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This paper present two new attacks on two lightweight authenticated encryption with associated data (AEAD): Sparkle and Elephant. These attacks are blind side channel analysis (BSCA). The leakage is considered as an Hamming weight (HW) with a Gaussian noise. In both attacks, a belief propagation (BP) algorithm is used to link the different leaks. Another objective is to present BSCA as a new tool for evaluating the robustness of a symmetric cryptographic primitive subfunctions.

Introduction

Today, the Internet of things (IoT) interconnects every aspect of our lives, leading to a proliferation of embedded systems. These devices play an essential role in many sectors such as industry, intelligent transport, smart cities and healthcare, to name but a few. However, due to the sensitive nature of the data they process, it is imperative to ensure the security of these systems. Protecting confidential information and preventing cyber-attacks are major concerns when deploying these circuits. Securing these systems is therefore of crucial importance.

In this context, the National Institute of Standards and Technology (NIST) started a competition [START_REF]Lightweight Cryptography Standardization Process[END_REF] for the standardization of a lightweight authenticated encryption with associated data (AEAD).

Physical attacks rely on the interaction of the computing unit with the physical environment. They are mainly divided in two families: side channel analysis (SCA) and fault injection attacks. SCA [START_REF] Ouladj | Side-Channel Analysis of Embedded Systems[END_REF] are based on observations of the circuit behaviour during the computation. They exploit the fact that some physical values of a circuit depend on intermediary values of the computation. This is the so-called leakage of information of the circuit. Blind side channel analysis (BSCA) is a new family of SCA, where no inputs nor outputs are used to recover a cryptographic key, only the traces and the knowledge of the algorithm is used.

Motivation Many attacks already exist on older symmetric cryptography algorithms like the advanced encryption standard (AES) [START_REF]Specification for the Advanced Encryption Standard[END_REF]. Since many AEAD algorithms are relatively new, there are far fewer attacks against them [START_REF] Berti | A Finer-Grain Analysis of the Leakage (Non) Resilience of OCB[END_REF][START_REF] Siang | Differential analysis aided power attack on (non-) linear feedback shift registers[END_REF][START_REF] Adomnicai | Practical algebraic side-channel attacks against acorn[END_REF][START_REF] Banciu | Exploring the resilience of some lightweight ciphers against profiled single trace attacks[END_REF]. Moreover, these new algorithms are often designed to be more resistant to physical attacks than AES. Therefore, one motivation is to test the resistance of these new algorithms against SCA.

Another main motivation is to build an attack which uses only traces, no text and no profiling. We are in the case of an attacker who can just observe a leakage but has no access to the device's input/output, hence the name of blind side channel analysis (BSCA). Once has to remark that retrieving the key without the ciphertext in BSCA may seem absurd in the context of confidentiality. However, in the context of integrity, an attacker could forge a tag for their message after obtaining the secret key.

The last motivation is to show that the BSCA context can be seen as a new tool to evaluate cryptosystems. This method is a good way to select the subfunction of an algorithm at a mathematical level. Thinking about the security of the cryptographic algorithm is an important approach.

Contribution

In this paper, we evaluate the security of two AEADs: Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF] and Sparkle [START_REF] Beierle | Schwaemm and esch: lightweight authenticated encryption and hashing using the sparkle permutation family[END_REF] against BSCA. The attack on Elephant is a major improvement of a first BSCA [START_REF] Awaleh Houssein Meraneh | Blind Side Channel On The Elephant LFSR[END_REF][START_REF] Maillard | Blind side channel analysis on the Elephant LFSR Extended version[END_REF]. The attack on Sparkle is a new attack. The results are based on a belief propagation (BP) algorithm [START_REF] Barber | Bayesian Reasoning and Machine Learning[END_REF].

Organization Targeted algorithms Sparkle and Elephant are described in section 2. State of the art of BSCA attacks are summarised in section 3. Our attack methodology is described in section 4. The application of this attack against the Elephant algorithm and the corresponding results are presented in section 5. Similarly, the application of this attack against the Sparkle algorithm is discussed in section 6. Finally, the conclusion is drawn in section 7.

Authenticated encryption with associated data (AEAD)

NIST Competition

Authenticated encryption with associated data (AEAD), illustrated in Figure 1, should ensure confidentiality and integrity. It takes as input different parameters: a plaintext denoted M , the associated data denoted A, a secret key K, and an initialisation vector N also called a nonce. The nonce is public but must be different for each new plaintext. The algorithms ensure confidentiality of the plaintext M and integrity of both the plaintext M and the associated data A. It returns a ciphertext C and a tag T .

In this context, the NIST started the competition [START_REF]Lightweight Cryptography Standardization Process[END_REF] for lightweight cryptography candidates for AEAD. In August 2019, NIST received 57 submissions to be considered for standardization. In March 2021, only 10 finalists remained

AEAD M A K N C T Fig. 1. Overview of AEAD.
of which Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF] and Sparkle [START_REF] Beierle | Schwaemm and esch: lightweight authenticated encryption and hashing using the sparkle permutation family[END_REF] which are targeted in this paper. Finally, in February 2023, NIST decided to standardize ASCON [START_REF] Dobraunig | Ascon. Submission to the CAESAR competition[END_REF].

Elephant

Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF][START_REF] Beyne | Dumbo, Jumbo, and Delirium: Parallel Authenticated Encryption for the Lightweight Circus[END_REF] was a finalist to the NIST lightweight cryptography competition.

It is a nonce-based AEAD. Its construction is based on an Encrypt-then-MAC that combines counter (CTR) mode encryption with a variant of the protected counter sum [START_REF] Daniel | How to Stretch Random Functions: The Security of Protected Counter Sums[END_REF][START_REF] Luykx | A MAC Mode for Lightweight Block Ciphers[END_REF]. Elephant uses a cryptographic permutation masked with linear feedback shift registers (LFSRs) in an Even-Mansour-like fashion [START_REF] Granger | Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption[END_REF] in place of a block cipher.

Let P be an n-bit cryptographic permutation, and φ an n-bit LFSR. The function mask : {0, 1} 128 × N × {0, 1, 2} → {0, 1} n used to mask the permutation P is defined as follows:

mask j,i K = (φ ⊕ id) i • φ j • P(K||0 n-128 ); (1) 
where id is the identity function. One important thing to note is that the values of mask j,i K depend only on the secret key K and not on any other input of Elephant. Encryption enc under Elephant gets as input a 128-bit key K, a 96-bit nonce N , associated data A ∈ {0, 1} * , and a plaintext M ∈ {0, 1} * . It outputs a ciphertext C as large as M , and a τ -bit tag T . The algorithm is depicted on Figure 2.

Elephant comes in three flavours which differ on the n-bit cryptographic permutation P and the n-bit LFSR φ used, as well as the tag size τ .

In this paper, we focus on the smallest and main instance Dumbo. It uses the 160-bit permutation Spongent-π[160] [START_REF] Bogdanov | Spongent: a Lightweight Hash Function[END_REF], the 160-bit LFSR φ Dumbo , and has tag size τ = 64 bits.

Let ≪, , and denote the left rotation, left shift, and right shift operators respectively. The update equation of LFSR φ Dumbo is given at the byte level by equation ( 2) and illustrated on Figure 3.
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Elephant associated data authentication (left), plaintext encryption (middle), and ciphertext authentication (right). This figure comes from [START_REF] Awaleh Houssein Meraneh | Blind Side Channel On The Elephant LFSR[END_REF][START_REF] Maillard | Blind side channel analysis on the Elephant LFSR Extended version[END_REF] Fig. 3. The 160-bit LFSR φ Dumbo . This figure comes from [START_REF] Awaleh Houssein Meraneh | Blind Side Channel On The Elephant LFSR[END_REF][START_REF] Maillard | Blind side channel analysis on the Elephant LFSR Extended version[END_REF] according to the description of Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF]. Schwaemm is the AEAD of the Sparkle [START_REF] Beierle | Schwaemm and esch: lightweight authenticated encryption and hashing using the sparkle permutation family[END_REF] submission to the NIST lightweight cryptography competition. It is a permutation-based AEAD that builds upon the Beetle [START_REF] Chakraborti | Beetle Family of Lightweight and Secure Authenticated Encryption Ciphers[END_REF] variant of the Duplex [START_REF] Bertoni | Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications[END_REF] construction by adding an extra linear whitening layer W, from the inner state into the outer state. The underlying cryptographic permutation is named Sparkle which gives the whole submission its name.

Sparkle

Several instances of both algorithms with various performance and security trade-offs are proposed.

The main instance is Schwaemm256-128. The rest of this paper then focuses on this particular instance. It is illustrated in Figure 4.

Schwaemm256-128 takes a 256-bit nonce N , a 128-bit key K, and produces a 128-bit authentication tag T . The corresponding Sparkle permutation is the 384-bit-wide variant, denoted Sparkle384.

Zoom on Sparkle

The Sparkle permuations are based on a substitution permuation network (SPN) structure. The linear layer is a Feistel-type transformation operating on 64-bit branches. It is based on a linear function M whose description is not necessary for the understanding of this paper. The non-linear layer is a 64-bit S-box named Alzette A i , applied in parallel to every branch of the Feistel, where i denotes the index of the branch. More details on Alzette are given in the paragraph 2.3.

The number of rounds depends on the particular instance, and whether it is used in the initialisation, encryption or tag generation phase of Schwaemm.

In the case of Schwaemm256-128, the number of rounds is R = 11 for the initialisation and tag generation, and only R = 7 for encryption. The first round of Sparkle384 of the initialisation phase of Schwaemm256-128 is depicted on Figure 5. One important thing to note is that the state is initialised with the concatenation of the nonce N and the secret key K. 
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Alzette

The Alzette S-box A i is a 64-bit permutation parametrised by a 32-bit known value α i that depends only on the index i of branch inside the Sparkle permutation. It is built as a 4-round addition-rotation-xor (ARX) Feistel cipher with all round keys equal to α i . As the name ARX suggests, it uses a combination of 32-bit modular additions, rotations, and xors. The whole process is depicted on Figure 6.

BSCA Context

While it has been proven that an algorithm is mathematically secure, its implementation can still expose vulnerabilities known as physical attacks. Physical attacks, such as SCA, constitute a specific subcategory of these vulnerabilities. They exploit the fact that certain physical characteristics of a device depend on intermediate values of the calculations performed, resulting in an information
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Fig. 6. The Alzette S-box Ai used in Sparkle.

leakage within the circuit. This information leakage could be utilized to retrieve secrets, such as a secret key.

Many SCA belong to the family of correlation power analysis (CPA) [START_REF] Paul | Differential power analysis[END_REF][START_REF] Brier | Correlation power analysis with a leakage model[END_REF][START_REF] Gierlichs | Mutual information analysis[END_REF]. To succeed these attacks need data like plaintext or ciphertext. Then these attacks use a mathematical model for the leakage. A confrontation is performed between measurements and predictions built with the model and known data. More precisely, a statistic tool called distinguisher gives score to the different targets.

In the case of sponge and duplex building, to the best of our knowledge, there are very few CPA attacks [START_REF] Samwel | DPA on hardware implementations of ascon and keyak[END_REF]. In a classical block cipher, the secret key is directly used in each round. In a duplex or sponge case, the secret key is used only once or twice, at the start and at the end of the whole algorithm. The first difficulty is caused by this fact. Moreover, in the specific use case Sparkle, there is no small S-box. On the contrary, Alzette is a very big S-box. That is one other reason, we have not chosen to study CPA attacks on Sparkle, but blind SCA.

BSCA is a type of SCA where some information that is usually known is unknown. The main concept is to perform the attack solely based on leakage measurements. The attacker model is different from that in a classic CPA. They have access to less information. Often BSCA is based on a strong assumption: the attacker is supposed to retrieve a noisy HW from the leakage.

Linge et. al [START_REF] Linge | Using the joint distributions of a cryptographic function in side channel analysis[END_REF] have presented the first BSCA. The goal is to attack the block cipher AES without using data such as plaintext or ciphertext. At the same time, Le Bouder et. al [START_REF] Hélène | A Multi-round Side Channel Attack on AES Using Belief Propagation[END_REF] published a first attack. Then, these works have been improved by Clavier et al. [START_REF] Clavier | Improved blind side-channel analysis by exploitation of joint distributions of leakages[END_REF]. Moreover, their contribution introduces for the first time, the name of blind side channel analysis (BSCA). Now it is a new family of SCA, and different symmetric cryptography algorithms are targeted by these attacks such as AES [START_REF] Linge | Using the joint distributions of a cryptographic function in side channel analysis[END_REF][START_REF] Hélène | A Multi-round Side Channel Attack on AES Using Belief Propagation[END_REF][START_REF] Clavier | Improved blind side-channel analysis by exploitation of joint distributions of leakages[END_REF][START_REF] Clavier | Quadrivariate improved blind side-channel analysis on boolean masked aes[END_REF], Elephant [START_REF] Awaleh Houssein Meraneh | Blind Side Channel On The Elephant LFSR[END_REF], and PRINCE [START_REF] Yli-Mäyry | Diffusional Side-Channel Leakage From Unrolled Lightweight Block Ciphers: A Case Study of Power Analysis on PRINCE[END_REF].

Description of the attacks

Simulated leakage Model

The power consumption or electromagnetic leakages are very correlated to the Hamming weight (HW) of the data. It is a classical model used in the domain of SCA.

One important advantage of HW is that it rapidly reduces guesses. For example, let x be a byte, so x can take 256 values in [[0, 255]]. With the HW of x, the attacker reduces the list of possible values, as shown in Table 1. Another model for the leakage is a HW with an additive Gaussian noise. For a given discrete random variable byte x, and its HW(x) ∈ [[0, 8]]; HW(x) denotes the continuous random variable representing the simulated Hamming weight so called noisy; defined in R as:

HW(x) = HW(x) + σ x,t ; (3) 
with σ x,t an event of the Gaussian random variable N ( 0, σ 2 ) at a time t. The probability density function F associated to N ( 0, σ 2 ) is given by:

F σ (x) = 1 σ • √ 2π • exp ( - 1 2 • ( x σ ) 2 ) . ( 4 
)
In this paper, BSCA are studied, so the attacker uses only simulated leakage. The simulation of the power consumption or electromagnetic leakage is generated with Gaussian noise added to the HW obtained from the intermediate computations at the byte level. To simplify the simulation, it is assumed that the noise level remains the same throughout the system. The simulations, which were performed using the Python programming language (v3.9), represent a typical unprotected implementation on an 8-bit processor.

Belief propagation (BP)

In our attack approach, relations between the different values for which a nosy HW is simulated, and exploited. For that belief propagation (BP) is used. BP was first used by Gallager [START_REF] Robert | Low-density parity-check codes[END_REF][START_REF] Robert | Low Density Parity check codes[END_REF] for decoding low-density parity-check (LDPC) codes [START_REF] Chung | On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit[END_REF]. It was then rediscovered by Tanner [START_REF] Tanner | A recursive approach to low complexity codes[END_REF] and formalized by Pearl [START_REF] Pearl | Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach[END_REF]. The first time that BP was used in SCA on symmetric encryption, in the attack of Veyrat-Charvillon et al. [START_REF] Veyrat-Charvillon | Soft Analytical Side-Channel Attacks[END_REF], then it is studied in [START_REF] Grosso | ASCA, SASCA and DPA with Enumeration: Which One Beats the Other and When?[END_REF][START_REF] Hélène | A Multi-round Side Channel Attack on AES Using Belief Propagation[END_REF].

Tanner graph A BP algorithm relies on a bipartite graph called a factor graph (or Tanner graph). To each node in the factor graph is associated some information. The nodes of a factor graph as are of two kinds:

-variable nodes V representing the variables handled by the algorithm under attack; -factor nodes, representing the equations E between these variables.

An edge links a variable node V with a factor node E, when the equation represented by the factor node E involves the variable node V . An example of a factor graph is illustrated in Figure 7.

N denotes the set of neighbours for a node. Thus the set N(E) is made of the variable nodes V involved in equation E, and the set N(V ) is made of factor nodes E that depend on V .

BP algorithm The belief propagation (BP) algorithm inputs are

-the Tanner graph, -prior probabilities P A (V = v) on the different variable nodes V .

The BP algorithm returns a better belief, from the initial values P A (V = v). More precisely, BP computes probabilities a posteriori P P (V = v) on the different variable nodes according prior probabilities. The values P P (V = v) are computed according to the input prior probability P A (V = v) and to the probabilities P(V = v|E) conditional on factor nodes E ∈ N(V ) to be satisfied using the following equation:

V 0 V 1 V 2 V 3 V 4 V 5 E 0 E 1 E 2 E 3
P P (V = v) ∝ P A (V = v) × ∏ E∈N(V ) P(V = v|E) (5)
In practice, nodes in the factor graph exchange information messages with their neighbours. More precisely, since the graph is bipartite, two types of messages are exchanged:

-factor to variable messages between a factor node E and a variable node V , denoted µ E→V :

µ E→V (v) = ∑ v1,v2,••• ,v #N(E)-1 E(v, v 1 , • • • , v #N(E)-1 ) × ∏ Vi∈N(E)\{V } µ Vi→E (v i ) (6 
) This equation comes from the law of total probability. Roughly speaking, the quantity µ E→V (v) represents the belief from the perspective of factor node E that variable node V take the value v. The information is gathered from the other variables nodes in N(E).

-variable to factor messages between a variable node V and a factor node E, denoted µ E→V .

µ V →E (v) ∝ P A (V = v) × ∏ E ′ ∈N(V )\{E} µ E ′ →V (v) (7) 
This equation is essentially Bayes' rule. Here variable node V updates its belief using informations from the factor nodes in N(V ). This equation is meant to be used in alternance with Equation [START_REF] Adomnicai | Practical algebraic side-channel attacks against acorn[END_REF]. So the contribution from node E is deliberately excluded to avoid self-persuasion.

Both equations make independence assumptions to make computations feasible in practice at the expanse of the risk to converge to an incorrect value.

To complete the description of the BP algorithm, an initialization step is done before applying the above equations. The variable to factor messages µ V →E (v) are initialized with the prior probabilities P A (V = v). In summary, after an initialization phase, BP works by alternatively applying equations ( 6) then [START_REF] Banciu | Exploring the resilience of some lightweight ciphers against profiled single trace attacks[END_REF] for every edge (V, E) in the Tanner graph. At the end of the execution, the returned value P P (V = v) is computed using equation ( 5) where the probabilities P(V = v|E) are replaced by their approximations µ E→V (v). The number of iterations depends of the rapidity of convergence, which in turn depends on the Tanner graph.

Attack on Elephant

Attack path

The attack path is based on a similar approach as presented in the theoretical work by Meraneh et al. [START_REF] Awaleh Houssein Meraneh | Blind Side Channel On The Elephant LFSR[END_REF][START_REF] Maillard | Blind side channel analysis on the Elephant LFSR Extended version[END_REF]. However, their attack focuses on obtaining HW information and is limited to scenarios without noise. It is a theoretical and mathematical assumption that is very useful for testing ideas, but it never happens in the real world. In this paper, we improve this attack to consider noisy HW more close than real measurements and propose the use of BP as a solution to address this challenge.

Linear feedback shift registers (LFSRs) find applications in various lightweight cryptography candidates, where their initial state is typically determined by both a key and a nonce. Since the nonce must be altered for each encryption request, attacks against such schemes are confined to the decryption algorithm. However, in the case of Elephant, the LFSR solely relies on the secret key. As a result, our attack can be employed in an encryption scenario as well.

The objective of the described attack is to recover the secret initial state of the LFSR. Three crucial points should be noted as following.

-Retrieving the initial state of the LFSR, which is equal to mask 0,0 K , is equivalent to retrieving the secret key. Indeed, the initial state is the result of the known permutation P applied to the key. -As the retroaction polynomial is publicly known, it is possible to shift the LFSR backwards: an attacker who recovers enough consecutive bytes of the secret stream is able to reconstruct the initial state. -The smaller the LFSR is, the more the attack is able to succeed. As a consequence, the Dumbo instance (see Figure 3) is the most vulnerable one: the following of this section is focused on Dumbo.

Since the LFSR generates a single new byte at each iteration, let the content of the Dumbo LFSR be denoted as follows:

(x j , • • • , x j+19 ) = mask j,0 K (8)
and let x j+20 be the byte generated at iteration j. Similarly, let (y j ,

• • • , y j+19 ) = mask j,1 K and (z j , • • • , z j+19 ) = mask j,2 K
. By definition of mask, the following hold for all j ≥ 0:

y j = x j ⊕ x j+1 ( 9 
)
z j = x j ⊕ x j+2 . ( 10 
)
The attacker can thus exploit two attack vectors: on the one hand, equations ( 2) coming from iterating the LFSR, and on the other hand, equations ( 9) and ( 10) coming from the different masks used for domain separation. In this use case, the attacker obtain a leakage, simulated by noisy HW on the different bytes of the Dumbo LFSRs.

Once has to remark that a classic CPA is impossible on the mask 0,0 K , because the attacker knows zero data in this function.

Tanner graph

In the case of Elephant, the Tanner graph is defined as follows. Variable nodes are the bytes x j , y j and z j of the LFSRs. There are four types of factor nodes:

-E y0 , E y1 , . . . , E y20 represent the equation [START_REF] Beierle | Schwaemm and esch: lightweight authenticated encryption and hashing using the sparkle permutation family[END_REF]. -E z0 , E z1 , . . . , E z19 represent the equation [START_REF] Awaleh Houssein Meraneh | Blind Side Channel On The Elephant LFSR[END_REF].

-We have divided the feedback equation ( 2) into two sub-equations. This helps reduce the amount of computation in BP. Indeed, the number of terms in equation ( 6) is exponential in the number of neighbours in N(E). The factor nodes corresponding to equation ( 2) are given in Table 2.

The Elephant Tanner graph is illustrated in Figure 8. 
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Results

Table 3 presents the average and median rank of the correct key byte for various noise levels σ. The statistics are done for all 20 bytes and repeated with 1000 different randomly generated keys.

Results indicate that when the noise level is low, BP helps pushing up the ranks of the correct key bytes. An attacker can then leverage the posterior probabilities returned by BP using smart key enumeration techniques to try and find the whole key. Note that since the LFSR computation only depend on the key, it is possible to reduce the noise level by averaging several traces. Another important thing to note is that, finding the correct value of any mask j,i K , not just the first one, counts as a successful attack. Depending on the actual value of mask j,i K , some may be easier to attack than others, as was already noticed by Meraneh et al. [START_REF] Awaleh Houssein Meraneh | Blind Side Channel On The Elephant LFSR[END_REF] in the noise-free case.

Attack on Sparkle

Attack path

During the initialisation phase of Schwaemm256-128, the key K is loaded into the last 128 bits of the Sparkle384 state, see into two 64-bits halves. Then, in the first round, K 1 is the input of Alzette A 4 , and K 2 of Alzette A 5 .

The rest of this section only describes the attack for a single Alzette since they work exactly the same but for the constant α.

As stated in subsection 2.3, Alzette is a 4-round ARX Feistel cipher, illustrated in see Figure 6. In this use case, the attacker can obtain simulated leakage on the different internal values ℓ i , ℓ ′ i , and r i of Alzette. Here again, we assume a leakage model as a noisy HW of the bytes, as described in equations ( 3) and (4). The leakage observed in the first round of Alzette is depicted in Figure 9.
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HW( 1) HW(r1) Fig. 9. Measurement leakage in the first round Alzette described in section 2.3 and Figure 6.

The different internal values related to each other thanks to the following Alzette equations:

ℓ ′ 1 = ℓ 0 ⊞ (r 0 ≪ 1) , ℓ 1 = ℓ ′ 1 ⊕ α , r 1 = (ℓ ′ 1 ≪ 8) ⊕ r 0 ℓ ′ 2 = ℓ 1 ⊞ (r 1 ≪ 15) , ℓ 2 = ℓ ′ 2 ⊕ α , r 2 = (ℓ ′ 2 ≪ 15) ⊕ r 1 ℓ ′ 3 = ℓ 2 ⊞ r 2 , ℓ 3 = ℓ ′ 3 ⊕ α , r 3 = (ℓ ′ 3 ≪ 1) ⊕ r 2 ℓ ′ 4 = ℓ 3 ⊞ (r 3 ≪ 8) , ℓ 4 = ℓ ′ 4 ⊕ α , r 4 = (ℓ ′ 4 ≪ 16) ⊕ r 3 (11) 
To the best of our knowledge, this attack is the first BSCA against Sparkle.

Tanner graph

In the case of Sparkle, the variable node in the Tanner graph are defined at the bit level. They are the bits of the different ℓ i , ℓ ′ i , and r i . for 0 ≤ i ≤ 4. Since modular additions are involved, a 31-bit carry variable c i is also added at each round.

As for the equations, they are of two kinds:

-the bitwise translation of equations ( 11) which describe Alzette, -the HW equations (sum of bits gives the HW).

In this case, the HW are represented in the graph because they induce new relations between the different bits. The Figure 10 shows a part of the Tanner graph of the first round of Alzette.
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HW( 1) First, note that as in the case of the attack on Elephant, it is possible to reduce the noise level by averaging several traces, since the variables handled only depend on the key.

EHW( 1)= 1(b) HW( 1) EHW(r 1)= r1(b) HW(r1)
Second, it is important to consider that the correct key is often not the first attempt, as there may be a few unknown bits for the attacker. Therefore, allowing the attacker to perform an exhaustive search can be relevant to uncover the remaining bits. That is why we grant the attacker a certain computational power.

Let n be the number of bits the attacker can flip on 64 bits. This means that they can try up to P keys where P is given by:

P = ( 64 0 ) + ( 64 1 
)

+ ( 64 2 
)

+ • • • + ( 64 n 
) .

Since they must do this for both half-keys, the total number of keys they can guess is P 2 . Table 7 indicates the number of keys found out of 1000 with an attacker possessing a computing power of P 2 as a function of the number of bits n they can flip in a reasonnable amount of time.

It is essential to point out that this exhaustive search does not exploit the a posteriori probabilities returned by BP. Therefore, the use of smarter key enumeration techniques, exploiting these probabilities, will certainly lead to improved results without the need for a specific computing power to perform an exhaustive search. Future projects include the use of key enumeration.

Conclusion

In this paper, two attacks on two lightweight AEAD algorithms have been successfully conducted and for each attack we used a single simulated measurement.

Firstly, an improvement on the attack against Elephant [START_REF] Awaleh Houssein Meraneh | Blind Side Channel On The Elephant LFSR[END_REF] incorporating a noisy Hamming weight model is presented. This enhanced approach allows for intelligent backtracking of the key, increasing the chances of finding the correct value.

Next, the first BSCA on Sparkle has been described. By exploiting the attacker computational power, we have shown that the attack can indeed recover a significant portion of the secret keys when the noise level is moderate. Using backtracking on the key in an intelligent way that could improve results without doing an exhaustive search for the few remaining bits not predicted by our attack.

The power of the BP algorithm was also highlighted in our research, prompting us to develop a generic tool for it in the future. In future work, we can speed up the computation time of BP by using Walsh-Hadamard transform [START_REF] Ouyang | Fast algorithm for walsh hadamard transform on sliding windows[END_REF].

Our future research has to focus on transitioning these attacks into practical implementations and to develop a key backtracking algorithm that is intelligent with posterior probabilities. Additionally, we plan to explore the security of Ascon, the NIST competition winner, as a potential target for our future investigations.
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 4 Fig.4. Encryption using Schwaemm256-128, where Sparkle384 R is the Sparkle384 permutation with R rounds, ρ is a linear application, W the linear whitening layer, and the constant ConstM indicating whether the plaintext M was padded or not.

Fig. 5 .

 5 Fig. 5. The first round of the Sparkle384 permutation during the initialisation of Schwaemm256-128.
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 7 Fig. 7. Example of a Tanner factor graph part. Circles are variable nodes and squares are factor nodes.
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 218 Fig. 8. Tanner factor graph on LFSR Dumbo of Elephant.
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 4 Let split K = K 1 ||K 2

Fig. 10 .

 10 Fig. 10. Tanner graph of the first round of Alzette. Only a bit with index b ∈ [[0, 31]] of each 32-bit register is shown. Relative indices are given mod 32. The carries in the modular operation are denoted c1(b) and c1(b -1). Bits belonging to the same 32-bit register are enclosed in dashed lines.

Table 1 .

 1 Number of possible values for a byte x according its HW. This table comes from[START_REF] Hélène | A Multi-round Side Channel Attack on AES Using Belief Propagation[END_REF] 

	HW(x) 0 1 2 3 4 5 6 7 8
	#x	1 8 28 56 70 56 28 8 1

Table 2 .

 2 Intermediate and final feedback equation

	intermediate feedback equation	final feedback equation
	Etx 20	

Table 3 .

 3 Rank of all key bytes on 1000 different keys of 20 bytes for different noise levels σ. More precisely, BP algorithm returns probabilities a posteriorifor each possible value of each byte. These probabilities can be sorted from most likely to least likely. This table calculates the rank of the correct value for each byte.

	σ Mean Standard Deviation Min Quartile Q1 Median Quartile Q3 Max
	0.1 3.54	5.97	0	0	3	3	27
	0.15 3.54	5.97	0	0	3	3	27
	0.2 3.67	6.11	0	0	3	3	31
	0.25 4.95	9.31	0	0	3	3	97
	0.3 6.00	10.76	0	0	3	3	97
	0.35 7.46	13.10	0	0	3	8	97
	0.4 9.59	15.72	0	0	3	8	97
	0.5 15.97	23.03	0	3	8	31	153
	0.6 23.65	31.41	0	3	8	31	157
	0.7 33.73	40.11	0	3	27	36	213
	1 70.68	61.42	0	31	36	92	246

Table 6 .

 6 Number of bits recovered for the 128-bit master key K.

	σ Mean Standard Deviation Min Quartile Q1 Median Quartile Q3 Max
	0.1 114.06	4.07	89	112	114	117	123
	0.15 114.22	3.59	92	112	114	116	123
	0.2 114.26	3.51	97	112	114	117	124
	0.25 114.11	3.76	92	112	114	116	124
	0.3 113.89	3.67	97	112	114	116	125
	0.35 113.36	3.94	90	111	113	116	124
	0.4 112.92	3.82	95	111	113	115	124
	0.45 112.05	4.09	89	110	112	115	123
	0.5 111.35	3.85	92	109	111	114	123
	0.6 109.48	3.97	89	108	110	112	121
	0.7 108.06	3.77	87	106	108	110	120
	1 105.65	4.65	85	105	107	108	115

Table 7 .

 7 Number of keys, out of 1000, found for both Alzettes by an attacker with computational power P 2 , that can exhaustively flip up to n bits in each 64-bit subkey. n = 4, P 2 = 2 39 n = 5, P 2 = 2 46 n = 6, P 2 = 2 53 n = 7, P 2 = 2 59 n = 8, P 2 = 265 

	σ	A4	A5	A4	A5	A4	A5	A4	A5	A4	A5
	0.1 175	169	274	283	494	422	610	586	831	787
	0.15 174	168	273	281	492	420	611	585	831	786
	0.2 175	172	284	285	485	421	611	586	818	776
	0.25 171	170	284	280	470	417	612	566	801	740
	0.3 177	133	284	246	447	389	582	554	751	716
	0.35 155	136	248	229	368	365	540	512	703	664
	0.4 137	105	243	187	368	306	523	468	652	618
	0.45 110	84	180	167	285	265	431	407	584	559
	0.5	88	53	154	112	246	216	380	342	527	495
	0.6	34	23	86	51	132	116	225	213	360	326
	0.7	9	7	25	18	65	43	150	100	266	211
	1	0	0	2	1	15	6	47	35	119	88
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Results

We ran our attack on both Alzettes in a parallel manner, the only difference being the α 4 constant used by A 4 and α 5 used by A 5 .

For the different values of the noise σ and with a single simulated measurement, the number of correct decisions on the input bits, or the number of recovered bits was calculated. The experiment was repeated on 1000 uniformly drawn random keys.

Table 4 presents the number of recovered bits of the 64-bit K 1 input of Alzette A 4 . Table 5 does the same for K 2 and A 5 . Finally, Table 6 presents the number of bits recovered for the whole 128-bit master key K of Sparkle.