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Small But Unwieldy:
A Lower Bound on Adjacency Labels for Small Classes

Édouard Bonnet∗ Julien Duron† John Sylvester‡ Viktor Zamaraev§

Maksim Zhukovskii¶

Abstract

We show that for any natural number s, there is a constant γ and a subgraph-closed class
having, for any natural n, at most γn graphs on n vertices up to isomorphism, but no adjacency
labeling scheme with labels of size at most s log n. In other words, for every s, there is a small
–even tiny– monotone class without universal graphs of size ns. Prior to this result, it was not
excluded that every small class has an almost linear universal graph, or equivalently a labeling
scheme with labels of size (1+o(1)) log n. The existence of such a labeling scheme, a scaled-down
version of the recently disproved Implicit Graph Conjecture, was repeatedly raised [Gavoille
and Labourel, ESA ’07; Dujmović et al., JACM ’21; Bonamy et al., SIDMA ’22; Bonnet et al.,
Comb. Theory ’22]. Furthermore, our small monotone classes have unbounded twin-width, thus
simultaneously disprove the already-refuted Small conjecture; but this time with a self-contained
proof, not relying on elaborate group-theoretic constructions.

As our main ingredient, we show that with high probability an Erdős–Rényi random graph
G(n, p) with p = O(1/n) has, for every k 6 n, at most 2O(k) subgraphs on k vertices, up to
isomorphism. As a barrier to our general method of producing even more complex tiny classes,
we show that when p = ω(1/n), the latter no longer holds. More concretely, we provide an
explicit lower bound on the number of unlabeled k-vertex induced subgraphs of G(n, p) when
1/n 6 p 6 1−1/n. We thereby obtain a threshold for the property of having exponentially many
unlabeled induced subgraphs: if min{p, 1 − p} < δ/n with δ < 1, then with high probability
even the number of all unlabeled (not necessarily induced) subgraphs is 2o(n), whereas if C/n <
p < 1−C/n for sufficiently large C, then with high probability the number of unlabeled induced
subgraphs is 2Θ(n). This result supplements the study of counting unlabeled induced subgraphs
that was initiated by Erdős and Rényi with a question on the number of unlabeled induced
subgraphs of Ramsey graphs, eventually answered by Shelah.
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1 Introduction

A class of graphs is a set of graphs which is closed under isomorphism. Let C be a class of graphs
and f : N → N be a function. An f(n)-bit adjacency labeling scheme or simply f(n)-bit labeling
scheme for C is a pair (encoder, decoder) of algorithms where for any n-vertex graph G ∈ C the
encoder assigns to the vertices of G pairwise distinct1 f(n)-bit binary strings, called labels, such that
the adjacency between any pair of vertices can be inferred by the decoder only from their labels. We
note that the decoder depends on the class C, but not on the graph G. The function f is the size
of the labeling scheme. Adjacency labeling schemes were introduced by Kannan, Naor, and Rudich
[KNR88, KNR92], and independently by Muller [Mul88] in the late 1980’s and have been actively
studied since then.2 For a function u : N → N, a universal graph sequence or simply universal
graph of size u(n) is a sequence of graphs (Un)n∈N such that for every n ∈ N the graph Un has at
most u(n) vertices and every n-vertex graph in C is an induced subgraph of Un. It was observed
in [KNR92] that for a class of graphs the existence an f(n)-bit labeling scheme is equivalent to the
existence of a universal graph of size 2f(n).

One line of research in the area of labeling schemes is to describe graph classes that admit an
implicit representation, i.e., an O(log n)-bit labeling scheme. Since labels assigned by a labeling
scheme are assumed to be pairwise distinct, dlog ne is a lower bound on the size of any labeling
scheme (where, and throughout the paper, log is in base 2). Thus, understanding the expressive
power of the labeling schemes of size of order log n is a natural question. A simple counting argument
shows that a necessary condition for the existence of such a labeling scheme for a graph class is at
most factorial speed of the class, i.e., the number of n-vertex graphs in the class should be at most
2O(n logn). This condition alone is not sufficient, as witnessed by Muller’s construction [Mul88] of a
factorial graph class that does not admit an implicit representation. The crucial property used in
that construction is that the class is not hereditary, i.e., not closed under removing vertices. Kannan,
Naor, and Rudich [KNR88] asked whether factorial speed and the property of being hereditary are
sufficient conditions for an implicit representation. This question was later reiterated by Spinrad
[Spi03] in the form of a conjecture, that became known as the Implicit Graph Conjecture,

(IGC ): Any hereditary class of at most factorial speed admits an O(log n)-bit labeling scheme.

The question remained open for three decades until the recent development of a connection
between randomized communication complexity and adjacency labeling schemes [Har20, HWZ22,
HHH22] led to the beautiful and striking refutation of the conjecture by Hatami and Hatami [HH22].
In particular, Hatami and Hatami showed that for any δ > 0 there exists a hereditary factorial class
that does not admit an (n1/2−δ)-bit labeling scheme. This refutation leaves wide open the question
of characterizing hereditary graph classes that admit O(log n)-bit labeling schemes, and no plausible
conjecture is available at the moment.

A large and important body of work within labeling schemes focuses on the design of labeling
schemes of asymptotically optimal size. Such labeling schemes are known for various graph classes.
For example, trees admit a (log n+O(1))-bit labeling scheme [ADK17], planar graphs admit a (1 +

1We note that this assumption is without loss of generality as the classes that we are interested in, namely
hereditary classes with 2Θ(n logn) labeled n-vertex graphs, are known to always contain arbitrarily large graphs whose
all vertices have pairwise distinct neighborhoods [Ale97] and therefore all of them should be assigned distinct labels in
any adjacency labeling scheme. On the other hand, the assumption is convenient when considering the correspondence
between labeling schemes and universal graphs.

2It would be hard to give a short but comprehensive list of references, so we refer the interested reader to the list
of hundreds of papers citing [KNR92].
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o(1)) log n-bit labeling scheme [DEG+21], all classes of bounded treewidth admit a (1 + o(1)) log n-
bit labeling scheme [GL07]. The latter example deals with an infinite family of graph classes rather
than a single class. The classes in this family are parameterized by the value of their treewidth, and
the bound means that for any natural k the class of graphs of treewidth at most k admits a labeling
scheme of size (1 + o(1)) log n, where o(1) refers to a function that depends on n and k, and tends
to 0 as n goes to infinity.

We say that a family F of graph classes has uniformly bounded labeling schemes, if there exists
a natural number s such that every class in F admits an (s+o(1)) log n-bit labeling scheme. Using
this terminology, we can say that the family of classes of graphs of bounded treewidth has uniformly
bounded labeling schemes. Another example of a family with uniformly bounded labeling schemes
is the family of proper minor-closed classes, since each of these classes admits a (2 + o(1)) log n-bit
labeling scheme [GL07].

Note that an n-vertex graph with adjacency labels of size f(n) can be encoded by a binary
word of length at most n · f(n) obtained by concatenating the vertex labels. Therefore, an f(n)-
bit labeling scheme can represent at most 2n·f(n) unlabeled n-vertex graphs. Hence, a necessary
condition for a family of graph classes to have a uniform bound (s+ o(1)) log n on labeling schemes
is that every class in the family should have at most 2(s+o(1))n logn unlabeled n-vertex graphs. The
proper minor-closed classes (including the classes of bounded treewidth) are small, i.e., in each such
class the number of labeled n-vertex graphs is at most n!cn = 2(1+o(1))n logn for some constant c
[NSTW06]. Thus this family has the uniform bound of 2(1+o(1))n logn even on the number of labeled
graphs. In fact, the bound on the number of unlabeled graphs in proper minor-closed classes is
smaller: for any such class there exists a constant c such that the number of unlabeled n-vertex
graphs is at most cn [Bla03, BNW10, AFS12]. We will call such classes tiny. Note that any n-vertex
unlabeled graph corresponds to at most n! labeled graphs that are isomorphic to it, and therefore
any tiny class is small. It is not known whether the converse holds (see 3. ⇒ 2. of Conjecture 8.1,
in the first version of [BNO+21]).

It is known that the classes of bounded clique-width [ALR09] and more generally the classes of
bounded twin-width [BNO+21] are tiny, and thus they have a uniform upper bound on the number
of n-vertex graphs. These classes are also known to admit O(log n)-bit labeling schemes, but these
are not uniformly bounded labeling schemes. Indeed, the best known labeling schemes for graphs
of clique-width at most k are of size Θ(k log k · log n) [Spi03, Ban22]; and the only known labeling
scheme for graphs of twin-width at most k is of size 22Θ(k) ·log n [BGK+22]. For each of these families
no uniform bound is known, but such a bound is still possible. In fact, the necessary condition on
the number of graphs does not rule out that the entire family of small classes admits the optimal
uniform bound of (1 + o(1)) log n on labeling schemes, and this question appeared in the literature
several times [GL07, DEG+21, BGP22, BGK+22].

The main result of the present work is a strong negative answer to this question: for any
constant s, there exists a monotone tiny class that does not admit an s log n-bit labeling scheme.

1.1 Our contributions

Our main result shows that the family of small classes cannot have uniformly bounded adjacency
labeling schemes. In fact, we prove the stronger result that the monotone (i.e., closed under taking
subgraphs) tiny graph classes do not admit such labeling schemes.

Theorem 1.1. For any constant s ∈ N, there exists a tiny monotone graph class C that does not
admit a universal graph of size ns. Equivalently, C has no adjacency labeling scheme of size s log n.

Our technique also allows us to show that the family of all monotone tiny (and therefore the
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family of all small) classes cannot be “described” by a countable set of c-factorial classes, where
a hereditary class C is c-factorial if it contains at most ncn labeled graphs on n vertices.

Theorem 1.2. For any c > 0, and any countable family F of c-factorial classes, there exists
a monotone tiny class that is not contained in any of the classes in F .

As noted in [AAA+23], most positive results from the literature on implicit representations are
associated with specific graph parameters in the sense that an implicit representation for a class is
derived from the fact that some graph parameter is bounded for this class. It is tempting to try and
apply such a parametric approach to the characterization of small classes: identify a set of graph
parameters each of which implies smallness, and such that for any small class, at least one of the
parameters in the set is bounded. Such an attempt, in the somewhat extreme form of a single graph
parameter, was recently made. Namely, the Small conjecture posited that every small hereditary
class has bounded twin-width [BGK+22]. This conjecture was already refuted in [BGTT22] using
a group-theoretic construction. A corollary (Corollary 4.4) of Theorem 1.2 is that the parametric
approach to characterization of small, and even monotone tiny classes, is futile even if countably
many parameters are utilized. As a special case of this corollary we obtain an alternative refutation
of the Small conjecture that avoids groups.

Corollary 1.3. There exists a monotone tiny graph class with unbounded twin-width.

In order to prove Theorem 1.1 we construct the target classes via the probabilistic method.
This required us to study of the growth of the number of k-vertex subgraphs in a random graph
(see Section 1.2 for more details). In particular we obtain two characterisations of the exponential
growth of the number of subgraphs in random graphs. The first one, Theorem 1.4, characterizes
random graphs in which the number of k-vertex subgraphs grows exponentially as a function of k.
The second one, Theorem 1.5, characterizes random graphs in which the total number of (induced)
subgraphs grows exponentially. We introduce some essential definitions before stating these results.

Let G(n, p) be the (random graph) distribution on n-vertex graphs where each edge is included
independently with probability p. For a constant c, we say that an n-vertex graph G is monotone
c-tiny if, for every k > 1, the number of unlabeled k-vertex subgraphs of G is at most ck.

Theorem 1.4 (Consequence of Theorems 3.1 and 3.5). The following holds:

1. for every d1 > 0, there exists c > 0 such that w.h.p. Gn ∼ G(n, d1/n) is monotone c-tiny; and

2. for every c > 0, there exists d2 > 0 such that w.h.p. Gn ∼ G(n, d2/n) is not monotone c-tiny.

To obtain the second half of this result (Theorem 3.5), we provide an explicit lower bound on
the number of unlabeled k-vertex induced subgraphs of G(n, p) for all 1/n 6 p 6 1−1/n. As a con-
sequence, we prove that p = Θ(1/n) is a threshold for the property of having exponentially many
unlabeled (induced) subgraphs. This has connections to an old question by Erdős and Rényi, who
conjectured that Ramsey graphs (i.e., graphs in which maximum homogeneous induced subgraphs
are of logarithmic size) have exponentially many unlabeled induced subgraphs. This conjecture was
proved by Shelah [She98]. Our threshold shows that (relatively) sparse G(n, p) has exponentially
many unlabeled subgraphs (note that such graphs are not Ramsey). Let s(Gn) and i(Gn) denote the
number of unlabeled subgraphs and the number of unlabeled induced subgraphs of Gn, respectively.

Theorem 1.5. Let δ > 0 be any constant, Gn ∼ G(n, p), and let C > 0 be sufficiently large.

(i) If min{p, 1− p} < 1−δ
n , then w.h.p., i(Gn) 6 s(Gn) = 2o(n).

(ii) If C
n < p < 1− C

n , then there exists λ > 1 such that w.h.p., s(Gn) > i(Gn) > λn.
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1.2 Proof outlines and techniques

In this section we outline the proofs of our main results.

Monotone tiny classes that do not admit some polynomial size universal graphs. Our
approach is inspired by the refutation of the IGC by Hatami and Hatami [HH22]. Namely, we
expose a family of tiny monotone classes that is so large that there are not enough universal graphs
of uniformly bounded size to capture all of them. The approach is illustrated in Figure 1 and
involves several key ingredients:

1. Estimation of the number of sets of graphs of fixed cardinality representable by universal
graphs. A set of graphs M is representable by a universal graph U , if every graph in M
is an induced subgraph of U . Fix some positive integer s. A direct estimation shows that
the number of sets of cardinality kn := n2s−1 of n-vertex graphs that are representable by
a un-vertex universal graph, with un := ns is at most

2u
2
n · unknn = 2n

2s · nsn2s
= 2n

2s+sn2s logn. (1)

2. Notion of c-tiny graphs and its refinement (c,Y, t)-tiny graphs. We will construct our monotone
tiny classes by taking the monotone closure of an appropriately chosen set of graphs. The
monotonicity and tinyness of target classes impose a natural restriction on graphs that can
be used in such constructions. To explain, let C be a monotone and tiny class, i.e., for every
graph G ∈ C all subgraphs of G are also in C, and for every natural n, the class C contains
at most cn unlabeled n-vertex graphs for some constant c. This implies that for any G ∈ C
and every k, the number of unlabeled k-vertex subgraphs of G is at most ck. We call graphs
possessing this property monotone c-tiny.

This notion, however, is not strong enough for our purposes. Indeed, while each monotone
c-tiny graph contributes to the monotone closure an appropriate number of graphs at every
level (i.e., on every number of vertices), we build our desired classes by taking the subgraph-
closure of infinitely many of such graphs, and this can result in some levels having too many
graphs. To overcome this difficulty, we introduce the notion of monotone (c,Y, t)-tiny graphs,
which are monotone c-tiny n-vertex graphs with the extra restriction that all their subgraphs
on at most t(n) vertices belong to a fixed tiny class Y.

3. Construction of monotone tiny classes from sets of monotone (c,Y, t)-tiny graphs. For some
suitable Y and t, we show that for any constant c and sequence (M

`i
)i∈N, where `i 6 t(`i+1)

and eachM`i is a set of monotone (c,Y, t)-tiny `i-vertex graphs of cardinality k`i (recall that
kn = n2s−1), the monotone closure Mon(∪i∈NM`i) is a tiny class.

4. Lower bound on the number of sets of cardinality kn of monotone (c,Y, t)-tiny n-vertex graphs.
We show that for any constant d there exists a constant c such that the number of unlabeled
monotone (c,Y, t)-tiny n-vertex graphs grows as n

(d−2)n
2

(1−o(1)), and thus the number of sets
of cardinality kn of (c,Y, t)-tiny n-vertex graphs is at least

2
Ω
(
kn

(d−2)n
2

logn
)

= 2Ω( d−2
2
n2s logn). (2)

By choosing d larger than 2s + 2, it can be seen that (2) is larger than (1). Therefore, there
exists a monotone tiny class Mon(∪i∈NM`i) that is not representable by a universal graph of size ns.
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vertex count

4 ln2 lnn

ln2 n

n

e
√
n

`i−2

`i−1

`i

`i+1

n2s−1 graphs
chosen among ≈ n(s+1)n

of average degree 2s+ 4

k#unlabeled k-vertex graphs 6 100k + e(2s−1)
√
nck = 2O(k)

ns-vertex graphs cannot represent
all
(
n(s+1)n

n2s−1

)
≈ 2(s+1)n2s logn subsets

Figure 1: How to build a monotone tiny graph class without ns-vertex universal graphs? Take
the subgraph closure of a typical subset of n2s−1 graphs with n vertices and average degree 2s+ 4,
for every element n of a sequence (`i)i∈N with `0 = 1 and `i+1 = de

√
`ie for every i ∈ N. The

tinyness is explained by elements in color (purple, blue, green). Indeed, the subgraphs on at most
t(n) = ln2 n vertices of such graphs turn out to have all their k-vertex connected components with
less than k + k/ ln k edges; the class Y of graphs with such a limited edge–vertex surplus (blue
strip) is shown to have growth less than k 7→ 100k, thus is tiny. And, in general, the set of all
the subgraphs (each green “cone”) of one such graph contains, for every k, at most ck graphs (with
c = sO(s)). The overall tinyness is obtained since k-vertex graphs with k ∈ [n, e

√
n], outside the

blue strip, stem from (e
√
n)2s−1 = 2o(n), hence 2o(k) graphs. The non-representability is explained in

bold and gray. Of the ≈ n(s+1)n graphs with n vertices and average degree 2s+4 (points within the
rounded rectangular horizontal boxes), we have around

(
n(s+1)n

n2s−1

)
≈ 2(s+1)n2s logn choices of subsets

of cardinality n2s−1.

This is more than all the ns-vertex universal graphs can represent since 2n
2s ·
( (n

s

n )
n2s−1

)
≈ 2sn

2s logn.
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Many (c,Y, t)-tiny graphs. A core step in the above approach is to show that for any constant d
there exists a constant c such that the number (c,Y, t)-tiny graphs grows as 2

d−2
2

(1−o(1))n logn. To do
so, we show that a random graph G ∼ G(n, d/n) is (c,Y, t)-tiny w.h.p.. For this we set t(n) := ln2 n
and choose Y to be a monotone class of graphs in which the number of edges does not exceed the
number of vertices by a large margin. First, we show that Y is tiny. Next, we show that w.h.p.
every subgraph of G on at most t(n) vertices belongs to Y. Finally, we show that for any k > t(n)
there are at most exponentially many unlabeled subgraphs of G on k vertices. This is achieved by
computing the expected number of such subgraphs which are connected and have a fixed number
of edges, and then by showing that these numbers are sufficiently concentrated.

Barrier for c-tinyness of random graphs. Our lower bound on the size of labeling schemes is
dependent on the number of (c,Y, t)-tiny graphs, in the sense that the more (c,Y, t)-tiny n-vertex
graphs we have, the better our lower bound is. In particular, it is not excluded that using our
approach a lower bound can be made sufficiently strong to disprove the IGC with a tiny class. One
would then need to show that there are superfactorially many, i.e., nω(n), (c,Y, t)-tiny n-vertex
graphs. We provide evidence suggesting that this cannot be achieved via random graphs. More
specifically, we show that for any fixed c and any p = ω(1/n) w.h.p. a random graph drawn from
G(n, p) is not c-tiny.

Our strategy is as follows. First, we observe that for a large enough k = o(n), w.h.p. a typical
k-vertex induced subgraph of G(n, p) has at least linearly in n many edges. Next, assuming that
the number of unlabeled k-vertex induced subgraphs (i.e., the number of isomorphism classes of
k-vertex induced subgraphs) is small, we conclude that there is a large isomorphism class, i.e., an
isomorphism class that is represented by many k-vertex induced subgraphs. Then, we show that
w.h.p. two induced k-vertex subgraphs with a “small” vertex intersection cannot be isomorphic due
to the linear in n lower bound on the number of edges in each. Hence, the k-subsets of vertices
inducing the representatives of the large isomorphism class should each have a “large” intersection
with a fixed k-subset. To reach a contradiction, we show that the total number of k-subsets that have
“large” intersections with a fixed k-subset is much smaller than the number of the representatives
of the large isomorphism class.

Our proof provides an explicit lower bound on the number of k-vertex induced subgraphs in
G(n, p). From this bound we derive a coarse Θ(1/n)-threshold for G(n, p) to have exponentially
many unlabeled induced subgraphs. Furthermore, it turns out that the property of having expo-
nentially many unlabeled (not necessarily induced) subgraphs has the same (coarse) threshold.

Organization. The rest of the paper is organized as follows. Section 2 contains classic def-
initions and inequalities, as well as the crucial definitions of (monotone) c-tiny and (monotone)
(c,Y, t)-tiny graphs. Section 3 shows upper and lower bounds on the number of unlabeled sub-
graphs of Erdős–Rényi random graphs. Note that only the upper bound is used in the proof of
our main result, Theorem 1.1. In Section 4 we give the construction of our complex monotone tiny
classes. Finally we discuss some open problems in Section 5.

To establish the proof of Theorem 1.1, one only needs to go through Sections 2, 3.1, 4.1 and 4.2.

2 Preliminaries, inequalities, and tinyness

We begin with some routine definitions in Section 2.1, then proceed with a number of standard but
useful inequalities in Section 2.2. Finally, Section 2.3 introduces our new notions of tinyness for
graphs and classes; these definitions are key to how we build our classes and prove our main result.
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2.1 Standard definitions and notation

For two real numbers i, j, we let [i, j] := {die, die+ 1, . . . , bjc− 1, bjc}. Note that if j < i, then [i, j]
is the empty set. We may use [i] as a short-hand for [1, bic], and ln2 x as a short-hand for (lnx)2.
We use the notation X ∼ D to denote that the random variable X has distribution D. We say that
a sequence of events (An) holds with high probability (w.h.p.) if P [An ]→ 1 as n→∞.

Graphs. We consider finite undirected graphs, without loops or multiple edges. Given a graph G,
we write V (G) for its vertex set, and E(G) for its edge set. A graph H is a subgraph of G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). Thus, H can be obtained from G by vertex and edge deletions.
The graph H is an induced subgraph of G if V (H) ⊆ V (G), and E(H) consists exactly of the edges
in E(G) with both endpoints in V (H). In that case, H can be obtained from G by vertex deletions
only. In the usual way, for a set of vertices U ⊆ V (G), we denote by G[U ] the induced subgraph
of G with the set of vertices U . We denote by sk(G) and ik(G) the numbers of unlabeled k-vertex
subgraphs and of unlabeled k-vertex induced subgraphs of G, respectively. For k > 1 and t > 0, we
denote by sk(G, t) the number of unlabeled k-vertex t-edge subgraphs of G.

When we refer to an n-vertex graph G as labeled, we mean that the vertex set of G is [n] and
we distinguish two different labeled graphs even if they are isomorphic. In contrast, if we refer to G
as unlabeled graph, its vertices are indistinguishable and two isomorphic graphs correspond to the
same unlabeled graph. For this reason, we will sometimes refer to unlabeled graphs as isomorphism
classes.

Graph Classes. A class of graphs is hereditary if it is closed under taking induced subgraphs,
and it is monotone if it closed under taking subgraphs. For a set C of graphs we let Her(C) denote
the hereditary closure of C, i.e., the inclusion-wise minimal hereditary class that contains C; and
Mon(C) denote the monotone closure of C, i.e., the minimal monotone class that contains C. A
graph class is small if it is hereditary and there exists a constant c such that the number of n-vertex
labeled graphs in the class is at most n!cn for every n ∈ N.

2.2 Inequalities

We will make use of the inequalities
(
n
k

)k
6
(
n
k

)
6
(
ne
k

)k; see for example [FK23, Lemma 2.7]. One
such example is to prove the following bound on the number of sparse graphs.

Lemma 2.1. For any k > 1, the number of unlabeled connected k-vertex graphs with at most
k − 1 + k

ln k edges is less than 100k.

Proof. A connected k-vertex graph with at most k − 1 + k
ln k edges consists of a spanning tree (of

k − 1 edges) plus at most k
ln k edges. Recall that the number of unlabeled trees on k > 1 vertices is

at most k · 4k [Ott48]. The number of ways to choose the remaining at most k
ln k edges is bounded

from above by

k
ln k∑
i=0

((k
2

)
i

)
6

k

ln k
·
((k

2

)
k

ln k

)
6 k ·

(
k2e

2 k
ln k

) k
ln k

< k · k2 k
ln k = k · e2k.

The last inequality holds since e ln k < 2k for every k > 1. The result follows since

(k · 4k) · (k · e2k) 6 k2 · 30k 6 3k · 30k 6 100k,
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for every k > 1 as 4e2 6 29.6.

We use the following form of Chernoff bound, which is an immediate consequence of [JLR00,
Theorem 2.1].

Lemma 2.2 (Chernoff bound). Let ξ be a binomial random variable with Eξ = µ and let t > 0.
Then

P [ |ξ − µ| > t ] 6 2 exp

[
− t2

2(µ+ t/3)

]
.

The following reduces the estimation of the number of graphs in a class to that of its number of
connected graphs, whenever it is convenient.

Lemma 2.3. Let C be a hereditary class of graphs such that, for every n, the number of unlabeled
connected n-vertex graphs in C is at most αn for some constant α. Then, for every n, the number
of all unlabeled n-vertex graphs in C is at most βn, for some β := β(α).

Proof. For any k1, k2, . . . , kr > 0 such that k1 + k2 + · · · + kr = k, the number of unlabeled
k-vertex graphs in C with r connected components of sizes k1, k2, . . . , kr, respectively, is at most∏r
i=1 α

ki = αk. Furthermore, since the partition function p(k) (counting the number of partitions
of a given positive integer k as a sum of positive integers) satisfies p(n) < exp(π ·

√
2k/3) [Erd42,

Eq. (4)]. We conclude that the total number of k-vertex graphs in C is bounded above by βk for
some β := β(α).

2.3 Definitions of tinyness for graphs and classes

Definition 2.4 (Tiny class). We say that a class C of graphs is tiny if it is hereditary, and there is
a constant c such that the number of unlabeled n-vertex graphs in C is at most cn for every n ∈ N.

Our next definition can be thought of as a specialization of the definition of tiny classes to
graphs. In particular, both the hereditary closure of a c-tiny graph and the monotone closure of
a monotone c-tiny graph give a tiny class.

Definition 2.5 (c-tiny graphs). Let c be a constant. An n-vertex graph G is c-tiny if ik(G) 6 ck

holds for every k ∈ [n]. The graph G is monotone c-tiny if sk(G) 6 ck holds for every k ∈ [n].

The next definition is a strengthening of the previous one.

Definition 2.6 ((c,Y, t)-tiny graphs). Let c be a constant, Y be a tiny class of graphs, and let
t : N → N be a non-decreasing and unbounded function. We say that an n-vertex graph G is
(c,Y, t)-tiny (respectively, monotone (c,Y, t)-tiny) if
(1) for every k ∈ [t(n)], every k-vertex induced subgraph (respectively, subgraph) of G is in Y; and
(2) for any integer t(n) < k 6 n, it holds that ik(G) 6 ck (respectively, sk(G) 6 ck).

Remark 2.7. We note that, since the sets of induced subgraphs and subgraphs of G form hereditary
classes, in item (2) of Definition 2.6 the numbers of unlabeled induced subgraphs and subgraphs (i.e.,
ik(G) and sk(G), respectively) can be replaced with the numbers of unlabeled connected induced
subgraphs and subgraphs. This is because, by Lemma 2.3, an exponential upper bound on the
number of unlabeled connected graphs implies an exponential bound on the number of arbitrary
unlabeled graphs in any hereditary class.
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The strengthening of the notion of c-tiny graphs to (c,Y, t)-tiny graphs will grant us a lot
of power when taking unions of many graphs of different sizes. In particular, when considering
subgraphs of a given size in the monotone closure of a sequence of (c,Y, t)-tiny graphs, one does
not need to worry about subgraphs coming from graphs significantly further along in the sequence
(of much larger size) as all such subgraphs will belong to the fixed class Y. In our application of
(c,Y, t)-tiny graphs, the role of the fixed class Y will be played by the following class Sd (where ‘s’
stands for sparse).

Definition 2.8 (Class Sd). For any d > 0, let Sd be the class of all unlabeled graphs G such that
for every k ∈

[
100010(d+1), |V (G)|

]
, every k-vertex subgraph of G has at most k− 1 + k/ ln k edges.

We now show this class is suitable for use in the definition of monotone (c,Y, t)-tiny.

Lemma 2.9. For any fixed d > 0, the class Sd is monotone tiny.

Proof. The fact that the class Sd is monotone easily follows from its definition.
By Lemma 2.3, it suffices to upperbound the number of connected graphs in Sd. Since each

connected graph in Sd on k vertices either has at most k− 1 + k/ ln k edges, or k 6 100010(d+1), the
number of connected unlabeled k-vertex graphs in Sd is bounded from above by

100k + 2(100010(d+1)

2 ) 6 ηk,

for some constant η = η(d), due to Lemma 2.1.

3 Growth of the number of unlabeled subgraphs in G(n, p)

In Section 3.1 we show that w.h.p. a sparse random graph is monotone (c,Sd, ln2)-tiny. This result
is used to construct a large family of monotone tiny classes in the proof of Theorem 1.1. Then,
in Section 3.2, we prove a lower bound on the constant c := c(d) for which a random graph with
average degree d can be c-tiny w.h.p. This result shows that (at least w.h.p.) c must grow with d,
and thus gives strong evidence that our construction cannot be so easily improved by taking random
graphs of growing average degree. Finally, in Section 3.3, we show that p = Θ(1/n) is a threshold
for having an exponential number of unlabeled (induced) subgraphs in a random graph G(n, p) and
relate this to previous results on the number of unlabeled subgraphs of a given graph.

3.1 Upper bounds

Let G(n,m) denote the uniform distribution on simple graphs with n vertices and m edges. Our
aim in this subsection is to prove the following result.

Theorem 3.1. For any fixed d > 0, there exists a constant c := c(d), such that for Gn ∼
G(n, dd(n− 1)/2e) we have

P
[
Gn is not monotone (c,Sd, ln2)-tiny

]
< 200 ·

√
d

n
.

Recall that G(n, p) denotes the distribution on n-vertex graph where each edge is included
independently with probability p, i.e., a fixed labeled graph G on [n] occurs with probability
p|E(G)|(1 − p)(

n
2)−|E(G)|. We work with G(n, p) for most of this section as it is more convenient;

this is not a significant restriction as we can transfer the result to G(n,m) via the following result.
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Lemma 3.2. Let P be any graph property (i.e., graph class) and 0 6 p 6 1 satisfy p
(
n
2

)
→∞ and(

n
2

)
− p
(
n
2

)
→∞ and m =

⌈
p
(
n
2

)⌉
. Then, for Gn ∼ G(n,m) and G′n ∼ G(n, p), we have

P [Gn ∈ P ] 6 10
√
m · P

[
G′n ∈ P

]
.

Lemma 3.2 follows by a very minor adaption of [FK23, Lemma 3.2]; the only difference is a ceiling
in the number of edges, which makes no difference in the proof.

Recall that for k > 1 and t > 0, sk(G, t) denotes the number of unlabeled subgraphs H of
a graph G such that |V (H)| = k and |E(H)| = t. Lemma 3.3 deals with small subgraphs.

Lemma 3.3. Let d > 0 be fixed, n > 3, and t > 2 satisfy 3 ln((d + 1)e2) ln t 6 lnn. Then, for
Gn ∼ G

(
n, dn

)
, we have

P

 t∑
k=2

∑
j>k+ k

ln k

sk(Gn, j) > 0

 6 15

n
.

Proof. Observe there are
((k2)
k+t

)
ways of finding k+t edges on a k-vertex subset. Thus, the probability

Gn ∼ G
(
n, dn

)
has an k-vertex subgraph with at least k + t edges is bounded from above by

P

 ∑
j>k+t

sk(Gn, j) > 0

 6 (n
k

)( (k
2

)
k + t

)(
d

n

)k+t

6
(ne
k

)k ( k2e

2(k + t)

)k+t(
d

n

)k+t

6
(
de2
)k+t

(
k

n

)t
= exp

(
k ln

(
de2
)
− t
(
lnn− ln

(
kde2

)))
. (3)

Now, for any k 6 t and d > 0, the assumptions on t, d and n give

ln(kde2) 6 ln((d+ 1)e2) + ln t 6 ln((d+ 1)e2) ln t 6
lnn

3
.

Thus, by (3), if we set t = k
ln k , then for any k 6 t,

P

 ∑
j>k+ k

ln k

sk(Gn, j) > 0

 6 exp

(
k ln

(
de2
)
− k

ln k
·
(
lnn− ln

(
kde2

)))

6 exp

(
k ln

(
de2
)
− k

ln k
· 2 lnn

3

)
= exp

(
k

ln k

(
ln
(
de2
)

ln k − 2 lnn

3

))
6 exp

(
− k

ln k
· lnn

3

)
= n−

k
3 ln k . (4)

For k ∈ {2, 3, 4}, all k-vertex graphs have less than k + k/ ln k edges. Thus, by (4) and the union
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bound,

P

 t∑
k=2

∑
j>k+ k

ln k

sk(Gn, j) > 0

 6 0 +
t∑

k=5

P

 ∑
j>k+ k

ln k

sk(Gn, j) > 0

 6 t∑
k=5

n−
k

3 ln k

6
1

n
·
∞∑
k=5

n−
k

3 ln k
+1

6
15

n
,

where the last line follows since n > 3.

The following lemma covers any subgraphs of sufficiently large density.

Lemma 3.4. For any d > 0, there exists β := β(d) such that for any n, k > 1, δ > 1 + 1/ ln k such
that δk is an integer, and Gn ∼ G

(
n, dn

)
we have

P
[
sk(Gn, δk) > βk

]
6 2−k.

Proof. We begin by bounding the expected number of subgraphs appearing in Gn ∼ G
(
n, dn

)
. The

result will then follow from Markov’s inequality. Observe that

E [ sk(Gn, δk) ] 6

(
n

k

)((k
2

)
δk

)(
d

n

)δk
6
(ne
k

)k (k2e

2δk

)δk (
d

n

)δk
6

(
k

n

)(δ−1)k

·
(
e2d

δ

)δk
.

Next, we show that, for any fixed d > 0, there exists some constant α := α(d) > 1 such that for all
k ∈ [n] and 1 + 1

ln k 6 δ 6
k−1

2 , the following inequality holds(
k

n

)(δ−1)k

·
(
e2d

δ

)δk
6 αk. (5)

If δ > e2d then, since k 6 n, the left-hand side of (5) is at most 1(δ−1)k · 1δk 6 1 and so we can
assume that δ < e2d when proving (5) holds. Note that we can also assume d 6= 0 or else the
statement of the theorem holds vacuously.

Since δ > 1 + 1/ ln k > 1, taking the (δ − 1)k-th root of both sides and rearranging gives

k 6 n ·

(
α ·
(

δ

e2d

)δ) 1
δ−1

. (6)

Now, since δ < e2d and δ > 1, if we choose α =
(
e2d
)e2d, then the right-hand side of (6) is at least

n and so (5) holds for all k 6 n.
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Finally, observe that by Markov’s inequality and (5) we have

P
[
sk(Gn, δk) > (2α)k

]
6

E [ sk(Gn, δk) ]

(2α)k
6

αk

(2α)k
= 2−k,

giving the result for β = 2α = 2 ·
(
e2d
)e2d.

We now have all we need to prove the main result of this section.

Proof of Theorem 3.1. We will show that for any d there exists some c := c(d) such that for G′n ∼
G
(
n, dn

)
,

P
[
G′n is not monotone (c,Sd, ln2)-tiny

]
<

20

n
, (7)

the result then follows directly from Lemma 3.2.
We first show that Item (1) of Definition 2.6 holds for the function t : N→ R given by t(n) = ln2 n

and the class Sd. Since Sd includes all graphs on at most 100010(d+1) vertices, we can assume that
n > 100010(d+1) > 3 and consider any k-vertex subgraph of G′n with k 6 t(n) = ln2 n. Observe that
since n > 100010(d+1), k 6 ln2 n and 6 6 ln 1000 6 10, for any d > 0 we have

lnn

3 · ln k
>

lnn

3 · 2 ln lnn
>

10(d+ 1) ln 1000

3 · 2 ln(10(d+ 1) ln 1000)
>

10(d+ 1)

ln(100(d+ 1))
> ln((d+ 1)e2),

where the second inequality holds since lnn/ ln lnn is increasing on the interval n ∈ (ee,∞). Thus,
we satisfy the conditions of Lemma 3.3. Hence, with probability at least 1− 15/n, all subgraphs of
size k 6 t(n) have at most k − 1 + k/ ln k edges, and so are contained in Sd.

We now show that Item (2) of Definition 2.6 holds. By Remark 2.7, we only need to establish an
exponential upper bound on the number of connected k-vertex subgraphs of G′n for every k > t(n).
We proceed with a case distinction on the number of edges in such a k-vertex subgraph.

• Subgraphs on at most k − 1 + k/ ln k edges. By Lemma 2.1, the number k-vertex graphs with
at most k − 1 + k/ ln k edges does not exceed 100k. This bound holds deterministically.

• Subgraphs on at least k + k/ ln k edges. By Lemma 3.4 and the union bound there exists a
constant β = β(d) such that

P

 (k2)∑
j=dk+k/ ln ke

sk(Gn, j) > k
2 · βk

 6 (k2)∑
j=dk+k/ ln ke

P
[
sk(Gn, j) > β

k
]
6 k2 · 2−k.

Thus, again by taking the union bound, we have

P

 n⋃
k=t


(k2)∑

j=dk+k/ ln ke

sk(Gn, j) > k
2 · βk


 6 n∑

k=t

k2 · 2−k < n3 · 2−t = n−ω(1),

since t = ω(log n).

Thus, by combining both cases, we see that with probability 1 − n−ω(1) the number of k-vertex
connected subgraphs of G′n is at most 100k + k2 · βk 6 ck, for some c := c(d). Thus, due to
Remark 2.7, Item (2) of Definition 2.6 holds with probability 1− n−ω(1).
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Hence, by the union bound over Items (1) and (2), there exists a constant c := c(d) such that
the probability G′n is not monotone (c,Sd, ln2)-tiny is less than 15

n + 1
nω(1) <

20
n .

3.2 Lower bounds

In this section, we prove a lower bound on the number of induced subgraphs in a random graph.

Theorem 3.5. Let δ > 0 be a sufficiently small constant, 1 6 d 6 n/2, and k ∈
[
n/
√
d,
√
δn
]
.

Then, w.h.p. Gn ∼ G(n, dn) satisfies ik(Gn) > (δ(n/k)δ/2)k.

Observe that if we take k =
⌈
n/
√
d
⌉
then w.h.p. Gn ∼ G(n, d/n) satisfies ik(Gn) = dΩ(k).

Consequently, as soon as d is allowed to grow with n then, w.h.p. Gn ∼ G(n, d/n) is not c-tiny
for any constant c. This proves one of the two limit statements in Theorem 1.4 and also suggests
a barrier to applying our approach for constructing monotone tiny classes from graphs in G(n, d/n)
when d is growing with n.

Proof of Theorem 3.5. Let p := d/n. We may assume that d > 1/δ since otherwise 1/
√
d >
√
δ, and

so the range of k for which the theorem holds is empty and the statement holds vacuously. Fix a k-
subset U ⊂ [n]. In order to show that w.h.p. ik(Gn) > (δ(n/k)δ/2)k, we use the following strategy.
First, we prove that a typical k-subset U induces a subgraph with around k2p/2 edges (Claim 3.6),
and every small enough subset V ⊂ U induces a subgraph with at most δk2p edges (Claim 3.7).
Therefore, if Gn has a small number of isomorphism classes among its k-vertex subgraphs, it should
have many pairwise isomorphic k-vertex subgraphs with the above two restrictions on their edges.
We then show that this is unlikely since most pairs of k-sets have small intersections (Claim 3.9),
and w.h.p. two k-sets in Gn that have a small intersection induce non-isomorphic subgraphs as soon
as edges in these subgraphs satisfy the above mentioned restrictions (Claim 3.8).

Set µ :=
(
k
2

)
p, which is the expected number of edges in a k-vertex induced graph. Note that

µ > 1−o(1)
2 · n, since k > n/

√
d.

Claim 3.6. W.h.p. the number of edges in Gn[U ] is between (1− δ)µ and (1 + δ)µ.

Proof of Claim 3.6. Note that E|E(Gn[U ])| = µ. Therefore, by the Chernoff bound (Lemma 2.2),

P
[∣∣∣|E(Gn[U ])| − µ

∣∣∣ > δµ
]
6 2 exp

[
− δ2µ

2(1 + δ/3)

]
6 2 exp

[
−(1− o(1))

δ2n

4(1 + δ/3)

]
= o(1),

as claimed. ♦

Claim 3.7. W.h.p. every set V ⊂ U of size at most δk induces at most 2δµ edges.

Proof of Claim 3.7. Let j 6 δk. For a set V ⊂ U of size j, the induced subgraph Gn[V ] has more
than 2δµ edges with probability at most

2 exp

[
−(1 + o(1))

(2δµ− δ2µ)2

2(δ2µ+ (2δµ− δ2µ)/3)

]
= 2 exp

[
−µ3δ(2− δ + o(1))2

4(1 + δ)

]
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by the Chernoff bound (Lemma 2.2). Since there are
(
k
j

)
ways to choose a set V ⊂ U of size j, and

we can take δ > 0 sufficiently small,∑
j

(
k

j

)
6 k

(e
δ

)δk
6 exp

[
δ
√
δ ln

(e
δ

)
n(1 + o(1))

]
= o

(
eδn/100

)
,

thus we get that w.h.p. every set V ⊂ U of size at most δk induces at most 2δµ edges by the union
bound. ♦

Let ξ count the number of sets U ⊂ [n] of size k such that

(i) every set V ⊂ U of size at most δk induces at most 2δµ edges in Gn,

(ii) the number of edges in Gn[U ] belongs to ((1− δ)µ, (1 + δ)µ).

By Claims 3.6 and 3.7, we get that Eξ = (1 − o(1))
(
n
k

)
. Hence, E(

(
n
k

)
− ξ) = o(

(
n
k

)
). By Markov’s

inequality,

P
[(
n

k

)
− ξ > δ

(
n

k

)]
6
o(
(
n
k

)
)

δ
(
n
k

) = o(1).

Therefore, w.h.p. the following event C holds: ξ > (1− δ)
(
n
k

)
.

Let B be the event that ik(Gn) 6 (δ(n/k)δ/2)k. Clearly, B ∩ C implies the existence of a k-
vertex set U ⊂ [n] satisfying (i) and (ii) such that Gn has at least (1− δ)

(
n
k

)
(δ(n/k)δ/2)−k induced

subgraphs isomorphic to Gn[U ]. We shall use the following two claims to conclude that the latter
event is unlikely.
Claim 3.8. W.h.p. in Gn there are no two k-vertex sets U,U ′ sharing at most δk vertices such that
properties (i) and (ii) hold for U and Gn[U ] ∼= Gn[U ′].

Proof of Claim Claim 3.8. Fix a k-set U and assume that it has properties (i) and (ii). Fix another
set U ′ that shares at most δk vertices with U . Due to properties (i) and (ii), the probability that
Gn[U ] ∼= Gn[U ′] is at most k! · p(1−3δ)µ. Indeed, by property (ii), the subset U ∩ U ′ ⊂ U of size at
most δk induces at most 2δµ edges. As, by property (i), Gn[U ] has at least (1 − δ)µ edges, there
are at least (1− 3δ)µ edges that should be found at the right place in Gn[U ′ \ U ] after committing
to one of the (k − δk)! 6 k! orderings of U ′ \ U .

By the union bound, the probability that these sets exist is at most(
n

k

)2

k!p(1−3δ)µ 6 exp

[
2k lnn− (1− 3δ)

(
k

2

)
d

n
ln
n

d

]
6 exp

[
k

(
2 lnn− (1− 4δ)

k

2

d

n
ln
n

d

)]
6 exp

[
k

(
2 lnn− 1− 4δ

2

√
d ln

n

d

)]
= o(1),

as claimed. ♦

Claim 3.9. Let U ⊂ V (Gn) be a set of size k. The number of sets U ′ ⊂ V (Gn) of size k sharing at
least δk vertices with U is less than 1

2

(
n
k

)
(δ(n/k)δ/2)−k.
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Proof of Claim 3.9. Let k′ = dδke. Let us fix U and compute the number of sets U ′:∑
j>k′

(
k

j

)(
n− k
k − j

)
6

[
max
j>k′

(
n− k
k − j

)]∑
j>k′

(
k

j

)
6

(
n

k − k′

)
2k.

It remains to prove that(
n
k

)(
n

k−k′
) > 2

(
2δ(n/k)δ/2

)k
= exp

(
k

(
δ

2
ln
n

k
+ ln(2δ)

)
+ ln 2

)
. (8)

By applying Stirling’s approximation, we obtain

(
n
k

)(
n

k−k′
) =

(k − k′)!(n− k + k′)!

k!(n− k)!

∼
√

2π(k − k′) ·
√

2π(n− k + k′)√
2πk ·

√
2π(n− k)

× (k − k′)k−k′(n− k + k′)n−k+k′

kk(n− k)n−k

>
√

1− δ (n− k + k′)k
′

kk′

(
1 +

k′

k − k′

)−(k−k′)(
1 +

k′

n− k

)n−k
=

(n− k + k′)k
′

kk′
exp

(
−k′ +O

(
k′2

k − k′

)
+ k′ −O

(
k′2

n− k

))
=

(
n− k + k′

k

)k′
eo(k

′)

> exp

[
k′
(

ln
n− k
k

+ o(1)

)]
> exp

[
δk

(
ln
n(1−

√
δ)

k
+ o(1)

)]
= exp

[
δk
(

ln
n

k
+ ln

(
1−
√
δ
)

+ o(1)
)]
,

implying (8) and concluding the proof of the claim. ♦

We now have what we need to complete the proof of Theorem 3.5. Let us assume that P(B∩C) >
δ′, where δ′ > 0 is bounded away from 0. From Claim 3.8 it follows that w.h.p. there are no sets U,U ′

satisfying properties (i) and (ii) sharing at most δk vertices and inducing isomorphic subgraphs in
Gn. But then with probability at least δ′− o(1) there exists U of size k satisfying properties (i) and
(ii) and at least (1− δ)

(
n
k

)
(δ(n/k)δ/2)−k − 1 other sets U ′ having at least δk common vertices with

U and inducing subgraphs isomorphic to Gn[U ]. But the total number of sets U ′ that have so large
intersections with U is smaller by Claim 3.9, a contradiction.

3.3 Threshold for exponentially many unlabeled induced subgraphs

For a graph G, we denote by t(G) the size of the largest homogeneous (i.e., complete or edgeless)
induced subgraph of G. Recall that s(G) and i(G) denote the number of unlabeled subgraphs and
the number of unlabeled induced subgraphs of G, respectively.
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A graph G is called c-Ramsey, if t(G) < dc log ne. Note that c-Ramsey graphs have order-
smallest possible homogeneous induced subgraphs due to the well-known theorem of Ramsey: t(G) >
1
2 log n for every G (see, e.g., [GRS80]). The conjecture of Erdős and Rényi, that was resolved
by Shelah [She98], says that such graphs have essentially largest number of unlabeled induced
subgraphs. More precisely, it states that if a graph G is c-Ramsey, then there exists ε > 0 such that
i(G) > eεn. This conjecture sparked the study of the relation between the two parameters t(G)
and i(G). For example, for graphs G with t(G) < (1− ε)n, it is known that i(G) = Ω(n2) [AB89].
Further, in [EH89], it is shown that

i(G) > n
Ω
(√

n/t(G)
)
.

This result is far from being tight for graphs with small t(G) as follows from the resolved conjecture
of Erdős and Rényi. In [AH91], it is shown that i(G) > 2n/(2t

20 log(2t)), where t = t(G), which gives
a much better bound for G with t(G) close to log n. However, in general, for non-Ramsey graphs,
i.e., graphs G with t(G) = ω(log n), tight lower bounds on i(G) are not known.

For a constant p, a random graph Gn ∼ G(n, p) is 2/ log
(
min{p, 1− p}−1

)
-Ramsey w.h.p.

[JLR00, Theorem 7.1], and thus, Shelah’s result implies an exponential lower bound on i(Gn). For
1/n 6 p 6 1/2, w.h.p. t(Gn) = Θ(log(2np)/p) (see [JLR00, Theorems 7.1, 7.4]). In particular,
when p = o(1), w.h.p. Gn is not c-Ramsey for any constant c > 0. Nevertheless, Theorem 3.5
implies that for a large enough constant C and C/n 6 p 6 1/2, w.h.p. Gn still has exponentially
many unlabeled induced subgraphs. Indeed, by taking k = bδ4/δnc, we deduce from Theorem 3.5
that w.h.p. i(Gn) > ik(Gn) > (1/δ)k > eεn for an appropriate choice of ε > 0. Note that, due
to symmetry reasons, the upper bound on p does not cause any loss in generality—this bound on
i(Gn) can be immediately extended to every C/n 6 p 6 1−C/n. This result is fairly tight as stated
below.

Theorem 1.4. Let δ > 0 be any constant, Gn ∼ G(n, p), and let C > 0 be sufficiently large.

(i) If min{p, 1− p} < 1−δ
n , then w.h.p., i(Gn) 6 s(Gn) = 2o(n).

(ii) If C
n < p < 1− C

n , then there exists λ > 1 such that w.h.p., s(Gn) > i(Gn) > λn.

Proof. Item (ii) (for p 6 1/2) follows directly from Theorem 3.5 by taking k = bδ4/δnc, however we
must prove Item (i). Thus, we only need to prove that w.h.p. s(Gn) = 2o(n) whenever p < 1−δ

n . To
this end we will use the fact that, within this regime, w.h.p. Gn is a union of connected components
of size at most A log n, for some constant A > 0, and all components contain at most one cycle (see,
e.g., [JLR00, Theorems 5.4, 5.5]). First, note that by Markov’s inequality, w.h.p. the number of
vertices that belong to components of size at least

√
log log n is at most fn for a certain fn = o(n).
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Indeed, letting Xk be the number of vertices that belong to components of size k, we get

A logn∑
k=
√

log logn

E[Xk] 6
A logn∑

k=
√

log logn

k

(
n

k

)
kk−2pk−1(1− p)k(n−k)

6 (1 + o(1))

A logn∑
k=
√

log logn

(enp(1− p)n)k/p

6 (1 + o(1))
∞∑

k=
√

log logn

(
npe1−np)k /p

=
1 + o(1)

1− npe1−np ·
(
npe1−np)√log logn

np
n

6
e+ o(1)

1− (1− δ)eδ
(
npe1−np)√log logn−1

n

= o(n),

since npe1−np increases with p in the range, and thus it is at most (1− δ)eδ.
Now, let S ⊂ V (Gn) be the set of vertices in the union of all components of size at least√

log logn. We shall bound the number of unlabeled subgraphs ofGn[S] and the number of unlabeled
subgraphs of Gn that are entirely outside S, and then the total number unlabeled subgraphs in the
entire graph is at most the product of these two bounds, since there are no edges between S and
V (Gn) \ S in Gn.

• Subgraphs of Gn[S]. There are at most 2fn ways to choose a subset U from S and there are
2o(|U |) = 2o(fn) partitions of |U |. For a fixed U ⊂ S and its fixed partition, there are at most
100|U | 6 100fn unlabeled graphs with connected components whose sizes correspond to a fixed
partition of |U | and with at most one cycle in each component, due to Lemma 2.1.

• Subgraphs of Gn \ S. Connected subgraphs of Gn[V (Gn) \ S] fall into at most

2(b
√

log lognc
2 ) < 2log logn = log n

isomorphism classes. Any subgraph of Gn[V (Gn)\S] is a disjoint union of at most n connected
graphs from these isomorphism classes. Thus, the number of unlabeled graphs that are entirely
outside S is at most

n

(
n+ dlog ne
dlog ne

)
6 2log2 n.

Eventually we get that w.h.p. s(Gn) 6 2(1+o(1))fn · 100fn · 2log2 n = 2o(n).

4 Monotone tiny classes can be unwieldy

The aim of this section is to construct a family of classes that are tiny (thus also small) and
monotone, but are unwieldy in the sense that they cannot be encoded by uniformly bounded labeling
schemes (Theorem 1.1) or described by a countable collection of c-factorial (in particular, small)
classes (Theorem 1.2).
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4.1 Construction of monotone tiny classes

The following lemma is key to our construction of monotone tiny classes with no universal graph
of a given polynomial size. Let L ⊆ N be an infinite subset of the natural numbers and t : N → R
be an increasing function satisfying t(n) 6 n for all n ∈ N. We say that L is t-sparse if there is no
pair x 6= y ∈ L such that t(y) 6 x 6 y.

Lemma 4.1. Let L ⊆ N be a t-sparse set and let γ be a constant. For every ` ∈ L, let M` be
a set of `-vertex monotone (c,Y, t)-tiny graphs with |M`| 6 γt(`). Then Z := Mon(∪`∈LM`) is
a monotone tiny class.

Proof. Let β be such that Y has at most βn unlabeled n-vertex graphs for every n ∈ N. Let (`i)i∈N
be the natural ordering on the elements of L (by increasing value).

Let n be an arbitrary fixed natural number and i be the smallest index such that n 6 `i. Consider
an arbitrary n-vertex graph G ∈ Z. By construction, G is a subgraph of some G′ ∈M`k with k > i.
If k > i, then from t-sparseness we have n 6 `i 6 t(`k) 6 `k, and since G′ ∈ M`k is monotone
(c,Y, t)-tiny, we conclude that G belongs to Y. For the same reason, if k = i and n 6 t(`i), then G
is in Y. Thus, if G is not in Y, then k = i and t(`i) 6 n 6 `i, in which case G is one of at most cn

n-vertex subgraphs of G′ ∈ M`i . Consequently, there are at most |M`i | · cn 6 γt(`i) · cn 6 γn · cn
graphs on n vertices in Z that are not in Y.

Combining these observations, we conclude that the number of unlabeled n-vertex graphs in Z
is bounded from above by

βn + γn · cn 6 αn,

for some constant α.

4.2 Lower bound on labeling schemes

Let d ∈ N, and c := c(d) be the constant given by Theorem 3.1, Sd be the monotone tiny class given
by Definition 2.8, and t(n) := ln2 n. We denote by Xd the class of monotone (c,Sd, t)-tiny unlabeled
graphs G with dd · (|V (G)| − 1)/2e edges.

Lemma 4.2. For any d, the number of unlabeled n-vertex graphs in Xd is at least n
(d−2)n

2
(1−o(1)).

Proof. The number of labeled graphs in the support of G (n, dd(n− 1)/2e) is( (
n
2

)
dd(n− 1)/2e

)
>
(n
d

)d(n−1)
2

.

By Theorem 3.1, a 1 − 200 ·
√
d/n fraction of these labeled graphs are monotone (c,Sd, ln2)-tiny.

Furthermore, there are at most n! 6 nn labelings of a given unlabeled graph. Thus, the number of
unlabeled n-vertex graphs in Xd is bounded from below by(

1− 200 ·
√
d

n

)
· 1

nn
·
(n
d

)d(n−1)
2

= n
(d−2)n

2
(1−o(1)),

since d is a constant.

We can now show the main result of the paper. We recall it for convenience.

Theorem 1.1. For any constant s ∈ N, there exists a tiny monotone graph class C that does not
admit a universal graph of size ns. Equivalently, C has no adjacency labeling scheme of size s log n.
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Proof. Suppose, towards a contradiction, that any monotone tiny class admits universal graphs of
size un := ns. Let kn := n2s−1 and let d be any fixed integer satisfying d−2

2 > s, say, d := 2s+ 4.
The number of distinct un-vertex graphs is at most 2u

2
n and the number of n-vertex induced

subgraphs of a fixed un-vertex graph is at most
(
un
n

)
. Hence the number of collections of kn graphs

on n vertices that are induced subgraphs of a un-vertex (universal) graph is at most

2u
2
n ·
((un

n

)
kn

)
6 2u

2
n · ukn·nn . (9)

On the other hand, the number of different collections of n-vertex graphs from Xd of cardinality
kn is at least

nkn·
(d−2)n

2
(1−o(1)). (10)

By taking logarithms, we can see that for sufficiently large n the upper bound (9) is smaller
than the lower bound (10). Indeed,

log
(

2u
2
n · ukn·nn

)
= u2

n + kn · n · log un

= n2s + n2s · s log n

= n2s(1 + s log n),

while

log
(
nkn·

(d−2)n
2

(1−o(1))
)

= kn ·
(d− 2)n

2
(1− o(1)) · log n

= n2s · (s+ 1)(1− o(1)) · log n.

Hence, for any sufficiently large n there exists a collection of kn unlabeled n-vertex graphs from
Xd not all of which are induced subgraphs of a un-vertex graph.

We finally seek to apply Lemma 4.1. Let L ⊆ N be defined as the image of the function
` : N → N, given by `(n + 1) = dexp(

√
`(n))e and `(0) = 1. Since, for the function t = ln2, we

have t(`(n)) 6 `(n) and `(n) 6 t(`(n + 1)) = (ln(`(n + 1)))2 6 `(n + 1) for all n ∈ N, we see that
L is ln2-sparse. For each ` ∈ L, let M` be a set of size k` of `-vertex graphs from Xd that is not
representable by any u`-vertex graph, if such a set exists, and an arbitrary set of size at most k` of
u`-vertex graphs from Xd, otherwise. Observe that |M`| = k` = `2s−1 = e(2s−1) ln ` 6 γln2 ` = γt(`),
for some constant γ. Thus, by Lemma 4.1, C = Mon(∪`∈LM`) is monotone tiny. However, by
construction, C` does not admit universal graphs of size u` = `s.

4.3 Complexity of tiny classes

A natural approach to describe some family of graph classes is to establish that each class in
the family is a subclass of a class from some other family possessing some desirable properties. For
example, the Small conjecture [BGK+22] suggested such a description for the family of small classes.
The conjecture stated that any small class has bounded twin-width, i.e., for any small class C there
exists a k ∈ N such that C is a subclass of the class of graphs of twin-width at most k.

Chandoo [Cha23] observed that the proof of Hatami and Hatami [HH22] implies that the family
of factorial classes cannot be described by a countable set of factorial graph classes. In particular,
the family of factorial classes cannot be described by a countable set of graph parameters that can
be bounded only for factorial classes. We show below that our proof implies similar conclusions
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for tiny classes. For a constant c, we say that a hereditary graph class C is c-factorial if, for every
n ∈ N, the number of labeled n-vertex graphs in C is at most ncn. Thus a class is factorial if it is
c-factorial for some c.

Theorem 1.2. For any c > 0, and any countable family F of c-factorial classes, there exists
a monotone tiny class that is not contained in any of the classes in F .

Proof. Let F = {Ci}i∈N be any countable set of c-factorial graph classes. If we set C = 2c + 4,
then, by Lemma 4.2, we have that the number of n-vertex unlabeled graphs in XC is at least
n(c+1)n(1−o(1)) = ω(ncn), and so XC is not a c-factorial class. It follows that for every i ∈ N there
exists a constant ki such that for any k > ki there exists a k-vertex graph that belongs to XC , but
not to Ci.

Let t : N → R be an increasing function satisfying t(n) 6 n for all n ∈ N, and let L ⊆ N
a t-sparse set. We define r1 to be the minimum element in L that is greater than k1, and, for every
j > 2, we define rj to be the minimum element in L that is greater than max{rj−1, kj}. For every
i ∈ N, let Gi be an ri-vertex graph in XC that does not belong to Ci. By the definition of ri and
the above discussion, such a graph always exists.

Now, by Lemma 4.1, the class Z := Mon({Gi : i ∈ N}) is a monotone tiny class since we are
including at most one `-vertex graph for every ` ∈ L. Clearly, by construction, Z is not contained
in any class from F .

Definition 4.3. A graph parameter is a function σ that assigns to every graph a number such that
σ(G1) = σ(G2) whenever G1

∼= G2. The graph parameter σ is bounded for a class of graphs C if
there exists a κ ∈ N such that σ(G) 6 κ for every G ∈ C; otherwise σ is unbounded for C. For
a constant c > 0, the graph parameter is c-factorial (resp. small), if for any fixed number κ the
class of all graphs G with σ(G) 6 κ is c-factorial (resp. small) and the parameter is unbounded for
any class that is not c-factorial (resp. small).

We say that a set Σ of graph parameters describes a family F of graph classes if for every graph
class C ∈ F , there exists a parameter σ ∈ Σ such that σ is bounded for C.

Corollary 4.4. For any c > 0, and any countable set of c-factorial parameters, there exists a mono-
tone tiny graph class for which every parameter in the set is unbounded.

Proof. Given any countable set of graph parameters (σn)n∈N, we define the countable family of
classes F = {Cn,i : (n, i) ∈ N × N}, where Cn,i is the class of graphs G with σn(G) 6 i. By
Theorem 1.2, there exists a monotone tiny class C that is contained in none of the classes in F .
This implies that every parameter in (σn)n∈N is unbounded for C. Indeed, otherwise we would have
C ⊆ Cn,i for some (n, i) ∈ N× N, a contradiction.

Corollary 4.4 shows that similar attempts to describe the family of small or even the family of
monotone tiny classes via a single or countably many c-factorial parameters will fail. A very special
corollary of the above theorem is the negative answer to the Small conjecture [BGK+22], which
posits that every small class has bounded twin-width.

Corollary 1.1. There exists a monotone tiny graph class with unbounded twin-width.

Proof. This follows from Corollary 4.4 since twin-width is a small parameter [BGK+22, Theorem
2.5], and in particular it is a 2-factorial parameter.
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We note that this conjecture was already refuted [BGTT22], however the proof relied on some
powerful group-theoretic machinery in the form of Osajda’s result on so-called small cancellation
labelings [Osa20, EG23]. One benefit of our proof is that it is self-contained, not relying on this
result, nor anything else from group theory.

We also note that Theorem 1.2 could alternatively be derived (with some work) from the previous
refutation of the Small conjecture [BGTT22]. Again, the strength of our approach is that it is self-
contained and relatively elementary. The limit of the construction of [BGTT22] is that one cannot
add many graphs at a same level. Hence it cannot be used to attempt showing Theorem 1.1.

5 Discussion and open problems

Our main result shows that for any constant s there exists a small, even monotone tiny, class
of graphs that does not have a universal graph of size ns, or, equivalently, does not admit an
adjacency labeling scheme of size s log n. However, the Implicit Graph Conjecture for small (and
even for monotone tiny) classes remains a challenging open problem.

Question 1. Is there a small class with no f(n)-bit labeling scheme for some f(n) = ω(log n)?

We note that if the Implicit Graph Conjecture fails for monotone tiny classes, it does so by at most
a factor of log n [BDS+23].

While it is not known whether every tiny class admits an O(log n)-bit labeling scheme or not,
there are families of tiny classes (namely, classes of bounded clique-width and classes of bounded
twin-width) that do admit such labeling schemes, but no uniformly bounded labeling schemes are
currently known.

Question 2. Is there a constant c such that every graph class of bounded clique-width (twin-width)
admits a labeling scheme of size (c+ o(1)) log n?

We note that, according to the discussion in Section 4.3, there is qualitative difference between
the entire family of tiny classes and the families of classes of bounded clique-width and classes
bounded twin-width. Indeed, each of the latter two families can be described by a single small
parameter (clique-width and twin-width, respectively), while the entire family of tiny classes cannot
be described even by countably many such parameters.

As mentioned in the introduction, “tiny ?
= small” is still open. Equality was conjectured in the

first arXiv version of [BNO+21] (see Conjecture 8.1, 3.⇒ 2.) however this conjecture has disappeared
from the current arXiv version of [BNO+21] (due to being partially refuted, as it contained the Small
conjecture). We believe “tiny ?

= small” is an interesting question, so we restate it here.

Question 3. Is every small class tiny?

Finally, we mention an intriguing question about random graphs that arose in our study. We
found a threshold for the property of having exponentially many unlabeled induced subgraphs. We
do not know whether there exists a sharp threshold for this property.

Question 4. Let Gn ∼ G(n, p). Does there exist c > 1 such that for any constant δ > 0, if p < c−δ
n ,

then w.h.p. the number of unlabeled induced subgraphs of Gn is 2o(n), and, if p > c+δ
n , then w.h.p.

this number is 2Θ(n)?
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