
HAL Id: hal-04292977
https://hal.science/hal-04292977v1

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Factoring Pattern-Free Permutations into Separable ones
Édouard Bonnet, Romain Bourneuf, Colin Geniet, Stéphan Thomassé

To cite this version:
Édouard Bonnet, Romain Bourneuf, Colin Geniet, Stéphan Thomassé. Factoring Pattern-Free Per-
mutations into Separable ones. SODA 2024, Jan 2024, Alexandria, United States. �hal-04292977�

https://hal.science/hal-04292977v1
https://hal.archives-ouvertes.fr

Factoring Pattern-Free Permutations into Separable ones

Édouard Bonnet, Romain Bourneuf, Colin Geniet, and Stéphan Thomassé

Univ. Lyon, ENS de Lyon, UCBL, CNRS, LIP, France

Abstract

We show that for any permutation π there exists an integer kπ such that every permutation
avoiding π as a pattern is a product of at most kπ separable permutations. In other words,
every strict class C of permutations is contained in a bounded power of the class of separable
permutations. This factorisation can be computed in linear time, for any fixed π.

The central tool for our result is a notion of width of permutations, introduced by Guillemot
and Marx [SODA ’14] to efficiently detect patterns, and later generalised to graphs and matrices
under the name of twin-width. Specifically, our factorisation is inspired by the decomposition
used in the recent result that graphs with bounded twin-width are polynomially χ-bounded. As
an application, we show that there is a fixed class C of graphs of bounded twin-width such that
every class of bounded twin-width is a first-order transduction of C.

1 Introduction

Given a class C of discrete structures, the arguably preeminent algorithmic task is the one of
recognition: does the input belong to C? This problem is often tied with an effective construction of
the class C by performing elementary operations on some basic building blocks. For instance, totally
unimodular matrices [27], minor-closed classes [25], and perfect graphs [13] can be constructed
from simpler objects, respectively, network matrices, graphs embeddable on low-genus surfaces,
and variants of bipartite graphs. In this paper we show that strict classes of permutations, that is,
those avoiding a fixed pattern, can be constructed from separable permutations (the basic class)
via a bounded number of compositions (the elementary operation).

Given a positive integer n, we denote by [n] the set {1, 2, . . . , n}. Let n ≤ m be two integers, we
say that a permutation π ∈ Sn is a pattern of σ ∈ Sm if there is an increasing function f from [n]
to [m] such that π(i) < π(j) if and only if σ(f(i)) < σ(f(j)) for all i, j ∈ [n]. Another way of
characterizing patterns is to associate to a permutation σ ∈ Sn its n× n matrix A(σ) = (aij) with
aij = 1 if j = σ(i), and aij = 0 otherwise. Observe that π is a pattern of σ if and only if A(π) is
a submatrix of A(σ). For instance, 12345 is a pattern of σ if it contains an increasing subsequence
of length five. A crucial achievement in permutation patterns is the Guillemot–Marx algorithm,
which decides if a permutation π is a pattern of σ in time f(π) · |σ|, where |σ| is the size of σ.

Patterns readily offer a complexity notion for permutations: A permutation is “simple” if it
does not contain a fixed small pattern. We will consider classes of permutations, which are as-
sumed closed under taking patterns. The existence of a gap between the class of all permutations
and any strict class is illustrated by the Marcus–Tardos theorem, answering the Stanley–Wilf con-
jecture: Every strict class of permutations has at most 2O(n) permutations of size n, whereas the
class of all permutations obviously has n! = 2Θ(n logn) such permutations. From an algorithmic
perspective, sequences avoiding a fixed pattern can be comparison-sorted in almost linear time

1

O
(
n · 2(1+o(1))α(n)

)
where α is the inverse Ackermann function [11, 21, 12], while linear algorithms

when excluding some specific small patterns have been long known [20, 1]. Furthermore, as a gen-
eralisation of Guillemot–Marx algorithm, any property defined using first-order logic (FO) can be
tested inside any strict permutation class C in linear time [7]. For instance, given a fixed permuta-
tion τ , one can decide in linear time if an input n-permutation σ in C is such that every pair of
elements i, j ∈ [n] is contained in a pattern τ of σ. Observe that even the existence of a linear-size
positive certificate for this seemingly quadratic problem is far from obvious.

Strict classes of permutations are thus significantly simpler, both algorithmically and in terms
of growth. The next question is to construct them from a basic class using some simple operations.
In the case of permutations, possibly the most natural elementary operation is the product (or
composition). Furthermore, the class of separable permutations is basic in several ways. It consists
of those permutations whose permutation graph is a cograph; an elementary graph class (which
coincides with graphs of twin-width 0). Like cographs have a natural auxiliary tree structure
(the cotrees), separable permutations inherit their own tree structure, the so-called separating
tree [9]. Separable permutations are originally themselves defined from the trivial permutation 1,
by successively applying direct sums (setting two permutation matrices as diagonal blocks of the
new permutation matrix) or skew sums (the same with antidiagonal blocks), or equivalently by
closing {12, 21} under substitution. They are well known to be the permutations avoiding the
patterns 2413 and 3142 [9].

As our main result, we show:

Theorem 1.1. For any pattern π, there exists kπ = 22O(|π|)
such that every permutation avoiding π

is a product of at most kπ separable permutations.

Combining Theorem 1.1 with the definition of separable permutations, every permutation
of Av(π), the set of permutations avoiding the pattern π, can be built from the trivial permuta-
tion 1 via direct and skew sums, followed by a bounded-length product. Conversely, remark that
for any c, the class of products of c separable permutations avoids some pattern, since it contains
only 2O(cn) permutations on n elements.

The proof of Theorem 1.1 is effective, and yields a fixed-parameter tractable (FPT) algorithm
to compute the factorisation. With some more work, we show how to implement it in linear time.

1.1 Shortest separable decompositions

We call separable index of a permutation σ, denoted sep(σ), the smallest k such that σ is the
product of k separable permutations. Our main result then states that permutations avoiding
a pattern have bounded separable index. Our upper bound is doubly exponential: we show that
permutations avoiding a pattern π of length k have separable index at most 22O(k)

. It is natural to
ask to which extent this bound can be improved.

For specific patterns π, this bound may be very low: if π is the decreasing permutation of
length k, then it is relatively simple to show that permutations avoiding π have separable in-
dex O(log k), see Lemma 2.2 below. However this situation is unusual: from lower bounds on the
growth of pattern-avoiding classes due to Fox [17], it follows that for almost all patterns π of size k,
the maximum separable index of permutations avoiding π is at least polynomial, more precisely
at least Ω(k1/4−ε) for any ε > 0. This still leaves a huge gap between our double-exponential upper
bound and the polynomial lower bound. In principle the following question could be met with
a positive answer.

Question 1.2. Is the maximum separable index among permutations avoiding a pattern of size k
polynomial in k?

2

As an easier first step, one could try and bring the upper bound down to singly exponential.
From a different perspective, one may consider the problem of computing sep(σ), given some

permutation σ. Our result implies an FPT approximation. Given k ∈ N, there is a pattern π
that every product of k separable permutations avoids. Conversely, by our result, any permutation
avoiding π is product of at most f(k) separable permutations for some function f . Applying the
pattern recognition algorithm of Guillemot and Marx [18], we can either detect that σ contains π
and conclude that sep(σ) > k, or find that σ avoids π and conclude that sep(σ) ≤ f(k). Here, the
size of π is exponential in k, hence the approximation function f is triple exponential in k. We ask
whether this can be improved, possibly up to an exact algorithm:

Question 1.3. What is the parameterised complexity of computing sep(σ), and of approximating
it within a constant factor?

1.2 Applications to graphs

At a high level, our result states that permutations avoiding π can be decomposed into permutations
avoiding a fixed pattern τ , where the length of the decomposition depends on π, but τ does
not. Trading patterns with twin-width, we get results on graphs that convey a similar flavour
of transformation into structures with universally bounded twin-width. For sparse graphs, this
transformation is the d-subdivision, which consists of replacing every edge in a given graph by
a path of length d.

Theorem 1.4. There is a universal constant c and a function f such that for any graph G with
twin-width k and no Kt,t-subgraph, the f(k, t)-subdivision of G has twin-width at most c.

This can be extended to dense graphs (and more generally binary relational structures) using
first-order (FO) transductions, which roughly speaking are transformations that can be described
using first-order logic.

Theorem 1.5. There is a fixed strict class C of permutations such that for any class D of binary
structures, D has bounded twin-width iff there exists an FO transduction Φ satisfying D ⊆ Φ(C).

We then say that D is an FO transduction of C. Theorem 1.5 nicely echoes similar characteriza-
tions for linear clique-width and clique-width, namely the fact that a graph class has bounded linear
clique-width if and only if it is an FO transduction of a linear order, and bounded clique-width if
and only if it is an FO transduction of a tree order [14]. Fittingly, these results can also be phrased
in terms of pattern-avoiding permutation classes. Indeed a class has bounded linear clique-width if
and only if it is an FO transduction of Av(21), and bounded clique-width if and only if it is an FO
transduction of Av(231), or equivalently an FO transduction of the class of separable permutations
(see for example [8, Proposition 8.1]).

Reconstructing a graph G from the d-subdivision of G with fixed d is a simple example of FO
transduction, hence Theorem 1.4 is a special case of Theorem 1.5 utilizing a specific transduction.
Theorems 1.4 and 1.5 are based on a representation of any factorisation σ = σm ◦ · · · ◦ σ1 as
a system of paths between ordered sets of vertices: each permutation σi is represented by a matching
between two orders, which are joined together into paths of length m, see Figure 1 for an example.
When the permutations σi are separable (or more generally avoid any fixed pattern), these path
system representations have bounded twin-width, independently of the length of the factorisation.
Furthermore, for any fixed length m, there is an FO transduction depending only on m that can
reconstruct σ from the path system representation. We obtain Theorem 1.5 by combining this with
the following result of Bonnet et al.

3

X0 X1 X2 X3

1 1

6 2

3 3

5 4

2 5

4 6

Figure 1: A factorisation of 163524 into three separable permutations, represented as a path system.

Theorem 1.6 ([8]). For any class D of binary structures with bounded twin-width, there exists
a pattern avoiding class of permutations C and an FO transduction Φ such that D ⊆ Φ(C).

Notice that the difference with Theorem 1.5 is that the class C depends on D.

1.3 Overview of the proof of Theorem 1.1

We see an n-element permutation σ as two linear orders <,≺ over [n].

Mixed minor free permutations. We fix a permutation π, and consider permutations σ in
Av(π), the class of all permutations avoiding π as a pattern. This class has bounded twin-width [18,
7], and it was further proven that there is a third linear order <tww over [n] such that the adjacency
matrix1 of the binary structure ([n], <,≺) has no cπ-mixed minor for some cπ = 2O(|π|), where
a k-mixed minor of a matrix M is a k-by-k division of M into consecutive blocks of rows and
columns such that each of the k2 cells formed by the division has at least two distinct row vectors
and at least two distinct column vectors. We then say that such cells are mixed.

It was cleverly observed that k-almost mixed minors is a better notion to conduct induction
on [24], where one waives the mixedness condition off for the diagonal cells. Besides, one can remark
that mixed minors and almost mixed minors are linearly tied, in the sense that if a matrix has
a k-almost mixed minor it has a bk/2c-mixed minor (while a mixed minor is a fortiori an almost
mixed minor).

If we summarize the situation after these opening moves, we have a permutation σ (in fact,
two permutations whose product equals σ) whose matrix encoding has no k-almost mixed minor
with k = 2cπ. We wish to decompose this permutation as a product of g(k) permutations all of
which have matrix encodings without (k − 1)-almost mixed minor. If this scheme works while
k ≥ 3, we will have written our permutation as a product of f(k) permutations without 2-almost
mixed minor, which can be easily shown to be separable permutations. (Indeed the two excluded
permutations 2413 and 3142 both admit a 2-mixed minor.) Theorem 1.1 will then come from an
appropriate choice for the function g, which happens to make f single exponential.

Delayed substitutions. We decompose σ onto a tree T called delayed structured tree. This
tree is inspired by the work of Pilipczuk and Soko lowski [24], and was formally introduced by
Bourneuf and Thomassé [10] on their way to show that every graph class of bounded twin-width is
polynomially χ-bounded (i.e. can be properly colored with a number of colors polynomial in their

1At this point, we do not wish to concern the reader with the actual encoding.

4

maximum clique size). We now detail how to build an appropriate delayed structured tree in the
particular case of permutations. This will serve as an informal definition of delayed structured trees
and delayed substitutions, crucial elements of our proof.

Here it helps to renormalize (<,≺) such that ≺ is the natural order over [n]. This totally fixes
the successor relation of < to an ordering eventually matching the left-to-right order of the leaves
of T (as represented in Figure 2); leaves, which are in one-to-one correspondence with [n]. Let
a1 < a2 < . . . < an be the ordering of <. We recursively partition 〈a1, a2, . . . , an〉 in the following
way. At the start, the root of T (the only node thus far) is labeled with the list 〈a1, a2, . . . , an〉.

If {ai, ai+1, . . . , aj} is a non-singleton interval along ≺ (i.e. if 〈ai, ai+1, . . . , aj〉 can be reordered
as j − i + 1 consecutive integers), as it initially occurs with i = 1 and j = n (when n > 1), we
arbitrary split 〈ai, ai+1, . . . , aj〉 into two non-empty lists 〈ai, ai+1, . . . , ak〉 and 〈ak+1, . . . , aj〉, each
labeling a child of the node labeled by 〈ai, ai+1, . . . , aj〉. Lists 〈ai〉 of size 1 are given a unique
child, a leaf labeled by ai. Finally, the interesting case is when {ai, ai+1, . . . , aj} does not consist
of a single interval of ≺, but several, say, I1, . . . , Is with s ≥ 2. Then we cut 〈ai, ai+1, . . . , aj〉 into
q+ 1 sublists 〈ai, ai+1, . . . , ah1〉, 〈ah1+1, ah1+2, . . . , ah2〉, . . ., 〈ahq+1, ahq+2, . . . , aj〉 that are maximal
for the property of being contained in a single I`.

Let us have a look, in Figure 2, at an example of delayed structured tree if σ is such that the
ordering of < is 3, 1, 10, 5, 16, 9, 8, 4, 2, 6, 7, 11, 17, 15, 13, 12, 18, 14. At the root, the rules specify

3 1 10 5

16

9 8

4 2

6 7

11

17

15

13 12

18 14

Figure 2: A well-chosen delayed structured tree of a permutation σ encoded as two linear orders
<,≺ over [18], where < is the left-to-right order on the leaves 3, 1, 10, 5, 16, 9, . . . whereas ≺ is the
natural order 1, 2, 3, . . . The permutations (<t,≺t) over the grandchildren of a node t in a given
colour are drawn in the same colour by the successor relation of ≺t (<t being the left-to-right
order). If all these permutations are in C, σ is said to be obtained by delayed substitution from C.

that the list should be split in two (arbitrarily), and we accordingly chose to cut the first sublist
after 11. Moving on to the left child of the root, the current set is [1, 11] ∪ {16} (two intervals),
hence its three children labeled 〈3, 1, 10, 5〉, 〈16〉, 〈9, 8, 4, 2, 6, 7, 11〉.

Note that the figure also displays “local” linear orders (in different colours) over the grandchil-
dren of a given node t (of that same colour). These orders ≺t are naturally inherited from ≺, here

5

(among other possible options) by giving to a grandchild the label of its leftmost descendant. Let us
focus on the blue order. Its successor relation defines the following ordering: 3 (leftmost descendant
of the orange node), 9 (same with the purple node), 14, 15 (same with the yellow node), 16, 17, 18.
As the left-to-right order < on the leaves of T also naturally defines the left-to-right order <t on the
grandchildren of t, every node t (with grandchildren) naturally defines the permutation (<t,≺t).

Finally a delayed substitution from a class C of permutations is such a decomposition when
every (<t,≺t) belongs to C. We show (see Lemma 3.5) that any permutation obtained by delayed
substitution from C is the product of three permutations in C, as long as the class C is closed
under some simple operations: substitution, taking patterns, and inverse. We then zoom in on the
permutations (<t,≺t) and decompose them further.

Decomposing permutations of height two. What we gain here is that the permutations
(<t,≺t) have a structured tree of height two. Interestingly the children of t naturally define
a partition P over the universe of (<t,≺t), that is, over the grandchildren of t. Each part of P is
by construction an interval along <t. We look at how these parts behave and interlace w.r.t. ≺t.

Two parts P1, P2 ∈ P are said mixed if there are x1, y1 ∈ P1 and x2, y2 ∈ P2 such that
x1 ≺t x2 ≺t y1 ≺t y2 or x2 ≺t x1 ≺t y2 ≺t y1. This definition exactly matches the mixed cells in the
definition of (almost) mixed minors. This brings us to a common theme in this context: colouring
the conflict graph (red graph, or graph of the mixed relation) with a bounded number of colours to
separately deal with large chunks without conflicting pairs. This is usually performed directly on
a partition from a sequence witnessing low twin-width (see for instance [4, 3]), where the conflict
graph of the partition has bounded maximum degree. In our case, like in [10], the subtlety is that
P does not come from a partition sequence, and its mixed graph may have large maximum degree.

Getting rid of the mixedness. Nevertheless, the mixed graph has no Kk (clique on k vertices)
nor Kk,k (biclique, with k vertices being fully adjacent to k other vertices) subgraphs, as they
would entail the presence of a k-almost mixed minor. We can split the edge set of the mixed graph
into a bounded-degeneracy graph and an overlap graph (also known as circle graph); the latter is
degenerate as a consequence of excluding large clique and biclique subgraphs. Therefore the mixed
graph is itself h(k)-degenerate, for some polynomial function h, hence properly colourable with
h(k) + 1 colours; see Lemma 4.4.

Once again we can zoom in on a more structured subset of our permutation, where no pairs of
parts are mixed. This is because the so-called shuffles—permutation operations that can recreate
(<t,≺t) from the h(k) + 1 “non-mixed” permutations—can be expressed as bounded products of
separable permutations; see the more precise formulation of Lemma 2.2. We now want to decompose
a permutation (<′,≺′) in the same setting as (<t,≺t) but with the additional assumption that its
partition P has no pair of mixed parts.

Endgame—the induction trick on the almost mixed minor. Our last goal is to show that
for each P ∈ P the permutation restricted to the elements of P (at the level of the grandchildren of t)
as well as the permutation over the parts of P (at the level of the children of t) are simpler than the
initial permutation σ. As announced, this takes the form of proving that these permutations have
no (k−1)-almost mixed minor. Once this is established, we are finally done by invoking Lemma 4.1,
which decomposes (<′,≺′) into a bounded product involving the above-mentioned permutations
and separable permutations.

We are left with the task of building a k-almost mixed minor of σ (a contradiction) from
a supposed (k− 1)-almost mixed minor D over the children of some node v of T . Let us recall that

6

v

x1 x′1 x2 x′2 x3 x′3 x4 x′4 x5 x′5

v1 v′1

R0 R1 R2 R3 R4 R5

y1 y2y3 y4y5first

Figure 3: Illustration of the induction trick. By construction of the children of v, v1 and v′1 have
each a descendant (or simply child) x1 and x′1, respectively, such that there is a y1 outside the
descendants of v in between x1, x

′
1 in the order ≺′. Assume R1, . . . , R5 is a 5-almost mixed minor

on a choice of one descendant per child of v. For the sake of clarity, let us make the simplifying
assumptions that the minor is symmetric (Ci = Ri for every i), every yi is to the left of v, and
thus can be grouped together with first, the minimum along <′, in an interval R0 = C0 of <′, and
first ≺′ x for every x descendant of v. It then holds that R0 is mixed with each Ri (for i ∈ [5])
since for instance first ≺′ x1 ≺′ y1 ≺′ x′1 and first ≺′ x′2 ≺′ y2 ≺′ x2.

“starting a new sibling” in the construction of T means that the last element of the current child
and the first element of the new child are in two distinct intervals Ia, Ib. Hence there is an element
y outside the children of v such that Ia ≺′ y ≺′ Ib. We get one such y for every row part and every
column part of D. By leveraging again the shuffle trick, we can reduce to the case when all such
vertices are to the left (by <′) of the children of v (see Theorem 5.2). Then the minimum of <′

together with these vertices y can make a k-th interval (in rows and columns) that is mixed with
every previous part of D, thereby yielding a k-almost mixed minor (see Figure 3).

1.4 Perspectives

We prove that for permutations, the minimum size of an avoided pattern, and the minimum length
of a factorisation into separable permutations, are functionally equivalent. However, the bounds
we give are huge, the dependency being exponential in one direction, and doubly exponential
in the other, leaving open the question of finding tighter bounds. While avoided patterns have
been extensively studied, there is to our best knowledge no work on the length of factorisations
into separable permutations. A natural question is whether this new parameter can be computed
efficiently.

In a different direction, a natural generalisation of our result would be to extend this factorisation
to matrices. It was shown in [6] that a classM of 0,1-matrices closed under taking submatrices has
growth at most single-exponential if and only if M has bounded twin-width. It is then natural to
ask if every matrix of M can be factorised into a bounded product (say, computed in F2) of some
basic 0,1-matrices playing the role of separable permutations.

Finally, a crucial point of this work is perhaps the used strategy: To decompose a pattern-
free permutation (<1, <2), first find a third order <3 compatible with both orders (i.e. such that
(<1, <3) and (<2, <3) are k-mixed minor free), and then express both (<1, <3) and (<2, <3) as

7

delayed structured trees (see Figure 2). How delayed substitutions untangle the complexity of
permutations and other binary structures is a novel and promising tool that, we believe, can be
exploited in many other ways.

1.5 Organisation of the paper

In Section 2, we introduce a number of definitions, conventions, and simple results, which we use
throughout this work. Notably we recall the definitions of ordered trees, substitutions and shuffles of
permutations, degeneracy and proper colourings in the context of sparse circle graphs, and relevant
properties of classes with bounded twin-width. Note that we will not actually need the definition
of twin-width and of transductions (they can both be found for instance in [7]).

Section 3 focuses on delayed substitutions, detailing how to construct them, and how to de-
compose them into products and substitutions. Section 4 shows how to further decompose the
permutations that appear in the delayed substitution, by studying their mixed graphs. The core
of the proof of Theorem 1.1 is in Section 5, using lemmas from the previous sections to decompose
k-almost mixed free permutations into (k − 1)-almost mixed free ones. In Section 6, we explain
how to implement Theorem 1.1 in linear time. Finally, Section 7 shows how to apply Theorem 1.1
to graphs, to prove Theorems 1.4 and 1.5.

2 Preliminaries

This section defines our notations and conventions, and introduces some important constructions
on permutations. We denote by [n] the interval of integers {1, . . . , n}.

2.1 Ordered trees

Trees are used throughout this work to describe decompositions of permutations. We work with
rooted trees. Vertices of the trees are nodes. The ancestors of a node x are the nodes in the unique
path from x to the root r, and the parent of x is the first node on this path. We will also speak of
descendants, children, grandchildren, siblings (nodes with same parent), and cousins (non-sibling
nodes with the same grandparent). The set of leaves of a tree T is denoted by L(T). For any
node t ∈ T , we denote by T (t) the subtree rooted at t (i.e. consisting of the descendants of t), and
by L(t) ⊆ L(T) the set of leaves of T (t).

Here an ordered tree (T,<) is a rooted tree T equipped with a linear order < on L(T), such
that for each node t ∈ T , the leaves L(t) form an interval of <. In that case we also say that < is
compatible with T . It is natural to think of < as a left-to-right order.

If (T,<) is an ordered tree and x, y ∈ T are not in an ancestor–descendant relationship, then
L(x), L(y) are disjoint, and each of them is an interval for <, hence either L(x) < L(y), or L(y) <
L(x). We then naturally extend < to x, y by x < y in the former case, and y < x in the latter. In
particular, < induces a linear order <t on the children of any given internal node t. This can be
reversed. Given a tree T , and an order <t on the children of t for each internal node t, one can
define < compatible with T as follows: for any leaves x, y, we have x < y iff x′ <t y

′, where t is the
last (that is, closest) common ancestor of x, y, and x′ and y′ are the children of t that are ancestors
of x and y, respectively.

8

2.2 Permutations and biorders

Throughout the paper, we will represent permutations as biorders, i.e. the superposition of two
linear orders on the same set. Precisely, a permutation σ ∈ Sn is represented by the biorder
Bσ = ([n], <,<σ), where < is the natural order on [n], and x <σ y iff σ(x) < σ(y). Conversely,
from a biorder B = (X,<1, <2) on n elements, we define the associated permutation σB such that
if x ∈ X is in ith position for <1, then it is in position σB(i) for <2. This is a bijection between
permutations, and biorders considered up to isomorphism. In the proofs, this bijection will be left
implicit, and we may for example say that a biorder belongs to some class of permutations.

The inverse of a permutation is obtained by swapping the roles of the two orders:

σ−1
(X,<1,<2) = σ(X,<2,<1). (1)

Similarly, factoring (X,<1, <2) corresponds to choosing a third order <3:

σ(X,<3,<2) ◦ σ(X,<1,<3) = σ(X,<1,<2). (2)

The notion of pattern has a very natural definition in terms of biorders. A pattern of (X,<1, <2)
is any induced restriction (Y,<1, <2) for some subset Y ⊆ X.

2.2.1 Substitutions

Let us now introduce substitutions of permutations, which will be used throughout this work, and
are a natural introduction to the more general delayed decompositions presented in Section 3.
Substitutions are easily visualised through permutation matrices: the substitution of τ inside σ
corresponds to replacing one of the 1-entries in the matrix of σ by the matrix of τ . In this work,
we are interested in iterated substitutions—i.e. starting from a permutation σ in a class C, and
iteratively substituting other permutations of C inside it—and we will consistently use substitution
to mean iterated substitutions.

A precise description of an (iterated) substitution can be given by a tree as follows. Let T be
a tree, and <,≺ two linear orders on L(T), both compatible with T . For every internal node t ∈
T , they induce orders <t,≺t on the children of t. Then the permutation (<,≺) is obtained by
substitution of all the {(<t,≺t)}t∈T\L(T). In this case, we also say that (<,≺) is obtained by
substitution along T . Conversely, any iterated substitution process can be expressed through such
a tree.

For a class C of permutations, let C∗ denote the substitution closure of C, that is, σ is in C∗ if it is
obtained by substitution of permutations in C. We say that C is closed under substitution if C = C∗.
Note that (C∗)∗ = C∗, meaning that the substitution closure is indeed closed under substitution.
For example, the class S of separable permutations is the substitution closure of the class {12, 21}
of permutations on two elements. It happens that S is precisely the class of permutations excluding
the patterns 3142 and 2413 [9]. This implies that the inverse of a separable permutation is also
a separable permutation.

Lemma 2.1. If C,D are substitution-closed classes of permutations, then so are C ◦ D and C−1.

Proof. Let us prove more generally that for any classes C,D, the following holds:(
C−1

)∗
= (C∗)−1 and (C ◦ D)∗ ⊆ C∗ ◦ D∗. (3)

Let σ ∈
(
C−1

)∗
. Then, σ is obtained by substitution of {(<t,≺t)}t∈T\L(T) along a tree T , and for

every internal node t the permutation (<t,≺t) is in C−1. Let <,≺ be the corresponding linear orders

9

on L(T). Then, σ = (<,≺), hence σ−1 = (≺, <). However, (≺, <) is obtained by substitution of
{(≺t, <t)}t∈T\L(T) along T , and for every internal node t, (≺t, <t) = (<t,≺t)−1, so (≺t, <t) ∈ C.
Thus σ−1 ∈ C∗, and σ ∈ (C∗)−1. This proves that

(
C−1

)∗ ⊆ (C∗)−1. Applying this result to C−1,

we get C∗ ⊆
((
C−1

)∗)−1
. This immediately yields (C∗)−1 ⊆

(
C−1

)∗
.

Let σ ∈ (C ◦D)∗. Then, σ is obtained by substitution of {(<t,≺t)}t∈T\L(T) along a tree T , and
for every internal node t the permutation (<t,≺t) is in C ◦ D. Thus, for every such t, there exists
a linear order <′t on the children of t such that (<t, <

′
t) ∈ D and (<′t,≺t) ∈ C. Let <,<′ and ≺ be

the corresponding linear orders on L(T). Then, σ = (<,≺) = (<′,≺) ◦ (<,<′). However, (<′,≺)
is obtained by substitution of {(<′t,≺t)}t∈T\L(T) along T , so (<′,≺) ∈ C∗. Similarly, (<,<′) ∈ D∗,
thus σ ∈ C∗ ◦ D∗.

When C,D are closed under substitution, the inclusions (3) simplify to
(
C−1

)∗
= C−1 and

(C ◦ D)∗ ⊆ C ◦ D, proving the result.

2.2.2 Shuffles

A permutation σ ∈ Sn is a k-shuffle if there is some partition
⊎k
i=1Xi of its domain [n] such that

the restriction (in the sense of patterns) of σ to any Xi is the identity permutation. More generally,
given a class C of permutations, σ is a k-shuffle of C if there is a partition

⊎k
i=1Xi = [n] such that

the restriction of σ to any Xi is in C.
Let us say that a class C of permutations is closed under symmetry if it is closed by conjugating

with the decreasing permutation: if σ ∈ C, then the permutation i 7→ n + 1 − σ(n + 1 − i) should
also be in C. In terms of biorders, this corresponds to replacing each of the two linear orders by its
dual, i.e. its reverse order. Remark that if C,D are closed under symmetry, then so is C ◦ D. For
example, the class S of separable permutations is closed under symmetry.

Lemma 2.2. For a class C of permutations closed under substitution and symmetry, any 2k-shuffle
of C is in Sk ◦ C ◦ Sk. In particular, any 2k-shuffle is in S2k.

Proof. Let σ = (X,<1, <2) be a 2k-shuffle of C. Then there is a partition of its domain X = Y]Z
such that the restrictions of σ to both Y and Z are 2k−1-shuffles of C.

Define an intermediate linear order ≺1 by
• Y ≺1 Z,
• inside Y , ≺1 coincides with <1, and
• inside Z, ≺1 coincides with the dual of <1.

We claim that (X,<1,≺1), is separable. Indeed, let x be the minimum of X for <1. If x ∈ Y ,
then x is the minimum of ≺1, while if x ∈ Z it is the maximum of ≺1. Either way, we can
separate X into {x} and X \ {x}, and proceed by induction on the latter. This scheme is a decom-
position of (X,<1,≺1) as a separable permutation, with the specificity that the separating tree is
a caterpillar. We define ≺2 similarly with regards to <2, so that (X,≺2, <2) is separable.

Consider now the permutation (X,≺1,≺2). Since we have Y ≺i Z for both i = 1, 2, it suffices
to consider this permutation restricted to either Y or Z. By construction, the restriction to Y is
exactly (Y,<1, <2), and the restriction to Z is (Z,<1, <2) up to symmetry. These two permutations
are 2k−1-shuffles of C, hence by induction are in Sk−1 ◦ C ◦ Sk−1. Since this class is closed under
symmetry and substitution, we obtain that (X,≺1,≺2) is also in Sk−1 ◦ C ◦ Sk−1, and conclude by
composing with (X,<1,≺1) and (X,≺2, <2).

Finally, the remark that 2k-shuffles are in S2k is obtained by applying the result with C being
the class of identity permutations.

10

2.3 Twin-width

Guillemot and Marx [18] introduced a width of permutations, that was later generalised to graphs,
matrices, and binary structures by Bonnet et al. in [7] under the name of twin-width.

The twin-width of a graph G = (V,E) is defined through partition sequences (equivalent to
so-called contraction sequences), that is, sequences Pn, . . . ,P1 of partitions of V such that

1. Pn = {{x} : x ∈ V } is the partition into singletons,
2. P1 = {V } is the trivial partition, and
3. Pi is obtained from Pi+1 by merging two parts.

Two parts X 6= Y in Pi are homogeneous if there are either no edges or all possible edges between X
and Y in G. If X,Y are not homogeneous (i.e. there is at least one edge and one non-edge between
them), they are said to be in error. The width of the partition sequence Pn, . . . ,P1 is the maximum
over i ∈ [n] and X ∈ Pi of the number of parts of Pi in error with X—called the error degree
of X. Finally, the twin-width of G is the minimum width of a partition sequence. This definition
readily generalises to binary relational structures (V,R1, . . . , Rk), consisting of a domain, or vertex
set V , and a number of binary relations Ri ⊆ V 2. Remark in particular that biorders are binary
relational structures. In this setting, parts X,Y ∈ Pi are in error w.r.t. the relation Rj if there
are x1, x2 ∈ X, y1, y2 ∈ Y such that (x1, y1) ∈ Rj and (x2, y2) 6∈ Rj , or symmetrically (y1, x1) ∈ Rj
and (y2, x2) 6∈ Rj . The width of the partition sequence Pn, . . . ,P1 is now the maximum over
all j ∈ [k], i ∈ [n], and X ∈ Pi of the error degree of X in Pi w.r.t. Rj .

As fundamental property, twin-width exhibits a duality with grid-like structures in matrices—or
universal patterns of permutations. This result, based on the Marcus–Tardos theorem [22], appears
in the seminal work of Guillemot and Marx, and can be restated as follows.

Theorem 2.3 ([18, Theorem 4.1]). For any permutation π, there is cπ = 2O(|π|) such that if σ
avoids π as pattern, then the biorder Bσ associated with σ has twin-width at most cπ.

The bound cπ = 2O(|π|) in the restated theorem follows from a later improvement in the Marcus–
Tardos constant due to Fox [17]. A division D of a matrix consists of partitions R, C of its rows
and columns respectively into intervals. It is a k-division if the partitions have k parts each. A cell
of the division is the submatrix induced by X ∩Y for some X ∈ R, Y ∈ C. A k-grid in a 0,1-matrix
is a k-division in which every cell contains a 1-entry. Remark that the order of rows and columns
in crucial in these definitions because divisions are required to be partitions into intervals.

The notion of grid is tightly linked to permutation patterns, and to Theorem 2.3. In order
to generalise the latter to dense matrices, Bonnet et al. [7] introduced mixed minors. Say that
a matrix is horizontal if all rows are constant, i.e. in each row, all the coefficients are the same
(or equivalently, all columns of the matrix are equal). Symmetrically, it is vertical if all columns
are constant, and finally it is mixed if it is neither horizontal nor vertical. Then, a k-mixed minor
in a matrix is a k-division in which every cell is mixed. A matrix is said k-mixed free if it does
not have a k-mixed minor. The generalisation of Theorem 2.3 can then be stated as follows [7,
Theorem 5.8]: There is a function f such that if a graph G admits a k-mixed free adjacency matrix,
then G has twin-width at most f(k).

We will not need this result, but only its much simpler-to-prove converse.

Lemma 2.4 ([7, first part of Theorem 5.4]). If (V,R1, . . . , Rk) is a binary relational structure
with twin-width t, then there exists a linear order < on V such that the adjacency matrix of each
relation Ri, ordered by <, is (2t+ 2)-mixed free.

Pilipczuk and Soko lowski introduced the following subtle relaxation of mixed minors in [24].
Consider a k-division D = (R, C) of a matrix M , and enumerate the parts as R = {R1, . . . , Rk},

11

C = {C1, . . . , Ck}, following the order of rows and columns. We say that D is a k-almost mixed
minor if every cell of D is mixed, except possibly the diagonal cells Ri ∩ Ci for i ∈ [k]. Clearly
a k-mixed minor is also a k-almost mixed minor, and it is not hard to check that a 2k-almost mixed
minor yields a k-mixed minor by merging the parts by pairs. Thus these two notions are equivalent
up to a factor of two. The point of almost mixed minors is to allow a proof by induction: Ideally,
a structure without k-almost mixed minors, i.e. k-almost mixed free, is decomposed into smaller
parts that have no (k− 1)-almost mixed minors. The same scheme is much harder to achieve using
(regular) mixed minors.

2.4 Graphs, colouring, degeneracy

A k-colouring of a graph G is a map c : V (G) → [k] that assigns distinct colours to adjacent
vertices. Equivalently, it is a partition into k colour classes c−1(1), . . . , c−1(k), each of which is an
independent set (i.e. a set of pairwise non-adjacent vertices).

A graph G is k-degenerate if G and all its subgraphs have a vertex of degree at most k. A well-
known characterisation is that G is k-degenerate if and only if there is an acyclic orientation of
its edges such that all vertices have out-degree at most k. Degenerate graphs can be efficiently
coloured in the following sense.

Lemma 2.5 ([23]). Any k-degenerate graph G can be (k + 1)-coloured by a greedy algorithm.
Further, if the graph is given through adjacency lists, then this colouring can be computed in
time O(k |V (G)|) = O(|E(G)|).

A closely related parameter is the maximum edge density of G, that is, the maximum, taken over
all subgraphs H of G, of |E(H)| / |V (H)|. It is easy to see that k-degenerate graphs have maximum
edge density at most k, and conversely graphs with maximum edge density k are 2k-degenerate.
If G admits an orientation (which may contain cycles) in which vertices have out-degree at most k,
then its maximum edge density is at most k.

2.4.1 Circle graphs

Let I be a family of intervals of some linear order. Two intervals A,B overlap if they intersect, but
neither contains the other. The overlap graph of I is the graph whose vertex set is I, and where
intervals are adjacent exactly when they overlap. Overlap graphs are also known as circle graphs,
because they can be described by the intersections of a set of chords of a circle.

Let Kt denote the complete graph on t vertices, and Kt,t the balanced complete bipartite graph
on 2t vertices. We say that G is H-subgraph-free (resp. H-free) to mean that G does not have
a subgraph (resp. induced subgraph) isomorphic to H. The following lemma shows that circle
graphs excluding bicliques (and thus, cliques) as subgraphs are degenerate. Since we will use it for
colouring, it is worth comparing it to a result of Davies and McCarty stating that Kt-free circle
graphs have bounded chromatic number [16, 15]. Their hypothesis is weaker (arbitrary bicliques
are allowed), and the O(t log t) bound in [15] is better, but this bound applies only to the chromatic
number and not to the degeneracy, and the proof is far more complex.

Lemma 2.6. Circle graphs that are Kt-free and Kt,t-subgraph-free have maximum edge density at
most 2(t− 1)2.

Proof. Let I be a family of intervals whose overlap graph is Kt-free and Kt,t-subgraph-free. We
will define an orientation of the edges with out-degree at most 2(t− 1)2.

12

Consider two overlapping intervals A,B ∈ I. Relative to this edge, say that C ∈ I is a private
ancestor of A if A ⊆ C and B 6⊆ C, and symmetrically with B. We consider that A and B are also
private ancestors of themselves.

Claim 2.7. Every private ancestor of A overlaps with every private ancestor of B.

Proof. Let C,D be private ancestors of A,B respectively, with possibly C = A or D = B. Pick x ∈
a ∩B (which is non-empty as they overlap), and y ∈ a \D (which is non-empty by assumption),
and symmetrically z ∈ B \C. Then, because A ⊆ C and B ⊆ D, we also have x ∈ C∩D, y ∈ C \D,
and z ∈ D \ C, hence C and D overlap. ♦

Thus, there is a biclique between A and its private ancestors on the one hand, and B and its
private ancestors on the other. Since the overlap graph does not contain a Kt,t subgraph, it follows
that either A or B has less than t private ancestors. We orient the edge AB towards A if it has
less than t private ancestors, and towards B otherwise.

Let us bound the out-degree of this orientation. Fix I ∈ I, an interval with endpoints x < y,
and consider N+(I) the set of A ∈ I with an edge oriented from I to A. Any A ∈ N+(I) contains
either x or y, but not both. Let X be the set of intervals in N+(I) containing x, and consider the
inclusion poset (X,⊆).

Claim 2.8. The poset (X,⊆) does not contain a chain of length t.

Proof. If A1 (· · · (As are in X, then A1 overlaps with I, and each Ai is a private ancestor of A1

w.r.t. the edge A1I. From the orientation of the edge from I to A1, we know that A1 has less than t
private ancestors, hence s < t. ♦

Claim 2.9. The poset (X,⊆) does not contain an antichain of size t.

Proof. If A,B ∈ X are incomparable for inclusion, then they overlap because both contain x. Thus
an antichain in the poset (X,⊆) is a clique in the overlap graph. ♦

By Dilworth’s theorem, it follows from the two claims that |X| ≤ (t− 1)2. The same reasoning
applies to intervals in N+(I) containing y, and we obtain |N+(I)| ≤ 2(t− 1)2.

Finally, for algorithmic purposes, let us sketch how to efficiently compute circle graphs from
their interval representation.

Lemma 2.10. Given I a family of intervals in [n], one can compute the overlap graph G of I in
time O(n+ |I|+ |E(G)|).

Proof. We iterate for i from 1 to n, while maintaining the list L of intervals containing i, sorted
by their right endpoint. In the ith iteration, we consider all intervals of the form [i, j] sorted
by decreasing values of j, and naively insert each of them in L. Suppose that I = [i, j] is thus
inserted into L in position k, after J1, . . . , Jk−1. For ` < k, if J` = [a`, b`], then it must be that
a` < i ≤ b` < j. It follows that I overlaps with J1, . . . , Jk−1. Furthermore, any interval [a, b] which
overlaps with I and satisfies a < i will be one of the J`. Thus, during the insertion of I, we can
output all edges from I to intervals “to its left”, and the cost of the insertion of I is proportional
to the number of such edges. Finally, having inserted all intervals with left endpoint i, we remove
from the beginning of L all intervals with right endpoint i, before proceeding with i+ 1.

13

2.5 First-order transductions

For the sake of Theorem 1.5, let us introduce first-order logic, interpretations, and transductions.
A relational signature is a set Σ = {R1, . . . , Rk} of relation symbols, each with an associated

arity ar(Ri) ∈ N. A Σ-structure S is defined by a domain (or vertex set) V (S), and, for each
relation symbol R ∈ Σ of arity r := ar(R), a realisation R(S) ⊆ V (S)r of this relation. For
example, (simple undirected) graphs are structures over the signature {E} with ar(E) = 2 (with
the specificity that the realisation of E is symmetric and irreflexive), and biorders are structures
over the signature {<1, <2}, ar(<i) = 2 (the realisations being total orders). When all relation
symbols have arity 2, the signature and its structures are called binary. Recall from Section 2.3
that binary structures are the objects for which twin-width is defined.

An FO formula φ over the language of Σ can quantify on vertices, and test whether a rela-
tion R ∈ Σ holds for a given tuple of vertices. For example, over the language of graphs, the
formula

φ(x, y) = E(x, y) ∨ ∃z E(x, z) ∧ E(z, y)

expresses that x, y are at distance at most two. If φ is a formula over the language of Σ and S is
a Σ-structure, then S |= φ denotes that φ is satisfied by S, which is defined in the obvious way.

Given two signatures Σ,Γ, an FO interpretation Φ from Σ to Γ is a map, defined in FO logic,
from Σ-structures to Γ-structures. Precisely, Φ is described by giving

1. for each relation R ∈ Γ, a formula φR(x1, . . . , xr) over the language of Σ, with as many free
variables as the arity r := ar(R) of R, and

2. one last formula φdom(x) with one free variable, again over the language of Σ.

Given a Σ-structure S, its image Φ(S) is defined as follows.

1. The domain consists of vertices satisfying φdom, i.e.

V (Φ(S)) = {x ∈ V (S) : S |= φdom(x)}.

2. For each symbol R ∈ Γ, the realisation R(Φ(S)) is described by φR, i.e. for x1, . . . , xr ∈
V (Φ(S)),

(x1, . . . , xr) ∈ R(Φ(S)) ⇐⇒ S |= φR(x1, . . . , xr).

Transductions are a non-deterministic generalisation of interpretations. Let Σ be a signature,
and C1, . . . , Ck be k unary relation symbols (i.e. with arity 1), disjoint from Σ. The k-colouring
is the one-to-many operation which maps a Σ-structure S to all possible extensions of S as (Σ]
{C1, . . . , Ck})-structures S+, meaning that V (S) = V (S+) and R(S) = R(S+) for any R ∈ Σ, while
the Ci(S

+) are chosen to be arbitrary subsets of V (S+). An FO transduction is the composition
of a k-colouring (with k fixed), followed by an FO interpretation.

It is folklore that interpretations and transductions can be composed.

Lemma 2.11. If Φ,Ψ are FO transductions (resp. interpretations) from Σ to Γ and Γ to ∆ re-
spectively, then the composition Ψ ◦ Φ is an FO transduction (resp. interpretation) from Σ to ∆.

Finally, transductions preserve bounded twin-width in the following sense.

Theorem 2.12 ([7, Theorem 8.1]). For any FO transduction Φ, there is a function f : N → N
such that for any binary structures S and T ∈ Φ(S), tww(T) ≤ f(tww(S)).

14

3 Delayed substitutions

In this section, we recall the definition of delayed decompositions from [10, Section 2], which
generalise substitutions. Since we consider biorders and not arbitrary binary relations, we obtain
some additional structure on these delayed decompositions. We show that they can be expressed
as a bounded product of substitutions.

3.1 Definition

A delayed structured tree (T,<, {≺t}t∈T) consists of an ordered tree (T,<), equipped with, for
each node t ∈ T , a linear order ≺t on the grandchildren of t. This is analogous to the trees
describing substitutions, except that ≺t is defined on the grandchildren instead of the children,
hence ‘delayed’. We add the technical requirement that each leaf is a single child (with no siblings),
so that whenever x 6= y are leaves, their closest ancestor is at distance at least 2.

The realisation of this delayed structured tree is the structure (L(T), <,≺), where for two
leaves x, y, we have x ≺ y if and only if x′ ≺t y′, where t is the closest ancestor of x, y, and x′, y′ are
the grandchildren of t which are ancestors of x, y respectively. In general, this binary relation ≺ is
not an order, as it might not be transitive. We call the delayed structured tree well-formed if ≺
is a linear order, so that the realisation is a permutation on L(T). We only consider well-formed
delayed structured trees. Remark that in the realisation of the tree, we only use the linear order ≺t
between cousins; the order between siblings is irrelevant.

We say that the permutation (<,≺) is obtained by delayed substitution from the permutations
{(<t,≺t)}t∈T , understood as permutations on the grandchildren of t. If for each t ∈ T the per-
mutation (<t,≺t) on its grandchildren is in a given class C, we also say that the delayed structured
tree T is labelled with permutations in C, and that the permutation (<,≺) is obtained by delayed
substitution from C.

3.2 Distinguishability

The linear order ≺ is defined on the leaves of T . We extend it to a partial order on all nodes of T
where x ≺ y iff L(x) ≺ L(y), i.e. all descendants of x are strictly before all descendants of y for ≺.

Remark 3.1. Let x, y be nodes in T , and t their least common ancestor. If t is at distance at
least 2 of both x and y, then x, y are comparable by ≺, meaning either x ≺ y or y ≺ x. In particular,
if x, y are at the same level in T but are not siblings, then they are comparable by ≺.

Being incomparable by ≺ is not an equivalence relation, even when restricted to siblings: one
may have three siblings x, y, z such that x ≺ z, but L(x), L(y), resp. L(y), L(z) are interleaving
for ≺. However, we can define an equivalence relation by considering how other nodes can separate
siblings: let x, y be two children of a node t, and v ∈ L(T) \L(t). By Remark 3.1, v is comparable
by ≺ to both x and y. We say that x and y are distinguished by v if x ≺ v ≺ y or y ≺ v ≺ x. One
can check that if v ∈ L(T) \ L(t) distinguishes x, y, it must be a descendant of a cousin of x, y.
Finally, we call x, y indistinguishable, denoted x ∼ y, if x, y are siblings with parent t, and no
v ∈ L(T) \ L(t) distinguishes x and y. See Figure 4 for an example.

Lemma 3.2. Indistinguishability is an equivalence relation.

Proof. From its definition, one can see that ∼ is reflexive and symmetric. Let x, y, z be siblings
with parent t, and suppose that v distinguishes x, z, say x ≺ v ≺ z. Since v 6∈ L(t), y and v are
comparable. Thus it either holds that v ≺ y, in which case v distinguishes x, y, or y ≺ v, and v
distinguishes y, z. By contraposition, ∼ is transitive.

15

t

8 1 3 9 2 7 4 6 10 5 11

Figure 4: Indistinguishability for the grandchildren of a node t. The values and arrows represent
the linear order ≺t, and colours represent equivalence classes of indistinguishability.

Lemma 3.3. Let x, y be grandchildren of t such that x 6∼ y. Then x ≺ y if and only if x ≺t y.

Proof. Between cousins with grandparent t, the orders ≺ and ≺t coincide by definition of the
realisation. Thus, consider x, y siblings distinguished by some v, say x ≺ v ≺ y. Let v′ be the
cousin of x, y that is the ancestor of v. Now x and v′ are comparable by ≺, and v′ ≺ x is impossible
as it would imply v ≺ x, hence we have x ≺ v′. As noted at the beginning of the proof, this implies
x ≺t v′. The same reasoning gives v′ ≺t y, hence x ≺t y, i.e. ≺ and ≺t coincide on the pair x, y as
desired.

A crucial property of indistinguishability is that it is compatible with ≺ as follows.

Lemma 3.4. Let A be an equivalence class of ∼. Then, among the leaves L(T), the subset L(A) :=⋃
x∈A L(x) is an interval for ≺.

Proof. Let A be an equivalence class of ∼. All elements of A are siblings. Consider t their parent.
Let x, z ∈ L(A) and y ∈ L(T) \ L(A) be leaves, and suppose for a contradiction that x ≺ y ≺ z.
Let x′, z′ be the ancestors in A of x, z respectively. We have two cases to consider.

1. If y is not a descendant of t, then x′ and z′ are comparable by ≺ with y, and it must be
that x′ ≺ y ≺ z′, contradicting that x′, z′ are indistinguishable.

2. Otherwise, y is a descendant of some child y′ of t, which is distinguishable from x′ and from z′.
Thus there exist v1, v2 6∈ L(t) such that x′ ≺ v1 ≺ y′ and y′ ≺ v2 ≺ z′. But then we also
have x′ ≺ v1 ≺ z′, a contradiction.

3.3 Factoring delayed substitutions

We will now prove that any delayed substitution can be decomposed into products of substitutions.

Lemma 3.5. Let C be a class of permutations closed under substitution, taking patterns and inverse.
Then any permutation obtained by delayed substitution from C is in C3.

Proof. Let (X,<,≺) be a biorder, realised by a delayed structured tree (T,<, {≺t}t∈T) with
leaves L(T) = X, labelled in C. The linear order < is compatible with T , while ≺ is realised
by the delayed substitution.

Let us define an intermediate linear order <′ on X. For each internal node t of T , and for each
child x of t, choose an arbitrary descendant ft(x) ∈ X of x. Then, on the children of t, define
x <′t y if and only if ft(x) ≺ ft(y). These local orders extend to a linear order <′ on X, which by
construction is compatible with T .

16

Claim 3.6. For each t ∈ T , the permutation (<,<′t) on the children of t is in C.

Proof. Let A be the set of children of t. For each x ∈ A, let g(x) be the sole child of x which is
an ancestor of ft(x). Thus g(x) is a grandchild of t. For x 6= y ∈ A, we have g(x) < g(y) if and
only if x < y, by compatibility of < with T . Furthermore, the closest ancestor of ft(x), ft(y) is t,
hence ft(x) ≺ ft(y) if and only if g(x) ≺t g(y), by definition of ≺. Thus the permutation (<,<′t)
on A is equal to the permutation (<,≺t) on g(A), which is a pattern of the permutation (<,≺t)
on all grandchildren of t. The latter is in C by hypothesis. ♦

Since C is closed under substitution, it follows that the permutation (X,<,<′) is in C.
We now quotient the tree T by indistinguishability. Since ∼ can only identify siblings, the

quotient T ′ = T/ ∼ naturally has a tree structure. Furthermore, since the leaves of T are required
to be single children, no two leaves are identified, hence the set of leaves of T ′ is exactly X.

Claim 3.7. The tree T ′ is compatible with both <′ and ≺.

Proof. Lemma 3.4 precisely proves that T ′ is compatible with ≺: each node of T ′, which is an
equivalence class of ∼, corresponds to an interval of (X,≺).

Since <′ is compatible with T , to show that it is also compatible with T ′ = T/ ∼, it is sufficient
to consider only the children of a given t ∈ T . That is, it is enough to prove that among the
children of t, any equivalence class A for indistinguishability is an interval for <′. Suppose for
a contradiction that there are children x <′ y <′ z of t with x, z ∈ A and y 6∈ A. Since x 6∼ y, it
must be that x ≺ y or y ≺ x, but the latter is impossible as it would imply y <′ x. Thus x ≺ y,
and similarly y ≺ z, contradicting Lemma 3.4. ♦

Thus the permutation (X,<′,≺) is obtained by substitution along the tree T ′. It only remains
to show that this structured tree is labelled with permutations in C2.

Fix a node s̄ ∈ T ′, which in T is an equivalence class of ∼. Let t ∈ T be the parent of the
nodes of s̄ (only siblings can be in the same equivalence class for ∼). The children in T ′ of s̄
are equivalence classes of grandchildren of t in T . Denote by x̄1, . . . , x̄k these children, where
the representatives R = {x1, . . . , xk} are grandchildren of t. Recall that L(xi) ⊆ X is the set of
leaves descendant of xi. The subsets L(x1), . . . , L(xk) are non-interleaved for < and <′ because
these linear orders are compatible with T . Furthermore, they are non-interleaved for ≺ because
the xi are pairwise distinguished. Thus R is equipped with the three linear orders <,<′,≺. In the
structured tree T ′ which realises (X,<′,≺), s̄ is labelled with (R,<′,≺), hence we only need the
following to conclude.

Claim 3.8. The permutation (R,<′,≺) is in C2.

Proof. We decompose the permutation (R,<′,≺) into (R,<′, <) and (R,<,≺). This may at first
seem counterproductive, as we go back to the initial permutation (<,≺), but the point is that we
now only consider a small subset R, rather than all X.

We already know that (X,<,<′) is in C, hence so is (R,<′, <), which is a pattern of its inverse.
Furthermore, the xi are pairwise distinguished grandchildren of t, hence the linear orders ≺ and ≺t
coincide on R by Lemma 3.3. Thus (R,<,≺) is a pattern of (<,≺t), which is in C. ♦

As (X,<,≺) can be factorised into (X,<,<′) ∈ C and (X,<′,≺) ∈ C2, it is in C3.

17

3.4 Constructing delayed structured trees

Finally, we show how to express any permutation as a delayed substitution.

Lemma 3.9. Let σ = (X,<,≺) be a biorder. There is a structured tree (T,<, {≺t}t∈T) whose
realisation is σ, that satisfies the following.

1. For any node t ∈ T , the linear order ≺t on its grandchildren is obtained by a choice of
representatives. That is, if A is the set of grandchildren of t, then there is a mapping f : a →
X, with f(a) descendant of a, such that for a, b ∈ A, a ≺t b if and only if f(a) ≺ f(b).

2. If x, y are consecutive siblings along <, then x and y are distinguished for the linear order ≺,
except possibly if x and y do not have any other sibling.

In the previous statement, Condition 1 is a technical requirement ensuring that the permutations
labelling T are patterns of σ, so that hypotheses on σ can also be applied to the former. Condition 2
is crucial for the induction on almost mixed minors in Section 5. Informally, it ensures that
the subpermutations {(<,≺t)}t∈T labelling T are strictly simpler—in the sense of almost mixed
minors—than the global permutation (X,<,≺).

Proof of Lemma 3.9. We construct the tree T inductively starting from the root, choosing for each
internal node t the interval (for <) L(t) ⊆ X that, at the end of the construction, will be the set of
leaves descendant of t. We maintain the condition that whenever t′ is a child of t and x ∈ X \L(t),
then x does not split L(t′), i.e. either x ≺ L(t′) or x � L(t′).

Initially, there is only the root r with L(r) = X. If t and L(t) have already been constructed,
then we create the children of t by the following rules.

• If L(t) = {x} is a singleton, we add a leaf x as the sole child of t, and the construction stops
there for this branch.

• If L(t) has size at least 2, and is an interval of (X,≺) (in addition to being one for <), then
we add two children u, v to t, and split L(t) arbitrarily into two intervals L(u), L(v) for <.
Remark that this case occurs at least for the root r.

If x 6∈ L(t), then x does not split L(t), hence a fortiori it splits neither L(u) nor L(v), as
required. On the other hand, this means that u and v will be indistinguishable in T , which
is why condition 2 is waived for nodes with only two children.

• Otherwise, enumerate L(t) as x1 < · · · < xk. Say that a subset A ⊆ L(t) is a local module
of L(t) if no y 6∈ L(t) splits A (for ≺). We greedily partition L(t) into local modules A1, . . . , Al:
A1 is {x1, . . . , xi1} with i1 chosen maximal such that A1 is a local module, then A2 is {xi1+1,
. . . , xi2} with again i2 maximal, etc.

By construction, no element y 6∈ L(t) can split any Ai. Further, Ai, Ai+1 are distinguished (in
fact, the last element of Ai is distinguished from the first element of Ai+1), as otherwise Ai
could have been extended. Also, the number l of local modules in this partition is at least 2,
as otherwise L(t) would be an interval of (X,≺) and we would fall in the previous case.

With this tree constructed, consider a node t ∈ T , and u, v two grandchildren of t that are
not siblings. Then the condition maintained during the construction ensures that no x ∈ L(u)
splits L(v), and symmetrically no y ∈ L(v) splits L(u). It follows that either L(u) ≺ L(v) or L(v) ≺
L(u). In short, the order ≺ is well defined between cousins in T .

18

Now, define the linear order ≺t on the grandchildren through an arbitrary choice of represent-
atives, as required in condition 1 of the lemma. Then for cousins u, v, we have u ≺t v if and only
if u ≺ v. In turn, this implies that the realisation of (T,<, {≺t}t∈T) is the permutation (X,<,≺)
from which we started. Condition 1 is satisfied by definition of ≺t, and condition 2 was verified
during the construction of T .

4 Partitions and mixity

In this section, we introduce tools to further decompose a single level of a delayed structured tree.
Their purpose is similar to the right module partitions of [10, Section 4], but once again working
with biorders gives stronger results and simpler proofs.

4.1 Definitions

Let (X,≺) be a linear order, and P a partition of X. For any subsets X1, X2 ∈ P, we distinguish
three cases:

1. X1, X2 do not interleave, i.e. X1 ≺ X2 or X2 ≺ X1.

2. Restricted to X1 ∪X2, X1 is an interval which is said to split X2 in two, written X1 @ X2,
or vice versa.

3. Neither X1 nor X2 is an interval in X1 ∪X2, and we say that X1, X2 are mixed.

These three cases correspond to zones in the adjacency matrix that are respectively constant,
vertical or horizontal, and mixed.

Assume now that no pair of subsets in P is mixed—we then say that P is non-mixed. For
any X1 ∈ P, let X1 denote the interval closure of X1, i.e. the interval of (X,≺) between the
minimum and maximum of X1. Then we have X1 ≺ X2 if and only if X1 ≺ X2, and X1 @ X2

if and only if X1 ⊂ X2. In particular, either X1, X2 are disjoint, or one contains the other.
Thus (X,P) induces a laminar family, meaning that subsets in P are the nodes of a rooted forest F ,
where X1 is a descendant of X2 if and only if X1 @ X2. Furthermore, the order ≺ is defined for
any pair of subsets X1, X2 ∈ P that are not in an ancestor–descendant relationship. Thus ≺ gives
to F the structure of an ordered forest: each connected component of F is an ordered tree, and
furthermore ≺ orders the components.

4.2 Non-mixed partitions

We now consider a biorder (X,<,≺), and a partition P of X into intervals for <. In later proofs,
such a structure will arise from delayed substitutions as follows: Given a node t in a delayed
structured tree, X is the set of grandchildren of t, the partition P is the one given by the children
of t, < is the linear order compatible with the tree, while ≺ is the linear order on the grandchildren
of t given as part of the delayed structured tree. Our goal is to decompose this biorder into simpler
permutations.

Lemma 4.1. Let C be a substitution-closed class of permutations. Let (X,<,≺) be a biorder, and P
a partition of X into intervals of <. Suppose that P is non-mixed w.r.t. ≺. Finally, assume that

1. for each part P ∈ P, (P,<,≺) is in C, and

19

1 14 410 10

2 23 35 59 9

6 67 78 8

Figure 5: The tree T , ordered by ≺ (left) and <′ (right) respectively. Leaves are elements of X,
and their numbering is according to ≺. Internal nodes correspond to parts in P, with each colour
representing a part of P. The transversal R is indicated by circled leaves, and decides how <′

orders the parts.

2. there exists a transversal R of P (i.e. a choice of a single element in each part of P) such
that the permutation (R,<,≺) is in C.

Then (X,<,≺) is in S2 ◦ C, where S denotes the class of separable permutations.

Proof. Let us define an intermediate linear order <′ on X as follows:

• each part P ∈ P is an interval of (X,<′),

• inside each part P , the linear order <′ coincides with ≺, and

• between parts P1, P2 ∈ P, the order is given by the representatives in R, i.e. if xi is the sole
element in Pi ∩R, then P1 <

′ P2 if and only if x1 ≺ x2.

Claim 4.2. The permutation (X,<,<′) is in C.

Proof. The permutation inside a given part P ∈ P is (P,<,≺), which is known to be in C. Fur-
thermore, the permutation on the set P is isomorphic to (R,<,≺), which is also in C. Therefore
(X,<,<′) can be expressed as a substitution from permutations in C, with a structured tree of
depth 2. ♦

We now focus on (X,<′,≺), and will prove that this permutation is obtained by substitution from
2-shuffles. Such permutations are in S2 by Lemma 2.2 and since S is closed under substitution.

Recall the structure on (X,≺) and P described in Section 4.1: Since the partition P is non-
mixed w.r.t. ≺, the splitting partial order @ (related to ≺) gives P the structure of a rooted forest F ,
which furthermore is compatible with the linear order ≺. We construct a tree T from F by

• adding a new root, whose children are the roots of the connected components of F , and

• for each P ∈ P node of F , adding each element x ∈ P as a new child of P .

The leaves of T are exactly the elements of X, and we will describe (X,<′,≺) as a substitution
along T . See Figure 5 for an illustration.

Claim 4.3. The linear orders <′ and ≺ are compatible with T .

20

Proof. Consider a node t of T , other than the leaves and the root for which it is straightforward
that L(t) is an interval of <′ and of ≺. Thus t corresponds to some part P ∈ P (and we now
identify t to P). Then it is simple to check that L(P), the set of leaves descending from P in T , is
exactly

⋃
P ′vP P

′, i.e. the union of parts which are descendants of P in F . We claim that this is
an interval for both <′ and ≺.

Suppose otherwise towards a contradiction. Then there are u,w ∈ L(P) and v 6∈ L(P) such
that either u ≺ v ≺ w or u <′ v <′ w. Let U, V,W be the parts of P containing u, v, w respectively.
We have U,W v P , and V 6v P . Recall that P denotes the interval between the minimum and
maximum of P for ≺. Then we have U,W ⊆ P , while V is disjoint from P . This implies u,w ∈ P
but v 6∈ P , hence it cannot be that u ≺ v ≺ w since P is an interval of ≺.

For <′, we also need to consider the representative v′ ∈ V ∩R. For the same reasons as above,
we have either v′ ≺ U ∪W , or U ∪W ≺ v′, which implies V <′ U ∪W or U ∪W <′ V respectively.
Either way, u <′ v <′ w is impossible. ♦

To conclude the proof, we only need to show that for any internal node P of T , the permutation
(X,<′,≺) restricted to its children is a 2-shuffle. We partition the children of P in two categories:
leaves (which are in X), and internal nodes (which are in P). We claim that (X,<′,≺) restricted
to either of these categories is the identity.

1. The leaves that are children of P are exactly the elements of P , and inside P the linear
orders <′ and ≺ coincide by construction.

2. The parts of P that are children of P in T are exactly the children of P in F . We know
that they are totally ordered under ≺, i.e. if A,B ∈ P are children of P , then either A ≺ B
or B ≺ A. By construction of <′, if A ≺ B (resp. B ≺ A) then A <′ B (resp. B <′ A). It
follows from these two remarks that <′ and ≺ coincide on the children of P in F .

4.3 Separating mixed parts

The previous lemma shows how to decompose a permutation that is non-mixed w.r.t. a given
partition. We will now generalise it to permutations with few pairs of mixed parts. Let (X,<) be
a linear order and P a partition of X. The associated mixed graph is the graph with vertex set P,
and where two parts A,B ∈ P are adjacent when they are mixed.

Lemma 4.4. Let G be the mixed graph of a partition, and assume that it is Kt-free and Kt,t-
subgraph-free. Then G is (4t2 − 1)-degenerate.

Proof. Let G = (P, E) be the mixed graph of a partition P of a linear order (X,<). We partition
the edges of G into E = E1] E2 as follows:

1. An edge AB ∈ E is in E1 if the interval closures satisfy A ⊂ B or B ⊂ A.

2. The remaining edges are in E2. Thus, a pair (A,B) ∈ P is an edge in E2 if and only if A
and B overlap.

The graph (P, E2) is precisely the overlap graph of the interval closures of parts of P. Thus by
Lemma 2.6, its maximum edge density is at most 2(t − 1)2. We will show that (P, E1) is (t − 1)-
degenerate, hence has maximum edge density at most t−1. Then, their union (P, E) has maximum
edge density at most t− 1 + 2(t− 1)2 ≤ 2t2 − 1, hence it is (4t2 − 1)-degenerate as desired.

To this end, we define an acyclic orientation of (P, E1) for which the out-degree is at most t−1.
If AB is an edge in E1 and A ⊂ B, we orient it from A to B. We claim that for any part A ∈ P,

21

A
B1

B2

B3

C
D

y1 y2y3

Figure 6: Representation of six parts of P. Each row is a part P , the dots being elements of P ,
and the line being the interval P . The left-to-right order is ≺. The Bis are out-neighbours of A
in the graph (P, E1), and yi ∈ Bi ∩ A witnesses that A and Bi are mixed. For any i 6= j, yi, yj
together with the endpoints of Bi, Bj ensure that Bi and Bj are mixed. The part C satisfies A ⊂ C,
but is not mixed with A as C ∩ A = ∅. The part D is mixed with A because A and D overlap,
hence AD ∈ E2.

the out-degree of A in (P, E1) is at most t− 1. Indeed, let B1, . . . , Bk be the out-neighbours of A,
so that each Bi is mixed with A, and A ⊂ Bi (see Figure 6). We will show that A,B1, . . . , Bk is
a clique in (P, E), which implies the claim as this graph has no clique of size t. To this end, we
need to show that any two Bi 6= Bj are mixed. Without loss of generality, assume that Bi 6⊂ Bj ,
hence there is some x ∈ Bi outside of Bj , say x < Bj . On the other hand, since Bi is mixed with A,
there must be y ∈ Bi ∩ A, and thus y ∈ Bi ∩ Bj . Thus we have two points in Bi, one inside the
interval closure of Bj and one outside. This implies that Bi and Bj are mixed.

Combining this with Lemma 4.1, we obtain the following, where (as throughout the paper) the
log function is in base 2.

Lemma 4.5. Let C be a class of permutations closed under substitution, symmetry, and taking
patterns. Let (X,<,≺) be a biorder, and P a partition of X into intervals of <, satisfying the
following:

1. The mixed graph of P for the linear order (X,≺) does not contain Kt or Kt,t subgraphs.

2. For each part P ∈ P, the permutation (P,<,≺) is in C.

3. There exists a transversal R of P (i.e. a choice of a single element in each part of P) such
that the permutation (R,<,≺) is in C.

Then the permutation (X,<,≺) is in Sk+2 ◦ C ◦ Sk, with k = d2 log te+ 2.

Proof. Using Lemmas 4.4 and 2.5, the mixed graph of P is 4t2-colourable. Fix a proper 4t2-
colouring, and for any fixed colour c ∈ [4t2], let Pc be the set of parts of colour c, and Xc =

⋃
P∈Pc P

the points contained therein. Since the colouring is proper, no two parts of Pc are mixed. Thus
the restricted biorder (Xc, <,≺) with the partition Pc satisfies the conditions of Lemma 4.1, and
the permutation (Xc, <,≺) is in S2 ◦ C. Hence, (X,<,≺) is a 4t2-shuffle of permutations in S2 ◦ C.
We conclude by applying Lemma 2.2 with k =

⌈
log(4t2)

⌉
= d2 log te+ 2.

5 Reducing the size of almost mixed minors

Given a biorder σ = (X,<,≺) define its adjacency matrix Mσ as the 0,1-matrix whose rows and
columns are X ordered by <, and with a 1 in position (x, y) if and only if x ≺ y, i.e. if and
only if σ(x) < σ(y). Equivalently, Mσ is obtained by applying σ−1 to both the rows and the

22

columns of the full upper triangular matrix. This should not be confused with the more usual
sparse permutation matrix, with a 1 in positions of the form (x, σ(x)). We say that σ is k-almost
mixed free as shorthand for Mσ being k-almost mixed free.

Using the tools from the previous sections, we will show how to factorize k-almost mixed free
permutations, by induction on k. The base case is the following simple remark.

Lemma 5.1. Any 2-almost mixed free permutation is separable.

Proof. A permutation that is not separable contains either 3142 or 2413 as pattern, both containing
2-almost mixed minors in their adjacency matrices (they in fact also contain 2-mixed minors). See
Figure 7 for the adjacency matrix of 3142, the matrix of 2413 is its transpose.

3

3

0
1
0
1

1

1

0
0
0
0

4

4

1
1
0
12

2

0
1
0
0

Figure 7: Adjacency matrix of the permutation σ = 3142, which contains a 2-mixed minor repres-
ented by dashed lines. The matrix has a 1 at the intersection of the ith row and jth column if and
only if σ(i) < σ(j).

Let Ak denote the class of k-almost mixed free permutations, and recall that S is the class of
separable permutations.

Theorem 5.2. If Ak−1 ⊆ Sr for some r ∈ N, then Ak ⊆ Ss for

s = 3r + 12 dlog ke+ 28.

Proof. Assume that Ak−1 ⊆ Sr, and consider σ = (X,<,≺) ∈ Ak a k-almost-mixed free permuta-
tion. Denote by first and last the minimum and maximum of X w.r.t. <. For the linear order ≺,
first and last split X into three intervals as

X1 ≺ first ≺ X2 ≺ last ≺ X3,

up to swapping first and last. We consider each Xi independently, before recombining X1, X2, X3,
and {first, last}. Let X ′ = Xi be one of these intervals, and σ′ = (X ′, <,≺) the restricted
permutation.

Let (T,<, {≺t}t∈T) be a delayed structured tree for σ′ obtained by Lemma 3.9. Consider any
internal node t ∈ T , let A be its set of children, and consider a transversal S ⊆ X ′ of A, i.e. all
elements of S are descendants of t, and each child v ∈ A has exactly one descendant in S.

Claim 5.3. The transversal S admits a partition into two parts S = SL] SR such that the per-
mutation (<,≺) restricted to each of SL, SR is (k − 1)-almost mixed free.

Proof. Enumerate the children of t as v1, . . . , v` in the linear order <, and let xi be the descendant
of vi in S. We can assume ` > 2 as the claim is otherwise trivial, hence condition 2 of Lemma 3.9
gives that for all i ∈ {1, . . . , `− 1}, vi and vi+1 are distinguishable. Thus, we can choose some yi ∈
X ′ \ L(t) such that vi ≺ yi ≺ vi+1, or vi+1 ≺ yi ≺ vi.

23

If yi < L(t) (resp. yi > L(t)) we say that vi is split to the left (resp. to the right). Thus
every vi except v` is split either to the left or to the right. We partition S accordingly, so that SL
(resp. SR) contains xi only if vi is split to the left (resp. to the right). We place x` in either SL
or SR arbitrarily. We will prove that (SL, <,≺) is (k − 1)-almost mixed free, the case of SR being
symmetrical.

Suppose for a contradiction that (SL, <,≺) has a (k − 1)-almost mixed minor. It is given by
two partitions of (SL, <) into (k − 1) intervals, say

R = {R1 < · · · < Rk−1} and C = {C1 < · · · < Ck−1}

such that for every i 6= j ∈ [k − 1], Ri and Cj are mixed in the linear order ≺. Note in particular
that all Ri and Cj have size at least 2. Starting from R and C, we build two new partitions R′ =
{R′0 < · · · < R′k−1} and C′ = {C ′0 < · · · < C ′k−1}, which will form a k-almost mixed minor of (a
pattern of) σ, as follows:

• Initially set R′0 = {first}, C ′0 = {first}, and R′i = Ri and C ′i = Ci for i ≥ 1.

• For each i ≥ 1, consider xj the minimum of Ri w.r.t. <. Since Ri has size at least 2, we
have j < `, and either xj+1 ∈ Ri, or xj+1 is not in SL. We add xj+1 to R′i in the latter case,
and in both cases we add yj to C ′0. Recall that yj < L(t) since vj is split left.

• The same operation is applied to C′, adding yj to R′0, and xj+1 to C ′i if needed.

After this modification, all elements of R′0 are smaller than L(t) for <, hence R′ is still a partition of
a subset of X into intervals of <, and similarly with C′. The parts which were originally in R, C have
only increased, hence for i 6= j, i, j ≥ 1, R′i and C ′j are mixed. We claim that R′0 is mixed with C ′i
for any i > 0, and symmetrically for C ′0, R

′
i, which implies that the new R′, C′ form a k-almost

mixed minor in (a submatrix of) Mσ, a contradiction.
Indeed, let xj be the smallest element of Ri, so that yj ∈ C ′0 distinguishes xj and xj+1, i.e.

either xj ≺ yj ≺ xj+1 or xj+1 ≺ yj ≺ xj . On the other hand, by construction of X ′, first is not
interleaved with xj , xj+1 (or any elements of X ′), i.e. either first ≺ xj , xj+1 or xj , xj+1 ≺ first.
The above implies that {first, yj} and {xj , xj+1} are mixed. The former is contained in C ′0, while
the latter is contained in R′i, proving the claim.

The same reasoning also holds for SR, using last instead of first and adding parts R′t and C ′t
instead of R′0 and C ′0. ♦

It follows from Claim 5.3 that for any transversal S of the children of a node t, the permutation
(S,<,≺) is a 2-shuffle of permutations in Ak−1, hence is in Sr+2 by Lemma 2.2.

Fix now a node t ∈ T , and let A be the set of grandchildren of t. Consider the permutation
(A,<,≺t), and the partition P of A induced by the children of t. Recall that Sr+2 is closed under
substitution, inverse and taking patterns. Let us check that the three conditions of Lemma 4.5 are
satisfied.

1. If the mixed graph of P for the linear order (A,≺t) contains either Kk or Kk,k as a subgraph,
then the corresponding parts form a k-almost mixed minor in the matrix of (A,≺t) ordered
by <. We know that the linear order ≺t is defined through a choice of representatives,
hence (A,<,≺t) is a pattern of (X,<,≺), meaning that the latter would also have a k-almost
mixed minor, a contradiction.

2. Fix a part P ∈ P. The elements of P are the children of some child t′ of t, thus the restricted
permutation (P,<,≺t) is isomorphic to (S,<,≺) for some transversal S of P . By Claim 5.3
applied on t′, this permutation is in Sr+2.

24

3. Similarly, applying Claim 5.3 this time to t shows that for any transversal S of P, the
permutation (S,<,≺t) is in Sr+2.

It follows from Lemma 4.5 that the permutation (A,<,≺t) is in Sr′ with

r′ = (r + 2) + 2 (d2 log ke+ 2) + 2

≤ r + 4 dlog ke+ 8.

Next, we apply Lemma 3.5 to the delayed structured tree T and conclude that (X ′, <,≺) is in S3r′ .
Recall that X ′ was one of three intervals of (X,≺) defined by first and last. Combining the
permutations on these three intervals and on {first, last}, we finally find that σ = (X,<,≺) is
a 4-shuffle of permutations in S3r′ . By Lemma 2.2, this implies that σ is in Ss for

s = 3r′ + 4

≤ 3r + 12 dlog ke+ 28.

Recursively applying Theorem 5.2 gives the following bound on the length of factorisations of
k-almost mixed free permutations.

Corollary 5.4. Any k-almost mixed free permutation factorises into a product of at most 4 · 3k
separable permutations.

Proof. Lemma 5.1 and Theorem 5.2 give that k-almost mixed free permutations are product of
at most f(k) separable permutations for any function f satisfying

f(2) ≥ 1

and f(k) ≥ 3f(k − 1) + 12 dlog ke+ 28.

This is satisfied for
f(k) = 4 · 3k − 6 dlog ke − 23.

Indeed, we have

f(2) = 4 · 32 − 6 dlog 2e − 23 = 7.

and f(k) = 4 · 3k − 6 dlog ke − 23

≥ 4 · 3k − 18(1 + dlog(k − 1)e) + 12 dlog ke − 23

= 3
(
4 · 3k−1 − 6 dlog(k − 1)e − 23

)
− 18 + 12 dlog ke+ 2 · 23

= 3f(k − 1) + 12 dlog ke+ 28.

The last step is to show that pattern-avoiding permutations decompose into almost-mixed free
ones. Here, it is worth noting that permutations avoiding a fixed pattern may contain arbitrarily
large mixed minors. This is the case of 2-shuffles: if < is the usual order on [n], and ≺ orders
all odd integers before the even ones, then the adjacency matrix of ≺ ordered by < contains an
(n/2)-mixed minor. Thus the permutation σ = (<,≺) has arbitrary mixed minors despite avoiding
the pattern 321. (In this specific example, the inverse permutation σ−1 = (≺, <) is 4-mixed free,
but one could combine σ and σ−1 to obtain an example where the inverse also has arbitrary mixed
minors.)

In general, we need to introduce a third linear order to obtain a k-mixed free structure.

25

Lemma 5.5. For any pattern π, there exists k = 2O(|π|) such that any permutation σ avoiding π
factorises as

σ = σ2 ◦ σ−1
1

where σ1, σ2 are k-almost mixed free.

Proof. Let (X,<1, <2) be a biorder representing σ. If σ avoids π, then by Theorem 2.3, (X,<1, <2)
has twin-width t = 2O(|π|). Thus, by Lemma 2.4, there exists a third linear order <3 on X such that
the adjacency matrix of either <1 or <2 ordered by <3 is (2t+ 2)-mixed free. It follows that these
adjacency matrices ordered by <3 are k-almost mixed free for k = 4t+4. Defining the permutations
σ1 = (X,<3, <1) and σ2 = (X,<3, <2), we obtain the result.

Our main result immediately follows from Corollary 5.4 and Lemma 5.5.

Theorem 1.1. For any pattern π, there exists kπ = 22O(|π|)
such that every permutation avoiding π

is a product of at most kπ separable permutations.

6 Algorithmic implementation

The proofs of the previous sections are all effective, and yield an FPT algorithm to compute the
factorisation given by Theorem 1.1. A relatively naive implementation should run in quadratic
time, for any fixed excluded pattern. In this section, we explain how to improve this to get
a linear complexity focusing on the fow sections of the proof for which this is not straightforward:
computing the delayed structured tree in Lemma 3.9, finding a proper colouring of the mixed graph
in Lemma 4.5, and finding a mixed-minor free order in Lemma 5.5.

We work in the RAM model. We assume that a permutation σ is given as an array containing [n]
in permuted order. If σ is the biorder (X,<1, <2), it means that

1. we can sort X according to either <1 or <2 in linear time, and

2. after this preprocessing, we can in constant time compute successors and predecessors for
either of the two linear orders <1, <2 (in addition to being able to compare two given ele-
ments).

For example, the linear algorithm would not apply if <2 was given as a comparison oracle, or as an
array of arbitrary numbers. Note that Guillemot–Marx algorithm for pattern detection [18] makes
the same assumption, and we use it in the form of Theorem 2.3.

6.1 Delayed substitutions

We first describe how to compute a delayed structured tree for a permutation σ = (X,<,≺). We
see σ as an array containing values from 1 to n, so that < is the left-to-right order on the array,
and ≺ compares the values. Thus we will prefer to say ‘left’ and ‘right’ when referring to <, and
‘greater’ or ‘smaller’ when referring to ≺.

We use as subroutine the classical problem of finding extrema in a given interval of an array.

Theorem 6.1 ([19, 26, 2]). Given an array A, one can, after a linear-time preprocessing, find in
constant time the minimum and maximum (and their positions) in any interval in A.

Given x, y ∈ X, let D(x, y) be the interval between x and y in the linear order ≺. This is the
set of elements that distinguish x and y.

26

Lemma 6.2. Given a permutation σ, one can compute in time O(|σ|) a delayed structured tree
for σ subject to the restrictions of Lemma 3.9.

Proof. For all intents and purposes, the proof of Lemma 3.9 is already an algorithm. The issue is to
implement it in linear time. Let us recall the important basic operation in the proof of Lemma 3.9:
given Y ⊆ X an interval for <, we want to partition it into some intervals Y1 < · · · < Yk such that

• no z ∈ X \ Y distinguishes two elements of the same Yi (i.e. Yi is a local module), and

• Yi and Yi+1 are distinguished by some z ∈ X \ Y (i.e. the Yi are maximal).

The delayed structured tree is obtained by repetitively applying the former operation, except
when Y is simultaneously an interval for < and for ≺, in which case we do an arbitrary split. To
construct the tree in linear time, it is sufficient to implement this splitting operation in time O(k),
where k is the number of parts produced by the splitting.

To this end, we define some auxiliary arrays. Let x1, . . . , xn be the elements of X ordered left
to right. For each pair of consecutive xi, xi+1, let li and ri be the leftmost and rightmost elements
of D(xi, xi+1). Remark that this definition is independent of Y . Let L be the array l1, . . . , ln−1,
and R, the array r1, . . . , rn−1.

Claim 6.3. One can compute all li and ri in linear time.

Proof. This is exactly Theorem 6.1, but on the inverse permutation σ−1. Indeed, li and ri are the
minimum and maximum w.r.t. < of the interval between xi and xi+1 for ≺. ♦

We now want to generalise this claim to any interval of X. Given Y ⊆ X an interval for <,
let l(Y) and r(Y) be the leftmost and rightmost elements in X that distinguish some pair of
elements in Y . Remark that if z distinguishes two elements of Y , then it must also distinguish two
consecutive elements of Y . It follows that if Y = {xi, . . . , xj}, then l(Y) is the leftmost element
among li, . . . , lj−1, and r(Y) is the rightmost element among ri, . . . , rj−1.

Claim 6.4. After a linear-time preprocessing, one can answer the following query in constant time:
Given an interval Y of <,

1. find l(Y) and r(Y), and

2. find two consecutive xi, xi+1 ∈ Y distinguished by l(Y), or by r(Y).

Proof. Apply Theorem 6.1 to the auxiliary arrays L and R. ♦

We are now ready to solve the problem of splitting an interval Y into local modules. Using
Claim 6.4, we compute l(Y) and r(Y). If both are contained in Y , then Y is simultaneously
an interval of < and of ≺, and there is nothing to do. Otherwise, if for instance l(Y) 6∈ Y , we
also obtain from Claim 6.4 two consecutive xi, xi+1 distinguished by l(Y). We split Y into Y1, Y2

containing elements left of xi, and right of xi+1 (inclusive). The above only takes constant time.
We then recurse in Y1 and Y2. If for instance l(Y1) and r(Y1) are both inside Y (but not necessarily
in Y1), then Y1 is a local module of Y , and we do not need to split it further. Otherwise, we obtain
a new position at which Y1 can be split, and we continue.

This construction stops once Y has been partitioned into local modules Y1, . . . , Yk. The num-
ber of steps, and hence the complexity, is proportional to the number of parts k. Finally, each
split between consecutive Yi, Yi+1 is explicitly given by some element outside Y distinguishing the
rightmost element of Yi from the leftmost element of Yi+1. Thus the sets Yi are also maximal as
desired.

27

6.2 Mixed graphs

Next, we explain how to colour the mixed graphs of Lemma 4.5 in linear time, at the price of
a somewhat worse bound than the one given by Lemma 4.4.

Lemma 6.5. Given a linear order (X,<), and a partition P of X whose mixed graph has no Kt

or Kt,t subgraph, one can compute a 4t3-colouring of the mixed graph of P in time O(t3 |X|).

Proof. We know by Lemma 4.4 that the mixed graph of P is (4t2 − 1)-degenerate. Thus, using
Lemma 2.5, we could compute a colouring in linear time if we were given the mixed graph. The
only problem is to compute the latter. We set n = |X|. Recall the partition of the edges of the
mixed graph used in Lemma 4.4: E1 contains the edges AB such that the interval closures of the
parts A,B ∈ P satisfy A ⊆ B or B ⊆ A, and the remaining edges are in E2.

The graph (P, E2) is the overlap graph of the interval closures of parts of P. By Lemma 2.6, its
maximum edge density is at most 2(t − 1)2. In particular, the number of edges in E2 is O(n · t2),
hence by Lemmas 2.5 and 2.10, we can compute (P, E2) and find a 4t2-colouring, all in time O(n·t2).

Let us now focus on the edges of E1. We will not try to compute E1 entirely. Instead, we
consider a colour class P ′ ⊆ P of (P, E2)—hence a subset of parts satisfying that no pair A,B ∈ P ′
overlaps—and we will find a t-colouring of the subgraph (P ′, E1).

The interval closures of parts in P ′ do not overlap, hence they are a laminar family, or equi-
valently a rooted forest F , where the ancestor relation is inclusion. We add as leaves of F all the
singletons {x}, x ∈ X, whose parent is the smallest interval A containing x with A ∈ P ′, if any.
Using a stack and iterating over P ′ ordered by left endpoints, one can compute the edges of F in
time O(|X|+ |P ′|).

Consider now an edge AB ∈ E1 with A ⊆ B. For this edge to exist, i.e. for A and B to be
mixed, there must be some b ∈ B∩A. We say that b witnesses the edge AB. Remark that this edge
may be witnessed by many different elements of B. Now suppose that B and b ∈ B are fixed, and
consider all the A ∈ P ′ such that there is an edge AB witnessed by b. These are exactly the A ∈ P ′
satisfying b ∈ A ⊆ B, that is, the nodes on the path from b to B in F . Therefore, to compute all
edges of E1 going down (in F) from B, it suffices to consider all elements b ∈ B, and take the union
of all paths from such a b to B in F . It is simple to compute this in time linear in |B| plus the
number of edges going down from B. Repeating this process for every B ∈ P ′ allows to compute
the restriction of E1 to P ′ in time linear in |X| plus the number of edges. Finally, we know from
the proof of Lemma 4.4 that E1 is (t− 1)-degenerate. Thus the number of edges above is O(t |P ′|),
and we can compute a t-colouring of (P ′, E1) in time O(t |P ′|).

Thus, we have computed a 4t2-colouring of (P, E2), and inside each colour class P ′, a t-colouring
of (P ′, E1). Combining these yields a 4t3-colouring of the mixed graph (P, E1 ∪ E2).

6.3 Mixed-minor free orders

Let us finally comment on the algorithmic aspect of Lemma 5.5, since it is the part of our proof
which is not self-contained.

Firstly, Theorem 2.3, which is a key part of Guillemot–Marx algorithm for pattern recognition,
can be implemented efficiently: For any fixed pattern π, there is an algorithm which given any
permutation σ, either finds an instance of π as pattern of σ, or finds a partition sequence for σ of
width t = 2O(|π|), in linear time f(|π|) ·O(|σ|). In our case, σ is assumed to avoid a fixed pattern π,
hence we obtain a partition sequence for σ in linear time.

We then need to retrieve the order < given by Lemma 2.4 for which the adjacency matrix
of σ (as biorder) is (2t + 2)-mixed free. Consider a partition sequence Pn, . . . ,P1 for a binary

28

structure (V,R1, . . . , Rk). An ordering < of V is compatible with this partition sequence if for
any i ∈ [n] and part X ∈ Pi, X is an interval of (V,<). Equivalently, one can represent the partition
sequence as a tree T with leaves V , whose internal nodes represent each merge of two parts, and
the order < is compatible with the partition sequence if and only if it is compatible with T . There
always are orders compatible with any given partition sequence, and these are the orders used in
Lemma 2.4. That is, a more precise statement of Lemma 2.4 is (cf. [7, Theorem 5.4]): if Pn, . . . ,P1

is a partition sequence of width t for (V,R1, . . . , Rk), and < is any ordering of V compatible with
it, then the adjacency matrix of Ri ordered by < is (2t+2)-mixed free. Given a partition sequence,
it is simple to compute a compatible ordering in linear time, by constructing the tree associated
with the partition sequence, and traversing the latter.

Combining these two arguments, we obtain a linear algorithm to compute the decomposition
given by Lemma 5.5 of pattern-avoiding permutations into k-mixed free permutations.

7 Factoring structures of bounded twin-width

In this final section, we show how to adapt our result to graphs of bounded twin-width in order to
describe them by structures with universally bounded twin-width. To this end, we first introduce
a representation of products of permutations as ordered graphs.

7.1 Products of permutations as path systems

Let σ1, . . . , σm be permutations of a linear order (X,<). The path system representation of the
product σm ◦ · · · ◦ σ1 is defined as follows. First take m + 1 copies X0, . . . , Xm of (X,<), and for
each i ∈ [0,m] and x ∈ X, let xi denote the copy of x in Xi. Then, for each i ∈ [m], x ∈ X, add
an edge between xi−1 and σi(x)i. See Figure 1 in the introduction for an example. Finally, we fix
a canonical linear order on the vertices, namely X0 < · · · < Xm, while keeping the order inside X
for each copy.

We will prove the following crucial property: If the permutations σi have bounded twin-width,
then the path system representation has twin-width bounded independently of the length m. The
arguments are exactly the same as in [5, Proposition 6.5], we reproduce them for the sake of
completeness. Here, we use the standard sparse permutation matrices (and not the dense biorder
adjacency matrices of Section 5): the matrix Mσ of a permutation σ has a 1 at position (i, σ(i))
for each i. Recall that a k-grid in a 0,1-matrix is a k-division in which every zone contains a 1, and
that a class C of permutations avoids some pattern if and only if there is a k such that matrices of
permutations in C have no k-grid.

Lemma 7.1. Let σ1, . . . , σm be permutations whose adjacency matrices have no r-grid. Then the
adjacency matrix of the path system representation of σm◦· · ·◦σ1, has no (3r+2)-grid when ordered
according to the canonical linear order.

Proof. Let G be the path system representing σm ◦ · · · ◦ σ1, with vertices X0] · · ·]Xm as above.
The adjacency matrix of G consists of a double diagonal of blocks corresponding to the adjacency
matrices of Xi−1 against Xi for each i. The latter is exactly the permutation matrix Mσi , or its
transpose. See Figure 8.

Consider now an l-grid in this matrix induced by a division R, C.

Claim 7.2. There exists i ∈ [m] such that every part of R intersects Xi−1 ∪Xi ∪Xi+1.

Proof. Let C1 be the first part of C, and consider i minimal such that C1 ⊆ X0 ∪ · · · ∪Xi. Then
there is no edge between C1 and Xj for j > i+1, hence every R ∈ R must intersect X0∪· · ·∪Xi+1.

29

MT
σ1

Mσ1

MT
σ2

Mσ2

MT
σ3

Mσ3

..
.

..
.

MT
σm

Mσm

X0

X0

X1

X1

X2

X2

X3

X3

··
·

. . .

Xm

Xm

Figure 8: The adjacency matrix of the path system representation of σm ◦ · · · ◦ σ1.

Symmetrically, if Cl is the last part of C and j is maximal such that Cl ⊆ Xj∪· · ·∪Xm, we find that
any R ∈ Rmust intersect Xj−1∪· · ·∪Xm. Thus any R ∈ Rmust intersect Xj−1∪Xj∪· · ·∪Xi∪Xi+1.
But necessarily i ≤ j, hence any part R ∈ R must intersect Xi−1 ∪Xi ∪Xi+1. ♦

Claim 7.3. There exists j ∈ [m] such that at least l−4
3 parts of R are contained in Xj.

Proof. By Claim 7.2, any part of R intersects one of Xi−1, Xi, Xi+1. Excluding four parts at the
borders of the latter, at least l − 4 parts of R are contained in one of Xi−1, Xi, Xi+1. By the
pigeonhole principle, at least l−4

3 parts are contained in the same of these three subsets. ♦

Naturally, Claims 7.2 and 7.3 also hold for columns. Thus we obtain two sets Xi, Xj which
contain at least l−4

3 parts of R and C respectively. This gives a
(
l−4
3

)
-grid in one of the blocks

of the adjacency matrix, which are r-grid free by hypothesis. It follows that l ≤ 3r + 1, i.e. the
adjacency matrix is (3r + 2)-grid free.

7.2 Subdivisions of sparse graphs

We first consider sparse graphs. A class C of graphs is said to have bounded sparse twin-width if
it has bounded twin-width, and it excludes a biclique Kt,t as a subgraph for some t. Bounded
sparse twin-width classes were studied in [5, section 7]. They are characterised by excluding grids
in adjacency matrices.

Theorem 7.4 ([5, Theorem 2.12]). Let G be a Kt,t-subgraph-free graph of twin-width k. Then there
is some linear ordering < of the vertices of G for which the adjacency matrix of G is f(k, t)-grid
free, for some function f .

Theorem 1.4. There is a universal constant c and a function f such that for any graph G with
twin-width k and no Kt,t-subgraph, the f(k, t)-subdivision of G has twin-width at most c.

Proof. Let G = (V,E) be Kt,t-subgraph-free with twin-width k, and, applying Theorem 7.4, con-
sider a linear ordering < on V for which the adjacency matrix is r-grid free, with r function of k, t
only. Fix an arbitrary orientation of the edges of G, and denote by ~E the set of oriented edges: for
each uv ∈ E, exactly one of (u, v) or (v, u) is in ~E. If ~e = (u, v) ∈ ~E, we denote by s(~e) = u its
starting point and by t(~e) = v its endpoint.

30

We define two lexicographic orders on ~E: <s orders first by starting points (ordered by <),
and then by endpoints, while <t orders first by endpoints, then by starting points. We consider
the permutation σ = (~E,<s, <t). Let Mσ be the sparse permutation matrix of σ: the columns
are ~E ordered by <s, while the rows are ~E ordered by <t, and for each ~e ∈ ~E, there is a 1 at the
intersection of the row and the column corresponding to ~e.

Claim 7.5. The matrix Mσ is 3r-grid free.

Proof. Let C,R be partitions of ~E into intervals of <s and <t respectively, inducing a 3r-grid, i.e.
for each C ∈ C, R ∈ R, there is some ~e ∈ C ∩ R. Consider Ps the partition of ~E which groups
edges with the same starting point, i.e. Ps = {s−1(v) : v ∈ V }. This is also a partition of ~E
into intervals of <s. Remark that inside each P ∈ Ps, the orders <s and <t coincide, hence the
matrix Mσ restricted to the columns in P has no 2-grid. It follows that there cannot be two distinct
parts C,C ′ ∈ C such that C,C ′ ⊆ P , as R, {C,C ′} would yield a 2-grid using only columns of P .
Therefore, it is impossible to have more than three parts of C intersecting the same part P ∈ Ps.
Naturally, the same applies to R and the partition by endpoints Pt := {t−1(v) : v ∈ V }.

We then pick every third part of C and of R, yielding subsets C′ ⊂ C and R′ ⊂ R such that each
part P ∈ Ps (resp. Pt) intersects at most one part of C′ (resp. R′). The families of intervals C′,R′
have size r, and induce an r-grid in the matrix Mσ. By projecting on starting points and endpoints
respectively, we obtain C′′ := {s(C) : C ∈ C′} andR′′ := {t(R) : R ∈ R′}, two families of r disjoint
intervals of (V,<). For any s(C) ∈ C′′, t(R) ∈ R′′, there is an edge ~e ∈ C ∩ R hence s(~e) ∈ s(C)
is adjacent to t(~e) ∈ t(R). This proves that C′′,R′′ define an r-grid in the adjacency matrix of G,
a contradiction. ♦

Claim 7.5 implies that σ avoids a pattern of size (3r)2, hence by Theorem 1.1 we obtain a fac-

torisation of σ it into m = 22O(r2)
separable permutations, as σ = σm ◦ · · · ◦ σ1. Consider the path

system representation of this factorisation, with vertex set X0]· · ·]Xm as in the previous section.
The sets X0, Xm ordered canonically are in bijection with (~E,<s) and (~E,<t) respectively, and for
each ~e ∈ ~E, there is a path joining the copy of ~e in X0 to its copy in Xm. We now add the vertices V
of G to this structure, and for each edge ~e ∈ ~E, we connect the copy of ~e in X0 to s(~e), and the copy
of ~e in Xm to t(~e). Thus, for each edge ~e ∈ ~E, a path on m vertices joins s(~e) to t(~e), hence the
resulting graph is the (m + 1)-subdivision of G. Furthermore, for each v ∈ V , the neighbourhood
of v inside X0, resp. Xm, is an interval of the canonical linear order.

To bound the twin-width of this structure, we consider the following linear order on the vertices:
V is ordered by <, the path system representation of σ is ordered by the canonical linear order,
and we place all vertices of V before the rest. The adjacency matrix of this graph then consists of

1. the adjacency matrix of the path system representation, which is 11-grid free using Lemma 7.1,
because separable permutations have no 3-grid, and

2. the adjacency matrix of V against X0 and Xm, which consists of two increasing sequences
(one for X0, one for Xm), and can be seen to be 3-grid free.

This implies that the adjacency matrix of the (m+ 1)-subdivision of G is 15-grid free.

7.3 Transducing structures of bounded twin-width

Finally, let us generalise the results of the former section by replacing subdivisions with first-order
transductions. We first show that permutations of twin-width t can be encoded into structures of
twin-width bounded by a constant c, where the decoding is an FO transduction which depends
on t, but c is independent of t.

31

Lemma 7.6. There is a universal constant c, and for any pattern π there is an FO interpretation Φ
such that for any permutation σ avoiding π, there is a structure S of twin-width at most c such
that Φ(S) = σ.

Proof. The structure S = (V,E,<) is the path system representation of the decomposition of σ
into separable permutations obtained by Theorem 1.1. It is a binary relational structure, with two
relations: the edges E, and the canonical order <. By Lemma 7.1, since separable permutations
do not contain 3-grids, the adjacency matrix of S has no 11-grid. This gives a universal bound on
its twin-width.

Let us show, given the path system representation S of the factorisation σ = σm ◦ · · · ◦ σ1,
how to reconstruct the biorder σ using an FO interpretation. As previously, the sets of starting
points and endpoints of paths in S are denoted by X0 and Xm respectively. Remark that the
vertices in X0 ∪Xm are exactly the ones with degree 1 in the edge relation E, and that any other
vertex x 6∈ X0 ∪Xm satisfies X0 < x < Xm. This allows to test whether a given vertex is in X0, or
in Xm. We construct a biorder (X0, <,≺) isomorphic to σ, where < is the already given canonical
order, and ≺ is defined as follows. Consider x1, x2 ∈ X0, and denote by yi ∈ Xm the other endpoint
of the path starting from xi. Then x1 ≺ x2 if and only if y1 < y2.

The vertex yi is the only one in Xm connected by a path of length m to xi. For fixed m, ‘being
connected by a path of length m’ can be expressed by an FO formula, thus allowing, given x1, x2,
to identify y1, y2. It follows that ≺ can be defined by an FO formula, hence there is an FO
interpretation Φ which maps S to σ. This interpretation only depends on the length m of the
factorisation, which itself is function of the excluded pattern π, as desired.

Theorem 1.5. There is a fixed strict class C of permutations such that for any class D of binary
structures, D has bounded twin-width iff there exists an FO transduction Φ satisfying D ⊆ Φ(C).

Proof. Firstly, the ‘if’ part of the claim follows from the fact that the (yet to be defined) class C
avoids a pattern, hence has bounded twin-width by Theorem 2.3, and transductions preserve
bounded twin-width by Theorem 2.12.

For the other direction, given the class D, we first apply Theorem 1.6 to obtain a class C3 of
permutations with bounded twin-width, and Φ3 an FO transduction such that D ⊆ Φ3(C3). Next
we apply Lemma 7.6 to obtain a class C2 of structures with twin-width bounded by a universal
constant c, and Φ2 an FO transduction such that C3 ⊆ Φ2(C2). Note that C2 is independent
of D. Finally, we apply Theorem 1.6 a second time to obtain a class C of permutations with twin-
width bounded by a universal constant c′ (function of c only), and Φ1 an FO transduction such

that C2 ⊆ Φ1(C). We conclude by composing the transductions as C Φ1−→ C2
Φ2−→ C3

Φ3−→ D.

Acknowledgments

The authors would like to thank Patrice Ossona de Mendez for interesting discussions regarding
the subject of Section 7. This work was supported by the ANR projects TWIN-WIDTH (ANR-21-
CE48-0014) and Digraphs (ANR-19-CE48-0013).

References

[1] David Arthur. Fast sorting and pattern-avoiding permutations. In 2007 Proceedings of the
Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pages 169–174, 2007.

32

[2] Michael A. Bender and Mart́ın Farach-Colton. The lca problem revisited. In Gaston H. Gonnet
and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics, pages 88–94. Springer Berlin
Heidelberg, 2000.

[3] Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approximating highly
inapproximable problems on graphs of bounded twin-width. In Petra Berenbrink, Patricia
Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, STACS 2023, Hamburg, Ger-
many, pages 10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[4] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set, min dominating set, and coloring. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, ICALP 2021, Glasgow, Scotland (Virtual Con-
ference), pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[5] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. Combinatorial Theory, 2(2), 2022.

[6] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In Stefano Leonardi
and Anupam Gupta, editors, STOC 2022, Rome, Italy, pages 924–937. ACM, 2022.

[7] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022.

[8] Édouard Bonnet, Jaroslav Nesetril, Patrice Ossona de Mendez, Sebastian Siebertz, and
Stéphan Thomassé. Twin-width and permutations. CoRR, abs/2102.06880, 2021.

[9] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for permutations. Inf.
Process. Lett., 65(5):277–283, 1998.

[10] Romain Bourneuf and Stéphan Thomassé. Bounded twin-width graphs are polynomially
χ-bounded. arXiv preprint arXiv:2303.11231, 2023.

[11] Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Pattern-avoiding access in binary search trees. In 2015 IEEE 56th Annual Sym-
posium on Foundations of Computer Science, pages 410–423, 2015.

[12] Parinya Chalermsook, Seth Pettie, and Sorrachai Yingchareonthawornchai. Sorting pattern-
avoiding permutations via 0-1 matrices forbidding product patterns. CoRR, abs/2307.02294,
2023.

[13] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Annals of mathematics, pages 51–229, 2006.

[14] Thomas Colcombet. a combinatorial theorem for trees. In Lars Arge, Christian Cachin,
Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata, Languages and Programming,
34th International Colloquium, ICALP 2007, Wroclaw, Poland, pages 901–912. Springer, 2007.

[15] James Davies. Improved bounds for colouring circle graphs. Proceedings of the American
Mathematical Society, 150(12):5121–5135, 2022.

[16] James Davies and Rose McCarty. Circle graphs are quadratically χ-bounded. Bulletin of the
London Mathematical Society, 53(3):673–679, 2021.

33

[17] Jacob Fox. Stanley-Wilf limits are typically exponential. arXiv preprint arXiv:1310.8378,
2013.

[18] Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 82–101, 2014.

[19] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

[20] Donald E Knuth. The art of computer programming, vol 1: Fundamental. Algorithms. Reading,
MA: Addison-Wesley, 1968.

[21] László Kozma and Thatchaphol Saranurak. Smooth heaps and a dual view of self-adjusting
data structures. In STOC 2018, Los Angeles, CA, USA, page 801–814. ACM, 2018.

[22] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley-Wilf con-
jecture. J. Comb. Theory, Ser. A, 107(1):153–160, 2004.

[23] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM, 30(3):417–427, 1983.

[24] Micha l Pilipczuk and Marek Soko lowski. Graphs of bounded twin-width are quasi-polynomially
χ-bounded. Journal of Combinatorial Theory, Series B, 161:382–406, 2023.

[25] Neil Robertson and Paul D. Seymour. Graph minors. XVI. excluding a non-planar graph. J.
Comb. Theory, Ser. B, 89(1):43–76, 2003.

[26] Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and
parallelization. SIAM Journal on Computing, 17(6):1253–1262, 1988.

[27] Paul D. Seymour. Decomposition of regular matroids. J. Comb. Theory, Ser. B, 28(3):305–359,
1980.

34

	Introduction
	Shortest separable decompositions
	Applications to graphs
	Overview of the proof of thm:main
	Perspectives
	Organisation of the paper

	Preliminaries
	Ordered trees
	Permutations and biorders
	Substitutions
	Shuffles

	Twin-width
	Graphs, colouring, degeneracy
	Circle graphs

	First-order transductions

	Delayed substitutions
	Definition
	Distinguishability
	Factoring delayed substitutions
	Constructing delayed structured trees

	Partitions and mixity
	Definitions
	Non-mixed partitions
	Separating mixed parts

	Reducing the size of almost mixed minors
	Algorithmic implementation
	Delayed substitutions
	Mixed graphs
	Mixed-minor free orders

	Factoring structures of bounded twin-width
	Products of permutations as path systems
	Subdivisions of sparse graphs
	Transducing structures of bounded twin-width

