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Abstract The increasing electrification of urban public 

transports requires improving the design of the electrical 

infrastructures to take into account all the technical and 

financial challenges involved in the creation of a new line. 

This paper presents a new optimization tool dedicated to the 

sizing of tramway electrical infrastructures: power 

substations, overhead transmission lines, feeders and 

equipotential bonding. The purpose is to determine the 

number, positions and technical characteristics of all these 

components to achieve the best trade-offs between 

investment costs, energy costs and the quality of the traffic 

power supply. The sizing problem is formulated as a multi-

objective optimization problem and solved using the 

NSGA-II genetic algorithm. The proposed method is 

applied to a simple test case and gives good results. 

1 Introduction  

The electrification of urban public transport is an 

environmental issue: metro, tramway or trolley bus systems 

respond to different trade-offs between transport capacity 

and cost. The choice depends on the local context. Whatever 

the system, one of the technical and economic challenges is 

the sizing of the electrical infrastructure, in order to achieve 

a satisfactory compromise between investment costs, 

operational costs and power supply reliability. 

In its current form, the process of sizing electrical 

infrastructure (power substations, overhead or ground 

power lines, feeders…) follows a trial-and-error approach. 

The specifications are set in terms of traffic to be supplied 

on a given line and various environmental constraints 

(available space to install the infrastructures, accessible 

network connection points …). The EN 50388 standards 

provide recommendations for the distance between 

substations. Based on these recommendations and their 

experience, engineers propose an initial configuration. 

Then, they use a numerical simulator to test different traffic 

scenarios and check if the standards on voltages and currents 

are respected in the whole system at each moment during 

the simulation. If not, the configuration is iteratively 

adjusted until satisfaction is obtained. This manual approach 

and the simulation time required to test multiple traffic 

scenarios prevent a thorough exploration of the solution 

space. Faced with these constraints, the engineer simply 

finds a configuration that satisfies the electrical needs of the 

line, which generally leads to oversized electrical 

infrastructures. 

 

Lately, some attempts have been proposed to optimize the 

electrical infrastructure sizing. For example, reference [1] 

deals with a 25 kV AC system and uses the NSGA-II 

algorithm in order to optimize the positioning of the feeding 

substations and the neutral sections between them, with 

respect to the investment cost on the one hand, and the 

operational cost on the other hand. The principle of the 

approach is tested on a simple case. In [2], the authors are 

interested in the reinforcement of the 660 V DC power 

system of the Zagreb train network. It is shown that the 

existing feeding substations can supply the increasing 

traffic, provided that the distribution cables are reinforced. 

A power flow model and linear optimization are used to add 

new supply lines and place their connecting points to 

minimize voltage drops and operational currents, thereby 
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ensuring optimal service continuity. Interesting results are 

obtained, but the use of a linear power flow model does not 

allow to account for overloaded lines. The objective of the 

present work is to optimize the sizing process of all 

electrical infrastructures of a tramway line respecting two 

criteria: overall cost (infrastructure and energy 

consumption) and voltage security margin with respect to 

some traffic uncertainties (service quality). The objective is 

similar to the references previously mentioned, but the 

physical model is more complex and involves more decision 

variables.  

 

The rest of the paper is organized as follows. Section 2 

describes the studied system; Section 3 formulates the 

considered optimization problem, and Section 4 presents the 

genetic algorithm used to solve it; Section 5 provides first 

results for a simple test case, and Section 6 concludes.  

2 Studied system 

The electrical infrastructures of a tramway line are designed 

to provide the power needed by the trains (Fig. 1). The main 

elements are the feeding substations, the overhead 

transmission line (OTL), the rails (return conductor) and the 

trains. In addition, feeders (conductors parallel to the OTL) 

and equipotential bonding (local connections between the 

two OTLs of a two-way line) are used to adjust the electrical 

network characteristics to the needs.  

 

 
Fig. 1 Electrical infrastructure of a tramway line. 

The analysis of this system relies on simulation [3, p. 61‑85] 

[4] and requires detailed enough models to correctly 

determine all electrical quantities. In the present work, we 

use an in-house developed simulator. The input data are the 

physical description of the railway network (line topology, 

electrical devices position and characteristics) and the 

description of the intended traffic (position and power needs 

of all trains versus time). The simulation is a quasi-static 

one. At each time step, Kirchhoff’s laws apply to build the 

circuit equations of the electrical network (Fig. 2). Solving 

this set of nonlinear equations gives the voltage at all nodes 

of the circuit. The currents and powers in all the components 

are post-processed and compared to limits given by 

standards in order to check the acceptability of the 

infrastructures for the simulated traffic (details are given in 

Section 3.3).  

 

Fig. 2 Electrical model of the feeding system presented in Fig. 1. 

3 Formulation of the optimization problem 

The final objective of the electrical infrastructure design is 

to choose all the electrical needed elements and define their 

characteristics in order to guarantee the best quality of the 

power supply at the lowest cost. This problematic can be 

translated into a bi-objective optimization problem. 

Optimization variables  

The optimization variables are the characteristics of the 

electrical devices to choose, namely the substations, the 

feeders and the equipotential positions. Their characteristics 

are summarized in Table 1.  The number of each type of 

device is not known in advance, a maximum number of each 

type of device is specified in the problem formulation and if 

a device does not exist, its characteristic is set to 

“nonexistent”. 

 
Table 1. List and characteristics of the optimization variables 

Device Variable Nature 

SST #i for 𝑖 =  1, 𝑚𝑎𝑥𝑆𝑆𝑇   
Position Continuous 

Power Discrete 

feeder #i for 𝑖 =  1, 𝑚𝑎𝑥𝑓𝑒𝑒𝑑𝑒𝑟 
end1 position Continuous 

end2 position Continuous 

Equipotential #i  

for 𝑖 =  1, 𝑚𝑎𝑥𝑒𝑞𝑢𝑖𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 
Position Continuous 

 

Objective functions  

The sizing purpose is to minimize the costs i.e., investment 

and energy consumption, and to maximize the quality of the 

tramway’s power supply. These objectives, detailed 

hereafter, are usually antagonistic and the decision maker 

needs objective criteria to choose the best compromise for a 

given situation.  

 

The total cost is the sum of the investment and the energy 

costs.  

Investment cost =∑ cost of each device𝑑𝑒𝑣𝑖𝑐𝑒𝑠   

The energy cost is calculated by post-processing the results 

of simulation and extrapolating it over the tramway lifetime 

(30 years). It includes Joule's losses from electrical 

substation to the train, powertrain losses and mechanical 

power imposed by the traffic.  



 

The power supply quality is assessed by a voltage security 

margin that guarantees that the supply voltage of each 

tramway will never drop below a certain value despite 

traffic uncertainties such as delayed trains or non-

compliance with speed profiles. The IEC 38 standard 

specifies the minimum value of train voltage. The voltage 

drop depends on the traffic and is sensitive to both trains’ 

position and required power. A significant voltage drop 

indicates that the feeding line is undersized with respect to 

the power to be supplied to the trains. To take into account 

traffic uncertainties, the sizing is done using a critical 

voltage value above the standard. This difference will be 

referred as the “voltage security margin” and denoted by 

Δ𝑉𝑚𝑎𝑟𝑔𝑖𝑛  in the paper. It is defined by Δ𝑉𝑚𝑎𝑟𝑔𝑖𝑛 =

𝑉𝑚𝑖𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑉𝑚𝑖𝑛 𝐼𝐸𝐶 38 , where 𝑉𝑚𝑖𝑛 𝐼𝐸𝐶 38  denotes the 

minimum value specified by the standard IEC 38 and 

𝑉𝑚𝑖𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛  is the minimum value monitored during the 

simulation for the considered traffic. 

 

Constraints 

The constraints are either related to device location and civil 

engineering constraints or related to electrical constraints 

and technical standards.  

When constructing a tramline, urbanism constraints 

determine the possible locations of the substations and may 

severely limit the possible locations. The electrical overhead 

line connects with feeders on the overhead line support 

poles, approximately 50 m apart from each other. The same 

thing for equipotential connections. This imposes the 

position of feeder ends and equipotential connections to be 

at the same location than the support poles.  

 

Regarding electrical constraints, each train voltage level 

must remain in the range defined by the standard IEC 38.  

 500 V < U < 900 V (1000 V in case of regenerative 

braking). 

Each substation current must respect the standard CEI1 46, 

namely 𝐼 < 𝐼𝑛  in steady state, 𝐼 < 1.5 𝐼𝑛  for 2 hours and 

𝐼 < 3𝐼𝑛  for 1 minute. Lastly, the ground/rail potential 

difference must remain below the safety limits defined in 

the standards NF F 60-100 or NF EN 50163.  

 
Table 2. The ground/rail voltage limit values as a function of duration 

time 

Duration (s)  U (V)  

>300  120  

300  150  

1  160  

0,9  165  

0,8  170  

0,7  175  

 

4 Optimization method NSGA II: 

 Problem characteristics and optimization method choice 

The optimization problem we are dealing with is 

characterized by discrete and continuous variables, by a 

nonlinear black-box model, constraints on the input and 

output of the model, and possibly antagonistic objectives. 

As we are interested in the compromise between these 

objectives, we need an optimization method based on the 

notion of Pareto dominance [5] and the non-dominated 

sorting genetic algorithm (NSGA-II) appears to be well 

suited [6][7]. 

 

Genetic algorithms[8] are heuristic methods based on a 

population of individuals. Each individual corresponds to a 

point of the search space and is characterized by a 

chromosome. A chromosome is a set of genes, each one 

coding a feature of the individual. The population evolves 

from one generation to the next through selection, crossover 

and mutation operators. Selection is based on non-

dominated sorting and keeps the best individuals while 

crossover and mutation generate new individuals in order to 

explore the search space. 

 

The next section explains how NSGA-II is implemented for 

our sizing problem: the genes are defined, as well as the 

crossover and mutation operators. 

Genetic Algorithm elements: Chromosome and genes 

Individuals are points of the search space and their 

chromosome contains the genes corresponding to the 

different optimization variables. In our problem, the 

maximum number of each type of device (substations, 

feeders, equipotential connections) is specified in the 

problem formulation. The chromosome contains a fixed 

number of genes, enabling to code the information needed 

for the maximum number of devices. Each gene contains 

information about a specific device, this information being 

either a technical one or an indicator of non-existent device. 

 

As an example, Fig. 3 shows the chromosome and the genes 

for a problem with a maximum number of 4 substations, 8 

equipotential connections and 3 feeders. Gene#1 contains 

the position of SST#1. Gene#4 contains the position of 

SST#4, if SST#4 exists. Gene#13 and gene#14 contain the 

positions of the ends of feeder#1, if feeder#1exists. 
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Fig. 3 Chromosome and genes of an individual 

Crossover operator 

The crossover operator creates an offspring from two 

parents randomly chosen in the mating pool [6, p. 89‑90]. 

First, one of the parents is duplicated. Then, a gene of the 

offspring is randomly selected and updated with a new value 

calculated by a weighted average between the values of the 

parents’ gene, based on the fitness value of each parent. If 

the selected gene is non-existent, the operator randomly 

selects another one. Offspring that violate one of the 

problem constraints are attributed a very bad fitness score 

so that they will be eliminated at the next generation. 

Mutation operator 

The mutation operator is designed to increase the diversity 

of the population in order to avoid individuals trapped in 

local minima [6, p. 91‑93]. First, an individual randomly 

selected in the mating pool is duplicated. Then one of his 

genes is randomly chosen and set to a new random value 

(including non-existent device).  

Influence of the hyper-parameters 

The quality of an offspring generation directly depends on 

the NSGA-II hyper-parameters: mutation and crossover 

rates, population size and number of generations. The 

crossover (resp. mutation) rate defines the percentage of 

offspring created by crossover (resp. mutation) in a new 

generation. In the present work, offspring are generated 

either by crossover or mutation, so that the sum of the 

crossover and mutation rates is 100%. If the population size 

is small, the search space is poorly sampled and lacks 

diversity. This can lead to premature convergence towards 

a local minimum. On the other hand, a too large population 

may unnecessarily increase the computation time. The 

number of generations should be large enough to allow 

sufficient exploration of the search space, but again, a too 

large number may lead to unnecessary computation if the 

population does no longer evolve. The total number of 

evaluations of the model is the product of the population 

size by the number of generations, divided by 2 since 50% 

of the individuals are passed from one generation to the 

next. 

 

The next section presents the results obtained for a simple 

test case.  

5 Results 

Test case   

For the test case we choose a 5 km bi-directional line, with 

a stop at each end, a +5% slope along the first 500 m and -

5% slope along the last three kilometers.  

 
Fig. 4 Line profile and train traffic. 

The traffic consists of tramways departing every 6 minutes 

in each direction. Fig. 5 shows (simulation result) the 

position and the traction power variations over time for a 

single tramway, traveling in one direction: the tramway 

accelerates, then moves at constant speed and finally 

decelerates. 

 

 
Fig. 5 Position and traction power time profile of a single tramway. All 

streetcar traveling in the same direction have the same profile, with a 

6 mn shift. 

The maximum number of substations and equipotential 

connections are set to 5 and 1 respectively and there is no 

feeder. Hence, the individual chromosome contains six 

genes (Fig. 3), each one coding the position or the 

nonexistence of the corresponding device. 

 

The two objective functions, cost and voltage security 

margin, have been described in Section 3.2. 

 

There is no position constraint and the electrical constraints 

are those described in Section 3.3. 

 

 Choice of the hyper-parameters  

A parametric study was carried out in order to adjust the 

hyper-parameters of the algorithm. The necessity of a good 
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initialization of the starting population, mixing empirical 

engineer knowledge and random choices, was also 

highlighted. 

 

The first step of the parametric study is to determine a good 

population size. All the other hyper-parameters being kept 

constant, the population size has been increased until a value 

that guarantees the convergence is obtained. For this 

example, a population of 100 individuals is large enough to 

obtain good convergence results. Starting population can be 

initialized using both random sampling or engineering rule 

of thumb. For instance, distance between successive 

substations is generally about 1.5 to 2 kilometers depending 

on the traffic. The influence of the initialization was studied 

by comparing optimization processes starting with random 

initial population or a combination of random sampling and 

engineer knowledge. The later accelerate convergence as it 

enhances the number of viable individuals in the initial 

population. 

The second step of the parametric study is to assess the 

influence of the mutation rate, for a fixed population size 

𝑁𝑝𝑜𝑝 = 100. We have first tested constant mutation rates of 

5%, and 10%. Then we have tested a dynamic mutation rate, 

as proposed in [9]: the mutation rate linearly increases from 

0% at the first generation to 100% at the last one. Our test 

confirm that the dynamic rate improves the convergence. 

 

At this stage, we characterized the convergence by the 

reproducibility of the results with ten different runs and by 

the consistency of these results with the ones intuitively 

expected on this simple example. 

 

 

 

 

Table 3 reports some of the results of the parametric study 

that leads the following hyper-parameters for the considered 

test case. For this example, the best combination is a 

dynamic mutation rate with an initialization of the first 

generation with the half of individuals generated completely 

randomly and the rest generated based on engineer 

knowledge. We noticed that reproducibility of the 

optimization results can be reached with 200 generations. 

 
Table 3. Example of results of the parametric study, for 𝑁𝑝𝑜𝑝 = 100  

Mutation rate 
Population 

initialization 

maximum number 

of generations to  

reach convergence 

Fixed rate : 5% Random 500 

Fixed rate : 10% Random no convergence 

Dynamic rate : 0→100% Random 300 

Dynamic rate : 0→100% 
knowledge + 

random 
200 

 

Results 

Fig. 6 shows results in the objective space. It represents the 

non-dominated individuals at each generation. Each point 

represents an individual that was non-dominated at some 

point of the evolution process. The crosses represent the 

empirical Pareto frontier at the last generation. The color 

indicates at which generation the individual appeared. We 

can easily see that the performances of the non-dominated 

solutions constantly improve throughout generations. We 

also notice that the individuals of the final Pareto frontier 

appeared after the 60th generation. 

 

Fig. 6 Non-dominated individuals in the objective space, for each 

generation. The crosses represent the empirical Pareto frontier at the 

last generation. The other points represent individuals that were non-

dominated at some point of the evolution.  

For better readability, the graph has been split into four 

parts. Each subgraph focuses on a group of individuals with 

the same number of substations (2, 3, 4 or 5). These groups 

do not overlap because the investment costs are very 

different for 2, 3, 4 or 5 substations. One should notice that 

the horizontal scales are slightly different. 

 

The behaviors of the solutions are quite different for 2 and 

3 substations. In the case of 2 substations, the voltage 

margin is much more sensitive to the cost than in the case of 

3 substations. The decision maker can either choose a 

solution with 2 substations and a low voltage margin, or a 

solution with 3 substations and a more comfortable voltage 

margin. This result is consistent with the engineer 

experience, but Fig.6 provides quantified information to 

support this choice.  

 

In the next figures, we analyze the evolution of the non-

dominated individuals in the solution space. To avoid 

overloading figures, we focus the analysis on the non-

dominated individuals with 2 substations. Fig. 7 and Fig. 8 

respectively show the evolution of the substations and the 



6 ELECTRIMACS 2022 – Nancy, France, 16-19 May 2022 

 

 

positions of the equipotential connections. The points color 

indicates the cost. We notice the evolution of the devices 

position and the decrease of the total cost as the selection 

process progresses. 

 

 

 
Fig. 7 Non-dominated solutions with 2 substations: evolution of the 

substations’ positions. The points color indicates the cost (M€). 

 

 
Fig. 8  Non-dominated solutions with 2 substations: evolution of the 

equipotential position. The points color indicates the cost (M€). 

 

Fig. 9 plots the best scores of each objective, among the non-

dominated individuals with 2 substations. The improvement 

mainly takes place during the first generations and until the 

125th generation. As very close results were obtained for ten 

different runs, we are confident that the algorithm has 

converged. 

 

 

Fig. 9 Non-dominated solutions with 2 substations: evolution of the 

best objective values. 

6 Conclusion 

The first optimization results are consistent with a trial and 

error approach. The Pareto fronts provide objective 

information on the possible trade-offs between cost on the 

one hand and power feeding quality on the other hand. The 

use of a simple example with a few optimization variables 

makes it possible to validate the tool with results that can be 

intuitively found. Obtaining the same results with ten 

different runs consolidates our confidence in the 

optimization results. The next step will be to apply this 

method to a more realistic and complex case. 
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