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Abstract
We continue developing the theory around the twin-width of totally ordered binary structures (or
equivalently, matrices over a finite alphabet), initiated in the previous paper of the series. We
first introduce the notion of parity and linear minors of a matrix, which consists of iteratively
replacing consecutive rows or consecutive columns with a linear combination of them. We show that
a matrix class (i.e., a set of matrices closed under taking submatrices) has bounded twin-width if and
only if its linear-minor closure does not contain all matrices. We observe that the fixed-parameter
tractable (FPT) algorithm for first-order model checking on structures given with an O(1)-sequence
(certificate of bounded twin-width) and the fact that first-order transductions of bounded twin-width
classes have bounded twin-width, both established in Twin-width I, extend to first-order logic with
modular counting quantifiers. We make explicit a win-win argument obtained as a by-product of
Twin-width IV, and somewhat similar to bidimensionality, that we call rank-bidimensionality. This
generalizes the seminal work of Guillemot and Marx [SODA ’14], which builds on the Marcus-Tardos
theorem [JCTA ’04]. It works on general matrices (not only on classes of bounded twin-width) and,
for example, yields FPT algorithms deciding if a small matrix is a parity or a linear minor of another
matrix given in input, or exactly computing the grid or mixed number of a given matrix (i.e., the
maximum integer k such that the row set and the column set of the matrix can be partitioned into
k intervals, with each of the k2 defined cells containing a non-zero entry, or two distinct rows and
two distinct columns, respectively).

Armed with the above-mentioned extension to modular counting, we show that the twin-width
of the product of two conformal matrices A, B (i.e., whose dimensions are such that AB is defined)
over a finite field is bounded by a function of the twin-width of A, of B, and of the size of the field.
Furthermore, if A and B are n × n matrices of twin-width d over Fq, we show that AB can be
computed in time Od,q(n2 log n).

We finally present an ad hoc algorithm to efficiently multiply two matrices of bounded twin-
width, with a single-exponential dependence in the twin-width bound. More precisely, pipelined
to observations and results of Pilipczuk et al. [STACS ’22], we obtain the following. If the inputs
are given in a compact tree-like form (witnessing twin-width at most d), called twin-decomposition
of width d, then two n × n matrices A, B over F2 can be multiplied in time 4d+o(d)n, in the sense
that a twin-decomposition of their product AB, with width 2d+o(d), is output within that time, and
each entry of AB can be queried in time Od(log log n). Furthermore, for every ε > 0, the query time
can be brought to constant time O(1/ε) if the running time is increased to near-linear 4d+o(d)n1+ε.
Notably, the running time is sublinear (essentially square root) in the number of (non-zero) entries.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms →
Parameterized complexity and exact algorithms; Theory of computation → Logic → Finite Model
Theory

Keywords and phrases Twin-width, matrices, parity and linear minors, model theory, linear algebra,

mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:ugo.giocanti@ens-lyon.fr
mailto:pom@ehess.fr
http://cams.ehess.fr/patrice-ossona-de-mendez/ 
https://orcid.org/0000-0003-0724-3729
mailto:stephan.thomasse@ens-lyon.fr


2 Twin-width V: linear minors, modular counting, and matrix multiplication

matrix multiplication, algorithms, computational complexity

Funding

This paper is part of a project that has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement No 810115 – Dynasnet).

This paper was supported by the ANR projects (French National Research Agency) TWIN-WIDTH
(ANR-21-CE48-0014-01) and Digraphs (ANR-19-CE48-0013-01).

1 Introduction

Since its introduction, the treewidth of a graph has proved to be a particularly important
concept in graph theory, both in finite model theory [24], in algorithmic design (see for
instance the textbook of Cygan et al. [16, Chapter 7]) and in structural analysis (see the
Graph Minors series of Robertson and Seymour [38]). This invariant is strongly related
to the concept of graph minor. Recall that a minor of a graph is a graph obtained by a
succession of edge contractions and vertex or edge deletions. The treewidth of a graph is
monotone with respect to this operation, in the sense that the treewidth of a minor of a
graph G cannot be larger than the treewidth of G. By a classical theorem by Robertson and
Seymour [39], a class of graphs has bounded treewidth if and only if its minor closure (that
is, the set of all the minors of graphs in the class) does not contain all grids. In particular,
a graph with huge treewidth admits a large square grid as a minor. This result, as well as
its subsequent qualitative improvements (See [12], for instance), is the basis of the so-called
bidimensionality algorithmic technique, a win-win argument leveraging low treewidth or the
existence of a large grid minor [21].

This paper is the fifth of a series dedicated to a novel invariant of binary structures, the
twin-width (See Section 2 for formal definitions). This invariant appeared to be particularly
relevant for the study of ordered binary structures, and especially matrices over a finite
alphabet [7]. Some of our results will only need the matrix entries to belong to a finite
alphabet, while some will require the entries to belong to a finite field. A submatrix of a
matrix is obtained by deleting some rows and columns. Most of our results concern (infinite)
sets of matrices. In our framework, it will be natural to consider sets of matrices closed
under the operation of taking a submatrix. Sets of matrices with this property are called
matrix classes, analogously to permutation classes, which are classes of permutations closed
under taking subpermutations. The alphabet or field being fixed (and having at least two
elements), a matrix class is said to be proper if it does not include all matrices with entries
in the prescribed alphabet or field.

The notion of a rank Latin division has been introduced in [7] (see definition in Section 5).
It consists of a regular partition of the rows and columns delimiting blocks that either have
constant entries or have full rank, in a globally controlled way, where full-rank blocks draw
a universal permutation (see Figure 5). Just as the grids act as witnesses of a large treewidth,
the rank Latin divisions witness a large twin-width: a matrix has either small twin-width
or has a submatrix with a large rank Latin division. This is effective: in FPT time, either
a contraction sequence of the matrix (witnessing that the twin-width is low) is output or
a large rank Latin division is found in a submatrix (witnessing that the twin-width is high).

In this paper, we introduce an operation that plays a somewhat analogous role with respect
to the twin-width of ordered binary structures that taking a minor plays with treewidth.
Applied to 0,1-matrices, this operation consists of a succession of row or column deletions,
and replacements of two consecutive rows or columns by their entry-wise sum (modulo 2).
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Any 0,1-matrix obtained this way is a parity minor of the original matrix. More generally,
when applied to matrices over a finite field Fp, this operation consists of a succession of
replacements of two consecutive rows or columns by a linear combination of these (over
Fp), and any matrix over Fp obtained this way is a linear minor of the original matrix. We
say that a matrix class excludes a matrix M as a linear minor if M is not a linear minor
of a matrix in the class. As expected, every matrix is a linear minor of any matrix having
a sufficiently large rank Latin division, thus classes with unbounded twin-width do not
exclude any matrix as a linear minor (Lemma 33). It appears that this necessary condition
is also sufficient.

▶ Theorem 1. A matrix class over a finite field has bounded twin-width if and only if
it excludes some matrix as a linear minor.

However, our proof of Theorem 1 involves some (finite) model theoretic arguments.
From a model theoretical point of view, a matrix over a finite alphabet of size p is seen

as a structure with two linearly ordered sets of elements, the row and column index sets, and
p binary predicates expressing the presence of a particular symbol at a specific entry. The
logical formulas we will consider will allow distinguishing row and column indices, comparing
indices of a same sort, and testing whether the entry of the matrix defined by two indices
contains a given symbol.

It appears that the twin-width of ordered structured behaves very nicely with respect
to first-order logic and (as we shall see) its modulo-counting extension. This situation is
reminiscent of the relation of treewidth (and cliquewidth) with monadic second-order logic
[14] and its modulo-counting extension [15].

Indeed, it follows from the results proved in the first paper of the series [8], that first-order
model checking (that is: the problem of deciding whether a first-order (FO) sentence φ is
satisfied on a structure) is fixed-parameter tractable on matrices over a finite alphabet, when
parametrized by φ, the size of the alphabet, and the twin-width of the matrix, provided
that some so-called d-sequence witnessing the upper bound on the twin-width is given
together with the matrix. Here we observe that this result extends to the more expressive
first-order logic with modulo-counting (FO+MOD), which is the logic obtained by adding to
the standard first-order constructions new quantifiers ∃i[p], where “∃i[p]x φ(x)” expresses
that the number of witnesses x for the formula φ is congruent to i modulo p.

Logical formulas also allow defining new structures from an original structure. This is
the essence of the notion of transduction. A transduction of binary structures T first colors
the elements of a given binary structure A in all possible ways, thus constructing a set of
colored structures. Then, each of these colored structures gives rise to a new binary structure
by means of fixed logical formulas, thus constructing a set T(A) of derived structures, the
transduction of A by T. A set D of structures is a transduction of a set C of structures if
there exists a transduction T with D ⊆ T(C). A set C of structures is monadically dependent
if the set of all finite graphs is not a transduction of C. (While this actually follows from [3],
we will take here this characteristic property as a definition of monadic dependence.) Note
that it has been recently proved [11] that, for hereditary classes of structures (like matrix
classes) monadic dependence coincides with the classical notion of dependence (or NIP),
which is one of the most fundamental dividing lines in model theory; a proof of such a collapse
in the particular case of hereditary classes of ordered graphs was previously shown in [7].

In [8], it was proved that for every FO-transduction T of binary structures, the maximum
twin-width of a structure in T(A) is bounded by a function (depending on T) of the twin-
width of A. We also extend this result to FO+MOD-transductions (Theorem 27). As an
example, there is a transduction Lp such that for every matrix M over Fp, the set Lp(M) is
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exactly the set of all linear minors of M (Lemma 29). Thus, the closure by linear minors of
a matrix class with bounded twin-width also has bounded twin-width, from which Theorem 1
follows.

Together with the results established in [7], this leads to the following equivalence, where
the equivalence with the properties in bold is proved in the current paper.

▶ Theorem 2. Given a matrix class M over a finite field, the following are equivalent.
(i) M has bounded twin-width;

(ii) M excludes a linear minor;
(iii) M is monadically dependent;
(iv) every matrix class that is an FO-transduction of M is proper;
(v) every matrix class that is an FO+MOD-transduction of M is proper;

(vi) M is small (i.e. the number of n× n matrices in M is at most 2O(n));
(vii) every FO+MOD-transduction of M is small;
(viii) M is subfactorial (i.e. the number of n × n matrices in M is less than n!, for

sufficiently large n).
Assuming that FPT ̸= AW[∗], those conditions are further equivalent to:
(ix) FO-model checking is FPT on M;
(x) FO+MOD-model checking is FPT on M.

We now consider some consequences of these results.
We call rank-bidimensional a parameterized problem defined on matrices whenever the

presence of a large rank Latin division in a submatrix incurs an (easy) FPT algorithm. Thus,
we get the following.

▶ Theorem 3. Every FO+MOD-definable rank-bidimensional problem is in FPT.

From Theorem 3, we obtain FPT algorithms for deciding if a (small) matrix is a linear
minor (or parity minor) of another matrix, for exactly computing the grid number, mixed
number, and grid rank of a matrix (see Section 2 for definitions).

Next we show that, over a finite field, the square M2 of a matrix M with bounded
twin-width has bounded twin-width, by expressing the squaring operation as an FO+MOD-
transduction. From the characterization in terms of large rank Latin division of submatrices,
it follows that if two matrices A and B have small twin-width, then so does the matrix ( 0 A

B 0 ).
As ( 0 A

B 0 )2 = ( AB 0
0 BA ), we deduce:

▶ Theorem 4. There is a computable function f : N2 → N such that the following holds.
Let A and B be two conformal matrices over a finite field Fq, both of twin-width at most d.
Then the twin-width of the product AB is at most f(d, q).

Note that, by similar arguments, the sum of two conformal matrices over Fq, both of
twin-width at most d, has twin-width at most f ′(d, q), for some computable function f ′.

We now consider the problem from an algorithmic point of view. From a computational
perspective, the data structures used to encode matrices over a finite field are crucial.
Encoding matrices as bipartite binary structures allows using the machinery developed
for (ordered) graphs. In this setting, natural witnesses for twin-width boundedness are
d-sequences (or, contraction sequences), which we mentioned earlier when discussing first-
order model checking complexity on classes with bounded twin-width (see Section 2.2 for a
formal definition). A naive implementation of the algorithm presented in [7, Theorem 2] runs
in time exp(exp(O(d2 log d)))n3, and outputs a 2O(d4)-sequence if the twin-width is indeed
at most d. We show how to bring the dependence in n down to Od(n2 logn) (Theorem 11).
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Gajarský et al. [23], building on Pilipczuk et al. [37], showed that given an n-vertex graph
(or binary structure) G with a d-sequence and a first-order formula φ(x1, . . . , xk), one can
compute in time Od,φ(n1+ε) (resp. Od,φ(n)) a data structure that answers for any query
v1, . . . , vk ∈ V (G) whether G |= φ(v1, . . . , vk) in time Od,φ(1/ε) (resp. Od,φ(log logn)). This
result can be extended to FO+MOD. Then, the squaring operation can be performed by
means of a simple interpretation, which gives a near-linear representation of M2 (in the
domain size, that is, sublinear in the number of matrix entries) where entries can be queried
in constant time.

We thus obtain an algorithm that takes two matrices of bounded twin-width (without
witnesses) and outputs their product in quasilinear time in the number of entries.

▶ Theorem 5. Given two n× n matrices A and B over Fq, both of twin-width at most d,
there is an algorithm to compute their product AB in time Od,q(n2 logn).

However, this algorithm is not practical due to the acute dependence on the twin-width
bound. We thus place ourselves in a setting where inputs are already in compact form
(witnessing low twin-width). The use of an adapted internal representation is a classical
technique of digital computing (Fourier transform, redundant representation of numbers,
etc.). Likewise, it appears that convenient representations of matrices of bounded twin-width
for matrix computations are twin-decompositions [5, 9]. Informally, a twin-decomposition is
a tree whose leaves are bijectively mapped to the domain of the structure (here, to the row
and column indices), and internal nodes are ordered and naturally correspond to contractions.
The binary relations (here, the entries) are encoded by additional edges joining pairs of nodes
of the tree, and respecting some specific rules. Every binary structure with bounded twin-
width has a twin-decomposition with linearly many extra edges, hence the twin-decomposition
forms a degenerate graph. The width of the twin-decomposition is related to this degeneracy
(see Section 2 for precise definitions). Notice that a twin-decomposition of constant width
takes quasilinear space to describe a set of binary relations with possibly quadratically many
pairs. We show that a twin-decomposition can be computed from a contraction sequence in
quadratic time and observe that, conversely, a contraction sequence can be computed from
a twin-decomposition in linear time.

Our last contribution is an ad hoc efficient matrix multiplication algorithm for matrices
over Fp with bounded twin-width, which we state here in the case of matrices over F2.

▶ Theorem 6 (Theorem 7+[37]). Let A and B be two n× n matrices over F2 given in the
form of twin-decompositions of width at most d. For every ε > 0, there is a 4d+o(d)n1+ε-time
algorithm that outputs a twin-decomposition of the product AB of width 2d+o(d) and a data
structure of size 2d+o(d)n1+ε such that querying an entry of AB takes time O(1/ε).

This result is based on an admittedly technical algorithm computing a twin-decomposition
of the square M2 of a matrix M from a twin-decomposition of M , which extends to a matrix
multiplication algorithm for matrices each represented by a twin-decomposition.

▶ Theorem 7. Let A and B be two n × n matrices over F2 given in the form of twin-
decompositions of width at most d. There is a 4d+o(d)n-time algorithm that outputs a twin-
decomposition of the product AB of width 2d+o(d).

The entries of AB can then be queried in time essentially the height of the twin-
decomposition, which can be made logarithmic. However, by computing the data structure
introduced by Pilipczuk et al. [37] in O(d′n1+ε) time and space where d′ upperbounds the
width of a twin-decomposition of the matrix, the entry queries can be performed in O(1/ε)
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time. Theorems 6 and 7 carry over on any finite field Fq with running time q2d+o(d)n and
2Oq(d)n1+ε, respectively.

An intriguing question concerns the existence of such results over infinite fields (starting
with Q). We do not have a direct definition of twin-width of matrices over Q based on
contraction sequences. However linear-minor freeness naturally carries to infinite fields, and
thus, it is natural to consider that a class of matrices over Q has bounded twin-width if its
closure under linear minors is not the set of all matrices. This can be equivalently stated via
the notion of grid rank of a matrix M , i.e., the largest k for which there is a k×k subdivision
of M in which every block has rank at least k. Note that if a matrix has grid rank k, then
any linear minor has grid rank at most k. Indeed, one can even show that a class of matrices
has bounded grid rank if and only if it does not contain some matrix as a linear minor. We
believe that computing the product of two matrices over Q with bounded grid rank should
be done in almost quadratic time, however, we lack a structural decomposition as in the
finite field case.

There is a vast literature on computing matrix multiplication, or other natural primitives
of linear algebra, on classes of structured matrices. We give a few references on rank-structured
matrices (see for instance [20, 27, 10, 41, 40]) and matrices of bounded treewidth.

A square matrix has quasiseparable order s if all its submatrices that are completely
above the main diagonal, or completely below it, have rank at most s. Note that on adjacency
matrices this is equivalent to the linear rank-width parameter (a dense analogue of pathwidth).
Pernet [35] shows that multiplying two n×n matrices with quasiseparable order s can be done
in time O(sω−2n2), where ω is the exponent of matrix multiplication, or O(s3n) if the matrices
are given in a suitable compact form [36]. The closely-related semiseparable matrices also
have efficient multiplication algorithms [42]. So-called1 H-matrices (for hierarchical matrices)
and H2-matrices admit almost linear-time algorithms for vector-matrix multiplication [10].

One can naturally extend the treewidth graph parameter to 0,1-matrices M by considering
the treewidth of the bipartite graph whose biadjacency matrix is M . Fomin et al. [22] show
how to compute the determinant, the rank, and to solve a linear system defined by an n× n
matrix of treewidth k, in time kO(1)n. It was recently shown by Dong et al. [18] how to solve
linear programs in expected almost linear-time on matrices of bounded treewidth.

2 Preliminaries

We denote by [i, j] the set of integers {i, i+1, . . . , j−1, j}, and [i] is a short-hand for [1, i]. We
use the standard graph-theoretic notations: V (G), E(G), NG[S], NG(S), G[S] respectively
denote the vertex set, edge set, closed neighborhood of S, open neighborhood of S, and
subgraph induced by S, of a graph G. Given a matrix M , we may interchangeably denote
by Mx,y or M [x, y] the entry of M at row x and column y.

2.1 Binary structures and matrices
A relational signature Σ is a finite set of relation symbols R, each with a specified arity r ∈ N.
A Σ-structure A is defined by a set A (the domain of A) together with a relation RA ⊆ Ar

for each relation symbol R ∈ Σ with arity r. The syntax and semantics of first-order formulas
over Σ, or Σ-formulas for brevity, are defined as usual. We will augment first-order logic

1 These classes involve a hierarchical (dichotomic) block decomposition into blocks that are either of low
rank (if far from the main diagonal) or recursively in the class (otherwise); see [27, 10] for definitions.
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with modular counting quantifiers (see Section 4 for definitions). A binary structure is a
Σ-structure such that every relation symbol of Σ has arity at most 2. An ordered binary
structure is a structure A over a signature Σ consisting of unary and binary relation symbols
which includes the symbol <, defining in A a total order on the domain of A.

A matrix M over a finite alphabet A with rows R and columns C is viewed as an ordered
binary structure with domain R ⊎ C, equipped with the following relations:

a unary relation R interpreted as the set of rows,
an antisymmetric binary relation < which defines a total order on R ⊎ C, extending the
total orders on the rows and columns of M in such a way that the rows precede the
columns,
one binary relation Ea, for each a ∈ A, where Ea(r, c) holds if and only if r is a row, c is
not (hence is a column), and a is the entry of M at row r and column c.

Matrices over a finite alphabet are actually as general as unconstrained binary structures.
Indeed, one can encode any binary structure as an adjacency matrix M , where the values
M [x, y] are in one-to-one correspondence with the atomic type of (x, y), that is, the subset
of unary relations containing x, the subset of unary relations containing y, and the subset
of binary relations containing the (ordered) pair (u, v). The reader might think of matrices
over finite alphabets, binary structures, or edge-colored graphs as different representations of
the same objects. Depending on the context, we will sometimes prefer one representation
over another.

2.2 Contraction sequences and twin-width
A trigraph G has vertex set V (G), (black) edge set E(G), and red edge set R(G), with E(G)
and R(G) being disjoint. The set of neighbors NG(v) of a vertex v in a trigraph G consists of
all the vertices adjacent to v by a black or red edge. A d-trigraph is a trigraph G such that
the red graph (V (G), R(G)) has degree at most d. In that case, we also say that the trigraph
has red degree at most d. A (vertex) contraction or identification in a trigraph G consists of
merging two (non-necessarily adjacent) vertices u and v into a single vertex z, and updating
the edges of G in the following way. Every vertex of the symmetric difference NG(u)△NG(v)
is linked to z by a red edge. Every vertex x of the intersection NG(u) ∩NG(v) is linked to z
by a black edge if both ux ∈ E(G) and vx ∈ E(G), and by a red edge otherwise. The rest
of the edges (not incident to u or v) remain unchanged. We insist that the vertices u and
v (together with the edges incident to these vertices) are removed from the trigraph. See
Figure 1 for an illustration.

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

u v z

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

Figure 1 Contraction of vertices u and v, and how the edges of the trigraph are updated.

A d-sequence (or contraction sequence) is a sequence of d-trigraphs Gn, Gn−1, . . . , G1,
where Gn = G, G1 = K1 is the graph on a single vertex, and Gi−1 is obtained from Gi by
performing a single contraction of two (non-necessarily adjacent) vertices. We observe that
Gi has precisely i vertices, for every i ∈ [n]. The twin-width of G, denoted by tww(G), is
the minimum integer d such that G admits a d-sequence. See Figure 2 for an illustration.
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Figure 2 A 2-sequence witnessing that the initial graph has twin-width at most 2.

Twin-width can be generalized from graphs to binary structures in some (functionally)
equivalent ways [8, 4]. Here we choose the following definition.

On general binary structures, red edges exist between two vertices x, y ∈ V (Gi) whenever
there are up to four vertices u ̸= v, u′ ̸= v′ ∈ V (G) such that u and u′ (which might be the
same vertex) were contracted (together with possibly other vertices) to form x, similarly
v and v′ were contracted to form y, and the atomic types of (u, v) and of (u′, v′), or of
(v, u) and of (v′, u′), are distinct. If instead, all such pairs (u, v) have the same atomic type,
this shared atomic type labels the edge xy in Gi. Contraction sequences, d-sequences, and
twin-width are then similarly defined.

In particular, we now have a definition of twin-width for the matrices of Section 2.1.

2.3 Matrix divisions
We will often denote by R (resp. C) the sets of row (resp. column) indices of a matrix M .
For X ⊆ R and Y ⊆ C, we denote by M [X,Y ] the submatrix of M consisting of the entries
at rows in X and columns in Y .

A (k, ℓ)-division of a matrixM is a pair of partitions (R = {R1, . . . , Rk}, C = {C1, . . . , Cℓ})
of R and C, respectively, such that every Ri corresponds to consecutive rows, and every Cj ,
to consecutive columns. A k-division is a (k, k)-division. We may call a set of consecutive
row or column indices an interval. The grid number, mixed number, grid rank, respectively, of
a matrix is the largest integer k such that M has a k-division ({R1, . . . , Rk}, {C1, . . . , Ck})
for which, for every i, j ∈ [k],

M [Ri, Cj ] has a non-zero entry,
M [Ri, Cj ] has at least two distinct rows and at least two distinct columns,
M [Ri, Cj ] has at least k distinct rows or at least k distinct columns,

respectively.
The divisions are called k-grid minor, k-mixed minor, and rank-k division, respectively.

An interval minor of a matrix M is a matrix N with k rows and ℓ columns such that M has
a (k, ℓ)-division ({R1, . . . , Rk}, {C1, . . . , Cℓ}) such that for every i ∈ [k] and every j ∈ [ℓ],
Ni,j is an entry of M [Ri, Cj ].

We call k-Grid Minor, k-Mixed Minor, Rank-k Division, Interval Minor Con-
tainment, respectively, the computational problems of deciding if an input matrix has grid
number at least k, mixed number at least k, grid rank at least k, and if a matrix is an interval
minor of another matrix.

The following celebrated theorem by Marcus and Tardos, solving the Füredi-Hajnal, and
hence [29] the Stanley-Wilf conjectures, is crucial to the theory of twin-width.

▶ Theorem 8 ([33]). There is a function mt: N→ N such that for every natural k, every
n×m matrix with at least mt(k) max(n,m) non-zero entries admits a k-grid minor.

The current best known bound is mt(k) = 8
3 (k + 1)224k = 2O(k) [13].



É. Bonnet, U. Giocanti, P. Ossona de Mendez, S. Thomassé 9

2.4 Computing contraction sequences
Efficiently (in polynomial time, FPT time, or even slice-wise polynomial time) approximating
the twin-width of a binary structure remains a challenging open question. However, such an
algorithm is known for totally ordered binary structures, or matrices over a finite alphabet.

▶ Theorem 9 ([7]). Given an n×m matrix M over a finite alphabet A, and an integer d,
there is an exp(exp(O|A|(d2 log d)))(n+m)3-time algorithm that

either correctly reports that the twin-width of M is larger than d,
or outputs a |A|O(d4)-sequence for M .

The exponent of (n + m) in the algorithm running time was not made explicit in [7],
but it can be observed that a direct implementation would indeed take cubic time. We will
now see that we can bring this down to an almost quadratic dependence in the number of
rows and columns. For the sake of convenience, we will work with symmetric matrices. For
most applications, this is not really a limitation. To compute something on a non-symmetric
matrix M , we will instead consider the symmetric s(M) :=

( 0 M
MT 0

)
. Our main application

concerns matrix multiplication. To compute the product MN of two square2 matrices, we
can compute

s(M)s(NT ) =
( 0 M

MT 0
) (

0 NT

N 0
)

=
(

MN 0
0 MT NT

)
.

That the resulting matrix is not necessarily symmetric is irrelevant. We read off MN from
its top-left block.

We need the following definitions.
A k-division of a symmetric matrix is symmetric if for every i ∈ [k], the i-th row part

and the i-th column part contain the same row and column indices. Let M be a matrix and
D = (R, C) be a (k, ℓ)-division of M (with row set R, and column set C). A row part Ri ∈ R
is r-poor in D if there is a union X of at most r column parts of C such that M [Ri, C \X]
contains less than r distinct rows. An r-poor column part is defined symmetrically. In [7],
a division D is said r-rich if none of its parts are r-poor.

A symmetric fusion of a matrix M with a symmetric k-division (R, C) consists of merging
two consecutive row parts of R, and the two corresponding column parts in C. It results in a
symmetric (k − 1)-division of M . The notions of (k, ℓ)-partition, k-partition, and symmetric
merge are obtained from (k, ℓ)-division, k-division, and symmetric fusion, respectively, by
relaxing the condition that parts should consist of consecutive rows or columns.

As a preparatory step, we give an explicit lower bound for the grid rank to imply
twin-width larger than d.

▶ Lemma 10 ([7]). Let d be a non-negative integer, and k := 2d(d+ 1) + 1. If M admits
a rank-k division, then M has twin-width larger than d.

Proof. One can observe that a rank-k division is a (k − 1)-rich division. Hence we assume
that M has a 2d(d+ 1)-rich division. The fact that M has then twin-width larger than d is
the content of [6, Lemma 19]. ◀

Still following the previous paper of the series [7], we show the following.

▶ Theorem 11. Given an n × n symmetric matrix M over a finite alphabet A, and an
integer d, there is an algorithm running in time Od,|A|(n2 logn) that

2 If not, one can pad them with rows or columns of 0 entries.
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either correctly reports that the twin-width of M is larger than d,
or outputs an exp(exp(exp(O|A|(d4))))-sequence for M .

Proof. Let M be the input, as described, and set k := 2d(d+ 1) + 1, and r := |A|k·mt(k2).
Let D = (R, C) be the unique (symmetric) n-division of M , and P = (RP , CP) be the unique
(symmetric) n-partition of M . Thus, initially, D = P. Trivially, every part of D is r-poor
in D.

We need the following, shown in the previous paper of the series.

▷ Claim 12 ([6, Theorem 2, Lemma 20]). Checking if a row (resp. column) part R of size h
is r-poor in D can be done in time exp(exp|A|(r log r)) · hn.

If R is indeed r-poor, within the same time, a set Y of at most r column (resp. row) parts
can be found, and we output a partition of R into the at most r − 1 parts corresponding to
the equivalent classes of the relation being equal rows (resp. columns) outside Y .

For convenience, if R is not r-poor, we output {R}.

Proof of the claim: This is direct from [6, Lemma 20]. The running time is indeed linear
in the number of entries spanned by R, that is hn. ♢

Algorithm. While D has more than one row part, we do the following.
For every pair of consecutive row parts Ri, Ri+1 in R with i odd, we check if Ri ∪Ri+1

is r-poor in (R \ {Ri, Ri+1} ∪ {Ri ∪Ri+1}, C).
(A) If at least half of the pairs can be merged into an r-poor part, we make the corresponding
symmetric fusions in D. We obtain a new symmetric s-division D′ = (R′, C′) where indices
are rearranged from 1 to s, and a new symmetric partition D′P = (R′P , C′P), which is the
union of the partitions output by Claim 12.
(B) If, instead, less than half of the pairs can be merged, we will prove (slightly adapting [6,
Section 5]) that the grid rank of M is large, which in turns implies that its twin-width is
more than d, by Lemma 10. We thus exit the while loop.

Running time. Case (A) reduces by a factor of at least 1/4 the current number of row
parts in D. Hence it can only be done O(logn) times. By Claim 12, each such iteration
takes time

exp(exp(r log r)) ·
( ∑

i odd natural
|Ri ∪Ri+1| · n

)
= Od(n2).

In this upper bound, i does not exceed the size of the current division, and the equal-
ity holds since the submatrices we consider partition M . The total running time of
exp(exp(exp(exp|A|(d4 log d)))) · n2 logn = Od(n2 logn) follows since case (B) stops the
algorithm.

Correctness. It was shown in [7] that if (B) never occurs, the sequence of computed
partitions P are coarser and coarser, and essentially form an Od,|A|(1)-sequence: one can
arbitrarily merge parts to bridge one partition to the next. Following the end of the proof
of [6, Theorem 2, Case 2.], we obtain an |A|O(r2)-sequence, hence an exp(exp(exp(O|A|(d4))))-
sequence, for M . We thus focus on the case when (B) happens.

What was playing the role of case (B) in [7] (Case 1.) was more constrained: It stated
that no two consecutive parts can be fused into an r-poor part. Then, one could directly
show that, if this holds, the twin-width of M has to be large. Now, we only know that a
positive fraction of the consecutive pairs cannot be fused into an r-poor part. We show that
this still implies a large grid rank (following [6, Section 5]).
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Let DB = (RB = {RB
1 , R

B
2 , . . . , R

B
2s−1, R

B
2s}, CB = {CB

1 , C
B
2 , . . . , C

B
2s−1, C

B
2s}) be the

current division when (B) occurs. Note that, for convenience, we assumed that the number
of row parts in DB is even. We consider the symmetric division D = (R, C) with

R = {R1 = RB
1 ∪RB

2 , R2 = RB
3 ∪RB

4 , . . . , Rs = RB
2s−1, R

B
2s},

C = {C1 = CB
1 ∪ CB

2 , C2 = CB
3 ∪ CB

4 , . . . , Cs = CB
2s−1, C

B
2s}.

At least half of the Ris (and symmetrically, of the Cis) are not r-poor.
Following [7, Theorem 22], in each column part of C, we color in red the cells of D with

at least k distinct rows or k distinct columns. We then color blue the cells X that feature a
row vector which is not in a non-red cell, in the same column part of X and below it. In
the at least s/2 column parts that are not r-poor, one can show that at least mt(k2) cells
are colored [7, Theorem 22]. We symmetrically fuse consecutive blocks of r-poor parts with
an adjacent part which is not r-poor. Observe that the cells that are containing a formerly
blue cell are now blue or red, and the cells containing a formerly red cell are still red. We
now obtain a new symmetric division with at least s/2 column parts (or equivalently, row
parts), where every column part contains at least mt(k2) colored cells. Thus, we can finish
the proof as in [7, Theorem 22], and obtain a rank-k division of M . Hence, by Lemma 10,
the twin-width of M is larger than d. ◀

2.5 Twin-decompositions
A twin-decomposition of a graph G also uses the framework of a rooted carving decomposition,
i.e., a rooted binary tree whose leaves are in one-to-one correspondence with the vertices
of G. In the case of twin-decompositions though, the internal nodes of the rooted binary
tree are totally ordered and the width is quite different from how carving-width is defined.

A rooted binary tree with n − 1 internal nodes bijectively labeled by ℓ on [n − 1] is
said ranked if whenever u and v are two distinct internal nodes such that v is a descendant of
u, then ℓ(u) < ℓ(v) holds. By convention, we then decide that all the leaves are labeled +∞
(or equivalently n). For every i ∈ [n], the i-th border of a ranked tree T with n− 1 internal
nodes is the set of maximal rooted subtrees whose roots have label at least i. We denote by
Bi(T ) the i-th border of T . It can be easily shown (using that T is a ranked tree) that the
i-th border of T consists of exactly i subtrees. We denote by r(T ) the root of T .

A twin-decomposition of an n-vertex graph G is a pair (T ,B) where

(a) T is a rooted binary tree, ranked by ℓ on [n − 1], whose leaves are in one-to-one
correspondence with V (G), and

(b) B (for bicliques) is a set of edges over V (T ) (disjoint from edge set of T ), such that:

1. B partitions the edge set of G, where an edge between u, v ∈ V (T ) is interpreted as the
biclique of G linking every leaf in the subtree of T rooted at u, to every leaf in the subtree
of T rooted at v, and

2. No edge of B crosses an i-th border, i.e., links a node in a subtree T ′ of Bi(T ) but not
the root of T ′ to a vertex outside every subtree of Bi(T ).

One can retrieve the sequence of trigraphs G = Gn, . . . , G1 from the twin-decomposition
in the following way. The vertex set of Gi corresponds to the subtrees of Bi(T ),

with a black edge between T1 ∈ Bi(T ) and T2 ∈ Bi(T ) whenever there is an edge in B
between r(T1) or one of its ancestors (in T ) and r(T2) or one of its ancestors, or whenever
for every leaf u of T1 and every leaf v of T2, there is an edge between the path from u to
r(T1) and the path from v to r(T2),



12 Twin-width V: linear minors, modular counting, and matrix multiplication

and a red edge between T1 ∈ Bi(T ) and T2 ∈ Bi(T ) whenever this does not hold but yet
there is an edge uv ∈ B with u ∈ V (T1) and v ∈ V (T2), and a pair (u′, v′) such that u′ is
a leaf of T1, v′ is a leaf of T2, and there is no edge between the path from u′ to r(T1) and
the path from v′ to r(T2).
The width of the twin-decomposition (T ,B) is again defined as the maximum red degree

among every vertex of every trigraph Gi (as previously defined). See Figure 3 for an
illustration of a twin-decomposition corresponding to a particular contraction sequence.

a

b

c

d

e

f

2

1

5 3

4

a b c d e f

5 3 4

2

1

a b c d e f

5 3 4

2

1

Figure 3 Left: a graph G with a contraction sequence (or partition sequence), where trigraph Gi

is obtained after performing the contraction labeled i. Center: the twin-decomposition corresponding
to this contraction sequence, with the edges of B in blue. Right: a ranked tree T and a partition
B of the edges of G that does not make for a twin-decomposition, since the edge b3 crosses B5(T )
(and B4(T )).

Suppose (T ,B) is a twin-decomposition of a graph with width at most d. If one orients
every edge uv ∈ B as the arc (u, v) whenever the parent of u has a larger label than the
parent of v (keeping the edge undirected if u and v shares the same parent), then every node
z of V (T ) has at most d out-neighbors. Indeed at the i-th border, with i being the label
of the parent p(z) of z, the subtree of Bi(T ) rooted at p(z) has red degree at most one per
out-neighbor of z. This is because two neighbors of z (in B) cannot be in a descendant-
ancestor relationship, as we imposed B to partition the edge set of G. Since z has at most
one undirected edge incident to it, the graph made by B on V (T ) is d+ 1-degenerate.

Thus the mere definition of twin-decomposition imposes that |B| = O(n).
For every twin-decomposition (T ,B), we say that B is lifted up if for every uv ∈ B such

that ℓ(p(u)) ⩾ ℓ(p(v)), either p(v) = p(u) or if u′ ∈ V (T )\ {u} is such that p(u′) = p(u),
then u′v /∈ B. For example, the edge set of the twin-decomposition in the center of Figure 3
is lifted up.
▶ Remark 13. For every twin-decomposition (T ,B) of width d, one can compute in time
O(dn) a set B′ ⊆ E(T ) of size at most |B| such that (T ,B′) is a twin-decomposition of the
same sequence where B′ is lifted up. Indeed, for each i ranging from n− 1 to 1, if z = ℓ−1(i)
and u, u′ ∈ V (T ) are such that p(u) = p(u′) = z, for each v ∈ V (T ) such that uv, u′v ∈ B,
we replace B by (B \ {uv, u′v}) ∪ {zv}.
▶ Remark 14. If (T ,B) is a twin-decomposition where B is lifted up, then the edges of B are
exactly the black edges “disappearing” at some point of the contraction sequence associated
to T . More precisely, e = uv ∈ B if and only if there exists an i such that u and v are distinct
vertices of V (Gi), uv ∈ E(Gi) and either u and v are identified in Gi−1 or u′v′ ∈ R(Gi−1),
where u′ and v′ denote the vertices of Gi−1 that contain respectively u and v.

As previously observed, twin-decompositions permit to retrieve their corresponding
contraction sequences, i.e., adjacencies and red adjacencies in the Gis. However, given a
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twin-decomposition (T ,B) of G such that |B| = O(n), we should not store all the R(Gi) for
each i ∈ [n− 1] as it may take Ω(n2) space; too much for our algorithmic purposes when we
want a linear complexity in n (see Section 7). To do so, we will need to compute R(Gi) on
the fly.

Assume that Gn, . . . , G1 is a d-sequence of G, with corresponding twin-decomposition
(T ,B). Given (T ,B), we show how to compute all the red neighborhoods {W ∈ V (Gi) : UW ∈
R(Gi)} for every i ∈ [n − 1], U ∈ V (Gi) in O(dn) time. Note that we may identify the
vertices of V (Gi) with their corresponding subsets of vertices of V (G) (and thus denote them
with uppercase symbols). For each i ∈ [n − 1], U ∈ V (Gi), we let Li

U := {W1, . . . ,Wk} be
the k ⩽ d red neighbors of U in Gi. We say that the Li

U can be dynamically computed if
there exists an algorithm which runs in n steps, such that at the end of step i (where i ranges
from n− 1 to 1), it only stores in memory the values of Li

U for each U ∈ V (Gi), and every
step takes time Od(1).

▶ Lemma 15. Given a twin-decomposition (T ,B) of width d of an n-vertex graph G, one
can dynamically compute in time O(dn) the adjacency lists Li

U of each node of V (T ).

Proof. By Remark 13 we may assume that B is lifted up. We simply need to process the
nodes of T by decreasing values of their labels and update in constant time the lists Li

U

according to the information given by B. The formal algorithm is given by Algorithm 1. Since
the width of the twin-decomposition is at most d, at each step, the number of considered
edges of B is at most d, which gives the desired complexity. In the following algorithm, the
set V at step i correspond to V (Gi) and the list Li

U is given by the content of LU at the end
of step i. ◀

Algorithm 1 On-the-fly computation of the red graphs based on a twin-decomposition

Input : A twin-decomposition (T ,B) of width d.
1 V ←

⋃
u∈V (G){{u}}

2 for U ∈ V do
3 LU ← {}
4 for i = n− 1→ 1 do
5 Let Z be the node of T labeled by i and U, V denote its two children in T .
6 V ← V\ {U, V } ∪ {Z}
7 LZ ← LU ∪ LV \ {U, V }
8 for W ∈ V\ {Z} such that VW ∈ B xor UW ∈ B do
9 LZ ← LZ ∪ {W}

For the sake of simplicity, we described twin-decompositions for graphs but they readily
generalize to binary structures. Here, the representation of binary structures with edge-colored
graphs will be the most convenient.

We thus see a binary structure as a graph G with an edge-labeling function ν : E(G)→ Fq.
A twin-decomposition of G is still a pair (T ,B), only now, edges of B are labeled over Fq.
For every ℓ ∈ Fq, let Gℓ denote the subgraph of G induced by the set of edges labeled ℓ, and
by Bℓ, the subset of B of edges labeled ℓ. Then (T ,Bℓ) is a twin-decomposition of Gℓ. We
say that B is lifted up if Bℓ is lifted up for every ℓ ∈ Fq.
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2.6 Computing a twin-decomposition from a contraction sequence
There is an easy linear (in the input size, i.e., in the number of edges) algorithm that, given a d-
sequence, computes a corresponding twin-decomposition (of same width d). The list of triples
of a contraction sequence Gn, . . . , Gi, . . . , G1 is (un, vn, zn), . . . , (ui, vi, zi), . . . , (u2, v2, z2)
such that the contraction of ui and vi in Gi into a new vertex zi results in Gi−1.

▶ Theorem 16. A twin-decomposition of width d of an n-vertex graph G given with the list
of triples of a d-sequence can be computed in time O(n2).

Proof. Let (un, vn, zn), . . . , (u2, v2, z2) be the list of triples of the given d-sequence of G. We
want to build a twin-decomposition (T ,B) of width d for G. We initialize T by creating one
leaf for each vertex of G, each leaf being labeled by the corresponding vertex. We initialize
B as the empty set.

We process the list of triples from (un, vn, zn) to (u2, v2, z2). At the i-th iteration (for
some i ∈ [2, n]) we explicitly perform the contraction of ui and vi in Gi (into zi), and obtain
the new trigraph Gi−1. In T , we add a common parent zi to ui and vi, and set ℓ(zi) = i− 1.
For every w ∈ V (Gi−1) \ {zi} such that {uiw, viw} ∩E(Gi) ̸= ∅ and ziw ∈ R(Gi−1), we add
the edge uiw to B if uiw ∈ E(Gi), or we add the edge viw to B if viw ∈ E(Gi). One can
observe that the i-th step takes O(n) time, hence the overall running time is quadratic. ◀

Actually, on an n-vertex m-edge graph the twin-decomposition of a d-sequence of G can
be computed in time O(dn+m).

▶ Observation 17. There is an O(n)-time algorithm that inputs a twin-decomposition (T ,B)
of width d of an n-vertex graph G, and outputs the list of triples of a d-sequence of G.

Proof. We add identifying labels, say tags, to the nodes of T (in addition to the labeling
function ℓ). The tags of the leaves match the one-to-one correspondence between V (G) and
the leaves of V (T ). For every i from n down to 2, append the triple (ui, vi, zi) where ui

and vi are the tags of the two children of the node v = ℓ−1(i− 1), and tag v with the fresh
identifier zi. ◀

A consequence of the second paper of the series is that, given twin-decompositions of
bounded width, one can find twin-decompositions of (larger) bounded width, where in
addition the tree T has logarithmic depth.

▶ Theorem 18. [4, see Lemma 23 and Proposition 22] For every integer d, there is a larger
integer D such that every n-vertex graph of twin-width d admits a twin-decomposition of
width at most D and depth Od(logn).

Given a twin-decomposition (T ,B) of G with width d and depth h, the presence of an
edge between two vertices of G can be decided in time O(dh). This yields a linear-space
representation of G with edge queries in logarithmic time. The following stronger result was
shown by Pilipczuk et al.

▶ Theorem 19 ([37]). Given a twin-decomposition of width d of an n-vertex graph G,
and any ε > 0, there is a data structure of size O(dn1+ε) (resp. Od(n)), computable in
time O(dn1+ε) (resp. Od(n logn log logn)), that supports edge queries of G in time O(1/ε)
(resp. Od(log logn)).

All the results mentioned in this section extend from graphs to binary structures.
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2.7 Parameterized complexity of model checking
First-order (FO) matrix model checking asks, given a matrix M (or a totally ordered binary
structure S) and a first-order sentence φ (i.e., a formula without any free variable), if
M |= φ holds, that is, if φ is true in M . FO model checking is fixed-parameter tractable
(FPT) on a matrix class M, with respect to the sentence size and the input matrix, if there
exists a constant c and a computable function f , such that M |= φ can be decided in time
f(|φ|) (m+ n)c, for every n×m matrix M ∈M and FO sentence φ.

FO model checking of general (unordered) graphs is AW[∗]-complete [19], and thus very
unlikely to be FPT. Indeed FPT ̸= AW[∗] is a much weaker assumption than the already
widely-believed Exponential Time Hypothesis [28], and if false, would in particular imply
the existence of a subexponential algorithm solving 3-SAT. FO model checking of general
binary structures of bounded twin-width given with an O(1)-sequence can even be solved in
linear FPT time f(|φ|) |U |, where U is the domain of the structure [8].

Gajarský et al. [23] reproved that result using a different, and more standard formalism.
Building on Theorem 19, they also presented an algorithm that inputs a binary structure
given with an O(1)-sequence and a formula with some free variables, and after some linear-
time processing, can answer queries of the form does the given tuple satisfy the formula in
the structure in doubly-logarithmic time.

▶ Theorem 20 ([23]). Given a binary Σ-structure A on a domain of size n, a d-sequence
of A, and a first-order Σ-formula φ(x1, . . . , xk), there is a data structure computable in
time Od,φ(n) that given any query of the form v1, . . . , vk ∈ A reports in time Od,φ(log logn)
whether A |= φ(v1, . . . , vk) holds.

Up to increasing the preprocessing time to near-linear, the queries can even be met in
constant time.

▶ Theorem 21 ([23]). For every ε > 0, given a binary Σ-structure A on a domain of
size n, a d-sequence of A, and a first-order Σ-formula φ(x1, . . . , xk), there is a data structure
computable in time Od,φ(n1+ε) that given any query of the form v1, . . . , vk ∈ A reports in
time Od,φ(1/ε) whether A |= φ(v1, . . . , vk) holds.

In classes of ordered binary structures or matrices, one need not require that the contrac-
tion sequence is given in input. Indeed there is an FPT approximation algorithm, that takes
a matrix M of twin-width d, and outputs a g(d)-sequence of M in time h(d) |M |O(1) [7].
Hence, FO matrix model checking can be solved in FPT time f(|φ|) |M |O(1) [7] in classes of
bounded twin-width.

2.8 Interpretations and transductions
Let Σ,Γ be relational signatures. A (simple) interpretation I : Σ → Γ consists of the
following Σ-formulas: a domain formula ν(x), and for each relation symbol R ∈ Γ of
arity r, a formula ρR(x1, . . . , xr). If A is a Σ-structure, the Γ -structure I(A) has domain
ν(A) = {v ∈ A : A |= ν(v)} and the interpretation of a relation symbol R ∈ Σ of arity r is
ρR(A) ∩ ν(A)r, that is:

RI(A) = {(v1, . . . , vr) ∈ ν(A)r : A |= ρR(v1, . . . , vr)}.

Note that Theorems 20 and 21 can be seen as efficiently computing the structure I(A) given
the formulas ρR(x1, . . . , xr), when A has bounded twin-width and is given with a contraction
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sequence. If C is a set of Σ-structures then denote I(C) = {I(A) | A ∈ C}. A class C interprets
a class D if there is an interpretation I such that I(C) ⊇ D.

Let Σ ⊆ Σ+ be relational signatures. The Σ-reduct of a Σ+-structure A is the structure
obtained from A by “forgetting” all the relations not in Σ; we denote this interpretation
as ReductΣ : Σ+ → Σ. A class C of Σ-structures transduces a class D if there is a class C+

of Σ+-structures, where Σ+ is the union of Σ and some unary relation symbols such that
ReductΣ(C+) = C and C+ interprets D. Here, the unary relation symbols and the underlying
interpretation are called transduction (or FO-transduction).

As it will be enough for our purposes, we will here take the following characterization as
the definition of monadic dependence.

▶ Theorem 22 (Baldwin and Shelah [3]). A class C of Σ-structures is monadically dependent
if and only if C does not transduce the set of all finite graphs.

Importantly transductions preserve the boundedness of twin-width.

▶ Theorem 23 ([8]). Let C be a set of Σ-structures of bounded twin-width, and T : Σ → Σ

be a transduction. Then T(C) has bounded twin-width.

We will deal with FO+MOD-transductions, which are defined as FO-transductions but
with first-order logic augmented with modular counting quantifiers. We postpone the relevant
definitions to Section 4.

2.9 Organization
In Section 3, we introduce the parity and linear minors. In Section 4, we define the
logic FO+MOD and show that parity and linear minors can be expressed with FO+MOD-
transductions. In Section 5, we use the two previous sections to show Theorem 1, that
is, the equivalence between bounded twin-width and linear-minor freeness. In Section 6,
we introduce the rank bidimensionality, and classify several matrix problems involving a
division of the rows and columns as being fixed-parameter tractable. In Section 7, we use
the extensions of Section 4 to show that bounded twin-width is preserved by matrix product,
and give an almost quadratic algorithm to multiply two matrices of bounded twin-width
(Theorem 5). In Section 8, we present a linear-time (i.e., possibly sublinear in the number of
non-zero entries) algorithm when further given a twin-decomposition of the two matrices to
multiply.

3 Parity and linear minors

We now introduce the notion of parity minor for matrices over a finite field. Let M be
a matrix with entries in a field F. A deletion operation (or simply deletion) in M consists of
deleting a row or a column. A sum operation (or simply sum) in M consists of replacing any
pair of consecutive rows ri, ri+1 or columns cj , cj+1 by their pointwise sum in F. That is,
ri+1 is deleted and ri is replaced by r′

i with r′
i[k] = ri[k] + ri+1[k], for every column index k,

where + is the addition in F. We say that a matrix N is a parity minor of M , denoted by
N ⩽pm M , if N can be obtained from M by a sequence of deletions and sums.

▶ Observation 24. If N is a parity minor of M , then N can be obtained from M by
performing all the deletions before performing all the sums.

Proof. Any (single) deletion performed just after a (single) sum can be equivalently performed
just before the sum. If the deletion is precisely on the row or column of the sum, one can
equivalently remove the two consecutive rows or columns and not perform the sum. ◀
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On the contrary, as we impose the sums to be on consecutive rows or columns, one cannot
necessarily perform all the sums before all the deletions.

Observation 24 implies the following reformulation. A parity minor of a matrix M is any
n ×m matrix obtained by summing up every cell of an (n,m)-division of a submatrix of
M . Indeed, after deleting the rows and columns not part of the submatrix, one can obtain
the minor by summing every row and column part of the (n,m)-division into a single row
and column. This equivalent definition justifies the term of “parity minor”; Over the binary
field F2, the minor operation boils down to dividing a submatrix and keeping from each cell
its parity of 1-entries. See Figure 4 for an illustration.
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Figure 4 A parity minor, equivalently linear minor, N of a matrix M over F2. In the middle, the
deleted rows and columns of M are in light gray, while the (4, 3)-division of the remaining submatrix
giving rise to N is represented with solid black lines.

We now define a more permissive notion of linear minor by replacing the sum operation
by a weighted sum, or linear combination. A weighted sum operation (or simply weighted
sum) in M consists of replacing any pair of consecutive rows ri, ri+1 (or columns cj , cj+1) by
αri +βri+1 (or αcj +βcj+1) for some chosen α, β ∈ F. Again it means that ri+1 is deleted and
ri is replaced by r′

i with r′
i[k] = αri[k] +βri+1[k], for every column index k, where operations

are performed in F. Choosing α = 1F and β = 0F emulates the deletion of ri+1, while α = 0F
and β = 1F corresponds to the deletion of ri. Thus we no longer need to add the deletion
operations. We say that a matrix N is a linear minor of M , denoted by N ⩽lm M , if N can
be obtained from M by a sequence of weighted sums. Let us call F-weighting of M (or simply
weighting of M if F is clear from the context) any mapping w : rows(M) ∪ cols(M) → F.
Equivalently a linear minor of a matrix M over a finite field F is any n × m matrix N

obtained from an F-weighting w and (n,m)-division D = ({R1, . . . , Rn}, {C1, . . . , Cm}) of
M by replacing every cell M [Ri, Cj ] of D by the single entry

∑
r∈Ri,c∈Cj

w(r)w(c)Mr,c, that
is, setting Ni,j =

∑
r∈Ri,c∈Cj

w(r)w(c)Mr,c. We can indeed rewrite the entries of N that
way, since every finite field is commutative [32].

The second definition actually works for any commutative field, while the first one
accommodates any field. Yet another way to see a linear minor over a commutative field is
that one first divides (i.e., partitions into intervals) the column set of M , picks one column
vector in the span of each column part of M to form the matrix M ′, divides now the row set
of M ′, and finally picks one row vector in the span of each row part of M ′ to obtain N a
linear minor of M . Of course the row division may precede the column division instead. We
observe that over the binary field the only possible weighted sums are deletions and (simple)
sums.

▶ Observation 25. Over F2, parity minors and linear minors coincide.

We recall that a matrix class is a set of matrices which is closed under taking submatrices.
The parity-minor closure of M, denoted by Clospm(M), is the matrix class of all matrices
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N which are parity minors of some M in M. Similarly, the linear-minor closure of M,
denoted by Closlm(M), is the matrix class of all matrices N which are linear minors of some
M in M. We say that M is parity-minor free (resp. linear-minor free) if its parity-minor
closure (resp. linear-minor closure) is not the set of all F-matrices. We may denote the set
of all F-matrices by M(F), or by Mall if the field F is clear from the context. Thus M is
linear-minor free over F if Closlm(M) := {N : N ⩽lm M, M ∈ M} ≠ M(F). We also
denote byMn(F) the set of n× n matrices over F, and byM□(F) the set of square matrices
over F.

4 First-order logic with modular counting

First-order logic with modular counting, denoted by FO+MOD, augments FO with a new
kind of quantifiers, ∃i[p] for some fixed integer p, and any i ∈ [0, p − 1]. The semantics is
extended as follows. For any structure M with domain M , M |= ∃i[p]x φ(x) holds whenever
|{a ∈ M | M |= φ(a)}| ≡ i mod p. Informally, one can now express that the number of
witnesses for a formula φ(x) is equal to i modulo p. We may use ∃e for ∃0[2], and ∃o for ∃1[2].
As for FO-sentences, an FO+MOD-sentence is said prenex if it is formed by a succession
of quantifiers followed by a quantifier-free formula. Every sentence of quantifier rank ℓ is
logically equivalent to a prenex sentence of quantifier rank h(ℓ) for some tower function h.

The following theorem (Theorem 26) was proven in [8] with FO-sentences instead of
FO+MOD-sentences, and follows from that paper with a small adaptation. It can also be
observed from the work of Gajarský et al. [23]. Here we choose to adapt the proof from the
first paper of the series [8]. In both cases, making the proof self-contained would require
quite a lot of background and overlap with either one of those papers, and in the end, would
not bring anything new. A reader interested in the proof will first have to read Section 7
of [8], and in particular, get familiar with morphism-trees (similar to Ehrenfeucht-Fraïssé
game trees) and the dynamic-programming algorithm handling them.

▶ Theorem 26 (follows with some small adjustments from [8]). Given a d-sequence of a binary
structure S, and a prenex FO+MOD-sentence φ of quantifier rank ℓ, one can decide S |= φ

in time f(ℓ, d)n for some computable non-elementary function f .

Proof. As mentioned above, this essentially follows from the FO model-checking algorithm
presented in [8, Section 7]. However we need to slightly modify the way we reduce the
morphism-trees to account for the modular counting quantifiers. We do not reduce two
equivalent nodes, but rather, if we find p+ 1 pairwise equivalent nodes, we only keep one
such node. One can observe that the size of a reduct of any depth-ℓ morphism-tree is still
bounded by a function of ℓ (since p is an absolute constant).

This is the only modification to the dynamic-programming updates of the theories local
to the red graph. At every node of MT ′

ℓ(G,Pi, X), the existence, universality, and number of
witnesses modulo p among the parts with local root X is preserved (regardless of the prenex
sentence of quantifier depth ℓ). ◀

A related result by Kuske and Schweikardt [30] asserts that FO+MOD model checking is
FPT in classes of locally bounded treewidth.

Another useful fact is that FO-transductions of bounded twin-width classes have them-
selves bounded twin-width (see [8, Section 8]). This can be then generalized to FO+MOD-
transductions.

▶ Theorem 27. Let C be a set of binary structures with bounded twin-width, and T be an
FO+MOD-transduction. Then T(C) has bounded twin-width.
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Proof. This follows from [8, Section 8] with the change of the previous theorem. ◀

As an illustrative example, we give a simple consequence of Theorem 27: shallow vertex
minors of bounded twin-width graphs have bounded twin-width. The local complementation
at a vertex v of a graph G consists of replacing, in G, the induced subgraph G[N(v)] by
its complement. A graph H is a depth-1 vertex minor of a graph G if there exists an
independent set I of G and a subset R ⊆ G, such that H can be obtained from G by local
complementation at the vertices of I, then deletion of the vertices in R. Note that the result
does not depend on the order in which the local complementations are performed as I is
an independent set. A depth-d vertex minor of G is inductively defined as a depth-1 vertex
minor of a depth-(d− 1) vertex minor of G.

▶ Proposition 28. For every pair of integers d, t, there is an integer t′ such that every
depth-d vertex minor of a graph with twin-width at most t has twin-width at most t′.

Proof. We shall just show that the depth-1 vertex minors of graphs with bounded twin-width
have bounded twin-width. The class Dt of all depth-1 vertex minors of graphs with twin-width
at most t is an FO+MOD-transduction of the set of all graphs with twin-width at most t.

The transduction works as follows: considering I and R as unary predicates, the new
domain is defined as the set of vertices not in R, and the new adjacency relation is defined
by the formula ¬(x = y) ∧

(
E(x, y)↔ (∃ez I(z) ∧E(x, z) ∧E(y, z))

)
, that is: two vertices u

and v have their adjacency complemented if they have an odd number of common neighbors
in I. ◀

We now show that the parity-minor closure of a matrix class can be expressed as an
FO+MOD-transduction.

▶ Lemma 29. Let F be a finite field. There is an FO+MOD-transduction Tpm such that,
for every matrix class M over F, Tpm(M) = Clospm(M).

Proof. We first show the lemma when F is the binary field. The proof of that fact already
contains all the ideas of the general case without presenting “unnecessary” technicalities.
We recall that our 0,1-matrices M are τ -structures with τ = (R,≺, E). The universe is the
union of the sets of row and column indices, ≺ is interpreted as a linear order on the indices
(with the row preceding the column indices), and M |= E(x, y) whenever there is a 1-entry
at row x, column y in M . We write x ≼ y as a short-hand for x = y ∨ x ≺ y.

The transduction Tpm uses two (non-deterministic) unary relations U and D. We
interpret U as the rows and columns kept to form the parity minor, and D as the first row
(resp. column) of a row part (resp. column part). Let N be any parity minor of M . Crucially
there is an even number of 1-entries in a cell of a division of M if and only if the number of
rows with an odd number of 1-entries is even. This can be expressed by two nested modular
counting quantifiers, and EN (x, y) can be FO+MOD-defined as

Valid(x, y) ∧ ∃er ∃oc Rectangle(x, y, r, c) ∧ EM (r, c), with

Valid(x, y) = R(x) ∧ ¬R(y) ∧ D(x) ∧ D(y), and

Rectangle(x, y, r, c) = R(r) ∧ ¬R(c) ∧ U(r) ∧ U(c) ∧ x ≼ r ∧ y ≼ c

∧ ∀r′ (D(r′) ∧ x ≺ r′)→ r ≺ r′ ∧ ∀c′ (D(c′) ∧ y ≺ c′)→ c ≺ c′.

For the sake of legibility, we omitted the M superscript for all the relations but EM . The
universe of N is defined as the indices x such that |= D(x), and ≺N is naturally inherited
from ≺M .
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One can check that there is a perfect correspondence between the parity-minor operations
and the formula EN (x, y). Rows or columns x such that |= ¬U(x) are removed. The lines
of the division start just before every row or column x such that |= D(x). All the rows or
columns x such that |= ¬∃x′ D(x′) ∧ x′ ≼ x could be equivalently removed. Therefore
Tpm(C) = Clospm(C) holds.

We now deal with the general case. Let p be the number of elements in the finite field F.
We thus consider τp-structures with τp = (R,≺, E1, E2, . . . , Ep−1), where R, ≺ are as before,
while the relation symbols Ei all have arity 2. Our theory contains the sentence

∀x, y (R(x) ∧ ¬R(y)) →
∧

i∈[p−1]

Ei(x, y)→
∧

j∈[p−1]\{i}

¬Ej(x, y)

 .

So there is a unique entry i ∈ [0, p− 1] at row x, column y; namely the unique i ∈ [p] such
that |= Ei(x, y) if it exists, or 0 otherwise.

We need to generalize the binary counting (“∃er ∃oc”) of the sum within a rectangular
zone. Let us denote by ĩ the element of F corresponding to Ei, and 0̃ = 0F. If p is prime,
then simply ĩ = i. We can now define EN

i (x, y) as

Valid(x, y) ∧
∨

a:[p−1]×[0,p−1]→[0,p−1]∑
j∈[p−1]

k∈[0,p−1]

a(j,k)k·j̃=ĩ

∧
j∈[p−1]

k∈[0,p−1]

∃a(j,k)[p]r ∃k[p]c Rectangle(x, y, r, c) ∧ EM
j (r, c).

Let us observe that in the previous formula, “a(j, k)k · j̃” does not involve any multiplication
in F. The term a(j, k)k is a scalar integer, thus a(j, k)k · j̃ is a sum of up to (p − 1)2

occurrences of j̃.
The integer a(j, k) aims to match the number modulo p of rows with k modulo p

occurrences of j̃. Since the order of every element j̃ in (F,+) divides p,∧
k∈[0,p−1]

∃a(j,k)[p]r ∃k[p]c Rectangle(x, y, r, c) ∧ EM
j (r, c)

indeed holds when the number of j̃-entries in the eligible region is equal to
∑

k∈[0,p−1] a(j, k)k
modulo p. Thus, if this holds for every j ∈ [p − 1], the sum of the entries in the eligible
region is

∑
j∈[p−1],k∈[0,p−1]

a(j, k)k · j̃, which happens to be ĩ. ◀

Similarly we will now show that the linear-minor closure can be expressed by an FO+MOD-
transduction. This is based on the proof of the previous lemma and is only slightly more
technical.

▶ Lemma 30. Let F be a finite field. There is an FO+MOD-transduction Tlm such that, for
every matrix class M over F, Tlm(M) = Closlm(M).

Proof. Let p be the cardinality of F. We still use the unary relation D to encode the
division. The main difference with the proof of Lemma 29 is that Tlm uses p extra relations
U0, . . . , Up−1 instead of just U . Their interpretation is that M |= Ui(x) holds whenever the
weighting of row or column x is ĩ ∈ F. We impose that the unary relations Ui partition the
set of row and column indices (i.e., the F-weighting is indeed a mapping) with the sentence

∀x
∨

i∈[0,p−1]

Ui(x) ∧
∧

i∈[0,p−1]

Ui(x)→
∧

j∈[0,p−1]\{i}

¬Uj(x)

 .
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Again RN and ≺N are naturally inherited from RM and ≺M . We shall now define
EN

i (x, y) as

Valid(x, y) ∧
∨

a:[p−1]×[0,p−1]3→[0,p−1]∑
j∈[p−1]

k,g,h∈[0,p−1]

a(j,k,g,h)k·g̃h̃j̃=ĩ

∧
j∈[p−1]

k,g,h∈[0,p−1]

∃a(j,k,g,h)[p]r ∃k[p]c Rectangle(x, y, r, c)

∧ Ug(r) ∧ Uh(c) ∧ EM
j (r, c),

where Valid(x, y) is defined as before while Rectangle(x, y, r, c) is now simply

R(r) ∧ ¬R(c) ∧ x ≼ r ∧ y ≼ c ∧ ∀r′ (D(r′) ∧ x ≺ r′)→ r ≺ r′ ∧ ∀c′ (D(c′) ∧ y ≺ c′)→ c ≺ c′.

Now a(j, k, g, h) aims to match the number modulo p of rows mapped by the F-weighting
to g̃ with k modulo p occurrences of j̃ on columns mapped by the F-weighting to h̃. ◀

5 Equivalence of bounded twin-width and linear-minor freeness

As a corollary of the previous section, we obtain that bounded twin-width matrix classes
over finite fields are linear-minor free, and in particular parity-minor free.

▶ Lemma 31. Let F be a finite field. For every matrix classM over F of bounded twin-width,
M is linear-minor free.

Proof. By Lemma 30, there is an FO+MOD-transduction Tlm with Tlm(M) = Closlm(M).
Thus by Theorem 27, Closlm(M) has bounded twin-width, and cannot be the set of all
F-matrices. ◀

For the converse, we will need the notion of rank Latin divisions previously introduced [7].
For any integers k ⩾ 2 and d ⩾ 1, a rank-k Latin d-division of a kd2×kd2 matrix M is a regular
d-division D of M that can be refined into a regular d2-division ((R1, . . . , Rd2), (C1, . . . , Cd2))
such that

∀i ∈ [d2], M [Ri, Cj ] is constant for every j ∈ [d2] but one ji for which it has rank k,
∀j ∈ [d2], M [Ri, Cj ] is constant for every i ∈ [d2] but one ij for which it has rank k,
and every cell of D contains exactly one M [Ri, Cj ] with rank k.

See the left-hand side of Figure 5 for an illustration. We notice that every M [Ri, Cj ] is a
k × k matrix, since the division D and its refinement are assumed regular. In particular the
non-constant submatrices M [Ri, Cj ] are full rank. The definition we give in the previous
paper of the series [7] is more restrictive: The full-rank submatrices M [Ri, Cj ] are canonical
(Ramsey-minimal) and the pattern their positions draw within the matrix M is fixed
(following Figure 5). As we do not need these additional properties, we relaxed the definition
here. It was previously shown that matrix classes with unbounded twin-width contain
matrices with rank-k Latin d-divisions for arbitrarily large values of k and d. For our purpose
we will only need k = 2 and d diverging.

▶ Lemma 32 ([7]). Let M be a matrix class of unbounded twin-width over a finite field.
Then for every d, there is a matrix M ∈M with a rank-2 Latin d-division.

Equipped with that technical lemma, the following fact roughly boils down to Figure 5.
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Figure 5 To the left, an example of a rank-2 Latin 3-division in F2. The division D is represented
in yellow, its refinement in blue, and the rank-2 submatrices are highlighted by red boxes. Any 3 × 3
binary matrix, say,

(
0 1 0
0 1 1
1 0 0

)
can be obtained as parity minor. First sum the two columns in each

vertical part of the blue division. Then correct the parity by removing at most one row per red box
(middle matrix). Finally sum the cells of the yellow division (right matrix).

▶ Lemma 33. Let F be a finite field and M be a matrix class of F-matrices. If M is
linear-minor free then it has bounded twin-width.

Proof. We show the contrapositive. We first prove when F is the binary field. Let N be any
n× n 0, 1-matrix. By Observation 25, we want to show that N is a parity minor of some
matrix in M. Indeed observe that if all the square 0, 1-matrices are in the parity-minor
closure Clospm(M), then all the 0, 1-matrices are.

By Lemma 32, there is a matrix M ∈ M with a rank-2 Latin n-division D. Let
((R1, . . . , Rn2), (C1, . . . , Cn2)) be the refinement of D satisfying the properties of rank Latin
divisions. We first sum (modulo 2) the two columns of Cj , renaming the resulting column
cj , for every j ∈ [n2]. We call M ′ the obtained 2n2 × n2 matrix, and still refer to D for the
division induced by the initial D on M ′. For every j ∈ [n2], M ′

Ri,cj
is a 2× 1 matrix equal to

( 0
0 ) for every i ∈ [n2] but one value ij for which it is necessarily different from ( 0

0 ). Indeed
summing the two columns of a 2 × 2 of rank 2 cannot yield a zero vector, while for both
( 0 0

0 0 ) and ( 1 1
1 1 ) it does.

By definition of a rank Latin division, the non-zero 2× 1 submatrices corresponding to
the initial rank-2 submatrices are on pairwise disjoint sets of rows. For each i, j ∈ [n], in the
(i, j)-cell of D (in M ′), we can thus remove one row containing a 1 whenever the parity of
the number of 1-entries within that cell does not match Ni,j . After these deletions, we sum
all the remaining rows and columns in each row, then column, part of D, and obtain the
matrix N . See Figure 5 for a visual depiction.

The proof for the general case is not more complicated. Instead of summing the two
columns c′

j , c
′′
j of Cj , we perform the weighted sum c′

j − c′′
j (by picking α = 1F and β = −1F)

and again call the resulting column cj , and the resulting matrix, M ′. This has the same
effect as canceling every constant submatrices, while not canceling every rank-2 submatrix.
Now for every 2× 1 submatrix on column c boxed in red in Figure 5 within the (i, j)-cell
of D, traversed by, say, rows r and r′, we perform the weighted sum (Ni,jx

−1)r + 0Fr
′ if



É. Bonnet, U. Giocanti, P. Ossona de Mendez, S. Thomassé 23

M ′
r,c = x ̸= 0F (it is not possible that M ′

r,c = M ′
r′,c = 0F). We finally get N by (simply)

summing every row (or column) part of D into a single row (or column). ◀

We can then add to the list of characterizations of bounded twin-width for matrix classes
on finite fields (see [7, Theorem 1]) a handful of new equivalent conditions.

▶ Theorem 34. Given a matrix class M over a finite field, the following are equivalent.

(i) M has bounded twin-width.
(ii) M is linear-minor free.

(iii) M is monadically dependent, i.e., for every FO-transduction T, T(M) ̸=Mall.
(iv) For every FO+MOD-transduction T, T(M) ̸=Mall.
(v) M is small.

(vi) For every FO+MOD-transduction T, T(M) is small.
(vii) ∃n0 ∈ N, |Mn| ⩽ n!, ∀n ⩾ n0.
(viii) Given M ∈M and φ ∈ FO[τ ], M |= φ can be decided in f(|φ|) · |M |O(1).
(ix) Given M ∈M and φ ∈ FO+MOD[τ ], M |= φ can be decided in f(|φ|) · |M |O(1).

Proof. All the items that are not in bold were previously proven equivalent [7]. We shall
now prove that (ii), (iv), (vi), and (ix) are also equivalent to bounded twin-width. Let
us note that the implication from (viii) (and from (ix)) to the other items is conditional
on the complexity-theoretic assumption FPT ≠ AW[∗]. The equivalence (i) ⇔ (ii) is what
Lemmas 31 and 33 show.

(iv) directly implies (iii) since an FO-transduction is a particular FO+MOD-transduction,
and (vi) directly implies (v) since the identity is an FO+MOD-transduction. For every
matrix class M of bounded twin-width and FO+MOD-transduction T, T(M) has bounded
twin-width, by Theorem 27. Thus T(M) is small and not equal toMall. This means that (i)
implies (iv) and (vi).

Finally (ix) immediately implies (viii), while the converse is given by Theorem 26. As
for ordered binary structures there is a polytime algorithm to find O(1)-sequences (when one
exists) [7, Theorem 2], we do not need to require that the contraction sequence is provided
in the input. ◀

Theorem 34 could be equivalently stated in terms of hereditary classes of ordered binary
structures. Let us discuss what the new equivalent conditions of Theorem 34 (in bold) bring.

The equivalences (viii) ⇔ (ix) and (iii) ⇔ (iv) answer a couple of questions in the
special case of ordered binary structures. It is indeed an intriguing open question whether
FO+MOD model checking is strictly harder than FO model checking; more precisely, whether
there is a hereditary class of graphs (or binary structures) on which FO model checking is
fixed-parameter tractable while FO+MOD model checking is W[1]-hard. Theorem 34 shows
that if any such class exists, it has to be found among the unordered binary structures.
Similarly, we do not know if the monadic dependence of a hereditary set of binary structures is
equivalent to the absence of an FO+MOD-transduction onto the set of all graphs. Replacing
FO+MOD-transduction by FO-transduction, this is a theorem by Baldwin and Shelah [3],
which we actually took for the definition of monadic dependence.

Thus, it is again a question about the extra power (or lack thereof) of modular counting
quantifiers. The equivalence (iii) ⇔ (iv) settles this question when restricted to ordered
binary structures. Note that there are many properties that are expressible in FO+MOD
but not in FO, the simplest being that the universe has an even number of elements (over
the empty signature). However, it is unclear if these properties can be used for a separation
of the kinds (viii) ⇏ (ix) or (iii) ⇏ (iv) on unordered binary structures.
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The equivalence (i) ⇔ (ii) gives an elegant characterization of bounded twin-width for
ordered binary structures. As we open our introduction with, it is reminiscent of the ties
between treewidth and graph minors. As bounded treewidth can be characterized as avoiding
one planar graph as a minor, bounded twin-width can be characterized for matrix classes
over finite alphabets as avoiding one matrix as a linear minor. Finally (v) ⇒ (vi) is a bit of
a curiosity. It says that one cannot leave the realm of small ordered classes (starting from a
hereditary class) by means of a FO+MOD-transduction.

One might dislike in the characterization (i) ⇔ (ii) the seemingly arbitrary multipliers
inherent to the definition of a weighted sum. By Observation 25 for 0, 1-matrices, bounded
twin-width can be characterized more neatly with the mere parity minors.

▶ Theorem 35. Let M be a matrix class over F2. M has bounded twin-width if and only if
it is parity-minor free.

The previous statement might hold more generally in any prime field. For non-prime
fields, an easy counterexample is the set of all the 0, x-matrices, where x ̸= 0F has order in
(F,+) strictly smaller than |F|.

6 Fixed-parameter algorithms for matrix division problems

We show how to use the results of Section 4 and the approximation algorithm of matrix
twin-width [7, Theorem 2], to decide matrix problems involving a division (of a submatrix)
with some FO+MOD-definable properties in fixed-parameter time. This is based on a
win-win argument generalizing the algorithmic scheme of Guillemot and Marx [26] to solve
Permutation Pattern, and somewhat resembling the bidimensionality technique [21]. It
allows for instance to detect a k-grid minor or a k-mixed minor in an n× n matrix, or to
decide if a k × k matrix is a parity or linear minor of an n× n matrix in time f(k)nO(1).

We recall three results from the previous paper of the series. The first one is an
approximation algorithm for the twin-width of matrices on finite alphabets. It outputs a
large rich division if the twin-width is too high.

▶ Theorem 36 ([7]). Given as input an n × m matrix M over a finite field F, and an
integer k, there is a 22O(k2 log k)(n+m)O(1)-time algorithm which returns

either a 2k(k + 1)-rich division of M , certifying that tww(M) > k,
or a contraction sequence certifying that tww(M) = 2O(k4).

The second result is the fact that huge rich divisions contain large rank divisions.

▶ Theorem 37 ([7]). Let F be a finite field and K be equal to |F||F|k mt(k|F|k). Every F-matrix
M with a K-rich division has a rank-k division.

The third result turns rank divisions into the more structured rank Latin divisions.

▶ Lemma 38 ([7]). Let F be a finite field. There is a computable function f : N→ N such
that every F-matrix with a rank-f(k) division has a submatrix with a rank-k Latin division.

We derive the following convenient corollary.

▶ Theorem 39. Given as input an n × m matrix M over a fixed finite field F, and an
integer k, there is an f(k)(n+m)O(1)-time algorithm which returns

either a rank-k Latin division of a submatrix of M ,
or a contraction sequence certifying that tww(M) ⩽ g(k).
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where f and g are computable functions.

Proof. This is a direct consequence of Theorems 36 and 37 and Lemma 38. The proof
of Theorem 37 is effective and can readily be turned into an FPT algorithm. Indeed
besides some rank computations and vector comparisons, it mainly uses the Marcus-Tardos
theorem Theorem 8, which is effective (see [25, Appendix A]). The proof of Lemma 38
consists of successive Ramsey extractions, which can be done in polynomial time. ◀

A parameterized problem Π, taking as input a matrix over a fixed finite field and a
non-negative integer, is FO+MOD-definable if, there is a computable function f , and for
every non-negative integer k, there is a FO+MOD[τ ] sentence φΠ,k of size f(k) such that
(M,k) is a YES-instance of Π if and only if M |= φΠ,k. A parameterized problem Π,
taking as input a matrix M and a non-negative integer k, is said rank-bidimensional if, for
some computable functions f and g, the existence of a rank-f(k) Latin division in M (i.e.,
a submatrix of M has a rank-f(k) Latin division) permits to decide Π in time g(k)|M |O(1).
We can now state the main observation of this section.

▶ Theorem 40. Every FO+MOD-definable rank-bidimensional problem is in FPT.

Proof. Let Π be a rank-bidimensional problem, with computable functions f and g. Let
(M,k) be an input of Π. We run the algorithm of Theorem 39 with parameter f(k). In time
f ′(k)|M |O(1), this either yields a rank-f(k) division of a submatrix of M , and we can decide
(M,k) in further time g(k)|M |O(1) (since Π is rank-bidimensional), or a g′(k)-sequence of
M , and we can conclude by Theorem 26 (since Π is FO+MOD-definable). ◀

As a corollary of Theorem 40, we obtain for instance that deciding if N is a parity minor
of M is fixed-parameter tractable in the size of N .

▶ Theorem 41. Let N be a k × k matrix, and M be an n×m matrix, both over F2. One
can decide N ⩽pm M in time f(k)(n+m)O(1) for some computable function f .

Proof. Let us call this problem parameterized by k, Parity Minor Containment. By the
proof of Lemma 33, Parity Minor Containment is rank-bidimensional. We shall then
prove that Parity Minor Containment is FO+MOD-definable, and conclude by The-
orem 40. This is not a mere consequence of the proof of Lemma 29 since we can no longer
rely on the non-deterministic augmentation by unary relations to only keep the desired rows
and columns.

Instead, we claim that any k×k parity minor can be realized (after deletions) by a division
where every row part and every column part have size at most k+ 1. Indeed, let us associate
to a row or column x the parity vector p(x) ∈ Fk

2 corresponding to the parity of its number
of 1-entries in each of the k cells it intersects. Since dim(Fk

2) = k, if a part contains at least
k + 2 rows (or columns), then one can find a set of at least one and at most k + 1 rows
summing (in F2) to the zero vector. This non-empty set of rows can be deleted without
changing the parity minor. Importantly, at most k+ 1 rows are deleted, so at least one row is
remaining (so the parity minor is well formed). It is noteworthy that we actually do not need
modular counting (contrary to Lemma 29). We can express N ⩽pm M by an FO-sentence
and conclude by invoking the algorithm of [8, Section 7].

The presence of N as a parity minor can be defined by a disjunction ψN for every tuple
(s(1), . . . , s(k), t(1), . . . , t(k)) ∈ [1, k + 1]2k of the FO-sentence

∃x1
1, . . . ,∃x1

s(1), . . . ,∃x
k
1 , . . . ,∃xk

s(k),∃y
1
1 , . . . ,∃y1

t(1), . . . ,∃y
k
1 , . . . ,∃yk

t(k)
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∧
(i,a)̸=(i′,a′)

xi
a ̸= xi′

a′ ∧
∧

(j,b) ̸=(j′,b′)

yj
b ̸= yj′

b′

∧
∧

1⩽i,j⩽k

ODD(xi
1, . . . , x

i
s(i), y

j
1, . . . , y

j
t(j))↔ EN (i, j), where

ODD(xi
1, . . . , x

i
s(i), y

j
1, . . . , y

j
t(j)) is the formula∨

S⊆{xi
1,...,xi

s(i)}×{yj
1,...,yj

t(j)}
|S| is odd

∧
(xi

a,yj
b

)∈S

EM (xi
a, y

j
b) ∧

∧
(xi

a,yj
b

)/∈S

¬EM (xi
a, y

j
b).

And M |= ψN holds if and only if N is a parity minor of M . ◀

Similarly we can invoke Theorem 40 for the following problems. In the following theorem,
Linear Minor Containment is the problem of deciding N ⩽lm M , given two matrices
N,M over a fixed finite field, parameterized by |N |.

▶ Theorem 42. Linear Minor Containment, Interval Minor Containment, k-Grid
Minor, k-Mixed Minor, Rank-k Division, Rank-k Latin Division, Permutation
Pattern are fixed-parameter tractable.

Proof. It is not difficult to adapt the previous proof to show that all these problems are
FO-definable and rank-bidimensional. ◀

It is noteworthy that while we only know how to approximate efficiently the twin-width
of matrices, we can efficiently compute their maximum grid or mixed minor exactly. We
only included Permutation Pattern in the previous theorem to highlight the fact that
the framework of Theorem 40 generalizes the fixed-parameter algorithm of Guillemot and
Marx [26]. Their algorithm specifically targets Permutation Pattern and has of course a
much better running time.

Let us insist that the problems of Theorem 42 are solved for general matrices (of possibly
unbounded twin-width) thanks to the twin-width theory. As witnessed by the fact that the
fixed-parameter algorithm of Guillemot and Marx [26] is a surprising result and a remarkable
breakthrough, it is unlikely that there is an easy alternative proof of that theorem.

Theorem 39 may also be useful for W[1]-hard problems like k-Biclique [31], that are
FO-definable but not rank-bidimensional. Atminas et al. [2] showed that k-Biclique has a
fixed-parameter algorithm in the combined parameter k plus length of the longest induced
path. In particular, this means that k-Biclique is in FPT on Pt-free graphs. We also give
a fixed-parameter algorithm for k-Biclique in a subclass of structures, but we phrase our
result in terms of matrices rather than graphs. The color coding technique [1] provides an
FPT reduction from k-Biclique on bipartite graphs to k-Biclique (on general graphs).
Thus the former problem is W[1]-hard, by the breakthrough of Lin [31]. In the language of
0, 1-matrices, this can be equivalently phrased as finding a k × k submatrix full of 1-entries.

▶ Theorem 43. Let M be a set of 0, 1-matrices not containing every permutation matrix.
Then k-Biclique on M is in FPT.

Proof. Let s be the dimension of a permutation matrix not in M, and let k′ := max(k, s).
We call the algorithm of Theorem 39 with the input matrix M and parameter k′. If this
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yields a g(k′)-sequence, we conclude with the algorithm of [8, Section 7] since k-Biclique is
FO-definable:

BICLIQUEk = ∃r1, . . . ,∃rk,∃c1, . . . ,∃ck

∧
i ̸=j∈[k]

¬(ri = rj) ∧
∧

i ̸=j∈[k]

¬(ci = cj)

∧
∧

i∈[k]

R(ri) ∧
∧

j∈[k]

¬R(cj) ∧
∧

i,j∈[k]

E(ri, cj).

If instead we get a rank-k′ Latin division of a submatrix of M , we observe that at least
one of the constant k′ × k′ submatrices has to be full with 1-entries. If not, we claim that
all the k′ × k′ permutation matrices belong to M. Indeed, given any k′-permutation σ,
one can, for each rank-k′ submatrix of the rank Latin division D, keep a pair of row and
column intersecting at a 1-entry in the (i, σ(i))-cell of D for every i ∈ [k′], and at a 0-entry
in all the other cells. Thus M contains every k′ × k′ permutation matrix as a submatrix,
and we conclude since a matrix class is, by definition, submatrix-closed. Since k′ ⩾ s, this
contradicts the assumption on M.

We therefore get a k′ × k′ submatrix full of 1-entries, and can conclude that the instance
is positive since k′ ⩾ k. ◀

Theorem 39 permits to show that finding a half-graph of height k is in FPT on any matrix
class missing one permutation matrix and one complement of permutation matrix. It may
for instance also be utilized to generalize the known result that k-Induced Matching is
fixed-parameter tractable on bipartite Kt,t-free graphs [17]. Let k-Induced Permutation
be the problem which takes a 0, 1-matrix M and a k× k permutation matrix P in input, and
asks whether P is a submatrix of M . This problem also generalizes Permutation Pattern
for which M would be a permutation matrix, too. It extends k-Induced Matching in
bipartite graphs to the ordered setting: Not only one wants to find k mutually induced edges,
but they should realize a given permutation.

▶ Theorem 44. k-Induced Permutation is in FPT on any Kt,t-free matrix class.

Proof. The proof follows Theorem 43 by switching the roles of bicliques and permutation
patterns. More generally the problem is fixed-parameter tractable with respect to k + t. ◀

The following, together with the FO-definability of the problems at hand (and the
FPT algorithm for FO model checking on ordered binary structures of bounded twin-width [7]),
summarizes the previously drawn algorithmic consequences.

▶ Proposition 45. Every 0, 1-matrix class missing either one of the following combinations
has bounded twin-width:

a constant-1 matrix and a permutation matrix, or
a constant-0 matrix and a complement of permutation matrix, or
a constant-1 triangular matrix, a permutation matrix, and a complement of a permutation
matrix.

7 Products of bounded twin-width matrices over a finite field

Perhaps somewhat disappointingly, none of the algorithmic applications of Section 6 actually
requires the expressive power of FO+MOD and Theorem 26. We will now see some interesting
consequences of Section 4 for matrix multiplication, that do require modular counting. First
we show that if a matrix class M over a finite field has bounded twin-width, then so does its
set of squares M2 = {AB : A and B are two conformal matrices of M}.
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▶ Theorem 46. There is a function f : N3 → N such that for every conformal matrices A
and B over Fq, The product AB (over Fq) has twin-width at most f(tww(A), tww(B), q).

Proof. Since
(

0 A

B 0

)
·
(

0 A

B 0

)
=
(
AB 0
0 BA

)
and

tww
((

0 X

Y 0

))
= tww

((
X 0
0 Y

))
= max(tww(X), tww(Y ), 2),

we shall just prove that there is a function g such that M2 has twin-width at most g(tww(M)),
for every n ∈ N and M ∈Mn(Fq). Identifying a matrix of M□(Fq) and the corresponding
τq-structure, there is a simple FO+MOD-interpretation S such that S(M) = M2 for every
M ∈M□(Fq).

Indeed one can keep the relations R and ≺ as in M , and express EM2

i (x, y) as∨
a:[q−1]2→[0,q−1]∑

j,k∈[q−1]2
a(j,k)·(j̃k̃)=ĩ

∧
j,k∈[q−1]

∃a(j,k)[q]z EM
j (x, z) ∧ EM

k (z, y).

As previously, we wrote ĩ for the element of Fq corresponding to relation Ei. The expression
j̃k̃ is a product in Fq, while a(j, k) · (j̃k̃) is the sum of a(j, k) occurrences of j̃k̃. As every
element of (Fq,+) has an order dividing q, it is enough to count the number of pairs
(j̃, k̃) = (Mx,z,Mz,y) modulo q, which the formula does. We do not assume that j̃k̃ = k̃j̃

(although it does hold), so our formula would also work in non-commutative rings.
We finally invoke Theorem 27 to conclude that tww(M2) is bounded by a function of

tww(M) and q. ◀

▶ Theorem 47. Let q be a prime power, and d be a natural. Let A,B be two n× n matrices
over Fq, both of twin-width at most d. One can compute the product AB in time Od,q(n2 logn).

Proof. By Theorem 11, we compute an Od,q(1)-sequence for(
0 A

B 0

)
, in time Od,q(n2 logn).

We conclude either by turning this contraction sequence into a twin-decomposition in time
Od,q(n2), by Theorem 16, and invoking the upcoming practical matrix squaring of Theorem 48,
or by combining the FO+MOD-interpretation of Theorem 46 (and Theorem 27) with the
efficient algorithm of Gajarský et al. [23] (see Theorem 21) to compute the interpretations of
bounded twin-width structures. We can finally read off the top-left block AB in(

0 A

B 0

)2

,

in time Od,q(n2).
If we chose the former approach, we now have a twin-decomposition (T ,B) of AB. We

can initialize an n × n matrix to all 0 entries, and for each edge of B labeled ℓ, fill the
corresponding entries with ℓ. This takes quadratic time since we access each matrix entry
at most once. If we instead went with the latter approach, we shall simply make (q − 1)n2

constant-time queries to build AB, q − 1 for each entry of AB. ◀

The bottleneck of Theorem 47 is to compute the contraction sequence. Should this step be
improved to run in Od,q(n2) time, one would get an overall quadratic algorithm to multiply
two matrices of bounded twin-width.
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8 Efficient square computation given a twin-decomposition

For the sake of convenience, we will now use the language of graphs rather than of matrices.
Recall that the square of a graph G is the graph G2 with the same vertex set and whose
edge set is given by:

E(G2) := {uv : there is a path of length at most 2 from u to v in G} .

We similarly define the modular square of G denoted G[2] whose vertex set is V (G) and edge
set is given by:

E(G[2]) := {uv : |N(u) ∩N(v)| = 1 (mod 2)} .

Note that if M is an adjacency matrix of G in F2, then the adjacency matrix of G[2] is
exactly M2. More generally, for every q ⩾ 2, if G is a complete graph with edges labeled by
a function ν : E(G)→ Fq, we let G[q] be the complete graph with vertex set V (G) and edges
labeled by λ : E(G[q])→ Fq defined for every uv ∈ E(G[q]) by:

λ(uv) :=

 ∑
w∈V \{u,v}

ν(uw)ν(wv)

 ∈ Fq.

If M is an adjacency matrix of the labeled graph G the corresponding adjacency matrix
of G[q]. For every prime power q = pα, we let m(q) denote the cost of basic arithmetic
computations in Fq; here only addition, subtraction, and multiplication are needed. Our
main result in this section is the following:

▶ Theorem 48. For every prime power q ⩾ 2, there is an O(m(q)d2q2dn)-time algorithm
that, given a twin-decomposition (T ,B) of width d of a graph G with n vertices whose edges
are labeled in Fq, outputs a twin-decomposition of width O(d2qd) of G[q].

Note that in practice, if q = pα with p prime, one can choose m(q) = O(logp(q)2 log(p)2)
(see for example [34, Table 2.8]).
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Figure 6 Left: a graph G. Right: the graph G[2].

Overview

We now describe a way of computing a twin-decomposition (T ′,B′) of G[q] when we we are
given as input a twin-decomposition (T ,B) of G. For the sake of clarity, we will only give
the proof of Theorem 48 for the case q = 2, and later explain (at the end of this section)
how to generalize it for greater values of q. From now on we assume that G is a graph of
twin-width at most d ⩾ 0. We will first explain in Lemma 49 how to refine a d-sequence
of G in order to get an O(d22d)-sequence for G[2]. Then we will show how to compute the
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associated contraction tree T ′ from T using dynamic programming. The next step is to
compute B′ a set of transversal edges such that (T ′,B′) is a twin-decomposition of G[2]. This
is the most technical part. For this, we will first show how to construct a set of labeled
edges B1, with labels in {0, 1}, again using dynamic programming. It will follow from our
construction that B1 have size O(d24dn), and that for every two vertices u, v ∈ V (G), we
can determine whether or not u and v are adjacent in G[2] by computing the parity of the
sum of the labels over the labeled edges of B1 we meet between the branch corresponding
to u and the one corresponding to v in T ′, plus an additional term that we will introduce
later. Eventually we will prove how to compute the desired set B′ from B1, using dynamic
programming once more. We claim that the first two steps of our computation (i.e., the
computation of T ′ and B1) can be done at the same time, but for the sake of clarity we will
present them separately and assume that T ′ is already known when we compute B1.

We will adopt the following convention: We denote with lowercase characters the vertices
of the original graph G and with uppercase characters the vertices of the graphs Gi and of
the trees involved in the twin-decompositions, which we always identify to subsets of V (G).
Hence a vertex U ∈ V (T ) is identified to the set of leaves of the subtree of T rooted at U .

How to refine a d-sequence for G to a O(d22d)-sequence for G[2]

Assume that G admits a d-sequence Gn, . . . , G1 and denote Pn, . . . ,P1 the associated parti-
tions of V (G). We define the following refinement of this sequence, denoted by P ′

n, . . . ,P ′
1,

where for each i ∈ [n], if the red neighbors of U ∈ Pi in Gi are the sets W1, . . . ,Wk ∈ Pi

(with k ⩽ d), then we partition U into the at most 2k+1 sets (U(p,b1,...,bk))p,b1,...,bk∈{0,1}
defined for every p, b1, . . . , bk ∈ {0, 1} by:

U(p,b1,...,bk) := {x ∈ U : ∀i ∈ [k], |N(x) ∩Wi| = bi (mod 2) and degU (x) = p (mod 2)} .

In other words, we obtain P ′
i from Pi by grouping together vertices from each U ∈ Pi

according to the parity of their degree in U and in each of the red neighbors of U in Gi. Note
that some of the sets U(p,b1,...,bk) may be empty. Nevertheless, at the end of the contraction
sequence, P1 = {V (G)}, hence |P ′

1| ⩽ 2, as it simply corresponds to the 2-partition of V (G)
between vertices of even and odd degree. Thus to get a complete contraction sequence, we
can eventually complete arbitrarily the sequence P ′

n, . . . ,P ′
1 into a contraction sequence of G.

▶ Lemma 49. If Pn, . . . ,P1 is the sequence of partitions of V (G) associated to a d-sequence
Gn, . . . , G1 of G, then the refinement P ′

n, . . . ,P ′
1 described above can be arbitrarily completed

into a D-sequence for G[2], where D := (d2 + d+ 1)2d+1 − 1.

Proof. We first check that the sequence P ′
n, . . . ,P ′

1 can be completed into a contraction
sequence. In other words, we show that for every i ∈ [2, n] and for every W(p,b1,...,bk) ∈ P ′

i,
there exists some W ′

(p′,b′
1,...,b′

l
) ∈ P

′
i−1 such that W(p,b1,...,bk) ⊆W ′

(p′,b′
1,...,b′

l
).

Assume that between Gi and Gi−1, the contraction described by (U, V, Z) is done, with
U, V ∈ Pi and Z := U ∪ V ∈ P ′

i−1. We let W1, . . . ,Wk and W ′
1, . . . ,W

′
k′ be respectively

the red neighbors of U and V in Gi, with k ⩽ d and k′ ⩽ d. Observe that the red
neighbors of Z in Gi−1 are the Wjs and the W ′

js distinct of U and V , and possibly some
other subsets of vertices from Pi−1. We denote all the red neighbors of Z in Gi with
X1, . . . , Xl. Let p, b1, . . . , bk ∈ {0, 1}. We show that there exist p′, b′

1, . . . , b
′
l ∈ {0, 1} such

that U(p,b1,...,bk) ⊆ Z(p′,b′
1,...,b′

l
). For this, for every j ∈ [l], we let b′

j := br if Xj = Wr for some
r ∈ [k]. Otherwise if Xj ̸= Wr for every r ∈ [k], then it means that Xj is not a red neighbor
of U in Gi, and thus we let b′

j := 1 if there is a complete biclique between U and Xj and
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|Xj | is odd, and b′
j := 0 otherwise. It remains to properly define p′. If UV forms a black

edge in Gi, then we simply let p′ := p+ |V | (mod 2). If UV forms a non edge in Gi, then we
let p′ := p. Finally if UV forms a red edge in Gi, then we have V = Wj for some j ∈ [k]. In
particular, every vertex in U(p,b1,...,bk) is adjacent to bj vertices of V modulo 2. Hence every
vertex of U(p,b1,...,bk) is adjacent modulo 2 to p′ := p+bj (mod 2) other vertices of Z = U ∪V .
By setting this value for p′ we get the desired inclusion U(p,b1,...,bk) ⊆ Z(p′,b′

1,...,b′
l
).

To prove that that the P ′
is can be completed into a contraction sequence, it remains to

show that if W ∈ Pi\ {U, V } has red neighbors X1, . . . , Xk in Gi with k ⩽ d and red neighbors
Y1, . . . , Yl in Gi−1 with l ⩽ d, then for every p, b1, . . . , bk ∈ {0, 1} there is p′, b′

1, . . . , b
′
l ∈ {0, 1}

such that W(p,b1,...,bk) ⊆W(p′,b′
1,...,b′

l
). For this observe that the red neighbors of W in Gi−1

are exactly the red neighbors of W in Gi that are distinct of U and V plus possibly the
set Z. Thus for every j ∈ [l], if Yj = Xi for some i ∈ [k] we let b′

j := bi. Moreover, we let
p′ := p. If there exists some j ∈ [k] such that Yj is not one of the Xis, then we must have
Yj = Z. Observe that by definition of W(p,b1,...,bk), every vertex of W(p,b1,...,bk) has the same
number a of neighbors modulo 2 in U . Similarly, every vertex of W(p,b1,...,bk) has the same
number b of neighbors modulo 2 in V . Hence if we let b′

j := (a+ b) (mod 2), we have the
desired inclusion: W(p,b1,...,bk) ⊆W(p′,b′

1,...,b′
l
). Thus we proved that the sequence P ′

n, . . . ,P ′
1

can be completed into a contraction sequence.
Now we need to show that this sequence is a D-contraction sequence for G[2]. We let

G
[2]
i denote the trigraph obtained from G[2] when the vertex set is contracted according

to the partition P ′
i. Let i ∈ [n] and U ∈ Pi. We show how to bound the red degree of

every U(p,b1,...,bk) in G
[2]
i . Let W1, . . . ,Wk be the red neighbors of U in Gi, with k ⩽ d. Let

p, b1, . . . , bk ∈ {0, 1}.

▷ Claim 50. The only red neighbors of U(p,b1,...,bk) in G
[2]
i are either other subsets of U , or

subsets of some sets V ∈ Pi such that the distance between U and V in the red graph of Gi

is at most 2.

Proof of the claim: Let V ∈ Pi\ {U} be such that every red path from U to V in Gi

has length at least 3. Let W ′
1, . . . ,W

′
k′ be the red neighbors of V in Gi with k′ ⩽ d, and

let p′, b′
1, . . . , b

′
k′ ∈ {0, 1}. Our goal is to show that U(p,b1,...,bk)V(p′,b′

1,...,b′
k′ ) is not a red edge

in G
[2]
i . In other words, we will show that for every u ∈ U(p,b1,...,bk) and v ∈ V(p′,b′

1,...,b′
k′ ),

the value |N(u) ∩N(v)| (mod 2) does not depend on the choice of u and v. Observe first
that by hypothesis, UV is either a black edge or a non-edge in Gi. We may assume that
we are in the first case, as the second one is easier to deal with. Let u ∈ U(p,b1,...,bk) and
v ∈ V(p′,b′

1,...,b′
k′ ). As degV (v) = p′ (mod 2), we have:

|N(u) ∩N(v) ∩ V | = p′ − 1 (mod 2).

By symmetry we also have:

|N(u) ∩N(v) ∩ U | = p− 1 (mod 2).

It remains to count the number of common vertices of u and v which are neither in U nor
in V . There are three cases.

First if W ∈ Pi\ {U, V } is such that both UW and WV form black edges of Gi, then we
have:

|N(u) ∩N(v) ∩W | = |W |.

Assume now that W ∈ Pi\ {U, V } is such that UW is a red edge in Gi and WV is a
black edge in Gi. Then W = Wj for some j ∈ [k]. In particular, by definition of U(p,b1,...,bk),
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u has bj neighbors in W modulo 2, and each of them is a neighbor of v. Thus we have:

|N(u) ∩N(v) ∩Wj | = bj (mod 2).

The last kind of common neighbors of u and v we can find are vertices from some
W ∈ Pi\ {U, V } where UW is a black edge in Gi and WV is a red edge in Gi. By the same
symmetric reasoning, we get that:

|N(u) ∩N(v) ∩W ′
j | = b′

j (mod 2).

Thus we have:

|N(u) ∩N(v)| =

p+ p′ +
k∑

j=1
bj +

k′∑
j=1

b′
j

 (mod 2),

a value that does not depend on the choice of u and v. This is equivalent to say that
U(p,b1,...,bk)V(p′,b′

1,...,b′
k′ ) does not form a red edge in G

[2]
i . ♢

By Claim 50 we get that the only red neighbors of U(p,b1,...,bk) are either other subsets
of U , or subsets of some V ∈ Pi\ {U} such that UV is a red edge in Gi, or subsets of some
V ∈ Pi\ {U} such that there exists some W ∈ Pi\ {U, V } so that both UW and VW form
red edges in Gi. In total this gives us at most:

2d+1 − 1 + d2d+1 + d22d+1 = (d2 + d+ 1)2d+1 − 1

red neighbors of U in G
[2]
i , which is the desired result. ◀

▶ Remark 51. Observe that if we replace the condition ’|N(x)∩Wi| is odd’ by ’|N(x)∩Wi| ⩾ 1’
in the definition of the refinement P ′

n, . . . ,P ′
1, then using similar arguments than the one

from the previous proof, we get a O(d22d)-sequence for G2.

Computation of T ′

Assume that we are given a twin-decomposition (T ,B) of G, associated to a d-sequence
Gn, . . . , G1 of G with associated partition sequence Pn, . . . ,P1. We describe a way to
compute a tree T ′ corresponding to a D-contraction sequence of G[2] of the form described
in Lemma 49, with D := (d2 + d+ 1)2d+1− 1. The tree T ′ will be constructed in n− 1 steps,
and step i (for i going from n− 1 down to 1) is based on Gi (that is computed on the fly).
We give in Figure 7 an example of the construction of T ′ for the graph of Figure 6.

We assume that B is lifted up. Recall this is always possible up to a preprocessing of
time O(dn) by Remark 13. In time O(n), we compute for each node U ∈ V (T ) a parity bit
sU ∈ {0, 1} such that sU = |U | (mod 2) (recall that U is naturally identified to a subset of
V (G)).

Recall that by Lemma 15, we can dynamically compute in time O(dn) the lists Li
U of the

red neighborhoods of vertices U ∈ V (Gi). Though we present it separately, the algorithm
computing T ′ and the the set of partial edges B1 will be dynamic, and all the computations
in step i are done at the same time, so we assume that at step i that we always know the
lists Li

U and the parity bits sU .
Our goal is now to find a way to compute the refinement we described previously. For

this we define for every i ∈ [2, n], every U ∈ V (Gi) such that Li
U = {W1, . . . ,Wk} and every

p, b1, . . . , bk ∈ {0, 1} the at most 2d+1 pointers qi[U, p, b1, . . . , bk] by:

qi[U, p, b1, . . . , bk] := (V, p′, b′
1, . . . , b

′
l),
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where (v, p′, b′
1, . . . , b

′
l) is the (unique, if it exists) tuple such that U(p,b1,...,bk) ⊆ V(p′,b′

1,...,b′
l
),

with U ∈ V (Gi) and V ∈ V (Gi−1). Observe that U(p,b1,...,bk) may be possibly empty, in
which case we can set qi[U, p, b1, . . . , bk] := ∅.

We show that these pointers can be dynamically computed:

▶ Lemma 52. The values qi[U, p, b1, . . . , bk] can be dynamically computed for decreasing
values of i from n down to 2. Moreover, each step takes time O(d2d).

Here, Lemma 52 has to be understood as Lemma 15: we are able to visit the nodes of
T for decreasing values of their labels i ∈ [n − 1], and update accordingly O(n) pointers
q[U, p, b1, . . . , bk] such that at step i, the value of q[U, p, b1, . . . , bk] is exactly qi[U, p, b1, . . . , bk]
for every U ∈ V (Gi) and p, b1, . . . , bk ∈ {0, 1}. Hence we always keep only a linear number
of values q[U, p, b1, . . . , bk], and show that, at each step, we only change a bounded number
of them (namely O(d2d)).

Proof. As we will define qi−1 from qi, we will also need to define for the initialization qn+1.
For this, as Gn = G, Pn is the partition of V (G) into singletons and there are no red edges,
we set for every v ∈ V (G) and p ∈ {0, 1}:

qn+1[{v} , p] :=
{

({v} , 0) if p = 0
∅ if p = 1

This will help us in what follows to only deal with nonempty sets U(p,b1,...,bk), as the empty
ones will be the ones having no antecedent by qi.

Now let i ∈ [2, n] and assume that the contraction between Gi and Gi−1 is (U, V, Z),
with U, V ∈ V (Gi) and Z = U ∪ V ∈ V (Gi−1). Let W ∈ V (Gi). We assume that
Li

W = {W1, . . . ,Wk} is known. If W /∈ {U, V }, then we distinguish four different cases. If
WU ∈ E(Gi) and WV ∈ E(Gi) or if WU /∈ E(Gi)∪R(Gi) and WV /∈ E(Gi)∪R(Gi), then
the adjacencies (or non-adjacencies) of W in Gi+1 are the same as in Gi, thus for every
p, b1, . . . , bk ∈ {0, 1}, we set qi−1[W,p, b1, . . . , bk] := qi[W,p, b1, . . . , bk]. In fact this implies
that the only pointers we will update are those related to vertices of V (Gi−1) which are
either linked by a red edge to U or V , or U and V themselves.

If WU ∈ E(Gi) and WV /∈ E(Gi) ∪ R(Gi), then we have Li−1
W = Li

W ∪ {Z} =
{W1, . . . ,Wk,Wk+1 := Z}, so we set for every p, b1, . . . , bk ∈ {0, 1}:

qi[W,p, b1, . . . , bk] := (W,p, b1, . . . , bk, sU ).

By hypothesis on the placement of the transversal edges of B, we can detect this case, which
happens when there is an edge of B between the node of T corresponding to U and W ,
and where V is neither in Li

W , nor linked to W by an edge of B. Of course the case where
UW /∈ E(Gi) and UV ∈ E(Gi) is symmetric.

If UW /∈ E(Gi) ∪R(Gi) and UV ∈ R(Gi), then assume without loss of generality that
Wk = V and let W ′

k := Z. Li−1
W = (Li

W \ {V })∪{Z} and we set for every p, b1, . . . , bk ∈ {0, 1}:

qi[W,p, b1, . . . , bk] := (W,p, b1, . . . , bk).

The case when UW /∈ E(Gi) ∪ R(Gi) and UV ∈ R(Gi) is similar, as we also have
Li−1

W = (Li
W \ {Wk}) ∪ {W ′

k}, so if again we assume that Wk = V , we just need to set:

qi[W,p, b1, . . . , bk] := (W,p, b1, . . . , bk + pU ).
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The last case satisfying W /∈ {U, V } is when we have both UW ∈ R(Gi) and VW ∈ R(Gi).
Assume for simplicity that Wk−1 = U and Wk = V , and set W ′

k−1 := Z. Then we have
Li−1

W = (Li
W \ {Wk−1,Wk}) ∪

{
W ′

k−1
}

so we let:

qi[W,p, b1, . . . , bk−2, bk−1, bk] := (W,p, b1, . . . , bk−2, bk−1 + bk).

Again, all these configurations are easy to detect thanks to our assumptions on B and
the fact we know Li

W .
Assume now that W = U , and let Li

U = {W1, . . . ,Wk} and p, b1, . . . , bk ∈ {0, 1}. We
explain now how to compute the value q[U, p, b1, . . . , bk]. Observe first that if a vertex of U
has degree p in U modulo 2, then we can compute p′, its degree modulo 2 in Z = U ∪ V by
setting:

p′ =


p if UV /∈ E(Gi) ∪R(Gi)
p+ sV if UV ∈ E(Gi)
p+ bl if UV ∈ R(Gi) and V = Wl

.

We now describe the different types of red adjacencies that can exist between Z and other
vertices in Gi−1, and show for each of them how the associated parity bit b′ can be computed.
More precisely, if u ∈ U(p,b1,...,bk), we show how to compute b′ := degZ(u). Let Y ∈ V (Gi−1)
be a red neighbor of Z in Gi. Then Y can be of five different types, and we show how to
compute the red parity b′ modulo 2 of the different vertices of U ⊆ Z in Gi−1 according
to the one they had in Gi. First, observe that if Y was already a red neighbor of U in
Gi, i.e., if Y = Wj ∈ Li

U ∩ L
i−1
Z for some j, then we simply let b′ := bj . Assume now that

Y ∈ Li
V \Li

U . Then either there is no edge between Y and U in Gi, in which case we let
b′ := 0, or Y U ∈ E(Gi) and we let b′ := sY . The last two cases are when a red edge is
created between Z and Y in Gi−1, but Y is neither a red neighbor of U nor of V . Then again
either UY /∈ E(Gi) and V Y ∈ E(Gi), so we let b′ := 0, or UY ∈ E(Gi) and V Y /∈ E(Gi) so
we let b′ := sY .

We can identify all these cases as we know Li
U , Li

V , Li−1
Z , and by the hypotheses we put

on B. Now for the complexity at step i, as the only W ∈ V (Gi)\ {U, V } such that some
q[W,p, b1, . . . , bk] are updated are the ones such that W is a red neighbor of U or V , it means
that at most 2d2d+1 pointers q[W,p, b1, . . . , bk] are modified at step i. One can check that
each of these modifications can be done in time Od(1), as well as the listing of all such W .
Hence we deduce the desired overall complexity for the running time at each step. ◀

Now observe by Lemmas 15 and 52 that we have everything in hand to compute T ′.
Indeed, we can compute dynamically the pointers q[U, p, b1, . . . , bk], and keep only the one
associated to sets U(p,b1,...,bk) that are nonempty. The nodes of T ′ will be the set of every
nonempty set U(p,b1,...,bk) we encounter. One has to take care as the set U(p,b1,...,bk) can be
equal to some other set U ′

(p′,b′
1,...,b′

k′ ). However they will correspond to the same node of T ′.
If at some step i we have qi[U, p, b1, . . . , bk] = qi[p′, b′

1, . . . , b
′
k′ ] = (Z, pZ , c1, . . . , ct), then we

choose the node Z(pZ ,c1,...,ct) as the common parent of U(p,b1,...,bk) and U ′
(p′,b′

1,...,b′
k′ ). To keep

a binary tree, one can replace the edges from Z(pZ ,c1,...,ct) to its (more than 2) children by a
binary tree whose leaves are these children and root is Z(pZ ,c1,...,ct). This creates a bounded
number of additional nodes in T ′.

In the end of the last step when i = 1, we may end with two disjoint rooted trees whose
leaves correspond to the nodes of even degree and to the nodes of odd degree. In this case,
we add an additional node that corresponds to V (G) to get a rooted tree. It remains to label
the nodes of T ′. By Lemma 49, one can take any total order which is consistent with the
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one of the creation of the nodes in the proof (i.e., if i < j, we label every node associated to
a set that was created in step i with a label smaller than those associated to a set created in
step j).

6 7 1 5 2 3 4

6 5 4

3

2

1

6 7 1 5 2 3 4

676
1 155

1,0 234
0

12351,0,0 12350,0,1

123453
1,0 123450,0

12345672
0 12345671

r1

Figure 7 Left: A twin-decomposition of the graph G of Figure 6. Right: The tree T ′ associated
to (T , B). We subdivided some edges of T ′ to make clear how the refinement works. The labels of
the nodes of T ′ are given by the red exponents. The first bit (in green) of the tuples in subscript
correspond to the bits p, and the remaining ones to the bis.

Computation of the set of labeled transversal edges B1

We now compute exactly the adjacencies in G[2]. As previously announced, we first need
to compute a set B1 of transversal edges of T ′ with linear size in n, together with for every
edge e = UV ∈ B1 a parity label βe ∈ {0, 1}. We will ensure that B1 has linear size in n.
Moreover we will also compute for each node U ∈ V (T ′) a parity bit αU ∈ {0, 1}. In the
end, we wish to recover, with B1 and the bits αU , all the adjacencies of G[2]. More precisely,
we show that for every u, v ∈ V (G), uv ∈ E(G[2]) if and only if the sum of the labels βe over
all edges e ∈ B1 between the branches of T ′ having {u} and {v} as children plus the sum of
the parity bits αU over all nodes U that are both predecessor of {u} and {v} is odd.

We again visit the nodes of T ′ by decreasing values of their labels. In fact this step can be
done at the same time as the previous one (construction of T ′), so we assume that whenever
the node we are visiting was created at step i of the contraction sequence of T , we have access
to the lists of red neighbors Li

U for every U ∈ V (Gi) and to the correspondence between the
nodes of T ′ and the partition of each U ∈ V (Gi) into U(p,b1,...,bk). We progressively form
B1, starting from the empty set. In the end, if we denote with ≺T ′ the partial order over
the nodes of T ′ defined by U ′ ≺T ′ U if and only if U ′ is an ancestor of U in T ′, then the
adjacency between every two vertices u and v in G[2] is determined by the parity of the sum:

Suv =
∑

W ∈V (T ′)
W ≺T ′ {u}
W ≺T ′ {v}

αW +
∑

UV ∈B1
U≺T ′ {u}
V ≺T ′ {v}

βUV . (1)

See Figure 8 for an illustration of the algorithm explained below.

▶ Lemma 53. One can dynamically compute in time O(d24dn) a set of labeled edges B1 of
size O(d24dn) and parity bits αU such that (1) holds.
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Proof. As mentioned above, we assume that we have access to the red adjacencies in T
through the lists Li

U , as well as the parity bits sU := |U | (mod 2) and the correspondence
between the nodes of T ′ and the associated subsets in the refinement described in Lemma 49.
We still assume that B is lifted up. Moreover, observe that it is easy to compute for every
node U ′ of T ′ the parity of its cardinality s′

U ′ := |U ′| (mod 2).
Our main goal is to count (modulo 2) the number of common neighbors between every

pair of distinct vertices u, v ∈ V (G). For such a pair, we distinguish different types of
common vertices, and show that we take every of them into account either with a bit αU or
with a label βe for some e ∈ B1. We visit the nodes of T by decreasing order of their labels.
We start with B1 := ∅ and for each node U ′ ∈ T ′, αU ′ := 0. The general idea is that at step
i, we have a partial knowledge of Gi: we know all the red adjacencies, thanks to the lists Li

U ,
and we know some of the black edges thanks to B. At step i, we consider every black edge
e of Gi that “disappears” in Gi−1, and compute the contribution of every path of length 2
in G containing at least one of the edges of e (recall that we can see e ∈ E(Gi) as a set of
edges of E(G)). Doing so, we consider each edge of G only once, which prevents us from
double counting.

Assume that the i-th contraction of the d-sequence described by T is corresponds to the
triple (U, V, Z) with U, V ∈ V (Gi) and Z := U ∪ V ∈ V (Gi−1). Then for every W ∈ V (Gi)
(W can possibly be V ) such that UW ∈ B, we do the following:

(i) For every node U(p,b1,...,bk) ⊆ U , we replace the value of αU(p,b1,...,bk) by αU(p,b1,...,bk) +sW .
Similarly, for every node W(p,b1,...,bk) ⊆W we replace αW(p,b1,...,bk) by αW(p,b1,...,bk) +sU .

(ii) We add in B1 between every two distinct nodes U(p,b1,...,bk) ⊆ U and U(p′,b′
1,...,b′

k
) ⊆ U

an edge e labeled by βe := sW . Similarly we add in B1 between every two distinct
nodes W(p,b1,...,bk) and W(p,b1,...,bk) an edge e labeled by βe := sU . (Together with
the previous item, this is when we count the contribution of the paths of the form
U −W − U or W − U −W .)

(iii) We add in B1 between every two distinct nodes U(p,b1,...,bk) ⊆ Z and W(p′,b′
1,...,b′

k′ ) ⊆W
an edge e labeled by βe := p+p′ (mod 2). Informally these edges count the contribution
of the paths of the form U −W −W or U − U −W .

(iv) For every W ′ ∈ V (Gi) with W ′ ̸= W such that UW ′ ∈ B (W ′ is possibly equal to V ),
we add in B1 between every two distinct nodes W(p,b1,...,bk) ⊆W and W ′

(p′,b′
1,...,b′

k′ ) ⊆W
′

an edge e labeled by βe := sU . These edges count the contribution of the paths of
the form W − U −W ′. (Together with the four previous cases, we counted so far the
contribution of every 2-path that takes only black edges of Gi and “disappearing” in
Gi−1.)

(v) For every X ∈ Li
U , we add in B1 between every two distinct nodes X(p,b1,...,bk) ⊆ X

and U(p′,b′
1,...,b′

k′ ) ⊆ U an edge e labeled by βe := bj , where j is the index of U in Li
X .

These edges count the contribution of the paths of the form X∼U −W .
(vi) For every X ∈ Li

W , we add in B1 between every two distinct nodes U(p,b1,...,bk) ⊆ U

and X(p′,b′
1,...,b′

k′ ) ⊆ X an edge e labeled by βe := b′
j , where j is the index of W in Li

X .
These edges count the contribution of the paths of the form U −W∼X.

Note that in this procedure, we can add multiple labeled edges for a same pair of nodes
of T ′. In this case, we replace all of them by a single edge whose label is the sum of all their
labels. Observe that at step i, we add at most (1 + (d+ 1) + d(d+ 1) + d+ d)22d = O(d24d)
labeled edges (the number of candidates for W is at most d+ 1), hence B1 eventually has
linear size in n.
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We show that when the procedure terminates, the sum Suv written above is odd for
every pair of adjacent vertices in G[2], and even for the other pairs. For this, consider a pair
u, v ∈ V (G) of distinct vertices of G. Our goal is to show that every w ∈ N(u) ∩N(v) has a
contribution of exactly 1 in the sum Suv. In other words, we show that every path of length
2 of the form u−w− v is counted exactly once in Suv. We say that the edge UV disappears
at step i if U, V ∈ V (Gi), UV ∈ E(Gi) and U ′V ′ /∈ E(Gi−1), where U ′, V ′ ∈ V (Gi−1) are
such that U ⊆ U ′ and V ⊆ V ′ (in particular it is the case when U ∪ V ∈ V (Gi−1)). Let
i ∈ [n], w ∈ N(u)∩N(v) and U, V and W be the sets of V (Gi) that respectively contain u, v
and w (they may be equal). Observe that for i = n the edges UW and WV are in E(Gn),
and then disappear at some step i. Assume without loss of generality that UW disappears
after VW does, and take i minimal such that UW ∈ E(Gi). We distinguish the following
disjoint cases:

Assume first that both UW and VW disappear at step i, i.e., we also have VW ∈ E(Gi).

Assume that U = V . As UW disappears at step i, it means that UV ∈ B, either
because U is merged with some other set, or because W does. T hen at step i of our
algorithm, we count the paths u− w − v either in (i), or in (ii) according to whether
or not u and v lie in the same node of T ′.
If U ̸= V , then it means that W is merged with another set in Gi−1. Let W ′ ∈ V (Gi−1)
be the set that contains W as a subset. Then we have UW ′ ∈ R(Gi−1) and VW ′ ∈
R(Gi−1), and UW,VW ∈ B. In particular this means that we counted u− w − v in
(iv) (with W ′ playing the role of Z).

Now assume that V = W , i.e., that VW disappeared because VW were merged together.

Assume that UW disappears because U and W are merged together in Gi−1. Then
the path u− w − v is counted in (ii).
Assume now that U is merged with another set and contained in U ′ ∈ V (Gi−1). Then
again, we claim that u− w − v is counted in (ii). The case when W is merged with
another set in Gi−1 is symmetric.

Now we assume that U, V and W are pairwise disjoint, and that VW ∈ R(Gi).

Assume first that U and W are merged into Z := U ∪W in Gi−1. Then as V is a red
neighbor of W in Gi, observe that the path u− w − v is counted in (vi).
Assume now that V and W are merged into Z := V ∪W in Gi−1. Then as V is a red
neighbor of W in Gi, observe that the path u− w − v is counted in (i).
If instead U and V are merged into Z := U ∪V in Gi−1. Then again, the path u−w−v
is counted in (vi).
Eventually assume that the sets containing u, v and w are still disjoint in Gi−1, and
call them respectively U ′, V ′ and W ′. Then U ′W ′, V ′W ′ ∈ R(Gi−1). Observe that as
UW disappeared, we have V ′ = V and exactly one of the two equalities W = W ′ and
U = U ′ holds. If U ̸= U ′ and W = W ′, then observe that the path u − w − v was
counted in (vi) (with U ′ playing the role of Z), while if U = U ′ and W ̸= W ′, it was
counted in (v).

Now it only remains to show that w is counted in only one item of our algorithm. For this,
observe that there is a unique i such that the edge uw is included in a black edge UW ∈ B.
We are done as every path u− w − v is only counted in our algorithm at the step i when
UW disappears (if it disappears before VW ). ◀
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Figure 8 The result of the algorithm from Lemma 53 applied to the twin-decomposition of
Figure 7. The blue bits are the values of the αU s and the orange labeled edges represent the set B1.
One can check that the sums Suv give the adjacencies of G[2] pictured in Figure 6.

Computation of the set B′ of transversal edges of T ′

In the previous sections, we built a tree T ′ together with a set of labeled 0, 1-edges B1 whose
vertices are labeled by Booleans αU for every U ∈ V (T ′), such that for every two vertices
u, v ∈ V (G), uv form an edge of G[2] if and only if the sum of the labels of the edges of B1
joining the branch having {u} and the branch having {v} as leaves plus the sum of the labels
αW of the internal nodes W that are common ancestors of {u} and {v} in T ′ is odd. We
denote by G[2]

n , . . . , G
[2]
1 the contraction sequence of G[2] that corresponds to the tree T ′.

We now compute a set of transversal edges B′ such that (T ′,B′) is a twin-decomposition
of G[2]. We proceed in two steps.

(1) First, we visit the nodes of T ′ by decreasing values of their labels (i.e., from bottom
to top), and try to lift up the highest we can the information they bear. This way, we
modify B1, by removing the edges which were “too high” in T ′ to be lifted up, and
construct little by little another set of labeled transversal edges B2 of T ′ corresponding
to the edges we “blocked”, i.e., that could not be pushed. We will prove that these edges
correspond exactly to the black and non-edges of G[2]

i that disappear in G
[2]
i−1. Thus

they correspond to the only possible place for the edges of B′. It remains to decide their
status in G

[2]
i (i.e., whether they correspond to edges or non-edges in G[2]).

(2) In the last step, we visit the nodes of T ′ this time by increasing values of their labels
(i.e., from top to bottom). The goal is to communicate the contribution of the labels αU

and of the edges that were not removed yet from B1 to the lower strata of the tree T ′, in
order to decide the status of each edge of B2.

Again we will only add or remove a constant number of edges from B1 and B2 at each step
of (1) and (2), which ensures that both these sets always have linear size in n, and that our
total computation time is also linear.

▶ Lemma 54. One can dynamically compute bits α′
U for each U ∈ T ′ together with a set B2

of labeled edges and remove edges of B1 such that we eventually have the following properties:

For every pair of distinct vertices u, v ∈ V (G), the sum Suv is equal to the sum S′
uv
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defined by:
S′

uv :=
∑

W ∈V (T ′)
W ≺T ′ {u}
W ≺T ′ {v}

αW +
∑

UV ∈B1
U≺T ′ {u}
V ≺T ′ {v}

βUV +
∑

UV ∈B2
U≺T ′ {u}
V ≺T ′ {v}

βUV .

For every edge e = UV ∈ B2 between U, V ∈ V (Gi), UV /∈ R(G[2]
i ). Moreover, at step

i − 1, either U and V are merged together, or if U ′ and V ′ denote the disjoint sets of
V (Gi−1) that respectively include U and V , we have U ′V ′ ∈ R(G[2]

i−1).
For every remaining edge e = UV ∈ B1, we must have UV ∈ R(G[2]

i ).
For every U, V, Z ∈ V (T ′) such that U and V are the two children of Z in T ′, if
ℓ(Z) = i− 1 then α′

Z = 1 if and only if UV ∈ R(Gi).
Furthermore, in the end, B1 and B2 have size at most O(d24dn).

Proof. We will keep, at step i, n − i + 1 lists J i
U for each node U ∈ Bi(T ′) = V (G[2]

i ),
updated in time O(1) at each step. We will see that the list J i

U corresponds exactly to the
red neighborhood of U in G

[2]
i .

We start (i = n) with J i
{v} := ∅ for each u ∈ V (G) and α′

U := 0 for every U ∈ V (T ′).
Now let i ∈ [n] and assume that the contraction between G

[2]
i and G

[2]
i−1 is described by the

triple (U, V, Z) where U, V ∈ V (G[2]
i ) and Z ∈ V (G[2]

i−1). We also assume that the lists J i
U

were already computed for every U ∈ V (G[2]
i ). Again, we keep the convention for B2 that

if at some point, there are multiple edges of B2 between two nodes U, V ∈ V (T ′), then we
replace them by a single edge whose label is the sum modulo 2 of all their labels. At step i

of our algorithm we do the following: For every W ∈ V (G[2])\ {U, V }, we do not touch to
the list J i

W . We create the list J i
Z := J i

U ∪ J i
V \ {U, V }. These lists may be modified in what

follows.

(i) If V /∈ J i
U , and if e = UV ∈ B1 with label βe, then we remove e from B1 and add it

in B2. Similarly, if V /∈ J i
U and there is no edge between U and V in B1, we add an

edge e = UV labeled with βe := 0 in B2. Intuitively, we mark there the position of
every edge or non-edge of G[2]

i that disappears in G
[2]
i−1 because its two endpoints are

merged together.
(ii) For every W ∈ V (G[2]

i )\ {U, V } such that W /∈ J i
U ∪ J i

V , if e1 := UW and e2 := VW

are in B1 and βe1 = βe2 , then we remove e1 and e2 from B1 and add the edge e := ZW

in B2 with label βe := βe1 . Similarly, if W /∈ J i
U ∪J i

V and only one of the edges between
e1 and e2 is in B1, say e1 with label βe1 = 0, then we remove it from B1 and add in B2
the edge e := ZW with label βe := 0. Intuitively this corresponds to the case when the
partial information we kept until now of the relations between U and W and between
V and W is the same, so we “lift it up” in T ′.

(iii) For every W ∈ V (G[2]
i )\ {U, V } such that W /∈ J i

U ∪ J i
V , e1 = UW ∈ B1 and e2 =

VW ∈ B1 have different labels βe1 ̸= βe2 , we remove e1 and e2 from B1 and add them
in B2. Moreover we add W to the list J i−1

Z and reciprocally we add Z to the list J i−1
W .

Similarly if we have W /∈ J i
U ∪ J i

V and if e1 = UW ∈ B1 but there is no edge between
V and W in B1, then we remove e1 from B1 and add in B2 the edges e1 and e2 := VW

with label βe2 := 0. We also apply the same changes to J i−1
W and J i−1

Z . Intuitively this
is where we mark the position of every edge or non-edge of G[2]

i that disappears to
create a red edge where there was no error before.

(iv) For every W ∈ V (G[2]
i )\ {U, V } such that W ∈ J i

U and W /∈ J i
V , if the edge e = VW is

in B1, then we remove it from B1 and add it in B2. Similarly if there is no edge in B1
between V and W , we add in B2 the edge e := VW labeled by βe := 0. In both cases,
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we also add Z in the list J i−1
W . Intuitively this is where we mark the position of every

edge or non-edge of G[2]
i that disappears because it is merged with some previous red

edge of G[2]
i .

(v) If U ∈ J i
V then we set α′

Z := 1.

That for every u, v ∈ V (G), Suv = S′
uv is immediate, as we only moved edges from B1 to

B2, and merged some of the edges of B1 in a way that does not change the value of Suv.
However, it is not clear yet that the lists J i

U have bounded size at each step. We show
that indeed correspond to the red neighborhood of each vertex of G[2]

i .

▷ Claim 55. The list J i
U is exactly the red neighborhood of U in G

[2]
i .

Proof of the claim: We show the claim by induction over decreasing values of i ∈ [n].
If i = n, then the claim is immediate, as there is no red edge in the partition of G[2] into
singletons, and we initialized the lists J i

U to be empty.
Assume now that the claim holds for some i ∈ [2, n], and that the contraction between

G
[2]
i and G

[2]
i−1 is described by the triple (U, V, Z) with U, V ∈ V (G[2]

i ) and Z ∈ V (G[2]
i−1).

Then a vertex W ∈ V (G[2]
i )\ {U, V } is a red neighbor of Z in G

[2]
i−1 if and only if it was

already a red neighbor of U or V in G
[2]
i , or if it has not the same relation with U and V

in G
[2]
i . In the first case, Z is indeed in J i−1

W thanks to (iv). Assume now without loss of
generality that UW ∈ E(G[2]

i ) while VW /∈ E(G[2]
i ). By Lemma 53, this means that if we

take any u ∈ U, v ∈ V,W ∈ W , we have: 1 = S′
uw ̸= S′

vw = 0. Now observe that every
common ancestor of u and w in T ′ is also a common ancestor of v and w, and vice versa.
Hence we must have:∑

U ′W ′∈B1
U≺U ′≺T ′ {u}

W ′≺W ′≺T ′ {w}

βU ′W ′ +
∑

U ′W ′∈B2
U≺U ′≺T ′ {u}

W ′≺W ′≺T ′ {w}

βU ′W ′ ̸=
∑

V ′W ′∈B1
V ≺V ′≺T ′ {v}

W ′≺W ′≺T ′ {w}

βV ′W ′ +
∑

U ′W ′∈B2
V ≺V ′≺T ′ {v}

W ′≺W ′≺T ′ {w}

βV ′W ′ .

It is easy to see in the algorithm that as W /∈ J i
U , then there is no edge of B1 between

the subtree of T ′ rooted in W and the one rooted in U . The same holds between W and V .
Hence in the above inequality, the sums over edges of B1 vanish. One can also observe that
the only edge in B2 that may exist between the subtree rooted in W and the one rooted in
U is e1 := UW . The same way, the only edge in B2 between the subtree rooted in W and
the one rooted in V is e1 := VW . Hence at least one of these edges must have been created
in the algorithm. It could not be in (i) or (iv), as we are not in these cases, so it must have
been in (iv). Thus (iii) was executed according to W , so the lists J i−1

Z and J i−1
W have been

correctly updated. ♢

By Claim 55, we observe that the creation of an edge in B2 corresponds exactly to the
disappearance of the edges or non-edges of G[2]

i , which proves the second item of the lemma.
Moreover, observe that in the algorithm, every edge of e = UV ∈ B1 such that V /∈ J i

U is
removed at one point from B1, so by Claim 55 we are also done with the third item of the
lemma.

Now by Claim 55 and the fact that T ′ represents a contraction sequence as described
in Lemma 49, we get that the size of each Li

U is O(d22d). Hence, each vertex U ∈ V (G[i])
has at most O(d22d) edges in B2 linking it to another node of T ′ with a higher label. Hence
at each step, |B1| + |B2| increases by at most O(d22d), and eventually |B1| + |B2| has the
same order than at the start, i.e., |B1|+ |B2| = O(d24dn). The same way, we get that the
execution time at each step of our algorithm is O(d22d). So the total running time of the
procedure is O(d22dn). ◀
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Now we have everything in hand to conclude. The set B2 indicates the locations of
the edges and non-edges of the graphs Gi when they “disappear.” It only remains to give
them the appropriate label: 1 if it corresponds to an edge, and 0 is it corresponds to a
non-edge. By construction, no edge of B1 are placed “below” an edge of B2, so we only need
to communicate the information of the edges and the bits of the nodes that are “above”
them.

▶ Lemma 56. Given T ′,B1,B2 computed as before, we can construct in time O(d24dn) a
set B′ of size O(d22dn) such that (T ′,B′) is a twin-decomposition of G[2] associated to the
contraction sequence described in Lemma 49.

Proof. We want each node to communicate its parity bit αU to its children, and to transfer
similarly the information of the edges that are still in B1 to the edges of B2 placed below
them in T ′.

Hence we now visit the nodes of T ′ by increasing values of their labels (i.e., we consider
the associated contraction sequence of G[2] starting at its end). Assume that the contraction
done between G

[2]
i and G

[2]
i−1 is described by the triple (U, V, Z) where U, V ∈ V (G[2]

i ) and
Z ∈ V (G[2]

i−1). Again, if at some point there are multiple edges of B1 between two nodes, we
just replace them by a single one and sum their labels. At step i we do the following:

(i) Increment the values αU and αV by αZ .
(ii) If e = UV ∈ B2, then increment its label by αZ . If its new label is 0, remove it from
B2. Otherwise keep it in B2.

(iii) If e = UV /∈ B2 and if α′
Z = 0, then add in B2 the edge e := UV whose label is

βe := αZ .
(iv) If e = UV /∈ B2 and α′

Z = 1, then add in B1 the edge e := UV whose label is βe := αZ .
(v) For every W ∈ V (Gi−1)\Z such that e = ZW ∈ B1, if e′ = UW ∈ B2, increment the

label of e′ by βe. Otherwise if UW /∈ B2, add the edge e′ := UW in B1 with label
βe′ := βe. Do the same according to V . Finally remove e from B1.

At step i, we keep the property that if there is an edge e = UV ∈ B1 between U, V ∈
V (G[2]

i ), then UV ∈ R(G[2]
i ). Thus we ensure that every edge B1 will “encounter enough

edges of B2 below it to make it disappear”. Hence when the algorithm terminates, we have
B1 = ∅. Moreover as the red degrees in G

[2]
i are bounded by O(d22d), we also have at each

step |B1| = O(d22dn). Similarly the total running time is O(d22dn).
Now observe that for every two distinct vertices u, v ∈ V (G), the sum S′

uv does not
change at each step. Hence, in the end, this sum is 1 if and only if the (unique) edge
e of B2 that connects an ancestor of {u} with an ancestor of {v} in T ′ has label 1. If
we set :B′ := {e ∈ B2, βe = 1}, then by the first item of Lemma 54, (T ′,B′) is indeed a
twin-decomposition of G[2]. ◀

Now if we put together Lemmas 15, 49, 52–54, and 56 we get the following result which
is exactly Theorem 48 when q = 2:

▶ Theorem 57. There exists a O(d24dn)-time algorithm that, given a twin-decomposition
(T ,B) of width d of a graph G with n vertices, outputs a twin-decomposition of width O(d22d)
of G[2].

▶ Remark 58. The previous algorithm can also be adapted to compute a twin-decomposition
of G2 associated to the refinement of Remark 51 in the same complexity.
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Figure 9 Top: The result of the algorithm from Lemma 54 applied to the couple (T ′, B1) from
Figure 8. The green edges represent the set B2. For the sake of clarity, we did not add the bits α′

U .
Bottom: The result of the algorithm from Lemma 56 applied to the triple (T ′, B1, B2) to the left.

The algorithm for general values of q ⩾ 2

As mentioned in the overview of the previous proof, there are only few changes to do in order
to prove Theorem 48 in its full generality. We now explain which parts have to be modified.

We let G be a graph with edges labeled by a function ν : E(G)→ Fq. For every l ∈ Fq

we let Gl be the graph with vertex set V (G) and edge set ν−1(l). For every u ∈ V (G) and
U ⊆ V (G), we let deg(l)

U (u) := | {v ∈ U : ν(uv) = l} |. Again let (T ,B) be a d-sequence for
G, with associated partition sequence Pn, . . . ,P1. The twin-decomposition (T ′,B′) we want
to compute corresponds to the refinement of Pn, . . . ,P1 where for every i ∈ [n], U ∈ Pi, if
W1, . . . ,Wk denote the at most d red neighbors of U in Gi, then P ′

i contains all the following
subsets of U which are nonempty:

U(p,b1,...,bk) := {x ∈ U : ∀i ∈ [k],
∑
l∈Fq

deg(l)
Wi

(x) · l = bi

and
∑
l∈Fq

deg(l)
U (x) · l = p},

for every value of (p, b1, . . . , bk) ∈ Fk+1
q , where for each n ∈ N and each l ∈ Fq we let n · l

denote the sum of l with itself n times (which is not the same thing that the multiplication in
Fq). In particular, note that for each n ∈ N and l ∈ Fq, n · l = (n (mod q)) · l. As previously,
note that each set U is partitioned into at most qd+1 subsets U(p,b1,...,bk). The reader can
check that the proof of Lemma 49 generalizes, i.e., that we can complete arbitrarily this
refinement and obtain a D-sequence for G[q] with D := (d2 + d + 1)qd+1 − 1. We claim
that the proof of Lemma 52 also generalizes, with the additional factor m(q) in the time
complexity, as one needs to make a (constant) number of elementary computations in Fq at
each update of the pointers q[U, p, b1, . . . , bk]. The only change is that we must pre-compute
the values sU := |U | (mod q) for each U ∈ V (T ).
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We let λ : E(G[q])→ Fq denote the labeling function of the edges of G[q]. We still need
to compute some values αU ∈ Fq for U ∈ V (T ′) and a set of labeled transversal edges B1 of
T ′, where for each e ∈ B1, βe ∈ Fq denotes the label of e such that for every u, v ∈ V (G[q]):

λ(uv) =
∑

W ∈V (T ′)
W ≺T ′ {u}
W ≺T ′ {v}

αW +
∑

UV ∈B1
U≺T ′ {u}
V ≺T ′ {v}

βUV .

The algorithm described in Lemma 53 can be generalized as desired, and we get a set B1 as
desired of size O(d2q2dn). Its running time becomes O(m(q)d2q2d). Eventually, Lemmas 54
and 56 generalize in a straightforward way, up to a multiplicative cost m(q) for the time
complexity. Hence the overall complexity is O(m(q)d2q2dn) so we are done with Theorem 48.
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