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Twin-width can be exponential in treewidth

For any small positive real ε and integer t > 1 ε , we build a graph with a vertex deletion set of size t to a tree, and twin-width greater than 2 (1-ε)t . In particular, this shows that the twin-width is sometimes exponential in the treewidth, in the so-called oriented twin-width and grid number, and that adding an apex may multiply the twin-width by at least 2 -ε. Except for the one in oriented twin-width, these lower bounds are essentially tight.

Introduction

Twin-width is a graph parameter introduced by Bonnet, Kim, Thomassé, and Watrigant [12].

It is defined by means of trigraphs. A trigraph is a graph with some edges colored black, and some colored red. A (vertex) contraction consists of merging two (non-necessarily adjacent) vertices, say, u, v into a vertex w, and keeping every edge wz black if and only if uz and vz were previously black edges. The other edges incident to w become red (if not already), and the rest of the trigraph remains the same. A contraction sequence of an n-vertex graph G is a sequence of trigraphs G = G n , . . . , G 1 = K 1 such that G i is obtained from G i+1 by performing one contraction. A d-sequence is a contraction sequence in which every vertex of every trigraph has at most d red edges incident to it. The twin-width of G, denoted by tww(G), is then the minimum integer d such that G admits a d-sequence. Figure 1 gives an example of a graph with a 2-sequence, i.e., of twin-width at most 2. Twin-width can be naturally extended to matrices (unordered [12] or ordered [9]) over a finite alphabet, and hence to any binary structures. Classes of binary structures with bounded twin-width include graphs with bounded treewidth, bounded clique-width, K t -minor free graphs, posets with antichains of bounded size, strict subclasses of permutation graphs, map graphs, bounded-degree string graphs [12], segment graphs with no K t,t subgraph, visibility graphs of 1.5D terrains without large half-graphs, visibility graphs of simple polygons without large independent sets [6], as well as Ω(log n)-subdivisions of n-vertex graphs, classes with bounded queue number or bounded stack number, and some classes of cubic expanders [7].

Despite their apparent generality, classes of bounded twin-width are small [7], χ-bounded [8], even quasi-polynomially χ-bounded [START_REF] Pilipczuk | Graphs of bounded twin-width are quasi-polynomially χ-bounded[END_REF], preserved (albeit with a higher upper bound) by first-order transductions [12], and by the usual graph products when one graph has bounded degree [START_REF] Pettersson | Bounds on the twin-width of product graphs[END_REF]7], have VC density 1 [11,[START_REF] Przybyszewski | VC-density and abstract cell decomposition for edge relation in graphs of bounded twin-width[END_REF], admit, when O(1)-sequences are given, a fixed-parameter tractable first-order model checking [12], an (almost) single-exponential parameterized algorithm for various problems that are W[1]-hard in general [8], as well as a parameterized fully-polynomial linear algorithm for counting triangles [START_REF] Kratsch | On triangle counting parameterized by twin-width[END_REF], an (almost) linear representation [START_REF] Pilipczuk | Compact representation for matrices of bounded twin-width[END_REF], a stronger regularity lemma [START_REF] Przybyszewski | VC-density and abstract cell decomposition for edge relation in graphs of bounded twin-width[END_REF], etc.

In all these applications, the upper bound on twin-width, although somewhat hidden in the previous paragraph, plays a role. There is then an incentive to obtain as low as possible upper bounds on particular classes of bounded twin-width. To give one concrete algorithmic example, an independent set of size k can be found in time O(k 2 d 2k n) in an n-vertex graph given with a d-sequence [8]. This is relatively practical for moderate values of k, with the guarantee that d is below 10, but not when d is merely upperbounded by 10 10 . Another motivating example: triangle-free graphs of twin-width at most d are d + 2-colorable [8], a stronger fact in the former case than in the latter.

In that line of work, Balabán and Hlinený show that posets of width k (i.e., with antichains of size at most k) have twin-width at most 9k [2]. Unit interval graphs have twin-width at most 2 [8], and proper k-mixed-thin graphs (a recently proposed generalization of unit interval graphs) have twin-width O(k) [3]. Every graph obtained by subdividing at least 2 log n (throughout the paper, all logs are in base 2) times each edge of an n-vertex graph has twin-width at most 4 [4]. Schidler and Szeider report the (exact) twin-width of a collection of graphs [START_REF] Schidler | A SAT approach to twin-width[END_REF], obtained via SAT encodings. Jacob and Pilipczuk [START_REF] Jacob | Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs[END_REF] give the current best upper bound of 183 on the twin-width of planar graphs, while graphs with genus g have twin-width O(g) [START_REF] Bonnet | Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond)[END_REF]. Most relevant to our paper, for every graph G, tww(G) 3 • 2 tw(G)-1 [START_REF] Jacob | Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs[END_REF], where tw(G) denotes the treewidth of G.

Conversely, one may ask the following.

Question 1. What is the largest twin-width a graph of treewidth k can have?

A lower bound of Ω(k) comes from the existence of n-vertex graphs with twin-width Ω(n) (since the treewidth is trivially upperbounded by n -1). This is almost surely the case of graphs drawn from G(n, 1/2). Alternatively, the n-vertex Paley graph (for a prime n such that n ≡ 1 mod 4) has precisely twin-width (n -1)/2 [1]. Another example to derive the linear lower bound is the power set graph [START_REF] Jacob | Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs[END_REF]. Improving on this lower bound is not obvious, and Θ(k) is indeed the answer to Question 1 within the class of planar graphs [START_REF] Jacob | Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs[END_REF], or when replacing 'treewidth' by 'cliquewidth' or 'pathwidth.' When switching 'twin-width' and 'treewidth' in Question 1, the gap is basically as large as possible: There are n-vertex graphs with treewidth Ω(n) and twin-width at most 6, in the iterated 2-lifts of K 4 [7,5].

An important characterization of bounded twin-width is via the absence of complex divisions of an adjacency matrix. A matrix has a k-mixed minor if its row (resp. column) set can be partitioned into k sets of consecutive rows (resp. columns), such that each of the k 2 cells defined by this k-division contains at least two distinct rows and at least two distinct columns. The mixed number of a matrix M is the largest integer k such that M admits a k-mixed minor. The mixed number of a graph G, denoted by mxn(G), is the minimum, taken among all the adjacency matrices M of G, of the mixed number of M . The following was shown.

Theorem 1 ([12]). For every graph G, (mxn(G) -1)/2 tww(G) 2 2 O(mxn(G)) .

In sparse graphs (here, excluding a fixed K t,t as a subgraph), the previous theorem is both simpler to formulate and has a better dependency. A matrix has a k-grid minor if it has a k-division with at least one 1-entry in each of its k 2 cells. The grid number of a matrix and of a graph G, denoted by gn(G), are defined analogously to the previous paragraph. We only state the inequality that is useful to bound the twin-width of a sparse class, but is valid in general.

Theorem 2 (follows from [12]). For every graph G, tww(G) 2 O(gn(G)) .

Theorems 1 and 2 allow to bound the twin-width of a class C by exhibiting, for every G ∈ C, an adjacency matrix of G without large mixed or grid minor. Therefore one merely has to order V (G) (the vertex set of G) in an appropriate way. The double (resp. simple) exponential dependency in mixed number (resp. grid number) implies relatively weak twin-width upper bounds. For several classes whose twin-width was originally upperbounded via Theorem 1, better bounds were later given by avoiding this theorem (see [7,2,[START_REF] Jacob | Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs[END_REF][START_REF] Bonnet | Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond)[END_REF]4]). Still for some geometric graph classes, bypassing Theorem 1 seems complicated (see [6]). And in general (since this theorem is at the basis of several other applications, see for instance [7, 8, 9]) it would help to have an improved upper bound of tww(G); in particular a negative answer to the following question.

Question 2. Is twin-width sometimes exponential in mixed and grid number?

A variant of twin-width, called oriented twin-width, adds an orientation to the red edges (see [10]). The red edge (arc) is oriented away from the contracted vertex. The oriented twin-width d of a graph G, denoted by otww(G), is then defined similarly as twin-width by tolerating more than d red arcs incident to a vertex, as long as at most d of them are out-going. Rather surprisingly twin-width and oriented twin-width are tied.

Theorem 3 ([10]). For every graph

G, otww(G) tww(G) 2 2 O(otww(G)) .
Classic results show that planar graphs have oriented twin-width at most 9 [10]. Thus it would be appreciable to lower the dependency of tww(G) in otww(G).

Question 3. Is twin-width sometimes exponential in oriented twin-width?

An elementary argument shows that when adding an apex (i.e., an additional vertex with an arbitrary neighborhood) to a graph G, the twin-width of the obtained graph is at most 2 • tww(G) + 1. Again it is not clear whether this increase could be made smaller.

Question 4. Does twin-width sometimes essentially double when an apex is added?

Note that Question 1 is asked by Jacob and Pilipczuk [START_REF] Jacob | Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs[END_REF], and Question 3 is posed by Bonnet et al. [10], and is closely related to Question 2.

Our contribution.

With a single construction, we answer all these questions. The answer to Questions 2, 3, and 4 is affirmative, while the answer to Question 1 is 2 Θ(k) , which confirms the intuition of the authors of [START_REF] Jacob | Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs[END_REF]. More precisely, we show the following.

Theorem 4. For every real 0 < ε 1/2 and integer t > 1/ε, there is a graph G t,ε with a feedback vertex set of size t and such that tww

(G t,ε ) > 2 (1-ε)t .
The graph G t,ε has in particular treewidth at most t + 1, grid number at most t + 2, and oriented twin-width at most t + 1. Thus tww

(G t,ε ) > 2 (1-ε)(tw(Gt,ε)-1) , tww(G t,ε ) > 2 (1-ε)(gn(Gt,ε)-2) , and tww(G t,ε ) > 2 (1-ε)(otww(Gt,ε)-1) .
Hence Theorem 4 has the following consequences.

Corollary 5. For every small ε > 0, there is a family F of graphs with unbounded twin-width such that for every G ∈ F: tww(G) > 2 (1-ε)(tw(G)-1) .

Up to multiplicative factors, it matches the known upper bound [START_REF] Jacob | Bounding twin-width for bounded-treewidth graphs, planar graphs, and bipartite graphs[END_REF]12], and essentially settles Question 1. The following answers Question 2. Corollary 6. For every small ε > 0, there is a family F of graphs with unbounded twin-width such that for every

G ∈ F: tww(G) > 2 (1-ε)(gn(G)-2) .
The following answers Question 3.

Corollary 7. For every small ε > 0, there is a family F of graphs with unbounded twin-width such that for every

G ∈ F: tww(G) > 2 (1-ε)(otww(G)-1) .
The following answers Question 4.

Corollary 8. For every small ε > 0, there is a family F of graphs with unbounded twin-width such that for every

G ∈ F: tww(G) > (2 -ε)tww(G -{v}), where v is a single vertex of G.
We leave as an open question if the twin-width upper bound in oriented twin-width and mixed number can be made single-exponential.

Preliminaries

For i and j two integers, we denote by [i, j] the set of integers that are at least i and at most j. For every integer i, [i] is a shorthand for [1, i]. We use the standard graph-theoretic notations: V (G) denotes the vertex set of a graph G, E(G) denotes its edge set, G[S] denotes the subgraph of G induced by S, etc.

We give an alternative approach to contraction sequences. The twin-width of a graph, introduced in [12], can be defined in the following way (complementary to the one given in introduction). A partition sequence of an n-vertex graph G, is a sequence P n , . . . , P 1 of partitions of its vertex set V (G), such that P n is the set of singletons {{v} : v ∈ V (G)}, P 1 is the singleton set {V (G)}, and for every 2 i n, P i-1 is obtained from P i by merging two of its parts into one. Two parts P, P of a same partition P of V (G) are said homogeneous if either every pair of vertices u ∈ P, v ∈ P are non-adjacent, or every pair of vertices u ∈ P, v ∈ P are adjacent. Two non-homogeneous parts are also said red-adjacent. The red degree of a part P ∈ P is the number of other parts of P which are red-adjacent to P . Finally the twin-width of G, denoted by tww(G), is the least integer d such that there is a partition sequence P n , . . . , P 1 of G with every part of every P i (1 i n) having red degree at most d.

The definition of the previous paragraph is equivalent to the one given in introduction, via contraction sequences. Indeed the trigraph G i is obtained from partition P i , by having one vertex per part of P i , a black edge between any fully adjacent pair of parts, and a red edge between red-adjacent parts. A partial contraction sequence is a sequence of trigraphs G n , . . . , G i , for some i ∈ [n]. A (full) contraction sequence is one such that i = 1. We naturally consider the trigraph G j to come after (resp. before) G j if j < j (resp. j > j ). Thus when we write the first trigraph of the sequence S to satisfy X (or the first time a trigraph of S satisfies X ) we mean the trigraph G j with largest index j among those satisfying X. The same goes for partition sequences.

If u is a vertex of a trigraph H, then u(G) denotes the set of vertices of G eventually contracted into u in H. We denote by P G (H) (and P(H) when G is clear from the context) the partition {u(G) : u ∈ V (H)} of V (G). We may refer to a part of H as any set in {u(G) : u ∈ V (H)}. We may also refer to a part of a contraction/partition sequence as any part of one its trigraphs/partitions. A contraction involves a vertex v if it produces a new part (of size at least 2) containing v. In general, we use trigraphs and partitioned graphs somewhat interchangeably, when one notion appears more convenient than the other.
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Proof of Theorem 4

We fix once and for all, 0 < ε 1/2, a possibly arbitrarily small positive real. We build for every integer t > 1/ε, a graph G t,ε , that we shorten to G t . We set

f (t) = 2 + C t 2 (1-ε)t(2+Ct(2 (1-ε)t +1))
where

C t = 2 (1-ε)t /ε.
Construction of G t . Let T be the full 2 t -ary tree of depth f (t), i.e., with root-to-leaf paths on f (t) edges. Let X be a set of t vertices, that we may identify to [t]. The vertex set of G t is X V (T ). The edges of G t are such that G[X] is an independent set, and G[V (T )] = T . The edges between V (T ) are X are such that the root of T has no neighbor in X, and the 2 t children (in T ) of every internal node of T each have a distinct neighborhood in X. Note that this defines a single graph up to isomorphism. By a slight abuse of language, we may utilize the usual vocabulary on trees directly on G t . By root, internal node, child, parent, leaf of G t , we mean the equivalent in T .

We start with this straightforward observation.

Lemma 9. G t has treewidth at most t + 1.

Proof. The set X is a feedback vertex set of G t of size t, thus tw(G t ) fvs(G t )+1 t+1.

The following is the core lemma, which occupies us for the remainder of the section.

Lemma 10. G t has twin-width greater than 2 (1-ε)t .

Proof. We assume, by way of contradiction, that G t admits a d-sequence with d 2 (1-ε)t . We consider the partial d-sequence S, starting at G t , and ending right before the first contraction involving a child of the root. We first show that no vertex of X can be involved in a contraction of S. Note that it implies, in particular, that the root cannot be involved in a contraction of S.

Claim 11. No part of S contains more than one vertex of X.

Proof of the Claim: Observe that, for every i = j ∈ [t], there are 2 t-1 sets of 2 [t] containing exactly one of i, j: 2 t-2 only contain i, and 2 t-2 only contain j. Recall now that by assumption, in every trigraph of S, every child of the root is alone in its part. Thus a part P of S such that |P ∩ X| 2 would have red degree at least 2 t-1 > 2 (1-ε)t d. ♦

Claim 12. No part of S intersects both X and V (T ).

Proof of the Claim: For the sake of contradiction, consider the first occurrence of a part P ⊇ {x, v} with x ∈ X and v ∈ V (T ). Vertex x is adjacent to half of the children of the root, whereas v is adjacent to at most one of them, or all of them (if v is itself the root). In both cases, this entails at least 2 t-1 -1 red edges for P towards children of the root. If v is not a grandchild of the root, the red degree of P is at least 2 t-1 . We thus assume that v is a grandchild of the root. As t 2, there is a y ∈ X \ {x}. Let v be the child of v whose neighborhood in X is exactly {y}. This vertex exists since f (t) 3. If P contains v , P is also red-adjacent to {y} (indeed a part, by Claim 11). If instead, P does not contain v , then P is also red-adjacent to the part containing v .

Thus, in any case, the red degree of P is at least 2 t-1 > 2 (1-ε)t d. ♦

From Claims 11 and 12, we immediately obtain:

Claim 13. Every part of S intersecting X is a singleton.

Crucial to the proof, we introduce two properties P, and later Q, on internal nodes v ∈ V (T ) in trigraphs H ∈ S. Property P is defined by

P(v, H) = "At least 2 εt children of v are

in the same part of P(H)."

We first remark that any internal node in a non-singleton part verifies P.

Claim 14. Let H be any trigraph of S and v be any internal node of T whose part in P(H) is not a singleton. Then P(v, H) holds.

Proof of the Claim: Let P be the part of v (i.e., the one containing v) in P(H), and u ∈ P \ {v}. At least 2 t -1 children of v are not adjacent to u. Thus these 2 t -1 vertices have to be in at most d + 1 2 (1-ε)t + 1 parts. These parts are part P , plus at most d parts linked to P by a red edge. Since (2 εt -1)(2 (1-ε)t + 1) < 2 t -1 (recall that ε < 1/2), one of these parts (possibly P ) contains at least 2 εt children of v. ♦

As the merge of a singleton part {v} with any other part does not change the intersections of parts with the set of children of v, we get a slightly stronger claim.

Claim 15. Let v be an internal node of T , and H be the last trigraph of S for which v is in a singleton part of P(H). Then P(v, H) holds.

A preleaf is an internal node of T adjacent to a leaf, i.e., the parent of some leaves. We obtain the following as a direct consequence of Claim 14.

Claim 16. In any trigraph H ∈ S, any non-preleaf internal node v ∈ V (T ) that verifies P(v, H) has at least 2 εt children u verifying P(u, H).

We define the property Q on internal nodes v of T and trigraphs H ∈ S by induction:

Q(v, H) = P(v, H)
if v is a preleaf, and otherwise

Q(u 1 , H) ∧ Q(u 2 , H) for some pair u 1 = u 2 of children of v.
That is, Q is defined as P for preleaves, and otherwise, Q holds when it holds for at least two of its children. Observe that P and Q are monotone in the following sense: At the end of the partial d-sequence S, we know, by Claim 15, that at least one child of the root satisfies P, hence satisfies Q, by Claim 17. Thus the first time in the partial d-sequence S that Q(v, H) holds, for a trigraph H ∈ S and a child v of the root, is well-defined. We call F this trigraph, and v 0 a child of the root such that Q(v 0 , F ) holds.

If P(v, H) (resp. Q(v, H)) holds, then P(v, H ) (resp. Q(v, H ))
We now find many nodes satisfying Q in F , whose parents form a vertical path of singleton parts.

Claim 18. There is a set

Q ⊂ V (T ) of at least f (t) -2 internal nodes such that for every v ∈ Q, Q(v, F ) holds,
the parent of any v ∈ Q is in a singleton part of P(F ), and and no two distinct nodes of Q are in an ancestor-descendant relationship.

Proof of the Claim: We construct by recurrence two sequences

(v i ) i∈[f (t)-2] , (q i ) i∈[0,f (t)-3] of internal nodes of T such that for all i ∈ [f (t) -2], v i is a child of v i-1 , v i-1 is in a singleton part of P(F ), and v i-1 has a child q i-1 = v i for which Q(q i-1 , F ) holds.
Assume that the sequence is defined up to v i , for some i < f (t) -2. We will maintain the additional invariant that v i satisfies Q for the first time in F . This is the case for i = 0.

As v i is not a preleaf, it satisfies Q for the first time when a second child of v i satisfies Q. Let v i+1 be this second child, and q i be the first child to satisfy Q (breaking ties arbitrarily if both children satisfy Q for the first time in F ). The vertex v i+1 satisfies Q for the first time in F . Thus our invariant is preserved.

For every i ∈ [f (t) -2], v i is in a singleton part of P(F ). Indeed, by Claim 15, if v i was not in a singleton part of P(F ), v i would satisfy P, hence Q, in the trigraph preceding F ; a contradiction.

The set Q can thus be defined as {q i : i ∈ [0, f (t) -3]}. We already checked that the first two requirements of the lemma are fulfilled. No pair in Q is in an ancestor-descendant relationship since the nodes of Q are all children of a root-to-leaf path made by the v i s (see Figure 2). Let B the vertices w ∈ V (F ) such that w(G) contains at least 2 εt children of the same node of T . Each vertex of B is red-adjacent to at least log(2 εt ) = εt (singleton) parts of X. Therefore, since the red degree of (singleton) parts of X is at most 2 (1-ε)t :

♦ root v 0 q 0 v 1 q 1 v 2 q 2 v h preleaf leaves non-preleaf internal nodes
|B| 2 (1-ε)t ε .
Next we show that there is relatively large set of vertices of F each corresponding to a non-singleton part that contains an internal node of T .

Claim 19. There is a set B ⊆ V (F ) of size at least

1 (1 -ε)t log f (t) -2 |B| -1 such that for every b ∈ B there is an internal node v of T with v ∈ b(G t ) and |b(G t )| 2.
Proof of the Claim:

Let s := 1 (1-ε)t log( f (t)-2 |B| ) -1. Our goal is to construct a sequence (b i ) i∈[0,s] of distinct vertices of F such that for every i ∈ [s],
part b i (G t ) is not a singleton and contains an internal node of T.

(1)

We first focus on finding b 0 . Note that b 0 need not satisfy Invariant (1), but will be chosen to force the existence of b 1 itself satisfying (1) and starting the induction.

Let Q := {q j : 0 j f (t) -3} ⊂ V (T ) be as described in Claim 18. Every q j ∈ Q has (at least) one descendant q j that is a preleaf and satisfies Q, hence P, in F . The q j s are pairwise distinct because no two nodes of Q are in an ancestor-descendant relationship. We set Q := {q j : 0 j f (t) -3}. Now for every q j , at least 2 εt of its children are in the same part of P(F ); hence, this part corresponds to a vertex in B. By the pigeonhole principle, there is a b 0 ∈ B that contains at least 2 εt children of at least (f (t) -2)/|B| nodes of Q .

For each b i , we define Q i ⊂ Q as the set of vertices q j such that b i (G t ) contains a (not necessarily strict) descendant z of q j , and no part b i (G t ) with i < i contains a node on the path between q j and z in T . Thus |Q 0 | (f (t) -2)/|B|. We now assume that b i ∈ V (F ), for some 0 i < s, has been found with

|Q i | f (t) -2 |B| • 2 i(1-ε)t .
(2)

Observe that Q 0 satisfies (2). We construct b i+1 , Q i+1 satisfying the invariants (1) and (2).

For each q j ∈ Q i , consider the highest descendant z j of q j in b i (G t ), and z j the parent of z j in T . By construction, the part P j of P(F ) containing z j is not a b k (G t ) for any k i. Part P j is linked to b i (G t ) by a red edge. Therefore there are at most 2 (1-ε)t such parts P j . In particular, there is a b i+1 ∈ V (F ) such that b i+1 (G t ) contains at least

|Q i | d f (t) -2 |B| • 2 i(1-ε)t • 1 2 (1-ε)t = f (t) -2 |B| • 2 (i+1)(1-ε)t parents z j of highest descendants z j .
Remark that b i+1 (G t ) has size at least two while (f (t) -2)/(|B| • 2 (i+1)(1-ε)t ) > 1, which holds since i < s. Thus b i+1 (G t ) does not contain any parent v j of a q j (since the v j s are in singleton parts). In particular,

|Q i+1 | (f (t) -2)/(|B| • 2 (i+1)(1-ε)t
), and b i+1 , Q i+1 satisfy (1) and (2).

Finally, the set B := {b i : 1 i s} has the required properties. ♦

We can now finish the proof of the lemma.

For every b i ∈ B , let u i ∈ b i (G t ) be an internal node of T . As b i (G t ) 2, u i satisfies P in F . This implies that b i or a red neighbor of b i is in B. Therefore, the total number of red edges incident to a vertex of B is at least |B | -|B|. Thus there is a vertex in B with red degree at least (|B | -|B|)/|B|. This is a contradiction since

|B | -|B| |B| = |B | |B| -1 1 (1 -ε)t log f (t) -2 |B| -1 • 1 |B| -1 1 (1 -ε)t log 2 (1-ε)t(2+Ct•(2 (1-ε)t +1)) -1 • 1 |B| -1 = (2 + C t • (2 (1-ε)t + 1)) -1 • 1 |B| -1 > 2 (1-ε)t + 1 -1 = 2 (1-ε)t d.
since, we recall, f (t) = 2 + C t • 2 (1-ε)t(2+Ct•(2 (1-ε)t +1)) and C t = 2 (1-ε)t ε |B|.

Since X is a feedback vertex set of size t of G t , Lemma 10 implies Theorem 4, and hence Corollary 5.

As the twin-width of T is 2, adding the t apices in X, multiplies the twin-width by at least 2 t(1-ε-1 t ) . Thus one apex in X multiplies the twin-width by at least 2 1-ε-1 t , which can be made arbitrarily close to 2. This establishes Corollary 8.
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Oriented twin-width and grid number

In this section, we check that G t has oriented twin-width at most t + 1, and grid number at most t + 2. A (partial) oriented contraction sequence is defined similarly as a (partial) contraction sequence with every red edge replaced by a red arc leaving the newly contracted vertex. Then a (partial) oriented d-sequence is such that all the vertices of all its ditrigraphs have at most d out-going red arcs. The oriented twin-width of a graph G, denoted by otww(G), is the minimum integer d such that G admits an oriented d-sequence. Lemma 20. The oriented twin-width of G t is at most t + 1.

Proof. We observe that the 2-sequence for trees [12] is an oriented 1-sequence. We contract T to a single vertex (without touching X) in that manner. This yields a partial oriented t + 1-sequence for G t ending on a t + 1-vertex ditrigraph, which can be contracted in any way. This contraction sequence witnesses that otww(G t ) t + 1. Thus Corollary 7 holds.

We finish by establishing Corollary 6.

Lemma 21. The grid number of G t is at most t + 2.

Proof. Recall that V (G t ) = X V (T ). Let ≺ be the total order on V (G t ) that puts first all the vertices of X in any order, then from left to right, all the leaves of T , followed by the preleaves, the nodes at depth f (t) -2, the nodes at depth f (t) -3, and so on, up to the root. We denote by M the adjacency matrix of G t ordered by ≺.

Figure 1

 1 Figure1A 2-sequence witnessing that the initial graph has twin-width at most 2.

Figure 2

 2 Figure 2The nodes (vi) i∈[0,h] and (qi) [0,h-1] (h = f (t) -2) satisfy P and Q in F . The vis and the root (nodes circled in blue) are in singleton parts of F . The other represented nodes can be in larger parts (shaded areas).

  holds for every subsequent trigraph H of the partial d-sequence S. We may write that v satisfies P (resp. Q) in H when P(v, Claim 17. For any trigraph H ∈ S and internal node v of T , P(v, H) implies Q(v, H).Proof of the Claim: This is a tautology if v is a preleaf. The induction step is ensured by Claim 16, since 2 εt 2. ♦

H) (resp. Q(v, H)) holds, and may add for the first time if no trigraph H ∈ S before H is such that P(v, H ) (resp. Q(v, H )) holds.

Twin-width can be exponential in treewidth

Let M T be the submatrix of M obtained by deleting the t rows and t columns corresponding to X. Note that the grid number of M is at most gn(M T ) + t. We claim that there is no 3-grid minor in M T .

Indeed, in the order ≺, above the diagonal of M T there is no pair of 1-entries in strictly decreasing positions. Thus overall there is no triple of 1-entries in strictly decreasing positions. Thus no 3-grid minor is possible in M T .