
HAL Id: hal-04292981
https://hal.science/hal-04292981

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stretch-width
Édouard Bonnet, Julien Duron

To cite this version:
Édouard Bonnet, Julien Duron. Stretch-width. IPEC 2023, Sep 2023, Amsterdam, Netherlands.
�hal-04292981�

https://hal.science/hal-04292981
https://hal.archives-ouvertes.fr

Stretch-width
Édouard Bonnet � Â

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Julien Duron �

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
We introduce a new parameter, called stretch-width, that we show sits strictly between clique-
width and twin-width. Unlike the reduced parameters [BKW ’22], planar graphs and polynomial
subdivisions do not have bounded stretch-width. This leaves open the possibility of efficient
algorithms for a broad fragment of problems within Monadic Second-Order (MSO) logic on graphs
of bounded stretch-width. In this direction, we prove that graphs of bounded maximum degree
and bounded stretch-width have at most logarithmic treewidth. As a consequence, in classes of
bounded stretch-width, Maximum Independent Set can be solved in subexponential time 2Õ(n4/5)

on n-vertex graphs, and, if further the maximum degree is bounded, Existential Counting Modal
Logic [Pilipczuk ’11] can be model-checked in polynomial time. We also give a polynomial-time
O(OPT2)-approximation for the stretch-width of symmetric 0, 1-matrices or ordered graphs.

Somewhat unexpectedly, we prove that exponential subdivisions of bounded-degree graphs have
bounded stretch-width. This allows to complement the logarithmic upper bound of treewidth with
a matching lower bound. We leave as open the existence of an efficient approximation algorithm for
the stretch-width of unordered graphs, if the exponential subdivisions of all graphs have bounded
stretch-width, and if graphs of bounded stretch-width have logarithmic clique-width (or rank-width).

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics → Graph
theory; Theory of computation → Graph algorithms analysis

Keywords and phrases Contraction sequences, reduced parameters, twin-width, clique-width, al-
gorithms, algorithmic metatheorems

Funding This work was supported by the ANR projects TWIN-WIDTH (ANR-21-CE48-0014) and
Digraphs (ANR-19-CE48-0013).

Acknowledgements We thank Colin Geniet, Eunjung Kim, and Stéphan Thomassé for early discus-
sions on the topic.

1 Introduction

Various graph classes have bounded twin-width1 such as, for instance, bounded clique-width
graphs, proper minor-closed classes, proper hereditary subclasses of permutation graphs,
and some expander classes [11]. Low twin-width, together with the witnessing contraction
sequences, enables parameterized algorithms (that are unlikely in general graphs) for testing
if a graph satisfies a first-order sentence [11, 7], and improved approximation algorithms for
highly inapproximable packing and coloring problems [7, 4].

However one should not expect a large gain, in the low twin-width regime, as far as
(non-parameterized) exact algorithms are concerned. This is because every graph obtained
by subdividing (at least) 2⌈log n⌉ times each edge of an n-vertex graph G has twin-width
at most 4 [3]. It was already observed in the 70’s that a problem like Maximum Inde-
pendent Set (MIS, for short) remains NP-complete in 2t-subdivisions [24]. Furthermore,
known reductions [16] combined with the Sparsification Lemma [20], imply that unless the

1 We refer the reader to Section 2 for the relevant definitions.

mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:julien.duron@ens-lyon.fr

2 Stretch-width

Exponential-Time Hypothesis2 (ETH) fails [19] solving MIS in subcubic graphs requires
time 2Ω(n). The previous remarks entail that, unless the ETH fails, solving MIS in subcubic
graphs of twin-width at most 4 requires time 2Ω(n/ log n).

In contrast, on the significantly less general classes of bounded clique-width not only can
MIS be solved in polynomial-time, but a fixed-parameter algorithm solving MSO1

3 model
checking in time f(w, |φ|)nO(1) exists [14, 22], with w the clique-width of the input graph, φ

the input sentence, and f some computable function.
In this paper, we start exploring the trade-off between class broadness and algorithmic

generality in the zone delimited by bounded clique-width and bounded twin-width. It may
seem like the reduced parameters [12], where a graph has reduced p at most k if it admits
a contraction sequence in which all the red graphs have parameter p at most k, are exactly
designed to tackle this endeavor. Indeed by definition, twin-width is reduced ∆, where ∆ is
the maximum degree, and it was shown that reduced maximum connected component size
(under the name of component twin-width) is functionally equivalent to clique-width [10].
Between maximum connected component size and maximum degree, there are several para-
meters p, such as bandwidth, cutwidth, treewidth+∆, whose reduced parameters give rise to
a strict [12] hierarchy between bounded clique-width and bounded twin-width. Unfortunately,
even reduced bandwidth –the closest to clique-width among the above-mentioned reduced
parameters– turns out to be too general in the following sense: the n-subdivision of any
n-vertex graph has reduced bandwidth at most 2 [12]. This means, by the arguments of
the second paragraph of this introduction, that solving MIS on graphs of bounded reduced
bandwidth requires time 2Ω(

√
n), unless the ETH fails, even among graphs of bounded degree.

Actually, another fact leading to the same conclusion is that planar graphs have bounded
reduced bandwidth [12].

We therefore introduce another parameter, that we call stretch-width4 and denote by stw,
which, while inspired by reduced parameters, does not fully fit that framework. To a first
approximation, stretch-width can be thought as reduced bandwidth where the bandwidth
upper bound on the red graphs have to be witnessed by a single (and fixed) order on the
vertex set. Observe indeed that the linear orders witnessing that all the red graphs of the
sequence have low bandwidth can, in reduced bandwidth, be very different one from the
other. We first show that the family of bounded stretch-width classes strictly contains the
family of bounded clique-width classes. Using an upper bound of component twin-width by
clique-width [2], we prove that:

▶ Theorem 1. The stretch-width of any graph is at most twice its clique-width.

Then we provide a separating class of bounded stretch-width and unbounded clique-width.

▶ Theorem 2. There is an infinite family of graphs G with bounded stretch-width and
clique-width in Ω(log |V (G)|/ log log |V (G)|).

After establishing Theorem 6, we even get a simpler construction with bounded degree
and stretch-width, but treewidth and clique-width in Ω(log |V (G)|). As was done for twin-
width [9], we give an effective characterization of bounded stretch-width for symmetric
0, 1-matrices (or ordered graphs).

2 the assumption that there is a λ > 1 such that n-variable 3-SAT cannot be solved in time λnnO(1)
3 Monadic Second-Order logic, when the second-order variables can only be vertex subsets
4 We refer a reader who would already want a formal definition to the start of Section 3.

É. Bonnet, J. Duron 3

▶ Theorem 3. A class C of symmetric 0, 1-matrices has bounded stretch-width if and only if
there is an integer k such that no matrix of C has a k-wide division.

The k-wide division (see definition in Section 4) is a scaled-down version of the k-rich
division that analogously characterizes matrices of bounded twin-width [9]. Theorem 3 yields
a polynomial-time approximation algorithm for the stretch-width of symmetric 0, 1-matrices.
More precisely:

▶ Theorem 4. Given an integer k and a symmetric n× n 0, 1-matrix M , there is an nO(1)-
time algorithm that outputs a sequence witnessing that stw(M) = O(k3) or correctly reports
that stw(M) > k.

Compared to the approximation algorithm for the twin-width of a matrix, this is better both
in terms of running time (polynomial vs fixed-parameter tractable) and approximation factor
(quadratic vs exponential).

Conveniently for the sought algorithmic applications, planar graphs and nc-subdivisions
of n-vertex graphs (for any constant c) both have unbounded stretch-width (whereas they
have bounded reduced bandwidth if c ⩾ 1). We indeed establish the following upper bound
on treewidth, implying that graphs of bounded maximum degree and bounded stretch-width
have at most logarithmic treewidth.

▶ Theorem 5. There is a c such that for every graph G, tw(G) ⩽ c∆(G)4stw(G)2 log |V (G)|.

We match Theorem 5 with a lower bound. There are graphs with bounded ∆ + stw and
treewidth growing as a logarithm of their number of vertices. This is because, as we prove,
very long subdivisions of bounded-degree graphs have bounded stretch-width.

▶ Theorem 6. Every (⩾ n2m)-subdivision of every n-vertex m-edge graph G of maximum
degree d has stretch-width at most 32(4d + 5)3.

By (⩾ s)-subdivision of G, we mean every graph obtained by subdividing each edge of G

at least s times. In particular, for every natural k, the n-vertex k222k(k−1)-subdivision of the
k × k grid has bounded maximum degree (by 4) and stretch-width (by 296352), whereas it
has treewidth k = Ω(

√
log n). A more careful argument and reexamination of Theorem 6

show that, for some constant c, the n-vertex 2ck-subdivision of the k × k grid has bounded
∆ + stw, and treewidth k = Ω(log n) matching the upper bound of Theorem 5.

The proofs of Theorems 5 and 6 involve the notion of overlap graph of a graph G whose
vertex set is totally ordered by ≺, with one vertex per edge of G, and an edge between
two “overlapping edges” of G, that is, two edges ab and cd such that a ≺ c ≺ b ≺ d.
Using Theorem 3, we show that finding a vertex ordering such that the overlap graph has no
large biclique allows to bound the stretch-width.

▶ Lemma 7. For every ordered graph (G,≺) and every integer t, if the overlap graph of
(G,≺) has no Kt,t subgraph then stw(G) < 32(2t + 1)3.

Theorem 6 is then derived by designing a long subdivision process that, for ordered graphs of
maximum degree d, reduces the bicliques in the overlap graph to a size at most linear in d.

Theorem 5 has direct algorithmic implications for classes of bounded stretch-width.

▶ Proposition 8. There is an algorithm that solves Max Independent Set in graphs of
bounded stretch-width with running time 2Õ(n4/5).

4 Stretch-width

Pilipczuk [23] showed that any problem expressible in Existential Counting Modal Logic
(ECML) admits a single-exponential fixed-parameter algorithm in treewidth. In particular,
ECML model checking can be solved in polynomial time in any class with logarithmic
treewidth. This logic allows existential quantifications over vertex and edge sets followed by
an arithmetic formula and a counting modal formula that shall be satisfied from every vertex v.
The arithmetic formula is a quantifier-free expression that may involve the cardinality of
the vertex and edge sets, as well as integer parameters. Counting modal formulas enrich
quantifier-free Boolean formulas with ♢Sφ, whose semantics is that the current vertex v has
a number of neighbors satisfying φ in a prescribed ultimately periodic set S of non-negative
integers.

The logic ECML+C gives to ECML the power of also using in the arithmetic formula
the number of connected components in subgraphs induced by some vertex or edge sets.
There is a Monte-Carlo polynomial-time algorithm for ECML+C in graphs of treewidth at
most a logarithm function in their number of vertices [23]. Most NP-hard graphs problems,
such as Maximum Independent Set, Minimum Dominating Set, Steiner Tree, etc.
are expressible in ECML+C; see [23, Appendix D] for the ECML+C formulation of several
examples.

▶ Corollary 9. Problems definable in ECML (resp. ECML+C) can be solved in polynomial
time (resp. randomized polynomial time) in bounded-degree graphs of bounded stretch-width.

Perspectives. Proposition 8 and Corollary 9 constitute some preliminary pieces of
evidence of the algorithmic amenability of classes of bounded stretch-width. We ask several
questions. How can the running time of Proposition 8 be improved? (As far as we know,
there could be a polynomial-time algorithm for any problem defined in ECML on graphs of
bounded stretch-width.) As for twin-width, an approximation algorithm for stretch-width of
(unordered) graphs remains open. Lemma 7 gives some hope that this question might be
easier than its twin-width counterpart, especially among sparse graphs.

Can we lift the bounded-degree requirement in Theorem 6, that is, is there a function f

and a constant c, such that the stretch-width of any (⩾ f(n))-subdivision of any n-vertex
graph is at most c? Our separating example showing that bounded stretch-width is strictly
more general than bounded clique-width (Theorem 2) yields graphs of essentially logarithmic
clique-width. Is that true in general?

▶ Conjecture 10. For every class C of bounded stretch-width, there is a constant c such that
for every n-vertex graph G ∈ C the clique-width of G is at most c log n.

We ask the same question with rank-width instead of clique-width, which would be more
algorithmically helpful. One interpretation of Theorem 5 is that graphs of bounded maximum
degree and bounded stretch-width have logarithmic treewidth. Whether the bounded-degree
constraint can be relaxed to the mere absence of large bipartite complete subgraphs is related
to Conjecture 10. A positive answer to Conjecture 10 would indeed imply this relaxation, as
Gurski and Wanke have shown that graphs without Kt,t subgraphs have treewidth at most
their clique-width times 3t [18]. A natural future work would consist of using the witness of
low stretch-width to get improved algorithms compared to those attained with a witness of
low twin-width.

Related work. Our work is in line with twin-width [11], and the reduced parameters [12].
Theorem 1 closely follows a similar proof in the sixth paper of the twin-width series [10],
while Theorem 3 is inspired by the fourth paper [9], and notably the so-called rich divisions.

É. Bonnet, J. Duron 5

Finding the right logic for a given width parameter, or the right width parameter for
a given logic has been a common goal ever since Courcelle’s and Courcelle-Makowsky-
Rotics’s theorems [13, 14] relating treewidth with MSO2, and clique-width with MSO1.
Recent developments (all from 2023) include an efficient model checking of the new logic
A&C DN (an extension of Existential MSO1) on classes of bounded mim-width [5], the new
parameter flip-width [27], which could lead to an efficient first-order (FO) model checking in
a very general class, and efficient model checking algorithms for FO extensions with disjoint-
paths predicates in proper minor-closed classes [17], and in proper topological-minor-closed
classes [25].

Classes with logarithmic treewidth, although not a priori defined as such, are somewhat
rare. To our knowledge, the first such example is the class of triangle-free graphs with no
theta (see [26] for the lower bound, and [1], for the upper bound). Another example consists
of graphs without Kt,t subgraph and bounded induced cycle packing number [6]. We add
a new family: graphs of bounded maximum degree and bounded stretch-width. Note that
these three families are pairwise incomparable.

2 Preliminaries

For i ⩽ j two integers, we denote the set of integers that are at least i and at most j by
[i, j], and [i] is a short-hand for [1, i]. We use the standard graph-theoretic notations. In
particular, for a graph G, we denote by V (G) its set of vertices and by E(G) its set of edges.
If S ⊆ V (G), the subgraph of G induced by S, denoted G[S] is the graph obtained from G by
removing the vertices not in S.

2.1 Contraction sequences and twin-width
Twin-width is a graph parameter introduced by Bonnet, Kim, Thomassé, and Watrigant [11].
A possible definition involves the notions of trigraphs, red graphs, and contraction sequences.
A trigraph is a graph with two types of edges: black (regular) edges and red (error) edges.
The red graph R(H) of a trigraph H consists of ignoring its black edges, and considering
its red edges as being normal (black) edges. We may say red neighbor (or red neighborhood)
to simply mean a neighbor (or neighborhood) in the red graph. A (vertex) contraction
consists of merging two (non-necessarily adjacent) vertices, say, u, v into a vertex w, and
keeping every edge wz black if and only if uz and vz were previously black edges. The other
edges incident to w become red (if not already), and the rest of the trigraph remains the
same. A contraction sequence of an n-vertex graph G is a sequence of trigraphs G = Gn,
. . . , G1 such that Gi is obtained from Gi+1 by performing one contraction. A d-sequence
is a contraction sequence in which every vertex of every trigraph has at most d red edges
incident to it. In other words, every red graph of the sequence has maximum degree at
most d. The twin-width of G, denoted by tww(G), is then the minimum integer d such that
G admits a d-sequence. Figure 1 gives an example of a graph with a 2-sequence, i.e., of
twin-width at most 2.

2.2 Partition sequences
Partition sequences yield an equivalent viewpoint to contraction sequences. Instead of dealing
with a sequence of trigraphs G = Gn, . . . , G1, we now have a sequence of partitions Pn, . . . ,P1
of V (G), with Pn = {{v} | v ∈ V (G)} and for every i ∈ [n − 1], Pi is obtained from Pi+1
by merging two parts X, Y ∈ Pi+1 into one (X ∪ Y). In particular P1 = {V (G)}. Now one

6 Stretch-width

a

b

c

d

e

f

g

a

b

c

d

ge

f

ef

b

c

gef

a dad

c

g

ad

b efbef

c

adg

bef

adg

bcef
abcdefg

Figure 1 A 2-sequence witnessing that the initial graph has twin-width at most 2.

can obtain the red graph R(Gi) of Gi, as the graph whose vertices are the parts of Pi, and
whose edges link two parts X ≠ Y ∈ Pi whenever there is u, u′ ∈ X and v, v′ ∈ Y such
that uv ∈ E(G) and u′v′ /∈ E(G). We may call two such parts X, Y inhomogeneous. On
the contrary, two parts X, Y are homogeneous in G when every vertex of X is adjacent to
every vertex of Y , or no vertex of X is adjacent to a vertex of Y . We will also denote R(Gi)
by R(Pi).

2.3 Reduced parameters and functional equivalence
We detail the definition of reduced parameters mainly for the introduction, and the notions
of functional equivalence, component of twin-width, and reduced bandwidth; the latter being
conceptually close to stretch-width. The reduced parameters will not be useful, per se, in
the rest of the paper.

As we mentioned in the introduction, there are stronger5 constraints that one can put
on the red graphs than merely having bounded maximum degree. This leads to the reduced
parameters as defined in [12]. If p is a graph parameter, one can define the parameter
reduced p, denoted by p↓, of a n-vertex graph G is the minimum over every contraction
sequence G = Gn, . . . , G1 of maxi∈[n] p(R(Gi)). Then ∆↓ is the twin-width, when ∆ denotes
the maximum degree. For p = ⋆, the maximum size of a connected component, p↓ is the
so-called component twin-width (see [10]).

A graph parameter p is functionally bounded by a graph parameter q, denoted by p ⊑ q,
if there is a function f such that for every graph G, p(G) ⩽ f(q(G)). Parameters p, q are
functionally equivalent or tied if p ⊑ q and q ⊑ p. We finally denote by p ⊏ q the fact
that p ⊑ q holds but q ⊑ p does not. It is shown in [12] that, under some relatively mild
assumptions, the strict “inclusion” p ⊏ q implies the strict “inclusion” p↓ ⊏ q↓.

It can be seen that ⋆ ⊏ bandw ⊏ cutw ⊏ (∆ + tw) ⊏ ∆, where bandw, cutw, tw are the
bandwidth, cutwidth, and treewidth, respectively. We give a definition of bandwidth here
(mainly because of the apparent similarity between stretch-width and reduced bandwidth).
The treewidth of a graph is defined in the next subsection, while we omit the definition of
cutwidth as we will not need it. A linear layout of an n-vertex graph G is a bijective map σ

from V (G) to [n]. The length of an edge e = uv ∈ E(G) under the linear layout σ is defined
as |σ(u)− σ(v)|. The bandwidth bandw(G) of a graph G is the minimum over every linear
layout σ of the maximum length of an edge e ∈ E(G) under σ.

By [12], ctww = ⋆↓ ⊏ bandw↓ ⊏ cutw↓ ⊏ (∆ + tw)↓ ⊏ ∆↓ = tww. As component
twin-width ctww and clique-width cw are functionally equivalent [10], we get a strict ladder

5 Note that every graph admits a sequence where all the red graphs consist of one star together with
isolated vertices (namely, any partition sequence having, at every step, only one part that is not
a singleton). Stars form arguably the simplest class of unbounded degree. Thus trading the condition of
maximum degree to an incomparable property on the red graphs should likely be accompanied by some
extra requirement, like forcing the partitions to be reasonably “balanced.”

É. Bonnet, J. Duron 7

of classes interpolating between clique-width and twin-width. However, for every parameter p

considered so far except ⋆ (even bandwidth), the classes {G(n) | n ∈ N, G has n vertices}
and of all planar graphs have bounded p↓ [12], where G(n) denotes the n-subdivision of G,
that is, the graph obtained after replacing every edge of G by a (n + 1)-edge path.

As this is an obstacle to exactly solving more general problems than first-order model
checking, the current paper is about a new parameter stw (stretch-width) satisfying, as we
will prove, cw ⊏ stw ⊏ bandw↓, while not containing the class of all n-subdivisions nor the
one of all planar graphs.

2.4 Treewidth, separation number, and clique-width

We recall the definition of treewidth and clique-width, for completeness. We also state
a useful characterization of bounded treewidth in terms of balanced separators.

A tree-decomposition of a graph G is a pair (T, β) where T is a tree, and β is a map from
V (T) to 2V (G), such that the following three conditions are met:

for every v ∈ V (G), there is a t ∈ V (T) such that v ∈ β(t);
for every uv ∈ E(G), there is a t ∈ V (T) such that {u, v} ⊆ β(t);
for every v ∈ V (G), {t ∈ V (T) | v ∈ β(t)} induces a connected graph in T (i.e., a subtree).
When dealing with treewidth in Section 7 it will more convenient to think of it in terms of

the functionally equivalent separation number. A separation (A, B) of a graph G is such that
A ∪B = V (G) and there is no edge between A \B and B \A. The order of the separation
(A, B) is |A ∩B|. A separation (A, B) is balanced if max(|A \B|, |B \A|) ⩽ 2

3 |V (G)|. The
separation number sn(G) of G is the smallest integer s such that every subgraph of G admits
a balanced separation of order at most s. It is not difficult to show that for every graph G,
sn(G) ⩽ tw(G) + 1. Dvorák and Norin showed the converse linear dependence:

▶ Lemma 11 ([15]). For every graph G, tw(G) ⩽ 15sn(G).

Note that if for some positive constant c < 1, every subgraph H of G has a separation
(A, B) that is c-balanced, in the sense that max(|A\B|, |B \A|) ⩽ c|V (H)| of order at most s,
then every subgraph of G has a balanced separation of order ⌈ log c

log(2/3)⌉ · s. In particular,
by Lemma 11, tw(G) = O(s).

We finish Section 2 with a brief definition of clique-width, just for completeness, because
the introduction contains several occurrences of it. This definition can be ignored in the
rest of the paper, and clique-width thought as the reduced parameter component twin-width
(or ⋆↓). The clique-width cw(G) of a graph G is the least number k of colors, called labels,
needed to build G from the following operations:

create a vertex with a label i ∈ [k],
make the union of two labeled graphs,
relabel every vertex colored i with the label j, for some i ̸= j ∈ [k],
add all edges between vertices labeled i and vertices labeled j, for some i ̸= j ∈ [k].

2.5 Outline

In Section 3, we define stretch-width and prove Theorems 1 and 2. In Section 4, we show The-
orems 3 and 4. In Section 5, we prove Lemma 7. In Section 6, we establish Theorem 6. Finally
in Section 7, we show Theorem 5 and draw the algorithmic consequences of Proposition 8
and Corollary 9.

8 Stretch-width

3 Stretch-width

An ordered graph is a pair (G,≺) where G is a graph and ≺ a strict total order on V (G).
We write u ≼ v whenever u ≺ v or u = v. Let (G,≺) is an ordered graph, and X ⊆ V (G).
We now define some objects depending on ≺, but as the order will be clear from the context,
we omit it from the corresponding notations.

The minimum and maximum of X along ≺ are denoted by min(X) and max(X), respect-
ively. The convex closure or span of X is conv(X) := {v ∈ V (G) | min(X) ≼ v ≼ max(X)}.
Two sets X, Y ⊆ V (G) are in conflict6, or X conflicts with Y , if conv(X) ∩ conv(Y) ̸= ∅.
Note that this does not imply that X and Y themselves intersect, and indeed we will mostly
use this notion for two disjoint sets X, Y .

Let now P be a partition of V (G), R(P) its red graph, and X ∈ P. We say that
Y ∈ P \ {X} interferes with X if Y conflicts with NR(P)[X]. Note that it may well be that
Y interferes with X, but not vice versa. The stretch of the part X ∈ P , denoted by str(X), is
then defined as the number of parts in P interfering with X. In turn, the stretch of P is the
maximum over every part Z ∈ P of str(Z). The stretch-width of the ordered graph (G,≺),
denoted by stw(G,≺), is the minimum, taken among every partition sequence Pn, . . . ,P1
of G, of maxi∈[n] str(Pi). Finally the stretch-width of G, denoted by stw(G), is the minimum
of stw(G,≺) taken among every total order ≺ on V (G).

Notice the similarity with reduced bandwidth. We also seek a sequence without “long” red
edges. When witnessing low reduced bandwidth, one could use different (and incompatible)
vertex orderings for the different red graphs. To witness low stretch-width, we need a stronger
property: the existence of a “global” vertex ordering such that no red graph of the sequence
has a long edge along this single order.

3.1 An example forcing interleaved parts
The definition of the stretch-width of an unordered graph may seem somewhat contrived. If
we are to pick the order ≺, why not choosing one along which we will perform the contractions
(thereby making every part an interval, and simplifying greatly the definition)? We will now
see that this is in fact not always possible. There is a family of very simple graphs, with
bounded treewidth, hence bounded stretch-width (see Section 3.2), but such that there is
no vertex ordering ≺ that simultaneously witnesses the low stretch-width, and invariably
presents the two vertices to be contracted (or parts to be merged) consecutively.

For every positive integer k, let Hk be the (series-parallel) graph obtained by adding k

internally vertex-disjoint 4-edge paths s, ai, bi, ci, t (for i ∈ [k]) between two fixed vertices s

and t; see left of Figure 2. The graph Hk has 3k + 2 vertices and treewidth at most 2. We
will see in the next section that the much more general classes of bounded clique-width have
bounded stretch-width. But let us give a direct argument for Hk, to get familiar with this
new width parameter.

We choose the order s ≺ a1 ≺ b1 ≺ c1 ≺ a2 ≺ b2 ≺ c2 ≺ . . . ak ≺ bk ≺ ck ≺ t; see right
of Figure 2. For the partition sequence, we will maintain three parts A, B, C such that all
the other parts are singletons. Initially, we have A = {a1}, B = {b1}, and C = {c1}. Then,
for i going from 2 to k, we merge A with {ai}, then B with {bi}, and C with {ci}. In the
figure, the parts A, B, C are represented after the iteration i = 3. When there are only five
parts left (namely {s}, A, B, C, {t}), we finish the sequence in any fashion.

6 In a similar context in [9], the verb overlap was also used. In this paper, we will reserve overlap for

É. Bonnet, J. Duron 9

s t

a1 b1 c1

s t

a1 b1 c1

Figure 2 Left: The graph H5. Right: The same graph drawn along an order able (together
with an appropriate sequence) to witness low stretch-width. The parts A, B, C maintained by the
partition sequence are depicted in blue, brown, green, after the iteration i = 3.

Importantly, the vertices within A, B, or C have the same neighborhood in {s, t}. Thus
the long black edges incident to s and t never become long red edges. Note that in the midst
of the i-th iteration (also at its start and end), every part P of the current partition P has
a closed red neighborhood contained in Z := A ∪ B ∪ C ∪ {ai, bi, ci}. Set Z is an interval
along ≺, and intersects at most six parts of P among A, B, C, {ai}, {bi}, {ci}. Hence
at most these six parts can conflict with Z, and thus interfere with P . This implies that
stw(Hk,≺), hence stw(Hk), is bounded by a constant (with greater care, one can show the
upper bound of 3).

Now a vertex ordering such that the sequence can be done without conflicting parts forces
the ai’s, the bi’s, and the ci’s to be essentially consecutive. Any such attempt, like the one
depicted in Figure 3 with s ≺ a1 ≺ . . . ≺ ak ≺ bk ≺ . . . ≺ b1 ≺ c1 ≺ . . . ≺ ck ≺ t, creates
a structure which, as we will show in Section 5, entails large stretch-width: a large “biclique”
of overlapping edges spanning vertices of bounded degree.

s ta1 b1 c1

Figure 3 A failed attempt at contracting along the chosen order. Observe that the first contraction
involving some bi (in the “middle” of the order) necessarily creates a long red edge.

3.2 Graphs of bounded clique-width have bounded stretch-width
Clique-width and component twin-width are functionally equivalent, that is, a graph class
has bounded clique-width if and only if it has bounded component twin-width [11, 10]. More
quantitatively, it can be observed that, for every graph G, cw(G) ⩽ ctww(G) + 1 ⩽ 2 · cw(G);
see [2]. We show that the stretch-width of a graph is at most its component twin-width.

▶ Theorem 1. For every graph G, stw(G) ⩽ ctww(G)− 1. Hence, stw(G) ⩽ 2(cw(G)− 1).

Proof. Let Pn, . . . ,P1 be a partition sequence of a graph G such that every red graph R(Pi)
has all its connected components of size at most t := ctww(G). We define a total order ≺ on
V (G) as the last order of a sequence of partial orders ≺i on Pi for i going from 1 to n. That
is, ≺n is a total order, and we imply set ≺ := ≺n. We maintain the following invariants:

intersecting intervals (actually edges) that are not nested, notion which we will later use.

10 Stretch-width

Parts X, Y ∈ Pi are comparable with respect to ≺i if and only if they are in distinct
connected components of R(Pi), and
≺i is a total order on the connected components of R(Pi), that is, for every distinct
connected components C, C ′ of R(Pi), if X ≺i Y for some X ∈ C and Y ∈ C ′, then
X ≺i Y holds for every X ∈ C and Y ∈ C ′.
We define ≺1 as the empty relation, which satisfies the invariant since Pn has a single

part, V (G). We define ≺i+1 from ≺i in the following way. Let X, Y be the two parts of
Pi+1 being merged to Z = X ∪ Y ∈ Pi. Let C be the connected component of Z in R(Pi).
Let C1, . . . , Ch be the connected components of C \ {Z} ∪ {X, Y } in R(Pi+1). We then set
P ≺i+1 Q whenever either P ≺i Q or P ∈ Ca and Q ∈ Cb for some pair a < b ∈ [h]. One
can check that ≺i+1 is a partial order satisfying the invariants.

As the connected components of R(Pn) are singletons, ≺n is a total order. We now use ≺
as a witness of low stretch-width for the same partition sequence Pn, . . . ,P1. Let X be any
part of any partition Pi, and let C be the connected component of R(Pi) containing X. By
the second invariant, no part of C can cross a part of Pi \C. Also, by definition, X may only
be inhomogeneous to parts of C. Therefore, the only parts that can interfere with X are
in C; thus str(X) ⩽ |C|− 1 ⩽ t− 1. Finally, stw(G) ⩽ stw(G,≺) ⩽ t− 1 = ctww(G)− 1. ◀

3.3 Separating construction
We present a graph family with bounded stretch-width but unbounded clique-width. Let
b ⩾ 2 and h ⩾ 1 be two integers. We build a graph Ab(h) on vertex set [bh].

Informally, A2(h) is built by first adding the paths 1, 3, 5, . . . on “odd” vertices, and
2, 4, 6, . . . on “even” vertices. Then identifying the pairs 2i − 1, 2i, renaming them i, and
adding the “odd” and “even” paths (that is, the edge between the first and the third vertices
at this step corresponds to the complete adjacency between {1, 2} and {5, 6}, in terms of
original vertices). And iterating this process until it runs out of vertices; see Figure 4.

Figure 4 The graph A2(5), the edge colors correspond to a step in the recursive construction.

We give a general definition, but will only use A3(h). Let Tb(h) the complete b-ary tree
of depth h. Think of the vertices of Ab(h) as the leaves of Tb(h), named from left to right
1, 2, . . . , bh. The level of a node of Tb(h) is h minus the depth of the node. For example
the level of a leaf is 0. We call Nl(i) for i-th internal node (from left to right) on the l-th
level. At every level l of Tb(h), we add b node-disjoint paths P1, . . . , Pb such that for each i

of [0, b− 1], Pi = Nl(i), Nl(i + b), Nl(i + 2b), . . .; see Figure 5. When two nodes at level l are
linked by an edge of such a path, we say that they are l-linked.

É. Bonnet, J. Duron 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 5 Tree representation of A3(4). The vertex set of A3(4) is made by the leaves, and
a colored edge uv (one not part of the tree) is a biclique between the two disjoint sets of leaves of
the two subtrees rooted at u and v.

From the tree Tb(h), we build Ab(h) as follows: the vertices of Ab(h) are the leaves of
Tb(h) and two vertices u and v are adjacent in Ab(h) if and only if there exists a level l, an
ancestor Nl(i) of u and an ancestor Nl(j) of v such that Nl(i) and Nl(j) are l-linked, that is,
|j − i| = b.

For a given node Nl(i) of Tb(h), we denote by V (Nl(i)) the set of leaves (hence, vertices
of Ab(h)) that are descendant of Nl(i). Observe that Ab(h)[V (Nl(i))] is isomorphic to Ab(l).
If S is a set of vertices of Ab(h) then the level of S is defined as the smallest level l for which
there exists at most two consecutive nodes Nl(i), Nl(i + 1) on the l-th level of Tb(h) such
that every element of S is a descendant of Nl(i) or Nl(i + 1).

We can directly establish the following bound on the stretch-width of A3(h):

▶ Lemma 12. For every integer h, the stretch-width of G(A3(h)) is at most 9.

Proof. Let h be a positive integer. Let ≺ be the left-right order on the leaves of Tb(h), and
for each l in [h], let Pl be the partition {V (Nl(1)), V (Nl(2)), . . .}.

Observe that V (Nl(i)) is not homogeneous to V (Nl(j)) if and only if |j − i| = 1. As for
any i ̸= j conv(V (Nl(i))∩ conv(V (Nl(j)) is empty, the stretch of Pl along ≺ is at most 2 for
every l. In addition, observe that one can go from Pl to Pl+1 by merging only consecutive
parts. As each part of Pl+1 is composed of exactly 3 consecutive parts of Pl, the stretch of
the partitions between Pl and Pl+1 is at most 3 · 3 = 9. ◀

▶ Lemma 13. If v is a vertex of A3(h) then the degree d of v verifies 3h−1−1
2 ⩽ d ⩽ 3h−1−1.

Proof. Let v a vertex of A3(h). For a vertex w to be adjacent to v, it is necessary that there
exists a level l and two l-linked nodes Nl(i), Nl(j) that are ancestors of v and w, respectively.
Observe that such a level is unique. Hence, the ancestor of v on the l-th level for l < h− 1
yields either 3l or 2 · 3l neighbors of v, depending on whether it is incident to one or two
l-linked nodes in Ab(h). In addition, there is no l-linked nodes for l ⩾ h− 1, thus ancestors
at level h and h− 1 do not contribute to any edge of Ab(h).

As
∑

i⩽h−2 3l = 3h−1−1
2 , the degree of v is lowerbounded by 3h−1−1

2 and upperbounded
by 3h−1 − 1. ◀

▶ Lemma 14. For every level l, for every two integers i ̸= j, the number of neighbors of
a vertex v ∈ V (Nl(i)) that are in V (Nl(j)) is:
1. in the interval [3l−1, 3l−1

2] when |j − i| = 1, and
2. equal to 3l or 0 when |j − i| > 1.

12 Stretch-width

Proof. Let v a vertex of A3(h) such that v is in V (Ni(l)) for a level l. Let j be such that
|j − i| = 1. Then if Nl−1(i′) is the ancestor of v at the (l − 1)-st level, there exists a child
Nl−1(j′) of V (Nl(j)) which is (l − 1)-linked to av. Thus the number of neighbors of v that
are in V (Nl(j)) is at least 3l−1. Observe that every ancestor of v at level k < l is k-linked to
at most one descendant of Nl(j). In addition, for every integer k ⩾ l, the ancestor at level k

of Nl(i) and the one at level k of Nl(j) are not k-linked. Hence the maximum number of
neighbors of v that are in V (Nl(j)) is upperbounded by

∑
k<l 3k = 3l−1

2 .
Assume now that |j − i| is at least 2. Then, none of the ancestors of v at level at most

k < l is k-linked to a descendant of Nl(j). Thus, either an ancestor of v at level k ⩾ l is
k-linked to a (non-strict) ancestor of Nj(l), in which case v is fully adjacent to V (Nl(j)), or
none of the ancestors of v is linked to an ancestor of Nl(j), in which case v has no neighbors
in V (Nl(j)). ◀

Remember that the level of a subset S of the vertices of A3(h) is the smallest level l for
which there is at most two consecutive nodes Nl(i), Nl(i + 1) at level l such that every vertex
of l is either a descendant of Nl(i) or of Nl(i + 1).

We will now prove that for any partition sequence P1,P2, . . . of A3(h), the size of a largest
red component among every partition is lowerbounded by a function of h. To do so, we show
that as long as there is no large part in the sequence, any part of the sequence has a small
level, and thus is “localized” in the graph. We then prove that, given a large part S in one
of the partitions, this part needs to have a red neighbor the size of which is at least linear in
the size of S. We finally build a large red component based on these two facts. Informally,
we take the largest part of a suitable partition. This part is localized, say on the left side,
and we use the second fact to build a smaller red neighbor to the right of this part, and
continue this process until we reach a part of constant size.

▶ Lemma 15. Let P1,P2, . . . be a partition sequence of A3(h) with maximum red degree at
most d. Let, for any integer t, s(t) be the smallest integer such that one of the parts of Ps(t)
has size at least t. Then for every positive integer t, for every part Q ∈ Ps(t), the level of Q

is at most log3(t) + log3(d) + 5.

Proof. Each part of Ps(t) contains at most 2t vertices. Let Q be a part of Ps(t) and l be
its level. As l − 1 is strictly smaller than the level of Q, there are two integers i, j with
i + 1 < j such that Q∩V (Nl−1(i)) and Q∩V (Nl−1(j)) are both non-empty. Going one level
further down, the intermediate set V (Nl−1(i + 1)) splits into three parts. Thus, there are
two integers i′, j′ such that i′ + 3 < j′ and Q has a vertex u in V (Nl−2(i′)), and a vertex v

in V (Nl−2(j′)).
By Lemma 14, as |j′ − i′| > 1, u has either 3l−2 or 0 neighbors in V (Nl−2(j′)), while by

Lemma 13, v has between 3l−3−1
2 and 3l−3−1 neighbors in V (Nl−2(j′)). Thus the symmetric

difference of the neighborhoods of u and v, say A, contains at least 3l−3−1
2 vertices. The

maximum red degree of Q is at most d, and for each part T ̸= Q of Ps(t) containing a
vertex of A, Q has a red edge toward T . Thus A is contained in at most d + 1 parts of
Ps(t). Hence |A| ⩽ 2t · (d + 1). Since |A| ⩾ 3l−3−1

2 , we get 3l−3−1
2 ⩽ 2t · (d + 1), thus

l − 3 ⩽ log3(4t · (d + 1)). ◀

▶ Lemma 16. Let P any partition of A3(h) within a partition sequence of maximum red
degree at most d. Let S a part in P, at level l, such that there is at least 3l vertices in A3(h)
strictly to the right of S. Then, there is a part T of P in the red neighborhood of S with
|T | ⩾ 3l−1/d, and such that T has a vertex strictly to the right of S. Furthermore, if S is

É. Bonnet, J. Duron 13

contained in V (Nl(i)) ∪ V (Nl(i + 1)) (resp. only V (Nl(i))), then T contains a vertex v in
V (Nl(i + 2)) (resp. V (Nl(i + 1))).

Proof. Let l be the level of S. There are two integers i + 1 < j such that S ∩ V (Nl−1(i)
contains a vertex u, and S ∩ V (Nl−1(j) contains a vertex v. As there is at least 3l vertices
strictly to the left of S, Nl−1(j + 1) is well defined. By Lemma 14, the number of neighbors
of u within V (Nl−1(j + 1)) is either 0 or 3l−1, and the number of neighbors of v within
V (Nl−1(j + 1)) is between 3l−1 and 3l−1

2 . Thus the symmetric difference of neighborhoods
of u and v inside V (Nl−1(j + 1)), say A, contains at least 3l−1 vertices. As each part of P
containing a vertex of A is inhomogeneous to S, there is a part T ∈ P containing at least
3l−1/d vertices of A. ◀

▶ Theorem 17. The component twin-width of A3(h) is Ω(h/ log h).

Proof. Consider a partition sequence P1,P2, . . . of A3(h) of maximum red degree at most d.
Let t = 3h/2, and let s be the smallest integer such that Ps contains a part of size at least t.
We will show that the red component of Ps containing its largest part is large.

Consider P the only part of Ps of size at least t. Let l = h/2 + log3(d) + 5. By Lemma 15,
the level of P is at most l. Thus, up to symmetry, there is at least 3h/3 vertices strictly to
the right of P . We consider the sequence of parts (Pk)k such that P0 = P , and Pk+1 is the
part obtained by the application of Lemma 16 on Pk, as long as the conditions of Lemma 16
are satisfied. We state the three following facts on the sequence (Pk)k.
1. Pk is different from Pi for every i < k.
2. |Pk| ⩾ 3level(Pk−1)−1/d ⩾ |Pk−1|/(3d).
3. There is a finite sequence of positive integers (ik)k such that for any m, Pm is contained

in V (Nl(im)) ∪ V (Nl(im + 1)), and im ⩽ im+1 ⩽ im + 2.
Indeed for every k, Pk+1 always has a vertex strictly to the right of Pk, thus Item 1 holds.
Item 2 directly follows from the bound on the size of the part of Lemma 16. The lower bound
of Item 3 comes from the fact that Pm has a vertex strictly to the right of Pm−1, and the
upper bound from the fact that Pm contains a vertex in V (Nl(im−1 + 1)).

Consider the largest integer n for which Pn is defined. Integer n satisfies 3level(Pn)−1 > d,
or there is less than 3level(Pn) (thus, less than 3l) vertices strictly to the right of Pn. As the
level of Pn is at least log3 |Pn|, if the former condition is satisfied, |Pn| ⩽ 3d. But Item 2
ensures that |Pn| is at least P0/(3d)n, thus n ⩾ log3d t. If the latter condition is satisfied,
then in is at least (1/3h/2) · (3h/3)− 1 = 3h/2−1 − 1, and thus Item 3 ensures that n is at
least 3h/2−1−1

2 .
Hence, as Item 1 ensures that the red component containing P is of size at least n, this

component is of size at least log3d t. Let x be the component twin-width of A3(h). Then in
a sequence witnessing that fact, the size of a largest red component is at most x, thus the
maximum red degree is at most x (even x−1). Therefore log3x t ⩽ x, and so log t ⩽ x log(3x).
Thus 3x ⩾ h

2 / log h
2 , and x = Ω(h/ log h). ◀

Theorem 2 is a consequence of Lemma 12 and Theorem 17.

4 Matrix characterization

Let us first reinterpret the definition of stretch-width on symmetric (ordered) matrices.
A symmetric partition of a symmetric matrix M is a pair (R, C) such that R is a partition
of the row set of M , rows(M), C is a partition of the column set, columns(M), and C is
symmetric to R, i.e., two rows ri and rj are in the same part if and only if the symmetric

14 Stretch-width

columns ci and cj are in the same part. Hence each row part corresponds to a (unique)
symmetric column part.

A (symmetric) division of a symmetric matrix M is a (symmetric) partition of M every
row (resp. column) part of which is on consecutive rows (resp. columns). Given a row part
R ∈ R, and a column part C ∈ C, the zone R ∩ C of M is the submatrix of M with row
set R and column set C. A zone R ∩ C is diagonal if R and C are symmetric parts. A zone
is non-constant if it contains two distinct entries. A symmetric partition sequence of an n×n

0, 1-matrix M is a sequence (Rn, Cn), . . . , (R1, C1) where (Rn, Cn) is the finest partition (with
n row parts and n column parts), (R1, C1) is the coarsest partition (with one row part and
one column part), and for every i ∈ [2, n], (Ri−1, Ci−1) is obtained from (Ri, Ci) by merging
together two row parts, and the symmetric two column parts.

So far, we were following the definitions of [11, 8] (in the symmetric case). Instead of
defining the error value which leads to the twin-width of a matrix, we introduce the stretch
value. The stretch value of a row part R of a matrix partition (R, C) is the number of column
parts conflicting with the union of columns parts C such that C is the symmetric of R, or
R ∩ C is non-constant. The stretch value of a column part is defined symmetrically. The
stretch value of a partition (R, C) is the maximum stretch value of a part of (R, C). Finally,
the stretch-width of a symmetric 0, 1-matrix M is the minimum among every symmetric
partition sequence S of M of the maximum stretch value among partitions of S. Observe
that for any ordered graph (G,≺), the stretch-width of (G,≺) is equal to the stretch-width
of its adjacency matrix.

0

0

1

1

0

0

1

1

0

0

1

1

1

1

0

0

0

0

1

1

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

1

0

0
1

1

1

1

1

1

0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0
1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1
1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

1
1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0
1

1

1

1

0

0

1

1

0

0

0

0

1

1
0

0

0

0

0

0

0

0

0

0

1

1
0

0

0

0

0

0

1

1

0

0
0

0

1

1

0

0

0

0
0

0

1

1

1

1
1

1

0

0
1

1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R4

R3

R2

R1

C3

Figure 6 A symmetric division of a symmetric 0, 1-matrix. R3 and C3 are symmetric parts. The
zone R2 ∩ C3 is shaded. Column part C3 is not 3-wide since the deletion of R2, R3, R4 leaves only
two distinct column vectors in C3, namely (0, 1, 0, 1) and (1, 0, 0, 0). It is however 2-wide since
R1 ∩ C3 has two distinct column vectors (and R1 is too far from the diagonal zone to be removed).

The following is the counterpart of the so-called rich divisions [9] tailored for stretch-width.
If R is a set of rows, and C is a set of columns of a matrix M , we denote by R \ C the zone
R∩ (columns(M) \C), that is the submatrix formed by R deprived of the columns of C (and
symmetrically for C \R). In a division (R = (R1, . . . , Rn), C = (C1, . . . , Cm)), a row part Ri

is k-wide if for every k consecutive columns parts Cj , . . . , Cj+k−1 containing the symmetric

É. Bonnet, J. Duron 15

of Ri, Ri \
⋃

j⩽h⩽j+k−1 Ch contains at least k distinct rows. The k-wideness of column parts
is defined symmetrically; see Figure 6. A division (R, C) is k-wide if all its row and column
parts are k-wide. The division is k-diagonal if none of the row and column parts is k-wide.

Given a set of rows (or columns) X of a matrix M , we keep the notation conv(X) for the
set of rows (or columns) of M with indices between the minimum and the maximum indices
of X.

▶ Theorem 18. For every symmetric 0, 1-matrix M and natural k, if stw(M) ⩽ k, then M

has no 9k-wide division.

Proof. Let D = (R, C) be a symmetric division of M . Let P = (R′n, C′n), . . . , (R′1, C′1) be
a symmetric partition sequence of M with stretch value at most k. Let s be the largest
integer (that is, first time within the partition sequence) for which there is a row part R′ ∈ R′s
such that conv(R′) contains a row part R ∈ R of the division D. Observe that, by symmetry
of D and P, it happens at the same time in columns. We will prove that R is not 9k-wide.

Set S := {T ∈ R′s | conv(T) ∩R ̸= ∅}. Note that S is the set of row parts ofR′s conflicting
with R, and that R′ ∈ S. As conv(R) ⊂ conv(R′), every part in S conflicts with R′. Thus,
it should hold that |S| ⩽ k because (R′s, C′s) has stretch value at most k.

For each T in S, we define CT := {c ∈ columns(M) | c ∈ C, C ∈ C′s, and C ∩ T is non-
constant or C is the symmetric of T}. For every T ∈ S, CT conflicts with at most k parts
of C′s, as the stretch value of T is at most k. Let C ′ be the symmetric of R′. As T conflicts
with R′, the symmetric of T conflicts with C ′. Since the symmetric of T is contained in CT ,
CT conflicts with C ′, thus conv(C ′) ∩ conv(CT) ̸= ∅.

As for every T ∈ S, conv(C ′) ∩ conv(CT) ̸= ∅, there is T1, T2 ∈ S such that

conv(CT1) ∪ conv(CT2) ∪ conv(C ′) = conv(
⋃

T∈S
CT).

Take indeed T1 ∈ S such that CT1 contains the column of minimum index in
⋃

T∈S CT , and
T2 ∈ S such that CT2 realizes the maximum index. As CT1 and CT2 conflict with C ′, the
parts in conflict with CT1 , with C ′, and with CT2 are consecutive, so their union contains at
most 3k parts of C′s. Thus

⋃
T∈S CT conflicts with at most 3k parts of C′s.

Observe that, except for C ′, every part in C′s is covered by the union of two consecutive
parts of C. Part C ′ is itself covered by the union of three consecutive parts of C. Thus,
overall, each part of C′s is covered by the union of at most three consecutive parts of C. Hence,
as we showed that

⋃
T∈S CT conflicts with at most 3k consecutive parts of C′s, it is contained

in 9k consecutive parts of C, say Cj , . . . , Cj+9k−1. Thus for any T ∈ S, T \
⋃

j⩽h⩽j+9k−1 Ch

is constant. Therefore R \
⋃

j⩽h⩽j+9k−1 Ch contains at most k distinct rows, as |S| ⩽ k. ◀

▶ Theorem 19. For every symmetric 0, 1-matrix M and natural k, if M does not have
a k-wide division, then M admits a sequence of symmetric 2(k + 1)-diagonal divisions.

Proof. Let M be a symmetric n×n matrix that does not admit a k-wide division. The finest
division (Rn, Cn) of M is 2-diagonal, hence, 2(k + 1)-diagonal. Now, we greedily merge some
consecutive parts, to form a division sequence in which every division is 2(k + 1)-diagonal.
Assume, for the sake of contradiction, that after a partial sequence of symmetric 2(k + 1)-
diagonal divisions (Rn, Cn), . . . , (Rs, Cs) of M , no division (R, C) obtained by merging two
symmetric pairs of consecutive parts of (Rs, Cs) is 2(k + 1)-diagonal.

Say, Rs = (R1, . . . , Rs) and Cs = (C1, . . . , Cs). By assumption, for each i ∈ [s− 1], the
division ((R1, . . . , Ri ⊎ Ri+1, . . . , Rs), (C1, . . . , Ci ⊎ Ci+1, . . . , Cs)) is not 2(k + 1)-diagonal.
As (Rs, Cs) is 2(k + 1)-diagonal, Ri ⊎Ri+1 has to be the (only) 2(k + 1)-wide row part in

16 Stretch-width

(R1, . . . , Ri ⊎Ri+1, . . . , Rs). Indeed, for any other row part Rj (with j ∈ [i− 1] ∪ [i + 2, s]),
Rj was also a part of Rs, while each part of (C1, . . . , Ci ⊎ Ci+1, . . . , Cs) contains a part
of Cs. Thus, as Rj is not 2(k + 1)-wide in (Rs, Cs), it is not 2(k + 1)-wide in ((R1, . . . , Ri ⊎
Ri+1, . . . , Rs), (C1, . . . , Ci ⊎ Ci+1, . . . , Cs)).

Hence, in the division ((R1⊎R2, R3⊎R4, . . . , Rs−1⊎Rs), (C1⊎C2, C3⊎C4, . . . , Cs−1⊎Cs))
(resp. ((R1 ⊎R2, R3 ⊎R4, . . . , Rs−2 ⊎Rs−1 ⊎Rs), (C1 ⊎C2, C3 ⊎C4, . . . , Cs−2 ⊎Cs−1 ⊎Cs))
when s is odd), each row part is at least k + 1-wide (resp. k-wide). Indeed, k consecutive
parts of (C1 ⊎ C2, C3 ⊎ C4, . . . , Cs−1 ⊎ Cs) (resp. (C1 ⊎ C2, C3 ⊎ C4, . . . , Cs−1 ⊎ Cs−1 ⊎ Cs))
are always covered by 2(k + 1)-consecutive parts of Cs. Thus M admits a k-wide division,
a contradiction. ◀

▶ Observation 20. If M is a matrix on which D = (R = (R1, . . . , Rp), C = (C1, . . . , Cp))
is a symmetric k-diagonal division, then for every i ∈ [p], Ri \

⋃
i−k+1⩽h⩽i+k−1 Ch (for the

sake of legibility, an out-of-range value h indexes an empty Ch) has less that k distinct rows.

Proof. By definition, for each i ∈ [p], there are k consecutive column parts Cj , . . . , Cj+k−1
such that Ri \

⋃
j⩽h⩽j+k−1 Ch contains less than k different rows, with j ⩽ i ⩽ j + k − 1.

Hence, {Ci−k+1, . . . , Ci+k−1} contains {Cj , . . . , Cj+k−1}, and thus Ri \
⋃

i−k+1⩽j⩽i+k−1 Ch

also contains less that k distinct rows. ◀

▶ Theorem 21. If a symmetric 0, 1-matrix M admits a sequence of symmetric k-diagonal
divisions, then stw(M) ⩽ 4k3.

Proof. Let M be an n× n 0, 1-matrix, and (Rn, Cn), . . . , (R1, C1), a sequence of symmetric
k-diagonal divisions. For any s ∈ [2, n], let Rs = (R1, . . . , Rs) and Cs = (C1, . . . , Cs). By
Observation 20, for any i ∈ [s], Ri \

⋃
i−k+1⩽h⩽i+k−1 Ch contains less that k distinct rows.

Let (R′s, C′s) be the symmetric partition of M such that for each P ∈ R′s, there is Ri ∈ Rs

with P ⊆ Ri, and P is a maximal subset of equal rows of Ri \
⋃

i−k+1⩽h⩽i+k−1 Ch.
As each R ∈ Rs is split into at most k parts in R′s, the stretch value of (R′s, C′s) is at most

(2k − 1)k. By construction, (R′s−1, C′s−1) is a coarsening of (R′s, C′s). Indeed, every R′i ∈ R′s
is an equivalence class of Ri \

⋃
i−k+1⩽h⩽i+k−1 Ch. Thus it is contained in an equivalence

class of the row part of (Rs−1, Cs−1) containing R′i.
To go from (R′s, C′s) to (R′s−1, C′s−1), we perform any symmetric partition sequence. As

any part in the latter partition contains at most 2k parts in the former one (all the possible
parts partitioning two row parts Ri and Ri+1 that are merged), the stretch value in between
these two partitions is bounded by 2k2 · 2k. Hence stw(M) ⩽ 4k3. ◀

▶ Theorem 22. If a symmetric 0, 1-matrix M does not admit a k-wide division, then
stw(M) ⩽ 32(k + 1)3.

Proof. Indeed, by Theorem 19, M admits a sequence of 2(k+1)-diagonal divisions. Applying
Theorem 21 on this sequence yields a witness of stretch-width 4 · (2(k + 1))3 = 32(k + 1)3. ◀

▶ Theorem 4. Given an integer k and a symmetric n× n 0, 1-matrix M , there is an nO(1)-
time algorithm that outputs a symmetric partition sequence witnessing that stw(M) = O(k3)
or correctly reports that stw(M) > k.

Proof. Given any n× n 0, 1-matrix M , division (R = (R1, . . . , Rp), C = (C1, . . . , Cp)) of M ,
part R ∈ R, and integer q, one can decide in polynomial time if the row part Ri is q-wide in
(R, C). Indeed, it suffices to check for every i− q + 1 ⩽ j ⩽ i, if Ri \

⋃
j⩽h⩽j+q−1 Ch contains

at least q different rows, which can be done in nO(1). Thus, in time nO(1), one can check if

É. Bonnet, J. Duron 17

the division (R, C) is q-diagonal, and for every i ∈ [p− 1] if there is a q-diagonal division of
the form ((R1, . . . , Ri ⊎Ri+1, . . . , Rp), (C1, . . . , Ci ⊎ Ci+1, . . . , Cp)).

Let M an n×n symmetric 0, 1-matrix, and k an integer. We start from the finest division
(Rn, Cn). If at some point we have a division (Rs = (R1, . . . , Rs), Cs = (C1, . . . , Cs)) such that
none of the divisions (R1, . . . , Ri ⊎Ri+1, . . . , Rs), (C1, . . . , Ci ⊎ Ci+1, . . . , Cs) are 2(9k + 1)-
diagonal, then by Theorem 19, the division ((R1⊎R2, . . . , Rs−1⊎Rs), (C1⊎C2, . . . , Cs−1⊎Cs))
is 9k-wide. Thus by Theorem 19, stw(M) > k.

Otherwise, in time nO(1), we get a sequence of 2(9k + 1)-diagonal divisions (Rn, Cn), . . . ,

(R1, C1). At this point, we can find a sequence witnessing that stw(M) = O(k3), by the
proof of Theorem 21. We build the symmetric partitions (R′n, C′n), . . . , (R′1, C′1) of M , where
for each P ∈ R′s, there is Ri ∈ Rs with P ⊆ Ri, and P is a maximal subset of equal
rows of Ri \

⋃
i−k+1⩽h⩽i+k−1 Ch. The partition R′s (and its symmetric C′s) can be found in

polynomial time: For each Ri ∈ Rs, one can sort the rows of Ri \
⋃

i−k+1⩽h⩽i+k−1 Ch by
lexicographic order, and obtain the desired equivalence classes of equal rows.

Theorem 21 ensures that any sequence going from (R′s, C′s) to (R′s−1, C′s−1) maintains
a stretch value of O(k3). ◀

5 Overlap graph

Consider an ordered graph (G,≺), and think of ≺ as a left-to-right order (with the smallest
vertex being the leftmost one). For any edge e ∈ E(G), we denote by L(e) (resp. R(e)) the
left (resp. right) endpoint of e. Given two edges e, f ∈ E(G), we say that e is left of f if
L(e) ≼ L(f), and e is strictly left of f if L(e) ≺ L(f). By extension, we say that X ⊂ E(G)
is left of (resp. strictly left of) Y ⊂ E(G) if for every e ∈ X and f ∈ Y , L(e) ≼ L(f)
(resp. L(e) ≺ L(f)). If u, v are vertices of (G,≺), we denote by [u, v] the set of vertices that
are, in ≺, at least u and at most v. We also denote by [←, u] (resp. [u,→]) the set of vertices
that are at most u (resp. at least u).

We say that two edges e, f are crossing if L(e) ≺ L(f) ≺ R(e) ≺ R(f) (or symmetrically)
and we denote e × f this relation. Observe that two edges sharing an endpoint are not
crossing. The relation × is symmetric and anti-reflexive, hence defines an undirected graph
on E(G). We denote by Ov(G,≺) the graph (E(G),×). Ov(G,≺) is called the overlap graph
of (G,≺); see Figure 7.

Figure 7 An ordered graph (left) and its overlap graph (right).

We relate the structure of Ov≺(G) and the stretch-width of G among bounded-degree
graphs, by proving the following theorem:

▶ Theorem 23. A class C of ordered graphs of bounded degree has bounded stretch-width if
and only if {Ov(G,≺) | G ∈ C} does not admit Kt,t subgraph, for some integer t.

The next two lemmas prove the forward implication, by considering a special point in the
partition sequence. The last lemma of this section proves the backward implication, using
the matrix characterization of Section 4. We say that a Kt,t subgraph of Ov(G,≺) is clean
if the sides of the Kt,t are X, Y ⊂ E(G) such that X is strictly left of Y .

18 Stretch-width

▶ Lemma 24. For every ordered graph (G,≺), if Ov(G,≺) contains a Kt,t as a subgraph,
then Ov(G,≺) contains a clean K⌊t/2⌋,⌊t/2⌋ subgraph.

Proof. Assuming that Ov(G,≺) has a Kt,t subgraph, there is two disjoint sets X, Y ⊂ E(G)
each of size t such that for every x ∈ X and y ∈ Y , x×y. Let L(x1) ≼ L(x2) ≼ . . . ≼ L(xt) be
the elements of X, and L(y1) ≼ L(y2) ≼ . . . ≼ L(yt), the elements of Y . As x⌊t/2⌋ and y⌊t/2⌋
are crossing, either L(x⌊t/2⌋) ≺ L(y⌊t/2⌋) or L(y⌊t/2⌋) ≺ L(x⌊t/2⌋). The sides of the clean
K⌊t/2⌋,⌊t/2⌋ are {x1, . . . , x⌊t/2⌋} and {y⌊t/2⌋, . . . , yt} in the former case, and {y1, . . . , y⌊t/2⌋}
and {x⌊t/2⌋, . . . , xt} in the latter. ◀

▶ Lemma 25. For any ordered graph (G,≺), if ∆(G) ⩽ d and stw(G,≺) ⩽ t, then Ov(G,≺)
does not contain KN,N with N = 4td2 as a subgraph.

Proof. We will prove the contrapositive. Let (G,≺) be an ordered graph of maximum degree
at most d. We suppose that Ov(G,≺) contains a KN,N as a subgraph, with N = 4td2. By
Lemma 24, there are two sets X, Y ∈ E(G) forming a clean KN/2,N/2 of Ov(G,≺).

Let v1 (resp. v2) be the rightmost vertex among left endpoints of edges in X (resp. Y),
and let v3 be the rightmost vertex among (right) endpoints of edges in X; see Figure 8.
Observe that for any edge e ∈ X, L(e) ≼ v1, and v2 ≺ R(e) ≼ v3. The relation v2 ≺ R(e)
holds because every edge of X crosses every edge of Y . In addition, for any edge f ∈ Y ,
v1 ≺ L(f) ≼ v2, and v3 ≺ R(f).

v1 v2 v3

X Y

Figure 8 The edge subsets X (blue) and Y (green) forming a clean biclique KN/2,N/2 of Ov(G, ≺)
(here, with N = 16), and the vertices v1, v2, v3 ∈ V (G). The vertices non-incident to a blue or green
edge are in V (G) \ V (H).

We consider H, the subgraph of (G,≺) induced by the endpoints of edges in X ∪ Y , and
let h be |V (H)|. We will show that the stretch-width of H (hence that of G) is at least t.
In the remaining of the proof, the intervals of vertices and the lengths of edges are all with
respect to H. The intervals [←, v1[, [v1, v2[,]v2, v3[and [v3,→] are all of size at least N/(2d).
Indeed, observe that every vertex of H has at most d incident edges. Thus, the N/2 left
(resp. right) endpoints of edges in X (resp. Y) make for at least 1

d N/2 distinct vertices.
Therefore, every edge in X ∪ Y has length at least N/(2d). Let Ph, . . . ,P1 be any

partition sequence of H, and let i ∈ [h] be the maximum integer such that d + 1 vertices
are contained in a single part P ∈ Pi. As ∆(H) ⩽ ∆(G) ⩽ d, every part Q ∈ Pi adjacent to
P is such that P and Q are inhomogeneous. Let e = uv be an edge of X ∪ Y with at least
one endpoint in P , say u, and let P ′ (possibly equal to P) be the part of Pi containing the
other endpoint, v. The span of NR(Pi)(P) contains the interval I = [u, v] (or I = [v, u] if
v ≺ u). As I has length at least N/(2d) and every part of Pi has size at most 2d, the number
of parts of Pi conflicting with I (hence, in particular with NR(Pi)(P)) is at least N/(4d2).
Thus, stw(G,≺) ⩾ stw(H,≺) ⩾ N

4d2 = t. ◀

▶ Lemma 7. For every ordered graph (G,≺) and positive integer N , if Ov(G,≺) does not
contain KN,N as a subgraph, then stw(G,≺) ⩽ 32(2N + 1)3.

É. Bonnet, J. Duron 19

Proof. Let (G,≺) be an ordered graph such that Ov(G,≺) does not contain KN,N as
a subgraph, and let M be the adjacency matrix of (G,≺). We prove that stw(M) ⩽
32(2N + 1)3.

Suppose, for the sake of contradiction, that stw(M) > 32(2N + 1)3. By Theorem 22,
there is a 2N -wide division (R = {R1, . . . , Rk}, C = {C1, . . . , Ck}) of M . In particular, for
any row Ri, Ri \ Ci−N+1, . . . , Ci+N−1 contains more that 2N different rows. Let D be the
union of the zones Ri ∩ Cj such that |i − j| < N , that is, the 2N − 1 “longest” diagonals
of zones of the division (R, C). As, for every i ∈ [k], the number of distinct rows in Ri \D

(resp. distinct columns in Ci \D) is at least 2N , Ri \D (resp. Ci \D) contains at least 2N

1-entries.
To simplify the coming notations, let denote by ∥M ′∥ the number of 1-entries of any

submatrix M ′ of M . For example, ∥Ri \D∥ ⩾ 2N . Observe that Ri (resp. Cj) is split by
D in at most two sets R←i and R→i (resp. C↑j and C↓j), namely, R←i =

⋃
j⩽i−N Ri ∩ Cj and

R←i =
⋃

j⩾i+N Ri ∩ Cj ; see Figure 9.

R→2i

C↑2i+1

C↓2i+1

R←2i+2 R→2i+2

KN,N -freeness

KN,N -freeness

2N -wideness

Figure 9 Visual depiction of the proof of Lemma 7. The red zones represent D, the blue zones
contain more than N 1-entries, and the green zones have fewer that N 1-entries. The invariant
leading to a contradiction (that R→

2i has more than N 1-entries) propagates by invoking twice
KN,N -freeness followed by 2N -wideness.

20 Stretch-width

Observe that for every i, j such that i + 1 ⩽ j < i + N , each 1-entry of R→i (resp. C↓i)
and 1-entry of C↑j (resp. R→j) correspond to crossing edges in (G,≺). As Ov(G,≺) does not
contain any KN,N subgraph we have, for every i, j such that i + 1 ⩽ j < i + N :
1. min(∥R→i ∥, ∥C

↑
j ∥) < N , and

2. min(∥C↓i ∥, ∥R←j ∥) < N .
Indeed, if the first item does not hold, N 1-entries in R→i and N 1-entries in C↑j form the
two sides of a KN,N .

We finally prove by induction on i that, while 2i ⩽ k, the property ∥R→2i ∥ > N , henceforth
called (Qi), holds. Note that R←0 is empty. Thus ∥R→0 ∥ ⩾ 2N > N , hence (Q0) holds. Now
assume that (Qi) holds. By the first item, we have ∥C↑2i+1∥ < N . Thus ∥C↓2i+1∥ > N , since

C2i+1 \D = C↓2i+1 ∪ C↑2i+1 and ∥C2i+1 \D∥ ⩾ 2N.

Symmetrically, by the second item, ∥R←2i+2∥ < N , and hence ∥R→2i+2∥ > N . Thus (Qi+1)
holds. As R→k−N+1 is empty, (Qi) can no longer be true when 2i ⩾ k−N + 1, a contradiction.
Therefore stw(M) ⩽ 32(2N)3. ◀

6 Subdivisions

When subdividing the edges of an ordered graph, there is a simple way of updating its vertex
ordering without creating larger bicliques in its overlap graph.

▶ Lemma 26. Let (G,≺) be an ordered graph, and H be obtained by subdividing an edge
of G. There is an order ≺′ such that, for every integer t, if Ov(G,≺) has no Kt,t subgraph,
then Ov(H,≺′) has no Kt,t subgraph.

Proof. Let e = uv be the edge of G subdivided to form H, and let w ∈ V (H) be the new
vertex resulting from this subdivision. The total order ≺′ is obtained from ≺, by adding
w next to u, say, just to its right. This way Ov(H,≺′) is simply Ov(G,≺) plus an isolated
vertex. Indeed the edge uw ∈ E(H) is an isolated vertex in Ov(H,≺′), since u and w are
consecutive along ≺′, whereas wv ∈ E(H) crosses the same edges as uv was crossing. ◀

We now define a long subdivision process that is actually “erasing” large bicliques in
the overlap graph of a bounded-degree graph. Let uv be an edge of an ordered graph
(G,≺), with h vertices between u and v, say, u ≺ u1 ≺ u2 ≺ . . . ≺ uh ≺ v. We describe an
h + 1-subdivision of uv in (G,≺) that we call flattening of uv. We delete uv, and create h + 1
new vertices w1, . . . , wh+1 such that u ≺ w1 ≺ u1 ≺ w2 ≺ u2 ≺ . . . ≺ wh ≺ uh ≺ wh+1 ≺ v.
We then create the edges uw1, wiwi+1 for every i ∈ [h], and wh+1v. We may say that these
edges stem from uv. An iterated subdivision of (G,≺) chooses a total order on the edges
of G, and iteratively flattens the edges of G in this order (note that the created edges are
not flattened themselves); see Figure 10.

Figure 10 An iterated subdivision. Created edges have the color of the edge they stem from.

É. Bonnet, J. Duron 21

▶ Lemma 27. Any iterated subdivision (G′,≺′) of an ordered graph (G,≺) of maximum
degree d, is such that Ov(G′,≺′) has no K2d+2,2d+2 subgraph.

Proof. Assume for the sake of contradiction that Ov(G′,≺′) has a K2d+2,2d+2 subgraph.
Then by Lemma 24, Ov(G′,≺′) has a clean Kd+1,d+1 subgraph. Let X, Y be the two sides
of this clean biclique, where X is left of Y . As every vertex of G′ (like G) is incident to
at most d edges, there is {x1, x2} ⊆ X and {y1, y2} ⊆ Y such that L(x1) ≼ L(x2) ≺ L(y1) ≺
L(y2) ≺ R(xi) ≺ R(x3−i) ≺ R(yj) ≼ R(y3−j) with i, j ∈ [2].

As x1 and x2 cross y1 and y2, there is no i, j ∈ [2] such that xi and yj stem from the
same edge of G. We can thus assume without loss of generality that the last edge among
x1, x2, y1, y2 to be created is in X (since the argument is symmetric if this happens in Y),
i.e., xi for some i ∈ [2]. When xi is created, the vertices L(y1) and L(y2) already exist and
form a non-trivial interval since L(y1) ≺ L(y2). This contradicts the construction of the
iterated subdivision, since xi jumps over [L(y1), L(y2)], when it should have at least created
an intermediate vertex in [L(y1), L(y2)]. ◀

We are now equipped to show the main result of this section, that exponentially-long
subdivisions of bounded-degree graphs have bounded stretch-width.

▶ Theorem 6. Every (⩾ n2m)-subdivision of every n-vertex m-edge graph G of maximum
degree d has stretch-width at most 32(4d + 5)3.

Proof. Let G be any graph of C with n vertices and m edges, and let G′′ be any (⩾ n2m)-
subdivision of G. Choose an arbitrary order ≺ of V (G). Let (G′,≺′) be the iterated
subdivision of (G,≺), performed with an arbitrary order on the edges G. By Lemma 27,
Ov(G′,≺′) has no K2d+2,2d+2 subgraph. Every edge of G is subdivided at most n2m times
by the process of iterated subdivision. By Lemma 26, the edges of G′ can be further
subdivided to obtain G′′ such that Ov(G′′,≺′′) has no K2d+2,2d+2 subgraph, for some
vertex ordering ≺′′. Therefore, by Lemma 7, stw(G′′,≺′′) ⩽ 32(4d + 5)3, and in particular,
stw(G′′) ⩽ 32(4d + 5)3. ◀

▶ Corollary 28. There are graph classes with bounded stretch-width and maximum degree,
and yet unbounded treewidth.

Proof. Consider the family Γ1, Γ2, . . ., where Γk is the k222k(k−1)-subdivision of the k × k-
grid, for every positive integer k. The graphs from this family have degree at most 4, and
stretch-width at most 296352, but unbounded treewidth since tw(Γk) = k. ◀

The above argument gives an example of n-vertex graphs with bounded degree and
stretch-width, and treewidth Ω(

√
log n). We can do better by picking the vertex ordering ≺,

and the order on the edges (for the iterated subdivision) more carefully. We simply order

Figure 11 The 4 × 4 grid ordered row by row, with the horizontal edges in blue, and vertical
edges in green.

the grid row by row, and from left to right within each row; see Figure 11. We perform the
iterated subdivision of this ordered grid, with the following edge ordering. First we flatten
every horizontal edge (in blue), in any order. When this is done, the total number of vertices
has less than doubled. Then we flatten every vertical edge (in green) from left to right. It can

22 Stretch-width

be observed that, starting from the k × k grid, we now obtain an iterated subdivision with
less than 2ck vertices, for some constant c. Thus, there are n-vertex graphs with bounded
degree and stretch-width, and treewidth Ω(log n).

7 Classes with bounded ∆ + stw have logarithmic treewidth

For any edge e of an ordered graph (G,≺), we denote ei =]L(e), R(e)[, the interior of e, and
eo := [←, L(e)[∪]R(e),→], the exterior of e; note that L(e) and R(e) are neither part of ei

nor of eo. The length of e according to ≺ is ℓ(e,≺) = R(e)− L(e). When F is a set of edges
we define ℓ(F,≺) to be the maximum length of an edge of F .

We say that a set C of vertices is a c-balanced separator of G when there is a c-balanced
separation (A, B) of G such that C = A ∩B. In an ordered graph (G,≺), a set of vertices
C is called left/right c-balanced separator if there is a c-balanced separation (A, B), with
C = A∩B, A contains the leftmost c · n vertices, and B contains the rightmost c · n vertices.
Given a subset U of vertices of (G,≺), we define the ordered induced subgraph (G,≺)[U] as
the subgraph obtained from G by removing the vertices not in U , and restraining ≺ to U .
When ≺ is clear from the context, we use the notation G[U].

We start with an observation on paths going from the interior to the exterior of an edge.

▶ Observation 29. For every ordered graph G and for every edge e ∈ E(G), any path P

starting in ei and ending in eo contains an endpoint of e, or an edge crossing e.

Proof. Let e = uv be an edge of G, and P = v1, . . . vk, a path with v1 ∈ ei and vk ∈ eo.
Let j be the smallest index such that vj /∈ ei. As V (G) = {u, v} ∪ ei ∪ eo, we either have
vj ∈ {u, v}, or vj ∈ eo and vj−1 ∈ ei, hence vj−1vj is an edge of P crossing e. ◀

To simplify the notations, if the vertices of (G,≺) are v1 ≺ · · · ≺ vn, we will write G⟨i, j⟩
instead of G[[vi, vj]] and ⟨i, j⟩ instead of [vi, vj].

We say that a set S of edges of (G,≺) is a rainbow if for every pair e, f of S, ei ⊂ f i or
f i ⊂ ei. Notice that a rainbow induces an independent set in Ov(G,≺). When S contains t

edges we say that S is a t-rainbow, or a rainbow of order t. The following is an application of
Dilworth’s theorem on permutation graphs (or the Erdős-Szekeres theorem); see for instance
[28, Lemma 2.1].

▶ Lemma 30 ([28]). Let (G,≺) be an ordered graph, such that Ov(G,≺) does not contain
a clique on t vertices. Then, for every vertex v of V (G), for every set F of edges from [←, v[
to]v,→] we have |F | ⩽ kt where k is the maximum order of a rainbow in F .

For any rainbow S, we set Si :=
⋃

e∈S ei, that is, Si is the interior of the edge of S with
maximal interior. If S is the empty set, by convention, Si is also empty. A rainbow over v is
a rainbow S contained in the set of edges from [←, v[to]v,→]. A maximum rainbow over v

is a rainbow of maximum cardinality among the rainbows over v.
In the next lemma, we find, by induction on the minimum length of a maximum rainbow

over some vertex, a small (but not always balanced) left/right separator.

▶ Lemma 31. Let (G,≺) be an ordered graph such that Ov(G,≺) does not contain a Kt,t

subgraph. Then, if S is a maximum rainbow over v ∈ V (G), there is a vertex x ∈ Si ∪ {v}
and a set U that separates [←, x[from]x,→] with |U | = O(t2 log ℓ(S,≺)).

Proof. First, note that we write Si ∪ {v} instead of simply Si in the event that S = ∅ (in
which case v is not contained in Si). We define h(l) = 2⌈log(l+1)⌉+1 and g(t) = 6t2 + 3t. Thus
g(t) = O(t2) and h(l) = O(l).

É. Bonnet, J. Duron 23

We prove by induction on l that for every ordered graph (G,≺) for which Ov(G,≺) has
no Kt,t subgraph, and for every vertex v ∈ V (G), if S is a maximum rainbow over v such
that ℓ(S,≺) ⩽ l, then there exists a vertex x ∈ Si ∪ {v} and a set U that separates [←, x[
from]x,→] with |U | ⩽ g(t) log h(l).

If l = 0, there is no edge over v. Hence, S is empty and {v} separates [←, v[from]v,→].
Assume that the property holds for any k < l. We show the property also holds for l. Let v

be a vertex of G, and S be a maximum rainbow over v such that ℓ(S,≺) ⩽ l. Let F be the
set of edges from [←, v[to]v,→]. We make the following case distinction: the rainbow S

contains either at most 3t edges or more than 3t edges.
In the former case, Lemma 30 ensures that |F | ⩽ 2t|S| ⩽ 6t2. Indeed, S is a rainbow

of F of maximum cardinality, and Ov(G,≺) does not contain any Kt,t subgraph, hence
any K2t. Thus, consider LF := {L(f) | f ∈ F} ∪ {v}. The set LF separates [←, v[from
]v,→] since any edge with exactly one endpoint in [←, v[has an endpoint in LF . As
|LF | ⩽ 6t2 + 1 ⩽ g(t) ⩽ g(t) log h(l), the property holds.

We now handle the case when |S| > 3t. Let {e1, . . . , ek} be the edges in S with ei
j+1 ⊊ ei

j

for every j ∈ [k − 1] (we are sorting the edges from longest to smallest). Let X the set of
edges from [L(e1), L(e3t)] to [R(e1), R(e3t)]. Set X cannot contain a rainbow of size 3t + 1,
otherwise S would not be maximum. As X does not contain a K2t, Lemma 30 implies that
|X| ⩽ 6t2. Let Y1 be the set of edges from eo

1 to ei
t, Y2 be the set of edges from eo

t to ei
2t,

and Y3 be the set of edges from eo
2t to ei

3t; see Figure 12.

vL(e1)L(et) L(e2t) L(e3t) R(e1)R(et)R(e2t)R(e3t)x y

X

Y3

Figure 12 The black (or blue) edges are e1, e2, . . . , e3t ∈ S, and the edges e1, et, e2t, e3t are in
thick blue. The red arch represents the edge set X, while the green shape symbolizes the edge set Y3.
We will now remove the left endpoints of these edges sets (as well as those of Y1 and Y2), define the
vertices x ∈ [L(et), L(e2t)] and y ∈ [R(e2t), R(et)], and apply the induction on the shorter maximum
rainbow over x or over y.

We have |Y1| ⩽ t, as each edge of Y1 crosses e1, . . . , et. Similarly, |Y2| ⩽ t and |Y3| ⩽ t.
Let LX∪Y := {L(f) | f ∈ X ∪ Y1 ∪ Y2 ∪ Y3}. Observe that |LX∪Y | ⩽ 6t2 + 3t = g(t).

Let G′ = G − LX∪Y . In G′, for any w ∈]L(et), L(e2t)], the edges over w have both
endpoints in [L(e1), L(e3t)]. Indeed let f be an edge over w and assume that f has an
endpoint outside of [L(e1), L(e3t)]. By assumption, this endpoint is in eo

1∪ei
3t∪ [R(e3t), R(e1)]

(the set of remaining vertices). As f is over w, the left endpoint of f is either in [←, e1] or in
[e1, w[, and its right endpoint is in [w,→]. Suppose the left endpoint of f is in [←, e1]. Then
f is in Y1 when its right endpoint is in ei

t, and in X, otherwise. Assume now that the left
endpoint of f is in [←, e1], then its right endpoint is in [L(e3t),→] (since by assumption, f

is not in [L(e1, L(e3t)]), and f is an edge of Y3 when its right endpoint is in ei
3t, and an edge

of X when its right endpoint is in [R(e3t),→].
In any case, we reach the contradiction that f is in Y1 ∪ Y3 ∪X. Note that if there is no

vertex of G′ in]L(et), L(e2t)], LX∪Y separates G′: As we removed X, Y1, Y2 and Y3, there is

24 Stretch-width

no edges between [←, L(et)] and]L(e2t),→]. The same holds symmetrically when there is
no vertex of G′ in [R(e2t), R(et)[.

Thus we consider two vertices x and y respectively in (the non-empty sets)]L(et), L(e2t)]∩
V (G′) and [R(e2t), R(et)[∩V (G′). In G′, edges over x are contained in [L(e1), L(e3t)], and
edges over y, in [R(e3t), R(e1)]. Hence no edge is both over x and y. Consider Sx and Sy

two maximum rainbows over x and y, respectively. We have ℓ(Sx,≺) + ℓ(Sy,≺) ⩽ ℓ(S,≺).
Assume, without loss of generality, that ℓ(Sx,≺) ⩽ ℓ(Sy,≺). We have ℓ(Sx,≺) ⩽ ⌊l/2⌋. By
the induction hypothesis, there is a vertex x′ in Si

x ∪ {x} and a set U that separates [←, x′[
from]x′,→] in G′ with |U | ⩽ g(t) log h(⌊l/2⌋).

Thus U ∪LX∪Y separates [←, x′[from]x′,→] in G, and |U ∪LX∪Y | ⩽ g(t) log h(⌊l/2⌋) +
g(t) = g(t)(⌈log(⌊l/2⌋+ 1)⌉+ 2) ⩽ g(t)(⌈log(l + 1)⌉+ 1) = g(t) log h(l). ◀

Leveraging Lemma 31, we now show how to obtain a relatively small balanced separator.

▶ Theorem 32. For any ordered graph (G,≺), if Ov(G,≺) does not contain any Kt,t subgraph,
then G contains a 1/12-balanced separator of order at most γt2 log n, for some constant γ.

Proof. We first examine the case when there is a vertex v ∈ V (G) and a maximum rainbow
S over x such that at least 3t edges of S have length in [n/12, 11n/12]. We denote by
f1, . . . , f3t the 3t longest edges of S of length at most 11n/12, still ordered from longest (f1)
to shortest (f3t). As in the proof of Lemma 31, we consider X the edges from [L(f1), L(f3t)]
to [R(f3t), R(f1)], and Lemma 30 ensures that |X| ⩽ 6t2. Let Y1 be the set of edges from fo

1
to f i

t , Y2 be the set of edges from fo
t to f i

2t, and Y3 be the set of edges from fo
2t to f i

3t. We
again have that Y1, Y2 and Y3 are of size at most t, otherwise Ov(G,≺) would contain a Kt,t

subgraph. Let LX∪Y = {L(z) | z ∈ X ∪ Y1 ∪ Y2 ∪ Y3}.
Let G′ = G − LX∪Y . As observed in Lemma 31, the separator is only simpler when

]L(ft), L(f2t)]∩V (G′) or [R(f2t), R(ft)[∩V (G′) are empty. Hence we only deal with the case
when both sets are non-empty (in the other cases, a subset of our eventual separator works).
Thus, let x ∈]L(ft), L(f2t)] ∩ V (G′) and y ∈ [R(f2t), R(ft)[∩V (G′).

By construction of G′, any edge over x is contained in [L(f1), L(f3t)], or is going from
[←, L(f1)[to]R(f1),→]. Thus, by applying Lemma 31 on Gx = G′[←, R(f1)] and x, we find
a set Ux separating [←, ux] from [ux,→], where ux is a vertex in [L(f1), L(f3t)]. Similarly,
considering Gy = G[L(f1),→] and y, we find a set Uy separating [←, uy] from [uy,→], with
uy ∈ [R(f3t), R(f1)]. The set Ux ∪ Uy separates]ux, uy[from [←, ux[∪[uy,→] in G′. As the
length between ux and uy is between n/12 and 11n/12, LX∪Y ∪ Ux ∪ Uy is a 1/12-balanced
separator of G of size 6t2 + 3t + 2 ·O(t2 log n) = O(t2 log n).

Now, we deal with the case when for any vertex v of G, the number of edges of length
in [n/12, 11n/12] in a (maximum) rainbow over v is less than 3t. Let v1 ≺ v2 ≺ . . . ≺ vn

be the vertices of G, and say, v = vi. In particular, the set Mv of edges over v going
from ⟨n/12, i − n/12⟩ to ⟨i + n/12, 11n/12⟩ is of size at most 6t2 by Lemma 30. Set
x = v⌊n/3⌋ and y = v⌊2n/3⌋. Let A = {L(e) | e ∈ Mx ∪My} and let H = G− A. Consider
Hx = H⟨1, 11n/12⟩, and Hy = H⟨n/12, n⟩. Then the length of a maximum rainbow over x

(resp. y) in Hx (resp. Hy) is at most n/12. Indeed, any edge over x (resp. y) of length more
than 11n/12 is not contained in Hx (resp. Hy), and any edge over x (resp. y) of length in
[n/12, 11n/12] has been deleted when removing A.

Hence we can apply Lemma 31 on Hx and x, and on Hy over y. This yields two sets
Ux, Uy of size O(t2 log n) and two vertices wx, wy such that the indices of wx and x (resp.
wy and y) are at distance at most n/12, and such that Ux separates [←, wx[from]wx,→]
in Hx, while Uy separates [←, wy[from]wy,→] in Hy. The set A ∪ Ux ∪ Uy then separates
]wx, wy[from [←, wu[∪]wy,→] in G, and |A ∪ Ux ∪ Uy| = O(t2 log n). Notice that]wx, wy[

É. Bonnet, J. Duron 25

contains at least ⌊n/3⌋ − 2n/12 ⩾ ⌊n/6⌋ vertices because there is ⌊n/3⌋ vertices between x

and y, and wx is separated from x by at most n/12 vertices (and symmetrically for y). In
addition, there is at most n/3 + 2n/12 = n/2 vertices in]wx, wy[. Thus A ∪ Ux ∪ Uy is a
1/6-balanced separator. ◀

Pipelining Lemma 25 and the previous theorem, we get small balanced separators for
graphs of bounded degree and stretch-width.

▶ Theorem 33. Let G be any graph on n vertices, such that ∆(G) ⩽ d and stw(G) ⩽ t.
Then G contains a 1/12-balanced separator of size at most γ(4td2)2 log n, for a constant γ.

Proof. Let G a graph on n vertices, such that stw(G) ⩽ t and ∆(G) ⩽ d. Let ≺ be an order
such that (G,≺) has stretch-width t. By Lemma 25, Ov(G,≺) does not admit any K4td2,4td2

as a subgraph. Hence Theorem 32 ensures the existence of a 1/12-balanced separator of
(G,≺), hence of G, of size γ(4td2)2 log n. ◀

By Lemma 11 (and the remark following it) and Theorem 33, we obtain the bound on
the treewidth of a graph of bounded degree and bounded stretch-width.

▶ Theorem 5. There is a c such that for every graph G, tw(G) ⩽ c∆(G)4stw(G)2 log |V (G)|.

We draw two algorithmic consequences from Theorem 5. First, Existential Counting
Modal Logic (see the introduction for a description) can be model-checked in polynomial
time in classes where both the maximum degree and the stretch-width is bounded.

▶ Corollary 9. Problems definable in ECML (resp. ECML+C) can be solved in polynomial
time (resp. randomized polynomial time) in bounded-degree graphs of bounded stretch-width.

Proof. Let C be a class with bounded ∆ + stw. By Theorem 5, there is a constant c

such that every graph G ∈ C has treewidth at most c log n. There is a single-exponential
2-approximation of treewidth [21], which returns here a tree-decomposition of width at most
2c log n in time 2O(c log n) = nO(1). Any problem definable in ECML (resp. ECML+C) can
be solved in time 2O(w) (resp. randomized time 2O(w), with a Monte Carlo algorithm) where
w is the width of a tree-decomposition of the input graph [23]. This gives an algorithm in
(randomized) time 2O(2c log n) = nO(1) for any problem definable in ECML(+C) on C. ◀

The second consequence is a subexponential-time algorithm for MIS (and any problem
with a similar branching rule on high-degree vertices) in graphs of bounded stretch-width.

▶ Proposition 8. There is an algorithm that solves Max Independent Set in graphs of
bounded stretch-width with running time 2Õ(n4/5).

Proof. Let C be a class of bounded stretch-width. By Theorem 5, for every n-vertex graph
G ∈ C, the treewidth of G is in O(∆(G)4 log n). We use a standard branching rule that
Turing-reduces the problem to MIS on subinstances of small maximum degree, hence small
treewidth.

While there is in the current graph a vertex v of degree at least n1/5, we branch on two
options: either (first branch) we put v in (an initially empty set) I, and remove its closed
neighborhood, or (second branch) we remove v from the current graph (without adding it
to I). With the former choice, the number of vertices drops by at least n1/5, and it drops
by 1 in the latter. The former outcome can only happen at most n4/5 times, as we started
with n vertices. Hence the branching tree has at most

(
n

n4/5

)
= 2Õ(n4/5) leaves.

26 Stretch-width

The treewidth of the graph at every leaf is in O(n4/5 log n) since there are no more
vertices of degree at least n4/5. As explained in the proof of Corollary 9, we can solve such
instances in time 2O(n4/5 log n), and append the corresponding I to the output. The overall
running time is 2Õ(n4/5) · 2O(n4/5 log n) = 2Õ(n4/5). ◀

References

1 Tara Abrishami, Maria Chudnovsky, Sepehr Hajebi, and Sophie Spirkl. Induced subgraphs
and tree-decompositions III. Three-path-configurations and logarithmic tree-width. Advances
in Combinatorics, 2022.

2 Ambroise Baril, Miguel Couceiro, and Victor Lagerkvist. Linear bounds between cliquewidth
and component twin-width and applications, 2023. URL: https://ramics20.lis-lab.fr/
slides/slidesAmbroise.pdf.

3 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is
NP-complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.18.

4 Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approximating highly
inapproximable problems on graphs of bounded twin-width. In Petra Berenbrink, Patricia
Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Sym-
posium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg,
Germany, volume 254 of LIPIcs, pages 10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.10.

5 Benjamin Bergougnoux, Jan Dreier, and Lars Jaffke. A logic-based algorithmic meta-theorem
for mim-width. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25,
2023, pages 3282–3304. SIAM, 2023. doi:10.1137/1.9781611977554.ch125.

6 Marthe Bonamy, Edouard Bonnet, Hugues Déprés, Louis Esperet, Colin Geniet, Claire Hilaire,
Stéphan Thomassé, and Alexandra Wesolek. Sparse graphs with bounded induced cycle packing
number have logarithmic treewidth. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 3006–3028. SIAM, 2023. doi:10.1137/1.9781611977554.
ch116.

7 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.35.

8 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. Combinatorial Theory, 2(2), 2022. URL: https://escholarship.
org/uc/item/9cs265b9, doi:http://dx.doi.org/10.5070/C62257876.

9 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In Stefano Leonardi
and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pages 924–937. ACM, 2022. doi:10.1145/
3519935.3520037.

10 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI:
the lens of contraction sequences. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1036–1056. SIAM, 2022.

https://ramics20.lis-lab.fr/slides/slidesAmbroise.pdf
https://ramics20.lis-lab.fr/slides/slidesAmbroise.pdf
https://doi.org/10.4230/LIPIcs.ICALP.2022.18
https://doi.org/10.4230/LIPIcs.STACS.2023.10
https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://escholarship.org/uc/item/9cs265b9
https://escholarship.org/uc/item/9cs265b9
https://doi.org/http://dx.doi.org/10.5070/C62257876
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3519935.3520037

É. Bonnet, J. Duron 27

11 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

12 Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative
strengthening of twin-width in minor-closed classes (and beyond). CoRR, abs/2202.11858,
2022. URL: https://arxiv.org/abs/2202.11858, arXiv:2202.11858.

13 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation, 85(1):12 – 75, 1990. URL: http://
www.sciencedirect.com/science/article/pii/089054019090043H, doi:https://doi.org/
10.1016/0890-5401(90)90043-H.

14 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

15 Zdenek Dvorák and Sergey Norin. Treewidth of graphs with balanced separations. J. Comb.
Theory, Ser. B, 137:137–144, 2019. doi:10.1016/j.jctb.2018.12.007.

16 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

17 Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Model-checking for first-order
logic with disjoint paths predicates in proper minor-closed graph classes. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3684–3699. SIAM, 2023.
doi:10.1137/1.9781611977554.ch141.

18 Frank Gurski and Egon Wanke. The tree-width of clique-width bounded graphs without Kn, n.
In Ulrik Brandes and Dorothea Wagner, editors, Graph-Theoretic Concepts in Computer
Science, 26th International Workshop, WG 2000, Konstanz, Germany, June 15-17, 2000,
Proceedings, volume 1928 of Lecture Notes in Computer Science, pages 196–205. Springer,
2000. doi:10.1007/3-540-40064-8_19.

19 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

20 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

21 Tuukka Korhonen. Single-exponential time 2-approximation algorithm for treewidth. CoRR,
abs/2104.07463, 2021. URL: https://arxiv.org/abs/2104.07463, arXiv:2104.07463.

22 Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms,
5(1):10:1–10:20, 2008. doi:10.1145/1435375.1435385.

23 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foundations
of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland,
August 22-26, 2011. Proceedings, volume 6907 of Lecture Notes in Computer Science, pages
520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

24 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae
Universitatis Carolinae, 15(2):307–309, 1974.

25 Nicole Schirrmacher, Sebastian Siebertz, Giannos Stamoulis, Dimitrios M. Thilikos, and
Alexandre Vigny. Model checking disjoint-paths logic on topological-minor-free graph classes.
CoRR, abs/2302.07033, 2023. arXiv:2302.07033, doi:10.48550/arXiv.2302.07033.

26 Ni Luh Dewi Sintiari and Nicolas Trotignon. (theta, triangle)-free and (even hole, k4)-free
graphs - part 1: Layered wheels. J. Graph Theory, 97(4):475–509, 2021. doi:10.1002/jgt.
22666.

27 Szymon Toruńczyk. Flip-width: Cops and robber on dense graphs. CoRR, abs/2302.00352,
2023. arXiv:2302.00352, doi:10.48550/arXiv.2302.00352.

https://doi.org/10.1145/3486655
https://arxiv.org/abs/2202.11858
http://arxiv.org/abs/2202.11858
http://www.sciencedirect.com/science/article/pii/089054019090043H
http://www.sciencedirect.com/science/article/pii/089054019090043H
https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/j.jctb.2018.12.007
https://doi.org/10.1137/1.9781611977554.ch141
https://doi.org/10.1007/3-540-40064-8_19
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://arxiv.org/abs/2104.07463
http://arxiv.org/abs/2104.07463
https://doi.org/10.1145/1435375.1435385
https://doi.org/10.1007/978-3-642-22993-0_47
http://arxiv.org/abs/2302.07033
https://doi.org/10.48550/arXiv.2302.07033
https://doi.org/10.1002/jgt.22666
https://doi.org/10.1002/jgt.22666
http://arxiv.org/abs/2302.00352
https://doi.org/10.48550/arXiv.2302.00352

28 Stretch-width

28 Jakub Černý. Coloring circle graphs. Electronic Notes in Discrete Mathematics,
29:457–461, 2007. European Conference on Combinatorics, Graph Theory and Applica-
tions. URL: https://www.sciencedirect.com/science/article/pii/S1571065307001539,
doi:https://doi.org/10.1016/j.endm.2007.07.072.

https://www.sciencedirect.com/science/article/pii/S1571065307001539
https://doi.org/https://doi.org/10.1016/j.endm.2007.07.072

	1 Introduction
	2 Preliminaries
	2.1 Contraction sequences and twin-width
	2.2 Partition sequences
	2.3 Reduced parameters and functional equivalence
	2.4 Treewidth, separation number, and clique-width
	2.5 Outline

	3 Stretch-width
	3.1 An example forcing interleaved parts
	3.2 Graphs of bounded clique-width have bounded stretch-width
	3.3 Separating construction

	4 Matrix characterization
	5 Overlap graph
	6 Subdivisions
	7 Classes with bounded +stw have logarithmic treewidth

