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Sequential stochastic blackbox optimization with
zeroth-order gradient estimators

Charles Audet † Jean Bigeon ‡ Romain Couderc †§ Michael Kokkolaras ¶

August 15, 2023

Abstract

This work considers stochastic optimization problems in which the objective function values can
only be computed by a blackbox corrupted by some random noise following an unknown distribution.
The proposed method is based on sequential stochastic optimization (SSO): the original problem is
decomposed into a sequence of subproblems. Each subproblem is solved using a zeroth-order version
of a sign stochastic gradient descent with momentum algorithm (ZO-Signum) and with an increas-
ingly fine precision. This decomposition allows a good exploration of the space while maintaining the
efficiency of the algorithm once it gets close to the solution. Under Lipschitz continuity assumption
on the blackbox, a convergence rate in expectation is derived for the ZO-Signum algorithm. More-
over, if the blackbox is smooth and convex or locally convex around its minima, a convergence rate to
an ϵ-optimal point of the problem may be obtained for the SSO algorithm. Numerical experiments are
conducted to compare the SSO algorithm with other state-of-the-art algorithms and to demonstrate its
competitiveness.

Mathematics Subject Classification: 90C15, 90C56, 90C30, 90C90, 65K05

1 Introduction
The present work targets stochastic blackbox optimization problems of the form

min
x∈Rn

f(x) where f(x) := Eξ [F (x, ξ)] , (1)

and in which F : Rn × Rm → R is a blackbox [3] that takes two inputs: a vector of design variables
x ∈ Rn and a vector ξ ∈ Rm that represents random uncertainties with an unknown distribution. The
function F is called a stochastic zeroth-order oracle [20]. The objective function f is obtained by taking
the expectation of F over all possible values of the uncertainties ξ. The main applications belong to
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two different fields. The first is in a machine learning framework where the loss function’s gradient is
unavailable or difficult to compute, for instance in optimizing neural network architecture [36], design
of adversarial attacks [15], or game content generation [45]. The second field is when the function F is
evaluated by means of a computational procedure [27]. In many cases, it depends on an uncertainty vector
ξ due to environmental conditions, costs, or effects of repair actions that are unknown [38]. Another
source of uncertainty appears when the optimization is conducted at the early stages of the design process,
where knowledge, information, and data is very limited.

1.1 Related work
Stochastic derivative-free optimization has been the subject of research for many years. Traditional
derivative-free methods may be divided into two categories [16]: direct search and model-based meth-
ods. Algorithms corresponding to both methods have been adapted to stochastic zeroth-order oracle.
Examples include the stochastic Nelder-Mead algorithm [13] and the stochastic versions of the MADS
algorithm [2, 4] for the direct search methods. For model-based methods, most work consider extensions
of the trust region method [14, 17, 33]. A major shortcoming of these methods is their difficulty to scale
to large problems.

Recently, another class of methods, named zeroth-order (ZO) methods, has been attracting increasing
attention. These methods use stochastic gradient estimators, which are based on the seminal work in
[24, 37] and have been extended in [20, 34, 39, 42]. These estimators have the appealing property of being
able to estimate the gradient with only one or two function evaluations, regardless of the problem size.
Zeroth-order methods take advantage of this property to extend first-order methods. For instance, the well
known first-order methods Conditional Gradient (CG), sign Stochastic Gradient Descent (signSGD) [6]
and ADAptive Momentum (ADAM) [26] have been extended to ZSCG [5], ZO-signSGD [30] and ZO-
adaMM [15], respectively. More methods, not only based on first-order algorithms, have also emerged to
solve regularized optimization problem [11], for very high dimensional blackbox optimization problem
[9] and for stochastic composition optimization problem [21]. Methods using second-order information
based limited function queries have been developed [25]. Some methods handle situations where the
optimizer has only access to a comparison oracle which indicates which of two points has the highest
value [10]. For an overview on ZO methods, readers may consult [31].

1.2 Motivation
Formally, stochastic gradient estimators involve a smoothed functional fβ (see Chapter 7.6 in [39]) which
is a convolution product between f and a kernel hβ(u)

fβ(x) :=
∫ ∞

−∞
hβ(u)f(x− u)du =

∫ ∞

−∞
hβ(x− u)f(u)du. (2)

The kernel must fulfill a set of conditions [pp. 263, [39]]:

1. hβ(u) = 1
βn h(u

β
) is a piecewise differentiable function;

2. limβ→0 hβ(u) = δ(u), where δ(v) is Dirac’s delta function;

3. limβ→0 fβ(x) = f(x), if x is a point of continuity of f ;

4. The kernel hβ(u) is probability density function (p.d.f.), that is fβ(x) = EU∼hβ(u)[f(x −U)] =
EU∼h(u)[f(x− βU)].
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Frequently used kernels include the Gaussian distribution and the uniform distribution on a unit ball.
Three properties concerning smoothed functional are worth noting. First, the smoothed functional may
be interpreted as a local weighted average of the function values in the neighbourhood of x. Condition
3 implies that it is possible to obtain a solution arbitrarily close to a local minimum f ∗. Second, the
smoothed functional is infinitely differentiable as a consequence of the convolution product, regardless
of the degree of smoothness of f . Moreover, according to the chosen kernel, stochastic gradient estima-
tors may be calculated. These estimators are unbiased estimators of ∇fβ and may be constructed on the
basis of observations of F (x, ξ) alone. Finally, the smoothed functional allows convexification of the
original function f . Previous studies [40, 43] show that greater values of β result in better convexifica-
tion, as illustrated in Figure 1. Additionally, a larger β leads to greater exploration of the space during
the calculation of the gradient estimator. It has also been demonstrated in [32] that if the smoothing pa-
rameter is too small, the difference in function values cannot be used to accurately represent the function
differential, particularly when the noise level is significant.

Figure 1: Curves of fβ for u ∼ N (0, 1) and different values of β.

Although the two first properties of the smoothed functional are exploited by ZO methods, the last
property has not been utilized since the work in [43]. This may be because the convexification phe-
nomenon becomes insignificant when dealing with high-dimensional problems 1. However, for problems
of relatively small size (n ≃ 10), this property can be useful. The authors of [43] use an iterative
algorithm to minimize the sequence of subproblems

min
x∈Rn

fβi(x), (3)

where βi belongs to a finite prescaled sequence of scalars. This approach is limited because the sequence
βi does not necessarily converge to 0 and the number of iterations to go from subproblem i to i + 1 is
arbitrarily fixed a priori. Furthermore, neither a convergence proof nor a convergence rate are provided
for the algorithm. Finally, although promising, numerical results are only presented for analytical test
problems. These shortcomings motivate the research presented here.

1.3 Contributions
The main contributions of this paper can be summarized as follows.

1Note that a blackbox optimization problem with dimensions ranging from 100 to 1000 may be considered large, while
problems with n ≥ 10000 may be considered very large.
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• A sequential stochastic (SSO) optimization algorithm is developed to solve the sequence of sub-
problems in Equation (3). In the inner loop, a subproblem is solved according to the zeroth-order
version of the Signum algorithm [6]. The stopping criterion is based on the norm of the momen-
tum, which must be below a certain threshold. In the outer loop, the sequence of βi is proportional
to the threshold needed to consider a subproblem solved and is driven to 0. Therefore, the smaller
the value of βi is (and thus better is the approximation given by fβi), the larger the computational
budget granted to the resolution of the subproblem.

• A theoretical analysis of this algorithm is conducted. First, the norm of the momentum is proved
to converge to 0 in expectation, with a convergence rate that depends on the step sizes. Then, the
convergence rate in expectation of the ZO-Signum algorithm to a stationary point of fβ is derived
under Lipschitz continuity of the function F . Finally, if the function F is smooth, and fβ is convex
or become convex around its local minima, a convergence rate to an ϵ-optimal point is derived for
the SSO algorithm.

• Numerical experiments are conducted to evaluate the performance of the proposed algorithm in
two applications. First, a comparison is made with traditional derivative-free algorithms on the
optimization of the storage cost of a solar thermal power plant model, which is a low-dimensional
problem. Second, a comparison is made with other ZO algorithms in order to generate blackbox
adversarial attacks, which are large size problems.

The remainder of this paper is organized as follows. In Section 2, the main assumptions and the
Gaussian gradient estimator are described. In Section 3, the sequential optimization algorithm is pre-
sented, and its convergence properties are studied in Section 4. Section 5 presents numerical results, and
Section 6 draws conclusions and discusses future work.

2 Gaussian gradient estimator
The assumptions concerning the stochastic blackbox function F are as follows.

Assumption 1. Let (Ω,F ,P) be a probability space.

a. The function satisfies F (·, ξ) ∈ L1(Ω,F ,P) and f(x) := Eξ[F (x, ξ)], for all x ∈ Rn.

b. F (·, ξ) is Lipschitz continuous for any ξ, with constant L0(F ) > 0.

Assumption 1.a implies that the expectation of F (x, ξ) with respect to ξ is well-defined on Rn and
that the estimator F (x, ξ) is unbiased. Assumption 1.b is commonly used to ensure convergence and to
bound the variance of the stochastic zeroth-order oracle. It is worth noticing that no assumption is made
on the differentiability of the objective function f or of its estimate F with respect to x, contrary to most
work on zeroth-order methods.

Under Assumption 1, a smooth approximation of the function f may be constructed by its convolution
with a Gaussian random vector. Let u be an n-dimensional standard Gaussian random vector and β > 0
be the smoothing parameter. Then, a smooth approximation of f is defined as

fβ(x) := 1
(2π)n

2

∫
f(x + βu)e− ||u||2

2 du = Eu[f(x + βu)]. (4)

This estimator has been studied in the literature (especially in [34]) and benefits of several appealing
properties. The properties used in this work are summarized in the following Lemma.
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Lemma 2.1. Under Assumption 1, the following statements hold for any integrable function f : Rn → R
and its approximation fβ parameterized by β > 0.

1. fβ is infinitely differentiable: fβ ∈ C∞.

2. A one-sided unbiased estimator of ∇fβ is

∇̃fβ(x) := u(f(x + βu)− f(x))
β

. (5)

3. Let β2 ≥ β1 ≥ 0, then ∀x ∈ Rn

||∇fβ1(x)−∇fβ2(x)|| ≤ L1(fβ1)(β2 − β1)(n + 3) 3
2 .

Moreover, for β > 0, then fβ is L1(fβ)-smooth, i.e, fβ ∈ C1+ with L1(fβ) = 2
√

n
β

L0(F ).

4. If f is convex, then fβ is also convex.

Proof. 1. It is a consequence of the convolution product between an integrable function and an infinitely
differentiable kernel.

2. See [34, Equation (22)].

3. If u ∼ N (0, I), let define for all x ∈ Rn

g(x) = fβ1(x) = Eu[f(x + β1u)].

Let µ = β2 − β1 ≥ 0, it follows that for all x ∈ Rn

gµ(x) = Eu[g(x + µu)] = Eu[fβ1(x + µu)] = Eu[f(x + µu + β1u)] = Eu[f(x + β2u)] = fβ2(x).

Then, since by [34, Lemma 2] under Assumption 1, fβ1 is Lipschitz continuously differentiable, the [34,
Lemma 3] may be applied to the function g and it follows that

||∇fβ1(x)−∇fβ2(x)|| = ||∇g(x)−∇gµ(x)|| ≤ L1(fβ1)µ(n + 3) 3
2 = L1(fβ1)(β2 − β1)(n + 3) 3

2 .

4. See [34, page 5].

The estimator obtained in Equation (5) may be adapted to the stochastic zeroth-order oracle F . For
instance, a one-sided (mini-batch) estimator of the noised function F is

∇̃fβ(x, ξ) = 1
q

q∑
j=1

uj(F (x + βuj, ξj)− F (x, ξj))
β

, (6)

where (uj)q
j=1 and (ξj)q

j=1 are q Gaussian random direction vectors and their associated q estimates values
of the function F . This is still an unbiased estimator of∇fβ because

Eu,ξ[∇̃fβ(x, ξ)] = Eu[Eξ[∇̃fβ(x, ξ)|u]] = ∇fβ(x). (7)

The result of Lemma 2.1.3 is essential to understand why solving a sequence of optimization problems
defined in Equation (3) may be efficient, while it might seem counterproductive at first sight. Below are
examples of the advantages of treating the problem with sequential smoothed function optimization.
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• The subproblems are approximations of the original problem and it is not necessary to solve them
exactly. Thus, an appropriate procedure for solving these problems with increasingly fine precision
can be used. Moreover, as seen in Lemma 2.1.3, the norm of the gradient obtained in a subproblem
is close to the one of the following subproblem. The computational effort to find a solution to the
second subproblem from the solution of the first should therefore not be important.

• The information collected during the optimization process of a subproblem may be reused in the
subsequent subproblems since they are similar.

• A specific interest in the case of smoothed functional is the ability of using a larger value of β
during the solving of the first subproblems. It allows for a better exploration of the space and
convexification phenomenon of the function (see Figure 1). Moreover, the new step size may be
used for each subproblem, it allows increasing the step size momentarily, in the hope of having a
greater chance of escaping a local minimum.

3 A Sequential Stochastic Optimization (SSO) algorithm
Section 3.1 presents a zeroth-order version of the Signum algorithm [6] to solve Subproblem (3) for
a given βi and Section 3.2 presents the complete algorithm used to solve the sequential optimization
problem.

3.1 The Zeroth-Order Signum algorithm

Algorithm 1 ZO-Signum (ZOS) algorithm to solve subproblem i ∈ N

1: Input: xi,0, mi,0, βi, si,0
1 , si,0

2 , L, q, M
2: Set k = 0
3: Define stepsize sequences si,k

1 = si,0
1

(k+1)α1 and si,k
2 = si,0

2
(k+1)α2

4: while ||mi,k|| > Lβi

4β0 or k ≤M do
5: Draw q samples uk from the Gaussian distribution N (0, I)
6: Calculate the average of the q Gaussian estimate ∇̃fβi(xi,k, ξi,k) from Equation (6)
7: Update:

mi,k+1 = si,k
2 ∇̃fβi(xi,k, ξk) + (1− si,k

2 )mi,k (8)

xi,k+1
j = xi,k

j − sk
1sign(mi,k+1

j ) ∀j ∈ [1, n] (9)

8: k ← k + 1
9: end while

10: Return mi,k and xi,k

A zeroth-order version of the Signum algorithm (Algorithm 2 of [6]) is used to solve the subproblems.
The Signum algorithm is a momentum version of the sign-SGD algorithm. In [30], the authors extended
the original sign-SGD algorithm to a zeroth-order version of this algorithm. However, a zeroth-order
version of Signum is not studied in the work of [30]. As the Signum algorithm has been shown to be
competitive with the ADAM algorithm [6], a zeroth-order version of this algorithm seems interesting to
consider. For completeness, the versions of the signSGD and the Signum as they originally appeared in
[6] are given in Appendix D. There is an important difference between the original Signum algorithm and
its zeroth-order version presented in Algorithm 1. Indeed, while the step size of the momentum 1 − s2
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Algorithm 2 Sequential Stochastic Optimization (SSO) algorithm
1: Initialization:
2: Set x0,0 ∈ Rn, β0 > 0 and N the maximum number of function calls for the search step
3: Set q the number of gradient estimates at each iteration of ZO-Signum algorithm
4: Set M the minimum number of iterations made by the ZO-Signum algorithm on a subproblem
5: C the cache containing all the evaluated points
6: Set m0,0 = ∇̃fβ0(x0,0, ξ0) and L = +∞
7: Set s0,0

1 > 0 and s0,0
2 > 0

8: Set i = 0
9: Search step (optional):

10: while M(i + 1)q ≤ N : do
11: Solve subproblem i with Algorithm 1:

mi+1,0 = ZOS(xi,0, mi,0, βi, si,0
1 , si,0

2 , L, q, M)
xi+1,0 ∈ argmin

x∈C
F (x, ξ)

12: Update βi, si,0
1 and si,0

2 as in step 18
13: end while
14: L = ||m0,0||
15: Local step:
16: while βi > ϵ do
17: Solve subproblem i with Algorithm 1:

mi+1,0, xi+1,0 = ZOS(xi,0, mi,0, βi, si,0
1 , si,0

2 , L, q, M)

18: Update:

βi = β0

(i + 1)2 , si,0
1 = s0,0

1

(i + 1) 3
2
, si,0

2 = s0,0
2

i + 1
i← i + 1

19: end while
20: Return xi

is kept constant in the work of [6], it is driven to 0 in our work. This leads to two consequences. First,
the variance is reduced since the gradient is averaged on a longer time horizon, without using mini-batch
sampling. Second, as it has been demonstrated in other stochastic approximation works [7, section 3.3],
[41], with carefully chosen step sizes the norm of the momentum goes to 0 with probability one. In the
ZO-Signum algorithm, the norm of the momentum is thus used as a stopping criterion.

3.2 The SSO algorithm
The optimization of the subproblems sequence described in Equation (3) is driven by the sequential
stochastic (SSO) algorithm presented in Algorithm 2. The value of β plays a critical role, as it serves
as both the smoothing parameter and the stopping criterion for Algorithms 1 and 2. Algorithm 2 is
inspired by the MADS algorithm [1] as it is based on two steps: a search step and a local step. The
search step is optional and may consist in any heuristics and is required only on problem with relatively
small dimensions. In Algorithm 2, an example of a search is given which consists of updating x after
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M iterations of the ZO-Signum algorithm with the best known x found so far. The local step is then
used: Algorithm 1 is launched on each subproblem i with specific values of βi and step-size sequences.
Once Algorithm 1 meets the stopping criterion (which depends on the value of βi), the value of βi and
the initial step-sizes si,0

1 and si,0
2 are reduced, and the algorithm proceeds to the next subproblem. The

convergence is guaranteed by the local step, since the search step is run only a finite number of times.
It is worth noting that the decrease rate of βi is chosen so that the difference between subproblems i

and i + 1 is not significant. Therefore, the information collected in subproblem i, through the momentum
vector m, can be used in subproblem i + 1. Furthermore, the initial step-sizes si,0

1 and si,0
2 decrease with

each iteration, allowing us to focus our efforts quickly towards a local optimum when s0,0
1 and β0 are

chosen to be relatively large.

4 Convergence analysis
The convergence analysis is conducted in two steps : first the convergence in expectation is derived for
Algorithm 1 and then the convergence for Algorithm 2 is derived.

Table 1: Workflow of Lemmas/Propositions/Theorems for the ZO-Signum convergence analysis

Assumptions on F Preliminary results Intermediate results Main results When fβ is convex

Proposition 4.1

Assumption 1
Lemma 4.2

Proposition 4.5
which implies

Lemma 4.3
Theorem 4.9 Theorem 4.11

L1(fβi) = 2
√

nL0(F )
βi

Lemma 4.4
Corollary4.10

Lemma 4.6
Proposition 4.8

Lemma 4.7

4.1 Convergence of the ZOS algorithm
The analysis of Algorithm 1 follows the general methodology given in [6, Appendix E]. In the following
subsection, the main result in [6] is recalled for completeness. The next subsections are devoted to
bound the variance and bias terms when limk→∞ si,k

2 = 0 . Finally, these results are used to obtain the
convergence rate in expectation of Algorithm 1 in the non-convex and convex case. The last subsection
is devoted to a theoretical comparison with other ZO methods of the literature. The subproblem index i
is kept constant throughout this section. In order to improve the readability of the convergence analysis
of the ZO-Signum algorithm, a hierarchical workflow of the different theoretical results is presented in
Table 1. The main results are Theorem 4.9 and its corollary for the nonconvex case, and Theorem 4.11
for the convex case.

4.1.1 Preliminary result [6]

The following proposition uses the Lipschitz continuity of the function fβi (proved in Lemma 2.1) to
bound the gradient at the kth iteration.

8



Proposition 4.1 ([6]). For the subproblem i ∈ N, under Assumption 1 and in the setting of Algorithm 1,
we have

si,k
1 E[||∇fβi(xi,k)||1] ≤E[fβi(xi,k)− fβi(xi,k+1)] + nL1(fβi)

2 (si,k
1 )2

+ 2si,k
1 E[||m̄i,k+1 −∇fβi(xi,k)||1]︸ ︷︷ ︸

bias

+2si,k
1
√

n
√√√√E[||mi,k+1 − m̄i,k+1||22]︸ ︷︷ ︸

variance

(10)

where m̄i,k+1
j is defined recursively as m̄i,k+1

j = si,k
2 ∇fβi(xi,k) + (1− si,k

2 )m̄i,k
j .

Proof. See Appendix B.

Now, it remains to bound the three terms on the right side of Inequality (10).

4.1.2 Bound on the variance term

The three following lemmas are consecrated to bound the variance term. Unlike the work reported in [6],
the variance reduction is conducted by driving the step size of the momentum to 0. It avoids to sample an
increasing number of stochastic gradients at each iteration, which may be problematic, as noted in [30].
To achieve this, the variance term is first decomposed in terms of expectation of the squared norm of the
stochastic gradient estimators g̃.

Lemma 4.2. For the subproblem i ∈ N, let k ∈ N and j ∈ [1, n], we have

E[||mi,k+1 − m̄i,k+1||2] ≤ (si,k
2 )2E[||g̃i,k||2] +

k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1− si,t+1
2 )2E[||g̃i,r||2]

+
k∏

t=0
(1− si,t

2 )2E[||g̃i,0||2],

where g̃i,r
j = ∇̃fβi(xi,r, ξr),∀r ∈ [0, k] is defined in Equation (6) and the norm is || · ||2.

Proof. Let k ∈ N, by definition of mi,k and m̄i,k, it follows that

||mi,k+1 − m̄i,k+1||2 = (si,k
2 )2||g̃i,k −∇fβi(xi,k)||2 + (1− si,k

2 )2||mi,k − m̄i,k||2

+ 2si,k
2 (1− si,k

2 )(g̃i,k −∇fβi(xi,k))T (mi,k − m̄i,k).

The expectation of this expression is

E[||mi,k+1 − m̄i,k+1||2] = (si,k
2 )2E[||g̃i,k −∇fβi(xi,k)||2] + (1− si,k

2 )2E[||mi,k − m̄i,k||2] (11)

+ 2si,k
2 (1− si,k

2 )E[(g̃i,k −∇fβi(xi,k))T (mi,k − m̄i,k)]. (12)

Now, introducing the associated sigma field of the process F i,k = σ(xj,t, mj,t, m̄j,t; j ≤ i, t ≤ k) by the
law of total expectation, it follows that

E[(g̃i,k −∇fβi(xi,k))T (mi,k − m̄i,k)] = E[E[(g̃i,k −∇fβi(xi,k))T (mi,k − m̄i,k)|F i,k]]
= E[(E[g̃i,k|F i,k]−∇fβi(xi,k))T (mi,k − m̄i,k)]
= 0,

where the second equality holds because mi,k, m̄i,k and ∇fβi(xi,k) are fixed conditioned on F i,k and
because E[g̃i,k|xi,k] = ∇fβi(xi,k) as g̃i,k is an unbiased estimator of the gradient by Equation (7). By
substituting this result in (12), it follows that

E[||mi,k+1 − m̄i,k+1||2] = (si,k
2 )2E[||g̃i,k −∇fβi(xi,k)||2] + (1− si,k

2 )2E[||mi,k − m̄i,k||2].

9



By repeating this process iteratively, we obtain

E[||mi,k+1 − m̄i,k+1||2] = (si,k
2 )2E[||g̃i,k −∇fβi(xi,k)||2]

+
k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1− si,t+1
2 )2E[||g̃i,r −∇fβi(xi,r)||2]

+
k∏

t=0
(1− si,t

2 )2E[||g̃i,0 −∇fβi(xi,0)||2].

(13)

Finally, by observing that ∀r ∈ [0, k],E[g̃i,r|xi,r] = ∇fβi(xi,r) and by the law of total expectation, we
obtain

E[||g̃i,r −∇fβi(xi,r)||2] = E[||g̃i,r − E[g̃i,r|xi,r]||2]
= E[||g̃i,r||2]− E[||∇fβi(xi,r)||2]
≤ E[||g̃i,r||2].

Introducing this inequality in Equation (13) completes the proof.

Second, the expectation of the squared norm of the stochastic gradient estimators are bounded by a
constant depending quadratically on the dimension.

Lemma 4.3. Let i ∈ N, r ∈ [0, k], j ∈ [1, n], then under Assumption 1, we have

E[||g̃i,r||2] ≤ L0(F )2(n + 4)2

where L0(F ) is the Lipschitz constant of F .

Proof. By Equation (6) with q = 1, it follows that

E[||g̃i,r||2] = E
[
||u||2

(βi)2

(
F (xi,r + βiu, ξ)− F (xi,r, ξ)

)2
]

≤ L0(F )2E[||u||4]
≤ L0(F )2(n + 4)2

where the first inequality follows from Assumption 1.b and the second by [34, Lemma 1].

Finally, a technical lemma bounds the second term of the decomposition of the Lemma 4.2 by a
decreasing sequence. It achieves the same rate of convergence as in [6] without sampling any stochastic
gradient.

Lemma 4.4. For the subproblem i ∈ N, let si,k
2 defined such that si,k

2 = si,0
2

(k+1)α2 with α2 ∈ (0, 1) and

si,0
2 ∈ (0, 1), then for k such that

k

(k + 1)α2
≥ ln(si,0

2 ) + (1 + α2) ln(k)
si,0

2
(14)

the following inequality holds
k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1− si,t+1
2 )2 ≤ 9si,0

2
kα2

. (15)

10



Proof. Let k ∈ N; as in [6], the strategy consists of breaking up the sum in order to bound the both terms
separately.

k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1− si,t+1
2 )2 =

⌊k/2⌋−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1− si,t+1
2 )2 +

k−1∑
r=⌊k/2⌋

(si,r
2 )2

k−1∏
t=r

(1− si,t+1
2 )2

≤ (1− si,k
2 )2⌊k/2⌋

⌊k/2⌋−1∑
r=0

(si,r
2 )2 + (si,⌊k/2⌋−1

2 )2
k−1∑

r=⌊k/2⌋
(1− si,k

2 )2(k−r−1)

≤ (si,0
2 )2⌊k/2⌋(1− si,k

2 )2⌊k/2⌋ + 8(si,0
2 )2

k2α2

⌊k/2⌋∑
r=0

(1− si,k
2 )2r

≤ (si,0
2 )2k(1− si,k

2 )2⌊k/2⌋ + 8(si,0
2 )2

k2α2(1− (1− si,k
2 )2)

≤ (si,0
2 )2k(1− si,k

2 )2⌊k/2⌋ + 8si,0
2

kα2(2− si,k
2 )

.

Now, we are looking for k such that

si,0
2 k(1− si,k

2 )2⌊k/2⌋ ≤ 1
kα2
⇔ e2⌊k/2⌋ ln(1−si,k

2 ) ≤ 1
(si,0

2 )k1+α2
.

As, ln(1− x) ≤ −x, it is sufficient to find k such that

e
−si,0

2
k

(k+1)α2 ≤ 1
(si,0

2 )k1+α2

⇔ k

(k + 1)α2
≥ ln(si,0

2 ) + (1 + α2) ln(k)
si,0

2
.

Taking such a k allows to complete the proof.

Combining the three previous Lemmas allows bounding the variance term in the Proposition 4.1.

Proposition 4.5. In the setting of Lemmas 4.3 and 4.4 and under Assumption 1.b, the variance term of
Proposition 4.1 is bounded by

E[||mi,k+1 − m̄i,k+1||22] ≤
9si,0

2 L0(F )2(n + 4)2

kα2
+ o

( 1
kα2

)
.

Proof. By Lemmas 4.2 and 4.3, it follows that

E[||mi,k+1 − m̄i,k+1||2] ≤ (si,k
2 )2E[||g̃i,k||2] +

k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1− si,t+1
2 )2E[||g̃i,r||2]

+
k∏

t=0
(1− si,t

2 )2E[||g̃i,0||2]

≤
(

(si,k
2 )2 +

k−1∑
r=0

(si,r
2 )2

k−1∏
t=r

(1− si,t+1
2 )2 +

k∏
t=0

(1− si,t
2 )2

)
L0(F )2(n + 4)2.

Now as (si,k
2 )2 = o

(
1

kα2

)
and

∏k
t=0(1− si,t

2 )2 = o
(

1
kα2

)
, the result follows from Lemma 4.4.
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4.1.3 Bound on the bias term

First, the bias term is bounded by a sum depending on sk
1 and sk

2.

Lemma 4.6. For the subproblem i ∈ N and at iteration k ∈ N of the algorithm 1, we have

E[||m̄i,k+1 −∇fβi(xi,k)||1] ≤ 2nL1(fβi)
(

k−1∑
l=0

si,l
1

k−1∏
t=l

(1− si,t+1
2 )

)
.

Proof. Foremost, observe that the quantity

Si,k :=

 1 if k = 0
si,k

2 +∑k−1
r=0 si,r

2
∏k−1

t=r (1− si,t+1
2 ) +∏k

t=0(1− si,t
2 ) otherwise,

(16)

may be written recursively as

Si,k =

 1 if k = 0
si,k

2 + (1− si,k
2 )Si,k−1 otherwise.

Note that in its second expression Si,k = 1 for all k. Therefore, by definition of m̄i,k
j and the previous

result on Si,k, it follows that

m̄i,k = si,k
2 ∇fβi(xi,k) +

k−1∑
r=0

si,r
2

k−1∏
t=r

(1− si,t+1
2 )∇fβi(xi,r) +

k∏
t=0

(1− si,t
2 )∇fβi(xi,0)

∇fβi(xi,k) =
(

si,k
2 +

k−1∑
r=0

si,r
2

k−1∏
t=r

(1− si,t+1
2 ) +

k∏
t=0

(1− si,t
2 )
)
∇fβi(xi,k).

Thus

E[||m̄i,k+1 −∇fβi(xi,k)||1] ≤
k−1∑
r=0

si,r
2

k−1∏
t=r

(1− si,t+1
2 )E[||∇fβi(xi,r)−∇fβi(xi,k)||1]

+
k∏

t=0
(1− si,t

2 )E[||∇fβi(xi,0)−∇fβi(xi,k)||1].
(17)

By the smoothness of the function fβi , Lemma F.3 of [6] ensures that ∀r ∈ [0, k − 1]

||∇fβi(xi,r)−∇fβi(xi,k)||1 ≤
k−1∑
l=r

||∇fβi(xi,l+1)−∇fβi(xi,l)||1 ≤ 2nL1(fβi)
k−1∑
l=r

si,l
1 .

Substituting this inequality in Equation (17) gives

E[||m̄i,k+1 −∇fβi(xi,k)||1] ≤ 2nL1(fβi)Si,k
1 (18)

where

Si,k
1 =

k−1∑
r=0

si,r
2

k−1∑
l=r

si,l
1

k−1∏
t=r

(1− si,t+1
2 ) +

k−1∑
l=0

si,l
1

k∏
t=0

(1− si,t
2 ).

12



Reordering the terms in Sk
1 , we obtain

Si,k
1 =

k−1∑
l=0

si,l
1

(
l∑

r=0
si,r

2

k−1∏
t=r

(1− si,t+1
2 ) +

k∏
t=0

(1− si,t
2 )
)

=
k−1∑
l=0

si,l
1

(
si,l

2

k−1∏
t=l

(1− si,t+1
2 ) +

l−1∑
r=0

si,r
2

k−1∏
t=r

(1− si,t+1
2 ) +

k∏
t=0

(1− si,t
2 )
)

=
k−1∑
l=0

si,l
1

k−1∏
t=l

(1− si,t+1
2 )

(
si,l

2 +
l−1∑
r=0

si,r
2

l−1∏
t=r

(1− si,t+1
2 ) +

l∏
t=0

(1− si,t
2 )
)

︸ ︷︷ ︸
Si,l=1

=
k−1∑
l=0

si,l
1

k−1∏
t=l

(1− si,t+1
2 ),

which completes the proof.

Second, the sum may be bounded by a term decreasing with k.

Lemma 4.7. For the subproblem i ∈ N and let si,k
2 = si,0

2
(k+1)α2 and si,k

1 = si,0
1

(k+1)α1 with si,0
1 ∈ (0, 1), si,0

2 ∈
(0, 1) and 0 < α2 < α1 < 1, then for k such that

k

(k + 1)α2
≥

2
(
ln(si,0

2 ) + (1 + α1 − α2) ln(k)
)

si,0
2

(19)

the following inequality holds

k−1∑
l=0

si,l
1

k−1∏
t=l

(1− si,t+1
2 ) ≤ 5si,0

1

si,0
2 kα1−α2

. (20)

Proof. The proof follows the proof of Lemma 4.4. The sum is partitioned as follows:

k−1∑
l=0

si,l
1

k−1∏
t=l

(1− si,t+1
2 ) =

⌊k/2⌋−1∑
l=0

si,l
1

k−1∏
t=l

(1− si,t+1
2 ) +

k−1∑
l=⌊k/2⌋−1

si,l
1

k−1∏
t=l

(1− si,t+1
2 )

≤ (1− si,k
2 )⌊k/2⌋

⌊k/2⌋−1∑
l=0

si,l
1 + s

i,⌊k/2⌋−1
1

k−1∑
l=⌊k/2⌋−1

(1− si,k
2 )k−r−1

≤ si,0
1 k(1− si,k

2 )⌊k/2⌋ + 4si,0
1

kα1(1− (1− si,k
2 ))

= si,0
1 si,0

2 k(1− si,k
2 )⌊k/2⌋

si,0
2

+ 4si,0
1

si,0
2 kα1−α2

.

Now, as in Lemma 4.4 taking k such that

k

(k + 1)α2
≥

2
(
ln(si,0

2 ) + (1 + α1 − α2) ln(k)
)

si,0
2

ensures that si,0
2 k(1− si,k

2 )⌊k/2⌋ ≤ 1
kα1−α2 , which completes the proof.

Finally, using the two previous Lemmas allows bounding the bias term.
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Proposition 4.8. In the setting of Lemma 4.7, the bias term of Proposition 4.1 is bounded by

E[||m̄i,k+1 −∇fβi(xi,k)||1] ≤ 10nL1(fβi) si,0
1

si,0
2 kα1−α2

.

Proof. The proof is a straightforward consequence of Lemmas 4.6 and 4.7.

4.1.4 Convergence in expectation of the ZOS algorithm

As the different terms in the inequality of the Proposition 4.1 have been bounded, the main result of this
section may be derived in the following theorem.

Theorem 4.9. For a subproblem i ∈ N and under Assumption 1, let α1 ∈ (0, 1), α2 ∈ (0, α1),
0 < si,0

1 , si,0
2 < 1 and K > C where C ∈ N satisfies Equations (14) and (19), we have

E[||∇fβi(xi,R)||1] ≤
1

K1−α1 − C
Kα1

Di
f

si,0
1

+ n
√

nL0(F )si,0
1

βi

K∑
k=C

1
k2α1

+ 6
√

si,0
2 L0(F )

√
n(n + 4)

K∑
k=C

1
kα1+ α2

2

+ 40L0(F )si,0
1 n
√

n

si,0
2 βi

K∑
k=C

1
k2α1−α2

,

(21)

where fβi(xi,C) − minx fβi(x) ≤ Di
f , L0(F ) is the Lipschitz constant of F and R is randomly picked

from a uniform distribution in [C, K].
Proof. Let C ∈ N satisfying Equations (14) and (19) and sum over the inequality in Proposition 4.1, it
follows that

K∑
k=C

si,k
1 E[||∇fβi(xi,k)||1] ≤ E[fβi(xi,C)− fβi(xi,K+1)] + nL1(fβi)

2

K∑
k=C

(si,k
1 )2

+ 2
√

n
K∑

k=C

si,k
1

√
E[||mi,k+1 − m̄i,k+1||22]

+ 2
K∑

k=C

si,k
1 E[||m̄i,k+1 −∇fβi(xi,k)||1].

By substituting the results of Proposition 4.5 and 4.8 in the previous inequality, we obtain
K∑

k=C

si,k
1 E[||∇fβi(xi,k)||1] ≤ E[fβi(xi,C)− fβi(xi,K+1)] + nL1(fβi)

2

K∑
k=C

(si,k
1 )2

+ 6
√

si,0
2 L0(F )(n + 4)

√
n

K∑
k=C

si,0
1

kα1+ α2
2

+ 20L1(fβi)si,0
1 n

si,0
2

K∑
k=C

si,0
1

k2α1−α2
.

Dividing both sides by si,0
1 K−α1(K−C), picking R randomly uniformly in [C, K] and using the definition

of Di
f given that minx f(x) ≤ f(x) for all x, we get

E[||∇fβi(xi,R)||1] = 1
K − C

K∑
k=C

E[||∇fβi(xi,k)||1] ≤
1

K − C

K∑
k=C

Kα1

kα1
E[||∇fβi(xi,k)||1]

≤ 1
K1−α1 − C

Kα1

Di
f

si,0
1

+ nL1(fβi)si,0
1

2

K∑
k=C

1
k2α1

+ 6
√

si,0
2 L0(F )(n + 4)

√
n

K∑
k=C

1
kα1+ α2

2

+ 20L1(fβi)si,0
1 n

si,0
2

K∑
k=C

1
k2α1−α2

.
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Recalling that L1(fβi) = 2
√

nL0(F )
βi (see [34, Lemma 2]) completes the proof.

This theorem allows proving the convergence in expectation of the norm of the gradient when α1 and
α2 are chosen adequately. In particular, the following corollary provides the convergence when α1 = 3

4
and α2 = 1

2 .

Corollary 4.10. Under the same setting of Theorem with βi ≈ 1 α1 = 3
4 , α2 = 1

2 , si,0
1 = 1

n
3
4

and si,0
2 ≈ 1,

we have

E[||∇fβi(xi,R)||2] = O

 n
3
2

K1/4 ln(K)
 . (22)

Proof. The result is a direct consequence of Theorem 4.9 with the specified constant and by noting that
|| · ||2 ≤ || · ||1 in Rn.

In [15, 20, 30], the function F is assumed to be smooth with Lipschitz continuous gradient. In the
present work, F is only assumed to be Lipschitz continuous. This has two main consequences on the
result of convergence: the dependence of the dimension on the convergence rate is larger. Furthermore,
while β must be chosen relatively small in the smooth case, it is interesting to note that it does not have
to be this way in the nonsmooth case.

4.1.5 The convex case

The convergence results of the ZOS algorithm has been derived in the non-convex case. In the next
theorem, convergence results are derived when the function fβi is convex.

Theorem 4.11. Under Assumption 1, suppose moreover that fβi
is convex and there exists ρ such that

ρ = maxk∈N ||xi,k − xi,∗||, then by setting

si,k
1 = 2ρ

(k + 1) , si,k
2 = 1

(k + 1) 2
3

and Γk :=
k∏

l=2

(
1− 2

k + 1

)
= 2

k(k + 1) with Γ1 = 1, (23)

it follows that

E[fβi(xi,K)− fβi(x∗)] ≤ 4ρ2n
√

nL0(F )
βiK

1
3

. (24)

and

E[||∇fβi(xi,R)||] ≤ 2L0(F )
K2 + 4ρn

√
nL0(F )

βiK
1
3

(25)

where R is a random variable in [0, K − 1] whose the probability distribution is given by

P(R = k) = si,k
1 /Γk+1∑K−1

k=0 si,k
1 /Γk+1

.

Proof. Under the assumptions in the statement of the Theorem, it follows by Proposition 4.1 that

E[fβi(xi,k+1)− fβi(xi,∗)] ≤ E[fβi(xi,k)− fβi(xi,∗)]− si,k
1 E[||∇fβi(xi,k)||] + nL1(fβi)

2 (si,k
1 )2

+ 2si,k
1 E[||m̄i,k+1 −∇fβi(xi,k)||1] + 2si,k

1
√

n
√
E[||mi,k+1 − m̄i,k+1||2]

≤ E[fβi(xi,k)− fβi(xi,∗)]− sk
1E[||∇fβi(xi,k)||] + 4ρ2n

√
nL0(F )

βi(k + 1) 4
3

,

(26)
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where the last inequality follows thanks to Propositions 4.5, 4.8 with L1(fβi) = 2L0(F )
√

n
βi and the values

of si,k
1 and si,k

2 . Now, by convexity assumption of fβi and the bound ρ, the following holds

fβi(xi,k)− fβi(xi,∗) ≤ ∇fβi(xi,k)T (xi,k − xi,∗)
≤ ||∇fβi(xi,k)|| ||xi,k − xi,∗||
≤ ρ||∇fβi(xi,k)||.

Thus, by substituting this result into Equation (26), it follows that

E[fβi(xi,k+1)− fβi(xi,∗)] ≤
(

1− 2
(k + 1)

)
E[fβi(xi,k)− fβi(xi,∗)] + 4ρ2n

√
nL0(F )

βi(k + 1) 4
3

.

Now by dividing by Γk+1 both sides of the equation and summing up the inequalities, it follows that

E[fβi(xi,K)− fβi(xi,∗)]
ΓK

≤ 4ρ2n
√

nL0(F )
βi

K−1∑
k=0

1
Γk+1(k + 1) 4

3

≤ 4ρ2n
√

nL0(F )
βi

K−1∑
k=0

(k + 1) 2
3 .

Thus

E[fβi(xi,K)− fβi(xi,∗)] ≤ 4ρ2n
√

nL0(F )
βi

ΓK
K−1∑
k=0

(k + 1) 2
3 ≤ 4ρ2n

√
nL0(F )

βiK
1
3

.

Now, the second part of the proof may be demonstrated. By Equation (26), it follows also that

si,k
1 E[||∇fβi(xi,k)||] ≤ E[fβi(xi,k)− fβi(xi,∗)]− E[fβi(xi,k+1)− fβi(xi,∗)] + 4ρ2n

√
nL0(F )

βi(k + 1) 4
3

.

As in the previous part, by dividing both sides by Γk+1, summing up the inequalities and noting
f̄k = E[fβi(xi,k)− fβi(xi,∗)], we obtain

K−1∑
k=0

si,k
1

Γk+1E[||∇fβi(xi,k)||] ≤
K−1∑
k=0

f̄k − ¯fk+1

Γk+1 + 4ρ2n
√

nL0(F )
βi

K−1∑
k=0

1
Γk+1(k + 1) 4

3
.

Then, again by dividing both sides by
∑K−1

k=0
si,k

1
Γk+1 it follows that

E[||∇fβi(xi,R)||] =
∑K−1

k=0
si,k

1
Γk+1E[||∇fβi(xi,k)||]∑K−1

k=0
si,k

1
Γk+1

≤ 1∑K−1
k=0

si,k
1

Γk+1

(
K−1∑
k=0

E[f̄k − ¯fk+1]
Γk+1 + 4ρ2n

√
nL0(F )
βi

K−1∑
k=0

1
Γk+1(k + 1) 4

3

)
,

where R is a random variable whose the distribution is given in the statement of the theorem. Now, as in
Equation (2.21) of [5], the following inequalities hold

K−1∑
k=0

f̄k − ¯fk+1

Γk+1 ≤ f̄ 0 +
K−1∑
k=1

2
Γk+1(k + 1) f̄k and

K−1∑
k=0

si,k
1

Γk+1 = ρ

ΓK
.
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Thus, by substituting these in the inequality involving the expectation, we obtain

E[||∇fβi(xi,R)||] ≤ ΓK

ρ

(
E[f̄ 0] +

K−1∑
k=1

2
Γk+1(k + 1)E[f̄k] + 4ρ2n

√
nL0(F )
βi

K−1∑
k=0

1
Γk+1(k + 1) 4

3

)

≤ ΓK

ρ

(
E[f̄ 0] + 8ρn

√
nL0(F )
βi

K−1∑
k=0

1
Γk+1(k + 1) 4

3

)

≤ 2L0(F )
K2 + 8ρn

√
nL0(F )

βiK
1
3

,

where the second inequality follows from Equation (24).

4.1.6 Summary of convergence rates and complexity guarantees

The result obtained in Equation (22) is consistent with the convergence results of other ZO methods. To
gain a better understanding of its performance, this result is compared with those of four other algorithms
from different perspectives: the assumptions, the measure used, the convergence rate, and the function
query complexity. All methods seek a solution to a stochastic optimization problem; the comparison
is presented in Table 2. Since the convergence rate of the ZO-Signum and ZO-signSGD algorithms is
measured using ||∇f(x)||, but ||∇f(x)||2 is used by ZO-adaMM and ZO-SGD, Jensen’s inequality is
used to rewrite convergence rates in terms of gradient norm.

• for ZO-SGD [20]

E[||∇f(x)||] ≤
√
E[||∇f(x)||2] ≤

√√√√O

(
σ
√

n√
K

+ n

K

)
≤ O

√σn
1
4

K
1
4

+
√

n√
K

 ,

• for ZO-adaMM [15]

E[||∇f(x)||] ≤
√
E[||∇f(x)||2] ≤

√√√√O

((
n√
K

+ n2

K

)√
ln(K) + ln(n)

)

≤ O

((√
n

K
1
4

+ n√
K

)
(ln(K) + ln(n))

1
4

)
,

where the third inequalities are due to
√

a2 + b2 ≤ a + b, for a, b ≥ 0. For ZO-signSGD, unless the value
of b depends on K, the algorithm’s convergence is only guaranteed within some ball around the solution,
making it difficult to compare with other methods. Thus, in the non-convex case, after this transformation,

it becomes apparent that ZO-Signum has a convergence rate of O
(

n
3
4√
σ

)
and O(

√
n) worse than that of

ZO-SGD and ZO-adaMM, respectively. This may be attributed to the milder assumption made on the
function F in the present work, which also explains why the convergence is relative to fβ . In the convex

case, ZO-Signum has a convergence rate of O
(

nK
1
6

σ

)
worse than ZSCG and O

(√
nK

1
6
)

worse than

ZO-SGD. This may be explained because the sign(·) operator looses the magnitude information of the
gradient when it applied. This problem may be fixed as in [23] but it outside the scope of this work.
Finally, all methods but ZO-signSGD are momentum-based versions of the original ZO-SGD method.
Although the momentum-based versions are mostly used in practice, it is interesting to notice that none
of these methods possess a better convergence rate than the original ZO-SGD method. The next section
provides some clues on the interests of the momentum-based method.

17



Table 2: Summary of convergence rate and query complexity of various ZO-algorithms given K
iterations.

Method Assumptions Measure Convergence rate Queries

ZO-SGD [20]
F (·, ξ) ∈ C1+

E[||∇f(xR)||2] O

(√
σn

1
4

K
1
4

+
√

n√
K

)
O(K)

E[||∇F (x, ξ)−∇f(x)||2] ≤ σ2

ZO-signSGD [30]
F (·, ξ) ∈ C0+

E[||∇f(xR)||2] O

( √
n√
K

+
√

n√
b

+ n√
bq

)
O(bqK)F (·, ξ) ∈ C1+

||∇F (x, ξ)||2 ≤ η

ZO-adaMM [15]
F (·, ξ) ∈ C0+

E[||∇f(xR)||2] O
(( √

n

K
1
4

+ n√
K

)
(ln(K) + ln(n))

1
4
)

O(K)F (·, ξ) ∈ C1+

||∇F (x, ξ)||∞ ≤ η

ZO-Signum F (·, ξ) ∈ C0+ E[||∇fβ(xR)||2] O
(

n
√

n

K
1
4

ln(K)
)

O(K)

ZO-Signum F (·, ξ) ∈ C0+, f convex E[fβi(xi,K)− fβi(xi,∗)] O
(

n
√

n

K
1
3

)
O(K)

ZO-SGD [34] F (·, ξ) ∈ C0+, f convex E[f(xi,K)− f(xi,∗)] O
(

n√
K

)
O(K)

Modified ZSCG [5]
F (·, ξ) ∈ C1+, F convex

E[f(xi,K)− f(xi,∗)] O
(

σ
√

n√
K

)
O(K)

E[||∇F (x, ξ)−∇f(x)||2] ≤ σ2

4.2 Convergence of the SSO algorithm
The convergence analysis from the previous subsection is in expectation, i.e., it establishes the expected
convergence performance over many executions of the ZO-Signum algorithm. As in [20], we now focus
on the performance of a single run. A second hierarchical workflow of the different theoretical results is
presented in Table 3. Unlike [20], our analysis is based on a sequential optimization framework rather

Table 3: Workflow of Lemmas/Propositions/Theorems for the SSO convergence analysis

Assumptions
on F Preliminary results Intermediate results Main result

When fβ is
convex

Assumptions
Lemma 4.12

Lemma 4.15

Theorem 4.17 (i)Theorem 4.17 (ii)
1, 2 and 3

Proposition 4.8 Lemma 4.13 Lemma 4.14

which imply
Lemma 2.1.3

L1(fβi) ≤ L1(f)
Theorem 4.9

Proposition 4.5
Lemma 4.16

Proposition 4.8

than a post-optimization process. Our SSO algorithm uses the norm of the momentum as an indicator
of the quality of the current solution. In order to analyze the rate of convergence of this algorithm,
the following additional assumptions are made on the function F . The first assumption concerns the
smoothness of the function F . The assumption of smoothness is used only to guarantee that L1(fβi) is a
constant with respect to βi, contrarily to the non-smooth case (see [34, Equation (12)]).

Assumption 2. The function F (·, ξ) has L1(F )-Lipschitz continuous gradient.

The second assumption concerns the local convexity of the function fβ .

Assumption 3. Let (xi,0) be a sequence of points produced by Algorithm 2 and xi,∗ a sequence of local
minima of fβi

. We assume that there exists a threshold I ∈ N and a radius ρ > 0 such that ∀i ≥ I:
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1. fβi
is convex on the ball Bρ(xi,∗) := {x ∈ Rn : ||x− xi,∗|| < ρ};

2. xi,0 ∈ Bρ(xi,∗).

Under these assumptions, we will prove that if the norm of the momentum vector m is below some
threshold, then this threshold can be used to bound the norm of the gradient. Second, an estimate for the
number of iterations required to reduce the norm of m below the threshold is provided. The next lemma
is simply technical and demonstrates the link between m̄ and m.

Lemma 4.12. For any subproblem i ∈ N and iteration k ≥ 1, the following equality holds

E[mi,k|xi,k−1] = E[m̄i,k|xi,k−1],

where m̄i,k is defined recursively in Proposition 4.1.

Proof. The proof is conducted by induction on k. For k = 1, setting mi,0 = ∇̃fβi(xi,0, ξ0) implies

mi,1 = si,0
2 ∇̃fβi(xi,0, ξ0) + (1− si,0

2 )mi,0 = ∇̃fβi(xi,0, ξ0).

In the same way, m̄i,1 = ∇fβi(xi,0). Therefore, we have

E[mi,1|xi,0] = E[∇̃fβi(xi,0, ξ0)|xi,0] = ∇fβi(xi,0) = E[∇fβi(xi,0)|xi,0] = E[m̄i,1|xi,0].

Now, suppose that the induction assumption is true for a given k ∈ N, then

E[mi,k+1|xi,k] = si,k
2 ∇fβi(xi,k) + (1− si,k

2 )E[mi,k|xi,k].

Now, by the law of total expectation

E[mi,k|xi,k] = E[E[mi,k|xi,k, xi,k−1]|xi,k]
= E[E[mi,k|xi,k−1]|xi,k]
= E[E[m̄i,k|xi,k−1]|xi,k] (by the induction assumption)

= E[m̄i,k|xi,k].

Thus as E[∇fβi(xi,k)|xi,k] = ∇fβi(xi,k), it follows that

E[mi,k+1|xi,k] = si,k
2 ∇fβi(xi,k) + (1− si,k

2 )E[mi,k|xi,k]
= si,k

2 E[∇fβi(xi,k)|xi,k] + (1− si,k
2 )E[m̄i,k|xi,k]

= E[m̄i,k+1|xi,k],

which completes the proof.

The following lemma shows that if ||m|| is below a certain threshold, then this threshold can be used
to bound the norm of the gradient.

Lemma 4.13. For a subproblem i ∈ N, let Ki ∈ N denote the first iteration in Algorithm 1 for which
||mi,Ki || ≤ Lβi

4β0 , then, under Assumption 3 the norm of the gradient of the function fβi
at xi,K may be

bounded as follows

||∇fβi(xi,Ki)|| ≤ Lβi

4β0 + 10nL1(F ) si,0
1

si,0
2 Kα1−α2

i

.

Moreover, if the problem i + 1 is considered, the gradient of the function fβi+1
may be bounded at the

point xi,Ki = xi+1,0 as follows

||∇fβi+1(xi+1,0)|| ≤ ||∇fβi(xi,Ki)||+ L1(F )(n + 3) 3
2 (βi − βi+1).

19



Proof. Let Ki be taken as in the statement of the lemma. The norm of the gradient may be bounded as
follows,

||∇fβi(xi,Ki)|| ≤ ||E[mi,Ki |xi,Ki ]||+ ||∇fβi(xi,Ki)− E[mi,Ki |xi,Ki ]||
≤ E[||mi,Ki || |xi,Ki ] + ||∇fβi(xi,Ki)− E[m̄i,Ki |xi,Ki ]||,

where the second inequality follows from Jensen’s inequality and Lemma 4.12. Now, using ||mi,Ki|| ≤
Lβi

4β0 , E[∇fβi(xi,K)|xi,Ki ] = ∇fβi(xi,Ki), L1(fβi) ≤ L1(F ) and the result of Proposition 4.8 completes
the first part of the proof

||∇fβi(xi,Ki)|| ≤ Lβi

4β0 + E[||∇fβi(xi,Ki)− m̄i,Ki || |xi,Ki ]

≤ Lβi

4β0 + 10nL1(F ) si,0
1

si,0
2 Kα1−α2

i

.

The second part of the proof follows directly by applying the triangular inequality and the result in
Lemma 2.1.3 because xi,Ki = xi+1,0.

Under Assumption 2, the expected difference between the values of fβi at xi,0 and its optimal value
is bounded in the next Lemma.

Lemma 4.14. Let I be the threshold from Assumption 2. If i ≥ I , then

E[fβi+1(xi+1,0)− fβi+1(xi+1,∗)] ≤ ρ

(
Lβi

4β0 + 10nL1(F ) si,0
1

si,0
2 Kα1−α2

i

+ L1(F )(n + 3) 3
2 (βi − βi+1)

)
.

(27)

Proof. Convexity of the function fβi on the ball Bρ(xi,∗) implies

E[fβi+1(xi+1,0)− fβi+1(xi+1,∗)] ≤ E[⟨∇fβi+1(xi+1,0), xi+1,0 − xi+1,∗⟩]
≤ E[||∇fβi+1(xi+1,0)|| ||xi+1,0 − xi+1,∗||].

The result follows using the Lemma 4.13 and since xi+1,0 belongs to the ball Bϵ(xi,∗).

Moreover, an estimate on the number of iterations required to reduce the norm of the gradient below
some threshold may be given.

Lemma 4.15. Under Assumptions 1, 2 and 3, for a subproblem i > I and in the setting of Algorithm
2, let si,0

2 ∈ R+ be such that k = 1 in Equations (14) and (19), assume that L = max(L0(F ), L1(F )),
α1 = 3

4 and α2 = 1
2 . Then, for a uniformly randomly chosen R ∈ [0, Ki], it follows that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
i

(Ai + Bi),

where Ai and Bi are defined in Equation (28).

Proof. Markov’s inequality implies that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0E[||∇fβi(xi,R)||]

Lβi
.
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Now, given the result of Theorem 4.9 with the specified value of α1 and α2 and the fact that L1(fβi) ≤ L1(F )
together with Lemma 4.14, it follows that

4β0E[||∇fβi(xi,R)||]
Lβi

≤ 4β0

βiK
1
4
i

(Ai + Bi),

where

Ai = ρ

si,0
1

βi−1

4β0 + 10n
si−1,0

1

si−1,0
2 K

1
4
i−1

+ (n + 3) 3
2 (βi − βi+1)


Bi = nsi,0

1
2 H

(− 3
2 )

k + ln(Ki)
(

6
√

si,0
2 (n + 4)

√
n + 20nsi,0

1

si,0
2

)
,

(28)

and Ki is the iteration number for subproblem i and H
(− 3

2 )
k is the generalized harmonic number.

The following Lemma provides an estimate on the number of iterations required to bound the norm
of the difference between m and the gradient below a certain threshold.

Lemma 4.16. For a subproblem i ∈ N and in the setting of Algorithm 2, let si,0
2 ∈ R+ be such that k = 1

in Equations (14) and (19), assume L = max(L0(F ), L1(F )), α1 = 3
4 and α2 = 1

2 . Then, for a uniformly
randomly chosen R ∈ [0, Ki], it follows that

P
(
||mi,R −∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
i

(
3
√

si,0
2 (n + 4)

√
n + 10nsi,0

1

si,0
2

)
.

Proof. By Markov’s inequality, it follows that

P
(
||mi,R −∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0E[||mi,R −∇fβi(xi,R)||]

Lβi

= 4β0

LβiKi

Ki∑
k=0

E[||mi,k −∇fβi(xi,k)||]

≤ 4β0

βiK
1
4
i

(
3
√

si,0
2 (n + 4)

√
n + 10nsi,0

1

si,0
2

)
,

where the last inequality holds by Proposition 4.5 and 4.8 with α1 = 3
4 and α2 = 1

2 .

Finally, the main theorem of this section may be stated.

Theorem 4.17. Let Assumptions 1, 2 and 3 hold and let I be the threshold from Assumption 3.
(i) For i ∈ N, set

βi = 1√
n(i + 1)2 , si,0

1 = 1
6n(i + 1)3/2 and si,0

2 = s2

(i + 1)

with s2 so that Equations (14) and (19) are satisfied for k = 1. Moreover, let denote Ki the first iteration
for which ||mi,Ki || ≤ Lβi

4β0 and that without loss of generality L = max(L0(F ), L1(F )). Let ϵ > 0 be a

desired accuracy and let i∗ ≥
√

L
ϵ
≥ I . If for any i ≥ I, Ki ≥ (i + 1)6, then after at most

O

(
n6L7/2

ϵ7/2

)

21



function evaluations, the following inequality holds

||∇fβi∗

(xi∗,0)|| ≤ ϵ. (29)

(ii) Furthermore, when for every i ∈ N, fβi
is convex then under the same setting that Theorem 4.11

given in Equation (23), it follows that after at most

O

n
9
2 L7/2

ϵ7/2


function evaluations, the inequality in Equation (29) holds.

Proof. For a subproblem i ∈ N, a probabilistic upper bound on the iteration Ki ∈ N such that ||mi,Ki|| ≤
Lβi

4β0 may be provided. We have

||mi,Ki|| = min
k∈[0,Ki]

||mi,k||

≤ ||mi,R||
≤ ||mi,R −∇fβi(xi,R)||+ ||∇fβi(xi,R)||,

(30)

where R ∼ U [0, Ki]. Now, probabilistic upper bounds on the number Ki required to obtain that both
terms in the right-hand side of the previous inequality are below Lβi

4β0 . For the first term of the right-hand
side in Equation (30), using the specified value of si,0

1 , si,0
2 and βi, Lemma 4.16 ensures that

P
(
||mi,R −∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
i

(
3
√

si,0
2 (n + 4)

√
n + 10nsi,0

1

si,0
2

)

≤ O

n
√

n(i + 1) 3
2

K
1
4
i

 .

The second term of the right-hand side in Equation (30) depends on the value of I . For subproblems
i ≤ I , it follows by Markov’s inequality and Theorem 4.9 that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

Lβi
E[||∇fβi(xi,R)||]

≤ 4β0

βi

(
Di

f

si,0
1

+ nsi,0
1

2 H
(− 3

2 )
k + ln(Ki)

(
6
√

si,0
2 (n + 4)

√
n + 40si,0

1 n

si,0
2

))

≤ O

max
(

n(i+1)
7
2

L
, n
√

n ln(Ki)(i + 1) 3
2

)
K

1
4
i

 .

For subproblems i > I , Lemma 4.15 ensures that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
(Ai + Bi),

where Ai and Bi are given in Equation (28). Now, given condition on Ki, it follows that

Ai = ρn(i + 1)3/2
(

1
i2 + 10

s2i2 + 2(n + 3)
i2(i + 1)

)
and

Bi = H
(− 3

2 )
k

2(i + 1)3/2 + ln(Ki)
(

6n
√

n + 3√s2√
i + 1

+ 12
s2
√

i + 1

)
.
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Thus, we obtain

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ O

n
√

n(i + 1) 3
2 ln(Ki)

K
1
4
i

 . (31)

Therefore, to obtain ||mi,Ki || ≤ Lβi

4β0 , it takes at most

Ki =

 O (max (n4(i + 1)14, n6(i + 1)6)) if i ≤ I

O ((n6(i + 1)6)) otherwise,

iterations. Thus, by taking i∗ ≥
√

L
ϵ
, it follows that the number of iterations needed to reach the subprob-

lem i∗ is

i∗∑
i=1

Ki =
I∑

i=1
Ki +

i∗∑
i=I+1

Ki

= O
(
max

(
n4(I + 1)15, n6(I + 1)7

))
+ O(n6(i∗)7)

= O

(
n6L7/2

ϵ7/2

)
,

(32)

where I is a constant with respect to ϵ. Once this number of iterations is reached, it follows that ||mi∗,0|| ≤
L

(i∗+1)2 ≤ ϵ and by Lemma 4.13

||∇fβi∗

(xi∗,Ki∗ )|| ≤ L

(i∗ + 1)2 + L
√

i∗ + 1(i∗) 3
2
≤ 2ϵ.

For the second part of the proof, the bounds on Equation (30) does not depend on the value of I since fβi

is assumed convex for every i ∈ N. With the setting in Equation (23), it follows that

P
(
||∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βi
E[||∇fβi(xi,R)||] ≤ 16ρn

√
n(i + 1)2

K
1
3
i

and

P
(
||mi,R −∇fβi(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

Lβi
n
√

nL

∑Ki−1
k=0

2ρ

Γk+1(k+1)
4
3∑Ki−1

k=0
2ρ

Γk+1(k+1)
≤ 8n

√
n(i + 1)2

K
1
3
i

,

where the first inequality follows by Theorem 4.11 and the second one by the definition of the probability
density of R together with Propositions 4.5 and 4.8. Therefore, it takes at most Ki = O(n 9

2 (i + 1)6) to
obtain ||mi,Ki || ≤ Lβi

4β0 . Thus, by taking i∗ ≥
√

L
ϵ
, it follows that the number of iterations needed to reach

the subproblem i∗ is
i∗∑

i=1
Ki = O(n 9

2 (i∗)7) = O

n
9
2 L

7
2

ϵ
7
2

 .

It remains to apply the Lemma 4.13 as previously to complete the proof.

We would like to make a few remarks about this theorem. First, one approach to satisfy the condition
Ki ≥ (i+1)6 for any i ∈ N is to incorporate it into the stopping criterion of Algorithm 1. However, due to
the limited number of iterations in practice, this condition is typically replaced by a weaker one, Ki ≥M ,
where M > 0 is a constant. Second, the main result of Theorem 4.13 establishes an ϵ convergence rate
for a single run of the SSO algorithm, which is the first of its kind to the best of our knowledge. This was
made possible by decomposing the problem given in Equation (1) into a sequence of subproblems, each
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of which is solved using carefully chosen stopping criteria and step sizes. It is worth noting that, in [20],
the (ϵ, Λ)-solution of the norm of the gradient is obtained after at most O

(
nL2σ2

ϵ4

)
. Although this bound

has a weaker dependence on n and L, it is worse in terms of ϵ. Third, the first term in Equation (32) may
be significant even if it is fixed, particularly if the region where the function is convex is difficult to reach,
indeed this constant disappears when fβi is convex for every index i. Nevertheless, the bounds given are
the worst one and may be considerably smaller in practice. A way to decrease this term is to decrease the
power on i in the denominator of βi, si,0

1 and si,0
2 but it also decreases the asymptotic rate of convergence.

Finally, the process used in the SSO algorithm may be extended to other momentum-based methods and
give an appealing property for these methods compared to the classical SGD.

5 Numerical experiments
The numerical experiments are conducted for two bounded constrained blackbox optimization problems.
In order to handle the bound constraints x ∈ [ℓ, u] ⊂ Rn, the update in Equation (9) is simply projected
such that x← max(ℓ, min(x, u)).

5.1 Application to a solar thermal power plant
The first stochastic test problem is SOLAR 2 [19], which simulates a thermal solar power plant and
contains several instances allowing to choose the number of variables, the types of constraints and the
objective function to optimize. All the instances of SOLAR are stochastic, have nonconvex constraints
and integer variables. In this work, the algorithms developed does not deal with integer variables. There-
fore, the problem is altered: all integer variables are fixed to their initial value and the problem is to
obtain a feasible solution by optimizing the expectation of constraint violations over the remaining vari-
ables. Numerical experiments are conducted for the second instance of the SOLAR framework, which
considers 12 variables (2 integers) and 12 constraints:

min
x∈[0,1]12

E

 m∑
j=1

max(0, cj(x, ξ))2


where the cj are the original stochastic constraints and the bound constraints have been normalized. The
second instance of SOLAR is computationally expensive; a run may take between several seconds and
several minutes. Therefore, the maximum number of function evaluations is set to 1000. Four algorithms
are used:

• SSO, whose the hyperparameters values are given in Table 6. The search step given in Algorithm
2 is used for this experiment. A truncated version of the Gaussian gradient based estimate is used
for this experiment.

• ZO-adaMM [15] which is a zeroth-order version of the original Adam algorithm. This algorithm
appears as one of the most effective according to [31, 15] in terms of distortion value, number of
function evaluations and success rate. The default parameters defined experimentally in [15] are
used on this problem, except that β = 0.05 and the learning rate is equal to 0.3. Moreover, the
same gradient estimator that ZO-Signum is used to eliminate its impact on the performance.

• CMA-ES [22] an algorithm based on biological inspired operators. Its name comes from the adap-
tation of the covariance matrix of the multivariate normal distribution used during the mutation.
The version of CMA-ES used is the one of the pymoo [8] library with the default setting.

2https://github.com/bbopt/solar
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• The NOMAD 3.9.1 software [29], based on the Mesh Adaptive Direct Search (MADS) [1] algo-
rithm, a popular blackbox optimization solver.

Figure 2: Average of 5 different seed runs for the NOMAD, CMAES, SSO and ZO-adaMM algorithms.

The results are presented in Figure 2, which plots the average best result obtained by each algorithm
with five different seeds. In this experiment, SSO obtains similar performance to NOMAD and CMAES
which are state-of-the-art algorithms for this type of problem. ZO-adaMM has difficulty to converge even
though it is a ZO algorithm.

5.2 Application to blackbox adversarial attack
This section demonstrates the competitiveness of the SSO algorithm through experiments involving the
generation of blackbox adversarial examples for Deep Neural Networks (DNNs) [46]. Generating an
adversarial example for a DNN involves adding a well-designed perturbation to the original legal input
to cause the DNN to misclassify it. In this work, the attacker considers the DNN model to be unknown,
hence the term blackbox. Adversarial attacks against DNNs are not just theoretical, they pose a real
safety issue [35]. Having an algorithm that generates effective adversarial examples enables modification
of DNN architecture to enhance its robustness against such attacks. An ideal adversarial example is one
that can mislead a DNN to recognize it as any target image label, while appearing visually similar to
the original input, making the perturbations indiscernible to human eyes. The similarity between the
two inputs is typically measured by a ℓp norm. Mathematically, a blackbox adversarial attack can be
formalized as follows. Let (y, ℓ) denote a legitimate image y with the true label ℓ ∈ [1, M ], where M is
the total number of image classes. Let x denote the adversarial perturbation; the adversarial example is
then given by y′ = y + x, and the goal is to solve the problem [15]

min
x

λf(y + x) + ||x||2
subject to (y + x) ∈ [−0.5, 0.5]n,

where λ > 0 is a regularization parameter and f is the blackbox attack loss function. In our experiments,
λ = 10 and the loss function is defined for untargeted attack [12], i.e,

f(y′) = max{Z(y′)ℓ −max
j ̸=ℓ

Z(y)j, 0},
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where Z(y′)k denotes the prediction score of class k given the input y′. Thus, the minimum value of 0 is
reached as the perturbation succeeds to fool the neural network.

The experiments of generating blackbox adversarial examples are first performed on an adapted
AlexNet [28] under the dataset Cifar10 and then on InceptionV3 [44] under the dataset ImageNet [18].
Since the NOMAD algorithm is not recommended for large problems, three algorithms are compared
: SSO (without search), ZO-adaMM and CMAES. In the experiments, the hyperparameters of the al-
gorithm ZO-adaMM are taken as in [15], those of SSO are given in Table 6 and the uniform gradient
based estimate is used for both algorithms. Moreover, for the Cifar10 dataset, different initial learning
rates for ZO-adaMM are used to observe its influence on the success rate. Experiments are conducted
for 100 randomly selected images with a starting point corresponding to a null distortion, the maximum
number of function queries is set to 5000. Thus, as the iteration increases, the attack loss decreases until
it converges to 0 (indicating a successful attack) while the norm of the distortion could increase.

The best attack performance involves a trade-off between a fast convergence to a 0 attack loss in
terms of function evaluations, a high rate of success, and a low distortion (evaluated by the ℓ2-norm). The
results for the Cifar10 dataset are given in Table 4.

Table 4: Results of blackbox adversarial attack for the Cifar10 dataset (n = 3× 32× 32)

Method Attack success rate ||ℓ2|| first success

Average # of
function

evaluations

ZO-adaMM
lr = 0.01 79 % 0.14 582

ZO-adaMM
lr = 0.03 96% 0.97 310

ZO-adaMM
lr = 0.05 98% 2.10 215
CMAES

σ = 0.005 99% 0.33 862
SSO 100% 0.55 442

Except for ZO-adaMM with an initial learning rate equal to 0.01, all algorithms achieve a success
rate above 95%. Among these algorithms, ZO-adaMM with a learning rate equal to 0.05, has the best
convergence rate in terms of function evaluations but has the worst value of distortion. On the contrary,
CMA-ES obtains the best value of distortion but has the worst convergence rate. The SSO algorithm
obtains balanced results, and is the only one that reaches full success rate.

Table 5 displays results for the ImageNet dataset. Only two algorithms are compared since the di-
mension is too large to invert the covariance matrix in CMA-ES. For this dataset, ZO-adaMM and SSO
have the same convergence rate. However, SSO outperforms ZO-adaMM in terms of success rate while
having a slightly higher level of distortion.

Table 5: Results of blackbox adversarial attack for the ImageNet dataset (n = 3× 299× 299)

Method Attack success rate ||ℓ2|| first success

Average # of
function

evaluations

ZO-adaMM
lr = 0.01 59 % 19 1339

SSO 73 % 33 1335
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6 Concluding remarks
This paper presents a method for computationally expensive stochastic blackbox optimization. The ap-
proach uses zeroth-order gradient estimates, which provides three advantages. First, they require few
function evaluations to estimate the gradient, regardless of the problem’s dimension. Second, under
mild conditions on the noised objective function, the problem is formulated as optimizing a smoothed
functional. Third, the smoothed functional may appear to be locally convexified near a local minima.

Based on these three features, the SSO algorithm was proposed. This algorithm is a sequential one
and comprises two steps. The first is an optional search step that improves the exploration of the decision
variable space and the algorithm’s efficiency. The second is a local search, which ensures the conver-
gence of the algorithm. In this step, the original problem is decomposed into subproblems solved by a
ZO-version of a sign stochastic descent with momentum algorithm. More specifically, when the momen-
tum’s norm falls below a specified threshold that depends on the smoothing parameter, the subproblem
is considered solved. The smoothing parameter’s value is then decreased, and the SSO algorithm moves
on to the next subproblem.

A theoretical analysis of the algorithm is conducted. Under Lipschitz continuity of the stochastic
zeroth-order oracle, a convergence rate in expectation of the ZO-Signum algorithm is derived. Under
additional assumptions of smoothness and convexity or local convexity of the objective function near its
minima, a convergence rate of the SSO algorithm to an ϵ-optimal point of the problem is derived, which
is, to the best of our knowledge, the first of its kind.

Finally, numerical experiments are conducted on a solar power plant simulation and on adversarial
blackbox attacks. Both examples are computationally expensive, the former is a small size problem
(n ≈ 10) and the latter is a large size problem (up to n ≈ 105). The results demonstrate the SSO
algorithm’s competitiveness in both performance and convergence rate compared to state-of-the-art algo-
rithms. Further work will extend this approach to constrained stochastic optimization.
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A Notations
The following list describes symbols used within the body of the document. Throughout the paper, when
a symbol is shown in bold then it is a vector, otherwise it is a scalar. .

Nomenclature
Ω The sample space of ξ, i.e, the set of all possible outcomes of ξ

n The dimension of the space of the design variables

ξ : Ω→ Rm The vector of uncertainties

F : Rn × Rm → R The stochastic zeroth-order oracle that takes into account the uncertainty ξ

Eξ[·] The expectation with respect to the random vector ξ

f : Rn → R The expectation of F with respect to ξ

β ∈ R+∗ A strictly positive scalar using as smoothing parameter

u ∈ Rn A Gaussian random vector

fβ = E[f(x + βu)] A smooth approximation of a function f

L0(f) The Lipschitz constant associated to a function f

L1(f) The Lipschitz constant associated to the gradient of a function f

∇f The gradient of a function f

g̃ An estimator of the gradient of a function f based on outputs of the stochastic zeroth-order oracle
F (x, ξ)

∇̃f An estimator of the gradient of a function f

i ∈ N The outer iteration counter associated with a subproblem

j ∈ [1, n] The counter associated with the dimension

k ∈ N The inner iteration counter

m ∈ Rn The momentum vector

si,k
2 ∈ (0, 1) The step size associated with the momentum

si,k
1 ∈ (0, 1) The step size associated with x

L ∈ R+∗ An approximation of the Lispchitz constant

q ∈ N The size of the mini batch used to estimate ∇̃

M ∈ N The minimum number of iteration used in the ZOS algorithm

H
(α)
k The generalized harmonic number of order α

C0+ Class of Lipschitz continuous functions

C1+ Class of differentiable functions whose the gradient is Lipschitz

C∞ Class of infinitely differentiable functions
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B Proof of Proposition 4.1
Proposition B.1 ([6]). For the subproblem i ∈ N, under Assumption 1 and in the setting of Algorithm 1,
we have

si,k
1 E[||∇fβi(xi,k)||1] ≤E[fβi(xi,k)− fβi(xi,k+1)] + nL1(fβi)

2 (si,k
1 )2

+ 2si,k
1 E[||m̄i,k+1 −∇fβi(xi,k)||1]︸ ︷︷ ︸

bias

+2si,k
1
√

n
√√√√E[||mi,k+1 − m̄i,k+1||22]︸ ︷︷ ︸

variance

(33)

where m̄i,k+1
j is defined recursively as m̄i,k+1

j = si,k
2 ∇fβi(xi,k) + (1− si,k

2 )m̄i,k
j .

Proof. By L1(fβi)-Lipschitz smoothness of fβi (see Lemma 2.1.3), it follows that

fβi(xi,k+1) ≤ fβi(xi,k) + ⟨∇fβi(xi,k), xi,k+1 − xi,k⟩+ L1(fβi)
2 ||xi,k+1 − xi,k||22

= fβi(xi,k)− si,k
1 ⟨∇fβi(xi,k), sign(mi,k+1)⟩+ L1(fβi)(si,k

1 )2

2 ||sign(mi,k+1)||22

= fβi(xi,k)− si,k
1 ||∇fβi(xi,k)||1 + nL1(fβi)

2 (si,k
1 )2

+ 2si,k
1

n∑
j=1
|∇jf

βi(xi,k)|1{sign(mi,k+1
j ) ̸= sign(∇jf

βi(xi,k))},

where 1{·} is the indicator function. Now, as in [6, 30], the expected improvement conditioned on xi,k is
given by

E[fβi(xi,k+1)− fβi(xi,k)|xi,k] ≤− si,k
1 ||∇fβi(xi,k)||1 + nL1(fβi)

2 (si,k
1 )2 (34)

+ 2si,k
1

n∑
j=1
|∇jf

βi(xi,k)|E[1{sign(mi,k+1
j ) ̸= sign(∇jf

βi(xi,k))}|xi,k].

(35)

Again, as in [6, 30], the expectation that the sign of mi,k+1
j be different of the sign of ∇jf

βi(xi,k) is
relaxed by considering that the set

{mi,k+1
j : sign(mi,k+1

j ) ̸= sign(∇jf
βi(xi,k)} ⊂ {mi,k+1

j : |mi,k+1
j −∇jf

βi(xi,k)| ≥ |∇jf
βi(xi,k)|}.

Therefore, it follows that

E[1{sign(mi,k+1
j ) ̸= sign(∇jf

βi(xi,k))}|xi,k] ≤ E[1{|mi,k+1
j −∇jf

βi(xi,k)| ≥ |∇jf
βi(xi,k)|}|xi,k]

(36)

≤
E[|mi,k+1

j −∇jf
βi(xi,k)| |xi,k]

|∇jfβi(xi,k)| , (37)

where the second inequality comes from conditional Markov’s inequality. Substituting Equation (37) into
Equation (35) and taking expectation over all the randomness we obtain

E[fβi(xi,k+1)− fβi(xi,k)] ≤− si,k
1 E[||∇fβi(xi,k)||1] + nL

2 (si,k
1 )2

+ 2si,k
1

n∑
j=1

E[|mi,k+1
j −∇jf

βi(xi,k)|].
(38)
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Moreover, by adding and subtracting m̄i,k+1 in the terms of the sum of Equation (38),

n∑
j=1

E[|mi,k+1
j −∇jf

βi(xi,k)|] = E[||mi,k+1 − m̄i,k+1 + m̄i,k+1 −∇fβi(xi,k)||1]

≤
√

nE[||mi,k+1 − m̄i,k+1||2] + E[||m̄i,k+1 −∇fβi(xi,k)||1]

≤
√

n
√
E[||mi,k+1 − m̄i,k+1||22] + E[||m̄i,k+1 −∇fβi(xi,k)||1],

where the first inequality comes from || · ||1 ≤
√

n|| · ||2 and the second one from Jensen’s inequality.
Finally, incorporating the last inequality in Equation (38) completes the proof.

C List of hyperparameters for the SSO algorithm

Table 6: List of hyperparameters for the SSO algorithm

Problem βi si,k
1 si,k

2 M q

Cifar10 0.005
(i+1)2

0.005
(i+1)

3
2

√
k+1

0.9
(i+1)(k+1)

1
4

60 10

ImageNet 0.001
(i+1)2

0.003
(i+1)

3
2

√
k+1

0.7
(i+1)(k+1)

1
4

100 10

Solar 0.3
(i+1)2

0.1
(i+1)

3
2

√
k+1

0.5
(i+1)(k+1)

1
4

5 10

D Original signSGD and Signum algorithms
Below are the original versions of the signSGD and Signum algorithms.

Algorithm 3 signSGD algorithm

1: Input: x0, s1 ∈ (0, 1)
2: for k = 0, 1, . . . do
3: Calculate an estimate of the stochastic gradient ∇̃f(xk) and update:

xk+1 = xk − s1sign(∇̃f(xk))

4: end for
5: Return xk

Algorithm 4 Signum algorithm

1: Input: x0, m0, s1 ∈ (0, 1), s2 ∈ (0, 1)
2: for k = 0, 1, . . . do
3: Calculate an estimate of the stochastic gradient ∇̃f(xk) and update:

mk+1 = s2mk + (1− s2)∇̃f(xk)
xk+1 = xk − s1sign(mk+1)

4: end for
5: Return xk
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