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Criterion for the Riemann Hypothesis

Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 . It was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. In mathematics, the Chebyshev function θ(x) is given by θ(x) = q≤x log q with the sum extending over all prime numbers q that are less than or equal to x, where log is the natural logarithm.

Proposition 1.1. For every x ≥ 19035709163 [1, Theorem 1 pp. 2]:

1 -0.15 log 3 x • x < θ(x) < 1 + 0.15 log 3 x • x.

The following property is based on natural logarithms:

Proposition 1.2. For x > -1 [8, pp. 1]: x x + 1 ≤ log(1 + x) ≤ x.
Leonhard Euler studied the following value of the Riemann zeta function (1734) [START_REF] Ayoub | Euler and the Zeta Function[END_REF].

Proposition 1.3. We define [2, (1) pp. 1070]:

ζ(2) = ∞ k=1 q 2 k q 2 k -1 = π 2 6 ,
where q k is the kth prime number. By definition, we have

ζ(2) = ∞ n=1 1 n 2 ,
where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

∞ n=1 1 n 2 = ∞ k=1 q 2 k q 2 k -1 = π 2 6 ,
where π ≈ 3.14159 is a well-known constant linked to several areas in mathematics such as number theory, geometry, etc.

The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined as

γ = lim n→∞ -log n + n k=1 1 k = ∞ 1 - 1 x + 1 ⌊x⌋ dx.
Here, ⌊. . .⌋ represents the floor function. Franz Mertens discovered some important results about the constants B and H (1874) [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF]. The number B ≈ 0.26149 is the Meissel-Mertens constant where γ = B + H [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF].

Proposition 1.4. We have [4, Lemma 2.1 (1) pp. 359]:

∞ k=1 log q k q k -1 - 1 q k = γ -B = H.
For x ≥ 2, the function u(x) is defined as follows [10, pp. 379]:

u(x) = q>x log q q -1 - 1 q .
On the sum of the reciprocals of all prime numbers not exceeding x, we have: 

- 0.2 log 3 x ≤ q≤x 1 q -B -log log x ≤ 0.2 log 3 x .
In number theory, Ψ(n) = n • q|n 1 + 1 q is called the Dedekind Ψ function where q | n means the prime q divides n. For x ≥ 2, a natural number M x is defined as

M x = q≤x q.
We define R(n) = Ψ(n) n•log log n for n ≥ 3. We say that Dedekind(x) holds provided that

R(M x ) ≥ e γ ζ (2) 
.

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy and John Edensor Littlewood [START_REF] Hardy | Some problems of diophantine approximation: Part II. The trigonometrical series associated with the elliptic ϑ-functions[END_REF]. In 1916, they also introduced the two symbols Ω R and Ω L defined as [START_REF] Hardy | Contributions to the theory of the Riemann zetafunction and the theory of the distribution of primes[END_REF]:

f (x) = Ω R (g(x)) as x → ∞ if lim sup x→∞ f (x) g(x) > 0; f (x) = Ω L (g(x)) as x → ∞ if lim inf x→∞ f (x) g(x) < 0.
After that, many mathematicians started using these notations in their works.

From the last century, these notations Ω R and Ω L changed as Ω + and Ω -, respectively. There is another notation:

f (x) = Ω ± (g(x)) (meaning that f (x) = Ω + (g(x)) and f (x) = Ω -(g(x)) are both satisfied). Nowadays, the notation f (x) = Ω + (g(x)
) has survived and it is still used in analytic number theory as [START_REF] Tenenbaum | Introduction to Analytic and Probabilistic Number Theory[END_REF]:

f (x) = Ω + (g(x)) if ∃k > 0 ∀x 0 ∃x > x 0 : f (x) ≥ k • g(x)
which has the same meaning to the Hardy and Littlewood older notation. Putting all together yields a proof for the Riemann hypothesis.

Central Lemma

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. However, there are some implications in case of the Riemann hypothesis could be false. The following is a key Lemma.

Lemma 2.1. If the Riemann hypothesis is false, then there exist infinitely natural numbers x for which Dedekind(x) fails (i.e. Dedekind(x) does not hold).

Proof. The function g is defined as [11, Theorem 4.2 pp. 5]:

g(x) = e γ ζ(2) • log θ(x) • q≤x 1 + 1 q -1
.

The Riemann hypothesis is false whenever there exists some natural number x 0 ≥ 5 such that g(x 0 ) > 1 or equivalent log g(x 0 ) > 0 [11, Theorem 4.2 pp. 5].

It was proven the following bound [11, Theorem 4.2 pp. 5]:

log g(x) ≥ log f (x) - 2 x .
For x ≥ 2, the function f was by Nicolas in his seminal paper as [10, Theorem 3 pp. 376], [3, (5.5) pp. 111]:

f (x) = e γ • log θ(x) • q≤x 1 - 1 q .
If the Riemann hypothesis is false then there exists a real number b with 0 < b < 

That inequality is equal to log

f (y) ≥ k • y -b • √ y • 1 √ y , but we notice that lim y→∞ k • y -b • √ y = ∞
for every possible values of k > 0 and 0 < b < 1 2 . Now, this implies that

∀y 0 ∈ N, ∃y ∈ N (y > y 0 ) : log f (y) ≥ 1 √ y .
Note that, the variable k disappears in our previous expression when we do not need it anymore. In this way, if the Riemann hypothesis is false, then there exist infinitely many natural numbers x such that log f (x) ≥ 1

√

x . Since

1 √ x0 > 2 x0
for x 0 ≥ 5, then it would be infinitely many natural numbers x 0 such that log g(x 0 ) > 0. □

Main Insight

This is the main insight.

Lemma 3.1. The inequality q≤x ( q q-1 )

log θ(x) ≥ e γ ζ(2)
7 holds for large enough x ∈ N.

Proof. By Proposition 1.4, the inequality

q≤x q q-1 log θ(x) ≥ e γ ζ( 2 
)
7
is the same as

q≤x log q q -1 -B -log log θ(x) ≥ H + 6 • γ -7 • log(ζ(2))
after of applying the logarithm to the both sides and distributing the terms.

In addition, log log θ(x) < log log 1 + 0.15 log 

3 x • x = log log 1 + 0.15 log 3 x + log x = log   (log x) •   1 + log 1 + 0.
q≤x log q q -1 -B -log log x - 0.15 log 4 x ≥ H + 6 • γ -7 • log(ζ(2)).
That is,

q≤x log q q -1 -B -log log x- 0.15 log 4 x -u(x) ≥ H -u(x)+6•γ -7•log(ζ(2)).
after subtracting u(x) to the both sides of the inequality. By Proposition 1.4, we can see that

q≤x 1 q -B -log log x - 0.15 log 4 x -u(x) ≥ 6 • γ -7 • log(ζ(2)).
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- 0.2 log 3 x - 0.15 log 4 x -u(x) ≥ 6 • γ -7 • log(ζ(2)).
It is a fact that the inequality

- 0.2 log 3 x - 0.15 log 4 x -u(x) ≥ 6 • γ -7 • log(ζ(2)) holds for large enough x ∈ N due to 6 • γ -7 • log(ζ(2)) < 0 is a negative real constant and lim x→∞ - 0.2 log 3 x - 0.15 log 4 x -u(x) = 0. □

Main Theorem

This is the main theorem.

Theorem 4.1. Dedekind(x) always holds for large enough x ∈ N.

Proof. By Lemma 3.1, the inequality

q≤x q q-1 log θ(x) ≥ e γ ζ (2) 
7 holds for large enough x ∈ N. By Propositions 1.2 and 1.4, the inequality

q≤x q q-1 log θ(x) ≥ e γ ζ(2) 7 is equivalent to e H-u(x) • R(M x ) ≥ e γ ζ (2) 7 
.

Certainly, we have

q≤x q q-1 log θ(x) ≥   q≤x q q-1 e 1 q   • q≤x 1 + 1 q log θ(x) = e H-u(x) • q≤x 1 + 1 q log θ(x) = e H-u(x) • M x • q|Mx 1 + 1 q M x • log log M x = e H-u(x) • Ψ(M x ) M x • log log M x = e H-u(x) • R(M x )
using the Propositions 1.2 and 1.4 such that e 1 q ≥ 1 + 1 q for every prime q. Consequently, we would have [START_REF] Ayoub | Euler and the Zeta Function[END_REF] .

e H-u(x) e γ ζ(2) 6 • R(M x ) ≥ e γ ζ
We only need to prove that Using a simple numerical calculation, we can check that

γ + B 5 log(ζ(2)) > 1.26483 > 1.2 = 6 5
and therefore, the proof is done. □

Main Result

This is the main result.

Corollary 5.1. The Riemann hypothesis is true.

Proof. By Lemma 2.1, if the Riemann hypothesis is false, then there exists an infinite sequence of natural numbers x i such that Dedekind(x i ) fails. This contradicts the fact that Dedekind(x) always holds for large enough x ∈ N according to the Theorem 4.1. By Reductio ad absurdum, the Riemann hypothesis must be true as a direct consequence of Lemma 2.1 and Theorem 4.1. □

Conclusions

Practical uses of the Riemann hypothesis include many propositions that are considered to be true under the assumption of the Riemann hypothesis and some of them that can be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. A proof of the Riemann hypothesis could spur considerable advances in many mathematical areas, such as number theory and pure mathematics in general.
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