Encryption using Schwaemm256-128, where Sparkle384R is the Sparkle384
permutation with R rounds, ρ is a linear application, W the linear whitening layer,
and the constant ConstM indicating whether the plaintext M was padded or not.

Schwaemm is the AEAD of the Sparkle [9] submission to the NIST
lightweight cryptography competition. It is a permutation-based AEAD that
builds upon the Beetle [19] variant of the Duplex [20] construction by adding an
extra linear whitening layer W, from the inner state into the outer state. The
underlying cryptographic permutation is named Sparkle which gives the whole
submission its name.

Several instances of both algorithms with various performance and security
trade-offs are proposed.

The main instance is Schwaemm256-128. The rest of this paper then focuses
on this particular instance. It is illustrated in Figure 4.

Schwaemm256-128 takes a 256-bit nonce N , a 128-bit key K, and produces
a 128-bit authentication tag T . The corresponding Sparkle permutation is the
384-bit-wide variant, denoted Sparkle384.

Zoom on Sparkle The Sparkle permuations are based on a substitution
permuation network (SPN) structure. The linear layer is a Feistel-type transfor-
mation operating on 64-bit branches. It is based on a linear function M whose
description is not necessary for the understanding of this paper. The non-linear

layer is a 64-bit S-box named Alzette Ai, applied in parallel to every branch of
the Feistel, where i denotes the index of the branch. More details on Alzette are
given in the paragraph 2.3.

The number of rounds depends on the particular instance, and whether it
is used in the initialisation, encryption or tag generation phase of Schwaemm.
In the case of Schwaemm256-128, the number of rounds is R = 11 for the
initialisation and tag generation, and only R = 7 for encryption. The first round
of Sparkle384 of the initialisation phase of Schwaemm256-128 is depicted
on Figure 5. One important thing to note is that the state is initialised with the
concatenation of the nonce N and the secret key K.

s0 s1 s2 s3 s4 s5

A0 A1 A2 A3 A4 A5

/ 64 / 64 / 64 / 64 / 64 / 64

N K

M
•

•
•

s′0 s′1 s′2 s′3 s′4 s′5

Fig. 5. The first round of the Sparkle384 permutation during the initialisation of
Schwaemm256-128.

Alzette The Alzette S-box Ai is a 64-bit permutation parametrised by a 32-bit
known value αi that depends only on the index i of branch inside the Sparkle
permutation. It is built as a 4-round addition-rotation-xor (ARX) Feistel cipher
with all round keys equal to αi. As the name ARX suggests, it uses a combination
of 32-bit modular additions, rotations, and xors. The whole process is depicted
on Figure 6.

3 BSCA Context

While it has been proven that an algorithm is mathematically secure, its imple-
mentation can still expose vulnerabilities known as physical attacks. Physical
attacks, such as SCA, constitute a specific subcategory of these vulnerabilities.
They exploit the fact that certain physical characteristics of a device depend on
intermediate values of the calculations performed, resulting in an information

`0

/ 32

≪ 1

`′1

• ≪ 8

r0

/ 32

•

αi

`1 r1

≪ 15 •

`′2

• ≪ 15

αi

`2 r2

•

`′3

• ≪ 1

αi

`3 r3

≪ 8 •

`′4

• ≪ 16

αi

`4 r4

Fig. 6. The Alzette S-box Ai used in Sparkle.

leakage within the circuit. This information leakage could be utilized to retrieve
secrets, such as a secret key.

Many SCA belong to the family of correlation power analysis (CPA) [21,22,23].
To succeed these attacks need data like plaintext or ciphertext. Then these at-
tacks use a mathematical model for the leakage. A confrontation is performed
between measurements and predictions built with the model and known data.
More precisely, a statistic tool called distinguisher gives score to the different
targets.

In the case of sponge and duplex building, to the best of our knowledge,
there are very few CPA attacks [24]. In a classical block cipher, the secret key is
directly used in each round. In a duplex or sponge case, the secret key is used
only once or twice, at the start and at the end of the whole algorithm. The
first difficulty is caused by this fact. Moreover, in the specific use case Sparkle,
there is no small S-box. On the contrary, Alzette is a very big S-box. That is one
other reason, we have not chosen to study CPA attacks on Sparkle, but blind
SCA.

BSCA is a type of SCA where some information that is usually known is
unknown. The main concept is to perform the attack solely based on leakage
measurements. The attacker model is different from that in a classic CPA. They
have access to less information. Often BSCA is based on a strong assumption:
the attacker is supposed to retrieve a noisy HW from the leakage.

Linge et. al [25] have presented the first BSCA. The goal is to attack the
block cipher AES without using data such as plaintext or ciphertext. At the
same time, Le Bouder et. al [26] published a first attack. Then, these works have
been improved by Clavier et al. [27]. Moreover, their contribution introduces for
the first time, the name of blind side channel analysis (BSCA). Now it is a new
family of SCA, and different symmetric cryptography algorithms are targeted
by these attacks such as AES [25,26,27,28], Elephant [10], and PRINCE [29].

4 Description of the attacks

4.1 Simulated leakage Model

The power consumption or electromagnetic leakages are very correlated to the
Hamming weight (HW) of the data. It is a classical model used in the domain
of SCA.

One important advantage of HW is that it rapidly reduces guesses. For ex-
ample, let x be a byte, so x can take 256 values in [[0, 255]]. With the HW of x,
the attacker reduces the list of possible values, as shown in Table 1.

Table 1. Number of possible values for a byte x according its HW. This table comes
from [26]

HW(x) 0 1 2 3 4 5 6 7 8

#x 1 8 28 56 70 56 28 8 1

Another model for the leakage is a HW with an additive Gaussian noise. For
a given discrete random variable byte x, and its HW(x) ∈ [[0, 8]]; ˜HW(x) denotes
the continuous random variable representing the simulated Hamming weight so
called noisy; defined in R as:

˜HW(x) = HW(x) + σx,t ; (3)

with σx,t an event of the Gaussian random variable N
(
0, σ2

)
at a time t. The

probability density function F associated to N
(
0, σ2

)
is given by:

Fσ(x) =
1

σ ·
√
2π

· exp
(
−1

2
·
(x
σ

)2
)

. (4)

In this paper, BSCA are studied, so the attacker uses only simulated leak-
age. The simulation of the power consumption or electromagnetic leakage is
generated with Gaussian noise added to the HW obtained from the intermedi-
ate computations at the byte level. To simplify the simulation, it is assumed
that the noise level remains the same throughout the system. The simulations,
which were performed using the Python programming language (v3.9), represent
a typical unprotected implementation on an 8-bit processor.

4.2 Belief propagation (BP)

In our attack approach, relations between the different values for which a nosy
HW is simulated, and exploited. For that belief propagation (BP) is used. BP
was first used by Gallager [30,31] for decoding low-density parity-check (LDPC)
codes [32]. It was then rediscovered by Tanner [33] and formalized by Pearl [34].
The first time that BP was used in SCA on symmetric encryption, in the attack
of Veyrat-Charvillon et al. [35], then it is studied in [36,26].

Tanner graph A BP algorithm relies on a bipartite graph called a factor graph
(or Tanner graph). To each node in the factor graph is associated some informa-
tion. The nodes of a factor graph as are of two kinds:

– variable nodes V representing the variables handled by the algorithm under
attack;

– factor nodes, representing the equations E between these variables.

An edge links a variable node V with a factor node E, when the equation rep-
resented by the factor node E involves the variable node V . An example of a
factor graph is illustrated in Figure 7.

N denotes the set of neighbours for a node. Thus the set N(E) is made of
the variable nodes V involved in equation E, and the set N(V) is made of factor
nodes E that depend on V .

BP algorithm The belief propagation (BP) algorithm inputs are

– the Tanner graph,
– prior probabilities PA(V = v) on the different variable nodes V .

The BP algorithm returns a better belief, from the initial values PA(V = v).
More precisely, BP computes probabilities a posteriori PP (V = v) on the differ-
ent variable nodes according prior probabilities.

V0 V1 V2 V3 V4 V5

E0 E1 E2 E3

Fig. 7. Example of a Tanner factor graph part. Circles are variable nodes and squares
are factor nodes.

The values PP (V = v) are computed according to the input prior probability
PA(V = v) and to the probabilities P(V = v|E) conditional on factor nodes
E ∈ N(V) to be satisfied using the following equation:

PP (V = v) ∝ PA(V = v)×
∏

E∈N(V)

P(V = v|E) (5)

In practice, nodes in the factor graph exchange information messages with
their neighbours. More precisely, since the graph is bipartite, two types of mes-
sages are exchanged:

– factor to variable messages between a factor node E and a variable node V ,
denoted µE→V :

µE→V (v) =
∑

v1,v2,··· ,v#N(E)−1

E(v, v1, · · · , v#N(E)−1)×
∏

Vi∈N(E)\{V }

µVi→E(vi)

(6)
This equation comes from the law of total probability. Roughly speaking,
the quantity µE→V (v) represents the belief from the perspective of factor
node E that variable node V take the value v. The information is gathered
from the other variables nodes in N(E).

– variable to factor messages between a variable node V and a factor node E,
denoted µE→V .

µV→E(v) ∝ PA(V = v)×
∏

E′∈N(V)\{E}

µE′→V (v) (7)

This equation is essentially Bayes’ rule. Here variable node V updates its
belief using informations from the factor nodes in N(V). This equation is
meant to be used in alternance with Equation (6). So the contribution from
node E is deliberately excluded to avoid self-persuasion.

Both equations make independence assumptions to make computations fea-
sible in practice at the expanse of the risk to converge to an incorrect value.

To complete the description of the BP algorithm, an initialization step is done
before applying the above equations. The variable to factor messages µV→E(v)

are initialized with the prior probabilities PA(V = v). In summary, after an
initialization phase, BP works by alternatively applying equations (6) then (7)
for every edge (V,E) in the Tanner graph. At the end of the execution, the
returned value PP (V = v) is computed using equation (5) where the probabilities
P(V = v|E) are replaced by their approximations µE→V (v). The number of
iterations depends of the rapidity of convergence, which in turn depends on the
Tanner graph.

5 Attack on Elephant

5.1 Attack path

The attack path is based on a similar approach as presented in the theoretical
work by Meraneh et al. [10,11]. However, their attack focuses on obtaining HW
information and is limited to scenarios without noise. It is a theoretical and
mathematical assumption that is very useful for testing ideas, but it never hap-
pens in the real world. In this paper, we improve this attack to consider noisy
HW more close than real measurements and propose the use of BP as a solution
to address this challenge.

Linear feedback shift registers (LFSRs) find applications in various lightweight
cryptography candidates, where their initial state is typically determined by both
a key and a nonce. Since the nonce must be altered for each encryption request,
attacks against such schemes are confined to the decryption algorithm. However,
in the case of Elephant, the LFSR solely relies on the secret key. As a result, our
attack can be employed in an encryption scenario as well.

The objective of the described attack is to recover the secret initial state of
the LFSR. Three crucial points should be noted as following.

– Retrieving the initial state of the LFSR, which is equal to mask0,0K , is equiv-
alent to retrieving the secret key. Indeed, the initial state is the result of the
known permutation P applied to the key.

– As the retroaction polynomial is publicly known, it is possible to shift the
LFSR backwards: an attacker who recovers enough consecutive bytes of the
secret stream is able to reconstruct the initial state.

– The smaller the LFSR is, the more the attack is able to succeed. As a con-
sequence, the Dumbo instance (see Figure 3) is the most vulnerable one: the
following of this section is focused on Dumbo.

Since the LFSR generates a single new byte at each iteration, let the content
of the Dumbo LFSR be denoted as follows:

(xj , · · · , xj+19) = maskj,0K (8)

and let xj+20 be the byte generated at iteration j. Similarly, let (yj , · · · , yj+19) =

maskj,1K and (zj , · · · , zj+19) = maskj,2K . By definition of mask, the following hold

for all j ≥ 0:

yj = xj ⊕ xj+1 (9)
zj = xj ⊕ xj+2. (10)

The attacker can thus exploit two attack vectors: on the one hand, equations (2)
coming from iterating the LFSR, and on the other hand, equations (9) and (10)
coming from the different masks used for domain separation.

In this use case, the attacker obtain a leakage, simulated by noisy HW on
the different bytes of the Dumbo LFSRs.

Once has to remark that a classic CPA is impossible on the mask0,0K , because
the attacker knows zero data in this function.

5.2 Tanner graph

In the case of Elephant, the Tanner graph is defined as follows. Variable nodes
are the bytes xj , yj and zj of the LFSRs. There are four types of factor nodes:

– Ey0
, Ey1

, . . . , Ey20
represent the equation (9).

– Ez0 , Ez1 , . . . , Ez19 represent the equation (10).
– We have divided the feedback equation (2) into two sub-equations. This helps

reduce the amount of computation in BP. Indeed, the number of terms in
equation (6) is exponential in the number of neighbours in N(E). The factor
nodes corresponding to equation (2) are given in Table 2.

The Elephant Tanner graph is illustrated in Figure 8.

Table 2. Intermediate and final feedback equation

intermediate feedback equation final feedback equation
Etx20 : tx20 = (x0 ≪ 3)⊕ (x3 ≪ 7) Eux20 : x20 = tx20 ⊕ (x13 ≫ 7)
Etx21 : tx21 = (x1 ≪ 3)⊕ (x4 ≪ 7) Eux21 : x21 = tx21 ⊕ (x14 ≫ 7)
Ety20 : ty20 = (y0 ≪ 3)⊕ (y3 ≪ 7) Euy20 : y20 = ty20 ⊕ (y13 ≫ 7)

5.3 Results

Table 3 presents the average and median rank of the correct key byte for various
noise levels σ. The statistics are done for all 20 bytes and repeated with 1000
different randomly generated keys.

Results indicate that when the noise level is low, BP helps pushing up the
ranks of the correct key bytes. An attacker can then leverage the posterior prob-
abilities returned by BP using smart key enumeration techniques to try and find
the whole key. Note that since the LFSR computation only depend on the key,
it is possible to reduce the noise level by averaging several traces.

x0

x1

x2

x3

x4

x5

...

x13

x14

...

x19

x20

x21

Ey0

Ey1

Ey2

Ey3

Ey13

Ey19

Ey20

y0

y1

y2

y3

y13

y19

y20

Ez0

Ez1

Ez2

Ez3

Ez19

z0

z1

z2

z3

z19

Ety20 ty20

Euy20

Etx20tx20

Eux20

Etx21tx21

Eux21

Fig. 8. Tanner factor graph on LFSR Dumbo of Elephant.

Another important thing to note is that, finding the correct value of any
maskj,iK , not just the first one, counts as a successful attack. Depending on the
actual value of maskj,iK , some may be easier to attack than others, as was already
noticed by Meraneh et al. [10] in the noise-free case.

6 Attack on Sparkle

6.1 Attack path
During the initialisation phase of Schwaemm256-128, the key K is loaded into
the last 128 bits of the Sparkle384 state, see Figure 4. Let split K = K1||K2

Table 3. Rank of all key bytes on 1000 different keys of 20 bytes for different noise
levels σ. More precisely, BP algorithm returns probabilities a posteriorifor each possible
value of each byte. These probabilities can be sorted from most likely to least likely.
This table calculates the rank of the correct value for each byte.

σ Mean Standard Deviation Min Quartile Q1 Median Quartile Q3 Max
0.1 3.54 5.97 0 0 3 3 27
0.15 3.54 5.97 0 0 3 3 27
0.2 3.67 6.11 0 0 3 3 31
0.25 4.95 9.31 0 0 3 3 97
0.3 6.00 10.76 0 0 3 3 97
0.35 7.46 13.10 0 0 3 8 97
0.4 9.59 15.72 0 0 3 8 97
0.5 15.97 23.03 0 3 8 31 153
0.6 23.65 31.41 0 3 8 31 157
0.7 33.73 40.11 0 3 27 36 213
1 70.68 61.42 0 31 36 92 246

into two 64-bits halves. Then, in the first round, K1 is the input of Alzette A4,
and K2 of Alzette A5.

The rest of this section only describes the attack for a single Alzette since
they work exactly the same but for the constant α.

As stated in subsection 2.3, Alzette is a 4-round ARX Feistel cipher, illus-
trated in see Figure 6. In this use case, the attacker can obtain simulated leakage
on the different internal values ℓi, ℓ′i, and ri of Alzette. Here again, we assume a
leakage model as a noisy HW of the bytes, as described in equations (3) and (4).
The leakage observed in the first round of Alzette is depicted in Figure 9.

`0

/ 32

≪ 1

`′1

• ≪ 8

r0

/ 32

•

α

`1 r1

˜HW(`′1)

˜HW(`1) ˜HW(r1)

Fig. 9. Measurement leakage in the first round of Alzette described in section 2.3 and
Figure 6.

The different internal values related to each other thanks to the following
Alzette equations:

ℓ′1 = ℓ0 ⊞ (r0 ≪ 1) , ℓ1 = ℓ′1 ⊕ α , r1 = (ℓ′1 ≪ 8)⊕ r0
ℓ′2 = ℓ1 ⊞ (r1 ≪ 15) , ℓ2 = ℓ′2 ⊕ α , r2 = (ℓ′2 ≪ 15)⊕ r1
ℓ′3 = ℓ2 ⊞ r2 , ℓ3 = ℓ′3 ⊕ α , r3 = (ℓ′3 ≪ 1)⊕ r2
ℓ′4 = ℓ3 ⊞ (r3 ≪ 8) , ℓ4 = ℓ′4 ⊕ α , r4 = (ℓ′4 ≪ 16)⊕ r3

(11)

To the best of our knowledge, this attack is the first BSCA against Sparkle.

6.2 Tanner graph

In the case of Sparkle, the variable node in the Tanner graph are defined at
the bit level. They are the bits of the different ℓi, ℓ′i, and ri. for 0 ≤ i ≤ 4. Since
modular additions are involved, a 31-bit carry variable ci is also added at each
round.

As for the equations, they are of two kinds:

– the bitwise translation of equations (11) which describe Alzette,
– the HW equations (sum of bits gives the HW).

In this case, the HW are represented in the graph because they induce new
relations between the different bits. The Figure 10 shows a part of the Tanner
graph of the first round of Alzette.

`′1(b) c1(b) c1(b− 1)

E`′1=`0�(r0≪1)(b)

`0(b) r0(b− 1) r0(b− 8)

E`1=`′0⊕α(b)

`1(b)

Er1=(`′0≪8)⊕r0(b)

r1(b− 8)

EHW(`′1)=
∑
`′1(b)HW(`′1)

EHW(`1)=
∑
`1(b)HW(`1) EHW(r1)=

∑
r1(b) HW(r1)

Fig. 10. Tanner graph of the first round of Alzette. Only a single bit with index b ∈
[[0, 31]] of each 32-bit register is shown. Relative indices are given mod 32. The carries
in the modular operation are denoted c1(b) and c1(b− 1). Bits belonging to the same
32-bit register are enclosed in dashed lines.

6.3 Results

We ran our attack on both Alzettes in a parallel manner, the only difference
being the α4 constant used by A4 and α5 used by A5.

For the different values of the noise σ and with a single simulated mea-
surement, the number of correct decisions on the input bits, or the number of
recovered bits was calculated. The experiment was repeated on 1000 uniformly
drawn random keys.

Table 4 presents the number of recovered bits of the 64-bit K1 input of Alzette
A4. Table 5 does the same for K2 and A5. Finally, Table 6 presents the number
of bits recovered for the whole 128-bit master key K of Sparkle.

Table 4. Number of bits recovered for the 64-bit key K1 of Alzette A4.

σ Mean Standard Deviantion Min Quartile Q1 Median Quartile Q3 Max
0.1 57.08 3.02 36 56 57 59 63
0.15 57.16 2.66 38 56 57 59 63
0.2 57.20 2.57 40 56 57 59 64
0.25 57.15 2.76 38 56 57 59 64
0.3 57.07 2.74 40 56 57 59 64
0.35 56.77 2.94 36 55 57 58 64
0.4 56.63 2.81 39 55 57 58 64
0.45 56.12 3.01 35 55 56 58 64
0.5 55.81 2.81 39 54 56 57 64
0.6 54.83 2.94 36 53 55 56 64
0.7 54.19 2.68 36 53 54 56 62
1 52.86 3.47 35 52 54 55 59

Table 5. Number of bits recovered for the 64-bit key K2 of Alzette A5.

σ Mean Standard Deviantion Min Quartile Q1 Median Quartile Q3 Max
0.1 56.98 2.78 36 56 57 59 63
0.15 57.05 2.40 39 56 57 59 63
0.2 57.05 2.43 39 56 57 59 63
0.25 56.96 2.55 39 55 57 59 63
0.3 56.82 2.53 40 55 57 58 63
0.35 56.59 2.64 39 55 57 58 64
0.4 56.29 2.67 40 55 56 58 64
0.45 55.92 2.75 37 54 56 58 64
0.5 55.53 2.66 38 54 55 57 64
0.6 54.64 2.70 36 53 55 56 63
0.7 53.86 2.79 36 53 54 55 61
1 52.78 3.29 33 52 54 54 59

Table 6. Number of bits recovered for the 128-bit master key K.

σ Mean Standard Deviation Min Quartile Q1 Median Quartile Q3 Max
0.1 114.06 4.07 89 112 114 117 123
0.15 114.22 3.59 92 112 114 116 123
0.2 114.26 3.51 97 112 114 117 124
0.25 114.11 3.76 92 112 114 116 124
0.3 113.89 3.67 97 112 114 116 125
0.35 113.36 3.94 90 111 113 116 124
0.4 112.92 3.82 95 111 113 115 124
0.45 112.05 4.09 89 110 112 115 123
0.5 111.35 3.85 92 109 111 114 123
0.6 109.48 3.97 89 108 110 112 121
0.7 108.06 3.77 87 106 108 110 120
1 105.65 4.65 85 105 107 108 115

First, note that as in the case of the attack on Elephant, it is possible to
reduce the noise level by averaging several traces, since the variables handled
only depend on the key.

Second, it is important to consider that the correct key is often not the
first attempt, as there may be a few unknown bits for the attacker. Therefore,
allowing the attacker to perform an exhaustive search can be relevant to uncover
the remaining bits. That is why we grant the attacker a certain computational
power.

Let n be the number of bits the attacker can flip on 64 bits. This means that
they can try up to P keys where P is given by:

P =

(
64

0

)
+

(
64

1

)
+

(
64

2

)
+ · · ·+

(
64

n

)
.

Since they must do this for both half-keys, the total number of keys they can
guess is P2. Table 7 indicates the number of keys found out of 1000 with an
attacker possessing a computing power of P2 as a function of the number of bits
n they can flip in a reasonnable amount of time.

It is essential to point out that this exhaustive search does not exploit the
a posteriori probabilities returned by BP. Therefore, the use of smarter key
enumeration techniques, exploiting these probabilities, will certainly lead to im-
proved results without the need for a specific computing power to perform an
exhaustive search. Future projects include the use of key enumeration.

7 Conclusion

In this paper, two attacks on two lightweight AEAD algorithms have been suc-
cessfully conducted and for each attack we used a single simulated measurement.

Firstly, an improvement on the attack against Elephant [10] incorporating a
noisy Hamming weight model is presented. This enhanced approach allows for

Table 7. Number of keys, out of 1000, found for both Alzettes by an attacker with
computational power P2, that can exhaustively flip up to n bits in each 64-bit subkey.

n = 4,P2 = 239 n = 5,P2 = 246 n = 6,P2 = 253 n = 7,P2 = 259 n = 8,P2 = 265

σ A4 A5 A4 A5 A4 A5 A4 A5 A4 A5

0.1 175 169 274 283 494 422 610 586 831 787
0.15 174 168 273 281 492 420 611 585 831 786
0.2 175 172 284 285 485 421 611 586 818 776
0.25 171 170 284 280 470 417 612 566 801 740
0.3 177 133 284 246 447 389 582 554 751 716
0.35 155 136 248 229 368 365 540 512 703 664
0.4 137 105 243 187 368 306 523 468 652 618
0.45 110 84 180 167 285 265 431 407 584 559
0.5 88 53 154 112 246 216 380 342 527 495
0.6 34 23 86 51 132 116 225 213 360 326
0.7 9 7 25 18 65 43 150 100 266 211
1 0 0 2 1 15 6 47 35 119 88

intelligent backtracking of the key, increasing the chances of finding the correct
value.

Next, the first BSCA on Sparkle has been described. By exploiting the
attacker computational power, we have shown that the attack can indeed recover
a significant portion of the secret keys when the noise level is moderate. Using
backtracking on the key in an intelligent way that could improve results without
doing an exhaustive search for the few remaining bits not predicted by our attack.

The power of the BP algorithm was also highlighted in our research, prompt-
ing us to develop a generic tool for it in the future. In future work, we can speed
up the computation time of BP by using Walsh-Hadamard transform [37].

Our future research has to focus on transitioning these attacks into practical
implementations and to develop a key backtracking algorithm that is intelli-
gent with posterior probabilities. Additionally, we plan to explore the security
of Ascon, the NIST competition winner, as a potential target for our future
investigations.

Acknowledgments This research is part of the APCIL project found by
the Brittany region. The authors would like to thank Laurent Toutain.

References

1. NIST. Lightweight Cryptography Standardization Process, 2018.
2. Maamar Ouladj and Sylvain Guilley. Side-Channel Analysis of Embedded Systems.

Springer, 2021.
3. NIST. Specification for the Advanced Encryption Standard. FIPS PUB 197, 2001.

4. Francesco Berti, Shivam Bhasin, Jakub Breier, Xiaolu Hou, Romain Poussier,
François-Xavier Standaert, and Balasz Udvarhelyi. A Finer-Grain Analysis of the
Leakage (Non) Resilience of OCB. IACR T CHES, 2022.

5. Siang Meng Sim, Dirmanto Jap, and Shivam Bhasin. Differential analysis aided
power attack on (non-) linear feedback shift registers. IACR TCHES, 2021.

6. Alexandre Adomnicai, Laurent Masson, and Jacques JA Fournier. Practical alge-
braic side-channel attacks against acorn. In Inscrypt. Springer, 2019.

7. Valentina Banciu, Elisabeth Oswald, and Carolyn Whitnall. Exploring the re-
silience of some lightweight ciphers against profiled single trace attacks. In
COSADE. Springer, 2015.

8. Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. Elephant
v2. NIST lightweight competition, 2021.

9. Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl, Léo
Perrin, Aleksei Udovenko, Vesselin Velichkov, Qingju Wang, and Alex Biryukov.
Schwaemm and esch: lightweight authenticated encryption and hashing using the
sparkle permutation family. NIST round, 2, 2019.

10. Awaleh Houssein Meraneh, Christophe Clavier, Hélène Le Bouder, Julien Maillard,
and Gaël Thomas. Blind Side Channel On The Elephant LFSR. 2022.

11. Julien Maillard, Awaleh Houssein Meraneh, Modou Sarry, Christophe Clavier,
Hélène Le Bouder, and Gaël Thomas. Blind side channel analysis on the Elephant
LFSR Extended version. SECRYPT BOOK, 2023.

12. David Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 04-2011 edition, 2011.

13. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon. Submission to the CAESAR competition, 2014.

14. Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. Dumbo,
Jumbo, and Delirium: Parallel Authenticated Encryption for the Lightweight Cir-
cus. IACR Transactions on Symmetric Cryptology, 2020.

15. Daniel J. Bernstein. How to Stretch Random Functions: The Security of Protected
Counter Sums. J. Cryptol., 1999.

16. Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC Mode
for Lightweight Block Ciphers. In Thomas Peyrin, editor, FSE. Springer, 2016.

17. Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Improved
Masking for Tweakable Blockciphers with Applications to Authenticated Encryp-
tion. In EUROCRYPT. Springer, 2016.

18. Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici,
and Ingrid Verbauwhede. Spongent: a Lightweight Hash Function. In CHES.
Springer, 2011.

19. Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle Family
of Lightweight and Secure Authenticated Encryption Ciphers. IACR TCHES.,
2018.

20. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing
the Sponge: Single-Pass Authenticated Encryption and Other Applications. In
SAC. Springer, 2011.

21. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO. Springer, 1999.

22. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In CHES. Springer, 2004.

23. Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information
analysis. In CHES. Springer, 2008.

24. Niels Samwel and Joan Daemen. DPA on hardware implementations of ascon and
keyak. In Computing Frontiers Conference. ACM, 2017.

25. Yanis Linge, Cécile Dumas, and Sophie Lambert-Lacroix. Using the joint distribu-
tions of a cryptographic function in side channel analysis. In COSADE. Springer,
2014.

26. Hélène Le Bouder, Ronan Lashermes, Yanis Linge, Gaël Thomas, and Jean-Yves
Zie. A Multi-round Side Channel Attack on AES Using Belief Propagation. In
FPS. Springer, 2016.

27. Christophe Clavier and Léo Reynaud. Improved blind side-channel analysis by
exploitation of joint distributions of leakages. In CHES. Springer, 2017.

28. Christophe Clavier, Léo Reynaud, and Antoine Wurcker. Quadrivariate improved
blind side-channel analysis on boolean masked aes. In COSADE. Springer, 2018.

29. Ville Yli-Mäyry, Rei Ueno, Noriyuki Miura, Makoto Nagata, Shivam Bhasin, Yves
Mathieu, Tarik Graba, Jean-Luc Danger, and Naofumi Homma. Diffusional Side-
Channel Leakage From Unrolled Lightweight Block Ciphers: A Case Study of Power
Analysis on PRINCE. IEEE Transactions on Information Forensics and Security,
2020.

30. Robert G. Gallager. Low-density parity-check codes. IRE Trans. on Information
Theory, 1962.

31. Robert G. Gallager. Low Density Parity check codes. PhD thesis, MIT, Cambridge,
MA, 1963.

32. Sae-Young Chung, G. David Forney Jr., Thomas J. Richardson, and Rüdiger L.
Urbanke. On the design of low-density parity-check codes within 0.0045 dB of the
Shannon limit. IEEE Communications Letters, 2001.

33. Robert M. Tanner. A recursive approach to low complexity codes. IEEE Trans.
on Information Theory, 1981.

34. Judea Pearl. Reverend Bayes on Inference Engines: A Distributed Hierarchical
Approach. In National Conference on Artificial Intelligence. AAAI Press, 1982.

35. Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
Analytical Side-Channel Attacks. In ASIACRYPT 2014.

36. Vincent Grosso and François-Xavier Standaert. ASCA, SASCA and DPA with
Enumeration: Which One Beats the Other and When? In ASIACRYPT 2015,
pages 291–312. Springer.

37. Wanli Ouyang and Wai-Kuen Cham. Fast algorithm for walsh hadamard transform
on sliding windows. Transactions on pattern analysis and machine intelligence,
2009.

