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Abstract. There are two types of duality in Linear Logic. The first one is nega-
tion, balancing positive and negative formulas. The second one is the duality
between linear and non-linear proofs, made symmetrical by Differential Linear
Logic. The first duality has been here since the beginning of Linear Logic and has
a significance in terms of proof-search and programming operation. However, the
computational content of the second is still to understand. In this paper, we reex-
press models of Differential Linear Logic in terms of models of Polarized Linear
Logic, hoping to get closer to the understanding of Differential Linear Logic.
It formalizes Differentiation in terms of a functor on a coslice category, within
the linear–non-linear adjunction models of Linear Logic. It is also a first step
in studying models mixing polarization and differentiation, concrete instances of
which arise in functional analysis.

1 Introduction

Differentiation is a mathematical operation which maps a function to its closest
linear approximation. Through the Curry-Howard correspondence, it has been
extended to logic [ER06] and λ-terms [ER03]. Categorical presentations of dif-
ferentiation originate from investigation of denotational models of these systems,
resulting in a variety of interrelated categorical definitions [BCLS20]. Differenti-
ation in such settings might be axiomatized as an external operator acting on mor-
phisms of a category [BCS09], or as a hard-coded natural transformation refining
a model of linear logic [Fio07]. However, the axiomatization of differentiation in
these last models remains highly non-functorial, a shortcoming our work seeks to
correct.
This novel presentation of categorical models of Differential Linear Logic is mo-
tivated by two recent research developments. The first is differentiable program-
ming: this is a growing domain emerging from spectacular applications of ma-
chine learning, aiming to express machine learning algorithms in a functional
and principled way. This led to a renewed interest for categorical axiomatizations
of differentiation [Ell18].
The second is the recent trend of mixing differentiation and polarity in Linear
Logic. While studying models of Differential Linear Logic using topological
vector spaces [Ker18], the first-named author found that polarities and categor-
ical models supporting these were particularly relevant. Chiralities [Mel17] are
a categorical axiomatization of polarized multiplicative linear logic, discovered
by Melliès after a study of game models of linear logic. In this paper, we argue
that while chiralities model the interaction between positive and negative formu-
las in linear logic, a similar structure models the interaction between linear and
non-linear proofs.



Main Idea Models of Linear Logic (LL henceforth) can be axiomatized as
strong monoidal adjunctions between a category whose morphisms are ‘linear
maps’ and a category whose morphisms are ‘non-linear maps’, or more accu-
rately ‘general maps’ (smooth maps in our case). For classical LL, the situation
is most naturally presented as a contravariant adjunction:

pC ,ˆ, Iq pL ,b, 1q

E1

U

%

or pC ,ˆ, Iq pL op,`, 1q;

E

UK

%

(1)

where UK represents the dual of the forgetful functor from linear to smooth maps,
E represents the contravariant hom-set functor and E 1 its dual. Meanwhile, mod-
els of polarized LL, so-called chiralities, decompose ˚-autonomous categories
into a covariant adjunction alongside a monoidal contravariant one:

pP,b, 1q pN op,`,Kq

p´qKP

p´qKN
%

and P N

ˆ

´

%

(2)

Models of Differential Linear Logic (DiLL henceforth) add to the co-monad ! on
L induced by adjunction 1 in the classical setting an ad-hoc natural transforma-
tion d : id ñ ! and non-functorial axioms on it.
In the present paper we take inspiration from models of polarized LL to redefine
models of DiLL in terms of pairs of adjunctions. The idea is to fit models of
DiLL into the pair of adjunction above, the left contravariant adjunction being a
model of classical LL and the right covariant adjunction expressing the differen-
tial extension of LL. Mainly, we will be expressing differentiation as a functor

D : pI Ó C q //L , or more generally D : pU Ó C q //L .

Both these functors adapt to models of classical DiLL the ˚-autonomous setting
in expressing reverse differentiation:

KD : pI Ó C q
op //L or KD : pUK

Ó C q
op //L .

Contribution We formulate categorical models of DiLL with a functorial defi-
nition of differentiation (Definition 5), which we prove to be equivalent to differ-
ential storage categories under some hypotheses (Theorem 1 and Theorem 2). We
get ride of the first hypotheses on D by making it act as a left-adjoint in a relative
reflection on the co-slice (Proposition 1), and this way give a concise definition of
models of classical DiLL. We that both models of classical DiLL and chiralities
are specific cases of the same categorical structure, namely pairs of well-behaving
adjunctions (Definition 7 and Propositions 3 and 2). We also give an alternative
defintion of D getting ride of a well-pointedness hypothese.



Related work In differentiable programming, differentiation is usually made
functorial by making differential act on pairs [Ell18]. The only usage of slice
constructions we have encountered is in reverse cartesian differential categories,
where partial differential are defined on slice objects [CCG`]. Work on differ-
ential categories [BCS06], cartesian differential categories [BCS09] and tangent
categories [CC14] have been successful in categoryfing differentiation from a
mathematical perspective, but place models of DiLL as the strictest in the hierar-
chy of categorical definitions.

Potential applications What makes this new functorial axiomatization of DiLL
interesting to our eyes are its potential applications. The study of differential
categories has led to the introduction of new structures including tangent cate-
gories [CC14] and calculus categories [CL17] with relevance beyond proof the-
ory. Analogously, a functorial presentation of models of DiLL should trigger new
development in Linear Logic or in type theory. One can replace differentiation
DiLL by linear partial differential operators with constant coefficients [Ker18].
A first step in understanding and generalizing such operators would be to under-
stand how they arise in categorical models, and we believe that our presentation
has more chance of successfully incorporating differential operators. Another in-
teresting novelty is the use of coslice categories, given that the dual construction
is extensively used in modeling dependent type theory. We hope this work can
initiate research studying differentiation from a Curry-Howard perspective with
respect to dependent types.

Outline We provide background material on differential categories and chiralitie
in Section 2. The core results of our study are presented in Section 3, where we
define D as a functor on the co-slice I Ó C , and demonstrate that with a few
assumptions, it results in a differential category on L . In Section 4, we expand
on this by placing D within a pair of adjoint functors, generalizing chiralities.
Finally, in Section 5, we discuss potential future work that can be unlocked by
our study.

2 Preliminaries

2.1 Differential Categories

In this section, we give a quick introduction to the syntax and semantics of DiLL.
For readers familiar with DiLL, we note that Definition 2 is the only one techni-
cally necessary to the rest of the paper; the rest of this section serves as motivation
and historical introduction.
First, Linear Logic (LL) is the result of a decomposition of Intuitionistic Logic via
an involutive linear negation. Along with multiplicative and additive versions of
conjunction and disjunction, it introduces the exponential connective ! and its dual
?. Some important intuition for working in LL coming from the Curry-Howard
correspondence is that a proof of a sequent of the form A $ B corresponds to the
construction of a linear function from A to B, while a proof of !A $ B constructs
a non-linear function from A to B. When modeling LL in vector spaces, these
intuitions are literally valid, in that a proof of A $ B is interpreted as a linear
map and a proof of !A $ B is interpreted as (the transpose across the linear–non-
linear adjunction of) a non-linear map.



DiLL adds to LL new rules on the connector !, expressing the fact that one is able
to transform a non-linear proof into a linear one. While LL features a dereliction
rule (d), DiLL introduces a codereliction rule (d) which acts as differentiation at
0 in the logic:

Γ,A $∆
d

Γ, !A $∆

$ Γ,A
d

$ Γ, !A

This points to the duality between linear and non-linear maps in DiLL. We recall
also the exponential rules of LL called respectively weakening (w), contraction
(c) and promotion (p). DiLL adds to these dual rules of coweakening (w) and
cocontraction (c).

Γ $∆
w

Γ, !A $∆

Γ, !A, !A $∆
c

Γ, !A $ ∆

!Γ $ A p
!Γ $ !A

$
w

$ !A

$ Γ, !A $ ∆, !A
c

$ Γ,∆, !A

Since the focus of this paper is on categorical models rather than the proof theory
of these logics, we will not give a full presentation of the syntax of DiLL; we omit
the cut-eliminiation rules and the corresponding commutative diagrams between
their interpretation as these are direct translations of differential calculus rules.
We refer the reader to the survey of Ehrhard [Ehr17] for a complete introduction.
Let us now turn to the categorical models.

Definition 1. A Seely category [See89] [Bie] is a monoidal closed category
pL ,b, 1q with products and a comonad p!, d, νq such that ! is a monoidal functor
pL ,ˆ,Jq // pL ,b, 1q (where J denotes a terminal object) so we have ‘Seely
isomorphisms’:

!A b !B
»

ÝÑ !pA ˆ Bq and 1
»

ÝÑ !J.

Following the LL convention, we will denote by ℓ : A ⊸ B linear maps and
f : A // B for non-linear or smooth maps in the co-Kleisli category L!. To
model classical LL, one requires that LL be a ˚-autonomous category, with an
involutive duality p q

K
» L p , 1q.

The image of the diagonal map and terminal map for the product in L under !
give each object of the form !A a canonical algebra structure:

cA : !A ⊸ !A b !A wA : !A ⊸ 1

That is, Seely categories are categorical models of intuitionnistic Linear Logic
[Mel08], with the above maps interpreting contraction and weakening, while
dereliction is interpreted by the counit of the comonad, as suggested by the nota-
tion, and promotion is interpreted by (co)Kleisli extension. Moreover, we recover
an instance of the linear–non-linear adjunction discussed in the Introduction by
constructing the coKleisli category for the comonad !.
The usual definition of categorical models of DiLL refines the axiomatization of
Seely categories. For instance, to interpret w and c in this case one only needs to
replace products with biproducts. This is a natural choice: to reflect the addition
of rules to a logic, one adds more constructors to the categories providing the
logic’s semantics. A whole hierachy of axiomatization of ‘differential categories’
coexist, and we’ll make use of the strongest notion.



Definition 2. A differential category, called a ‘differential storage category’ in
[BCLS20], is a Seely category pL ,b, 1q in which:

– products coincide with coproducts, resulting in a biproduct structure1 which
we now denote by p˛, 0q, and

– the comonad p!, d, νq is equipped with a natural transformation d : id ñ !
satisfying:

‚ Invariance of linear maps under differentiation: d; d “ id, and
‚ The chain rule:

id!A bdA; cA; νA “ cA b dA; id!A bcA; νA b d!A; c!A. (3)

While d; νA would express the chain rule at 0, Equation 3 translates the differen-
tiation of composed function at a point a: Dapg ˝ fq “ Dfpaqg ˝ Daf .
The codiagonal and initial map for the coproduct in L endow !A with coalgebra
structure dualizing the algebra structure constructed earlier:

cA : !A b !A // !A wA : 1 // !A

Along with the transformation d, these complement the components of LL in-
terpreted in a general Seely category to produce an interpretation of DiLL. In
fact, the differential categories axiomatized above are denotational models of in-
tuitionistic DiLL, and of classical DiLL when we impose the extra condition of
˚-autonomy. The exploration of less strict axiomatization have been fruitful in
exploring various mathematical examples, in functional analysis and differential
geometry. However, the definition above crucially does not reflect the symmetry
of exponential rules in DiLL, and does not express differentiation using the tra-
ditional objects of computer science. Notably, the chain rule is at first sight quite
intricate. In this paper, we attempt to simplify this.
Rather than merely introducing new operations such as d, our approach requires
us to introduce new categories on top of the LL setup, even beyond the expan-
sion of Definition 1 to an adjunction with the coKleisli category of ! mentioned
above. Nonetheless, the extension of LL to DiLL described in Definition 2 can
be recovered from our construction.

Notation When f : A // B is a differentiable functions between two vec-
tor spaces, we denote by Daf : A ⊸ B the linear map corresponding to the
differential of f at a point a P A.

Example 1 (The distribution model). The category of convenient spaces [BET12]
provides a good example of a differential category. Formulas are interpreted by
real topological vector spaces, endowed with a bornology, that is a well-behaving
collection of bounded sets; we shall not attempt to give detailed definitions of
these structures here. The exponential !A is interpreted as the completion of the
vector space generated by the dirac distributions. Diracs are defined as δx : f P

C pE,Rq ÞÑ fpxq and are formally objects of the dual of the space of smooth
functions C pE,Rq

1, otherwise known as the space of distributions of compact
support over E [Sch66].

J!AK :“ ă δx ąxPJAK

1 Recall that the existence of biproducts (products coinciding with coproducts) and a zero object
endows each homset of a category with the structure of a commutative monoid.



As the dirac distributions form a linearly independent family of distributions, to
define linear morphisms on !E it is enough to specify their value on diracs and
then extend linearly and continuously to the completion. As such, the components
of DiLL are interpreted as follows:

d : δx P !E ÞÑ x P E d : x P E ÞÑ D0p qpvq P !E

c : δx P !E ÞÑ δx b δx P !E b !E c : δx b δy P !E b !E ÞÑ δx`y P !E

w : δx P !E ÞÑ 1 P R w : 1 P R ÞÑ δ0 P !E

ν : δx P !E ÞÑ δδx P !!E

As D0p qpvq “ lim
tÑ0

δtv´δ0
t

, d is well defined in !E.

Convenient spaces do not form a ˚-autonomous category, and constructing ˚-
autonomous smooth models of DiLL with a non-trivial duality is tricky, often
requiring compromise on the interpretation of the other components of DiLL,
such as [DK20] which features an ad-hoc construction to allow differentiation.
One can work around this issue by constructing polarized model of DiLL.

2.2 Chiralities

This section gives an introduction to chiralities, and can be skipped if one only
intends to read Section 3. Chiralities, as defined by Melliès, are models of polar-
ized multiplicative Linear Logic. Polarization offers both a syntactic refinement
to Linear Logic, which makes sense in term of proof-search, and a way to relax
the ˚-autonomous requirement on categorical models of LL and DiLL. Instead
of looking for an involutive equivalence on a category, one looks for a dual equiv-
alence between two categories.

Definition 3 ([Mel17]). A mixed chirality consists of two symmetric monoidal
categories pP,b, 1q and pN ,`,Kq, and two adjunctions, one being a con-
travariant strong monoidal adjunction and the other an ordinary covariant ad-
junction:

pP,b, 1q pN op,`,Kq

p´qKP

p´qKN

%

P N ,

ˆ

´

%

(4)

along with a suitably natural family of bijections relaxing monoidal closedness:

χp,n,m : N pˆp, n`mq » N pˆpp b nKN q,mq. (5)

These are required to make the following associativity diagram commute:

N pˆppm` nq ` aq, bq N pˆa, pm` nq
˚

b bq

N pˆpm` pn` aqq, bq N pˆpn` aq,m˚
b bq N pˆpaq, n˚

b pm˚
b bqq

assoc

χ

χ χ

assoc., monoidality of negation

A dialogue chirality is a mixed chirality in which the monoidal adjunction is an
equivalence. A negative chirality is a mixed chirality in which the two adjunctions
are reflective.



Chiralities naturally arise in models based on game semantics, where positive
and negative formulas are interpreted by players and opponent moves. Surpris-
ingly, they also provide the right setting for expressing topological dualities in
vector spaces [Ker19]. Chiralities are at the heart of a model of polarized DiLL
resembling the convenient one described in Example 1, with a refinement on for-
mulas allowing for involutive negations. This make them sensible candidates of
foundation for new models of DiLL.

Example 2. Metrizable complete spaces are an important class of topological
vector spaces, comprising for example all spaces of smooth, h-differentiable or
holomorphic functions C pRn,Rq. These spaces of functions are in particular
Fréchet spaces, which is to say metrizable complete spaces. However, they are
not stable by duality: their duals are naturally called dual Fréchet spaces or DF-
spaces. When we add the criterion that topologies must be nuclear [Gro66], one
obtains NF-spaces and NDF spaces, respectively. These assemble into a chirality
which captures the duality between spaces of functions and spaces of distribu-
tions [Ker18].

pNDF,bπ,Rq pNFop, b̃π,RqK

p´q1
β

p´q1
β

NDF NFK

p̃ q

ι

(6)

in which p̃ q denotes the completion of a locally convex topological vector space,
b̃π denotes the completion of the projective tensor product.

Other examples of chiralities arise naturally in functional analysis [Ker19], and
models of polarized DiLL over chiralities were explored in [BK20].

3 Functorial axiomatization

This section represents the heart of this paper: here we will start from a linear–
non-linear adjunction and show how defining a functor from a coslice of the non-
linear category C to the linear category L makes L into a differential category.

Definition 4. Let I be an object of a category C ; unless stated otherwise, we take
it to be a terminal object. We recall that the coslice category under I , denoted
pI Ó C q, has as objects arrows a : I // A in C and as morphisms f : pa :
I //Aq //pb : I //Bq those morphisms f : A //B of C such that a; f “ b.

Notation If f : A //B is an arrow of C , and a : I //A an object in pI Ó C q

we denote by pa|fq the morphism in pI Ó C q from a to a; f induced by f . The
coslice category comes equipped with a projection functor Π : pI Ó C q // C
which retains only the codomain of the objects and the underlying C -morphisms.

Example 3. Let C be the category whose objects are real vector spaces and
whose morphisms are differentiable functions, and let I be the vector space t0u.
Then pI Ó C q is the category of pairs pV,vq, where v is an element of V .



Differentiation defines a functor from pI Ó C q to the category of vector spaces
and linear maps. Denote by D the operator mapping a morphism a : I // A to
A and the arrow pa|fq to the linear map Daf : A ⊸ B. The chain rule exactly
translates the functoriality of D. Indeed, morphisms pa|fq and pb|gq compose if
and only if b “ fpaq and then we have

Dpa|f ; gq “ Dapg ˝ fq “ Dfpaqg ˝ Daf “ Dpa|fq;Dpa; f |gq.

The example above contains the essential idea of the present section. As we shall
shortly see, there is no need for an explicit co-dereliction operator once we equip
our category with a differential operation, since the codereliction can be recov-
ered from D as differentiation at 0.
In order to present this differential operator, we will need some further construc-
tions. Suppose that L is a category with biproducts p˛, 0q and that we are given
a functor U : L // C (we choose the notation for consistency) sending 0 to
I . Then we have an induced functor p0 Ó L q // pI Ó C q which we shall de-
note p0 Ó Uq, which simply applies U to both objects and morphisms and thus
completes the square:

pI Ó C q p0 Ó L q

C L

ΠΠ

U

p0ÓUq

(7)

Note that since 0 is initial as well as terminal, the projection Π to L is an equiv-
alence of categories.

Notation Supposing that U preserves products, for each object A P L the
subcategory of pI Ó Uq on the objects of the form a : I // UpAq inherits a
monoidal structure via the codiagonal map: for a, a1, we can define:

a ‘ a1 : I
xa,a1y

ÝÝÝÝÑ UpAq ˆ UpAq – UpA ˛ Aq
Up∇Aq

ÝÝÝÝÑ UpAq. (8)

In Example 3 we observe the special property that

a ‘ UpuAq “ a, (9)

since Up∇q coincides with vector addition. We will show in Lemma 3 that this is
true in a model of DiLL.
For notational convenience, when U preserves binary products we shall work as
if it does so strictly, in the sense that we suppress the isomorphism UpA ˛ Bq –

UpAq ˆUpBq. As a consequence, the projection map π1 : A˛B //A, satisfies
Upπ1q “ π1 : UpAq ˆ UpBq // UpAq, and moreover (considering the case
B “ 0) that the U preserves the left and right unit maps for 0 on the nose.

Definition 5. A functorial model of intuitionistic DiLL consists of the follow-
ing:

– A monoidal closed category pL ,b, 1q, admitting a biproduct p˛, 0q.
– A cartesian monoidal category pC ,ˆ, Iq.
– A linear–non-linear adjunction between L and C , which is a strong

monoidal adjunction:

pC ,ˆ, Iq pL ,b, 1q;

E1

U

%

(10)



– A functor D : pI Ó C q //L such that

D ˝ p0 Ó Uq “ Π. (11)

Note that Equation 11 implies in particular that for any object A of L we have
DpUpuAq|UpAqq “ A , and that for any arrow ℓ : A ⊸ B in L and any object
a : I // UpAq in pU Ó C q we have: Dpa|Upℓqq “ ℓ.. It also implies that
D preserves products of objects in UpL q. Most importantly, adjunction 10 also
enforces I » Up0q.

Notation We denote the endofunctor on L from the contravariant adjunction 10
by ! :“ E 1

˝U , the endofunctor on C by l :“ U˝E 1, the unit by η : idC ñ l and
the counit by d : ! ⊸ idL . We moreover write ν “ E 1ηU for the comultiplication
of the induced comonad p!, d, νq on L .
Following linear logic conventions, we denote an arrow f P C pA,Bq by
f : A // B and an arrow ℓ P L pA,Bq by ℓ : A ⊸ B. In both C and L
we denote the composite of f and g by f ; g. We denote by idA the identity mor-
phism in A P C or A P L , the category being clear from the context.

The chain rule arises from the functoriality of D:

Lemma 1. Let a : I // UpAq, b : I // B, f : B // C, g : C // D be
morphisms in C . Then we have:

DpidI |aq “ uA and Dpa|f ; gq “ Dpa|fq;Dpa; f |gq

Proof. The former is from the fact that uA is the unique morphism with the
required domain and codomain, the latter is by functoriality of D. [\

We will use techniques similar to the one used in [BCLS20]: with additive struc-
ture, the invariance of linear maps under differentiation imply the product and
constant rule of differentiation. We will then use the additive bialgebra modality
structure p!, ν, d, c,w, c,wq [BCLS20, Def 3.4] recalled in Section 2
Comparing with differential categories, the only thing that L is missing now is a
co-dereliction d : id ñ ! satisfying the required identities.

Definition 6. For A an object of L , we define:

dA :“ D
`

UpuAq|ηUpAq

˘

: A ⊸ !A.

Lemma 2. The transformation d : idL ñ! is natural.

Proof. Observe that we have a functor, which by abuse of notation we denote
u : L // pI Ó C q, sending A to UpuAq : I – Up0q // UpAq. Now, ηUp´q

lifts to a natural transformation U ñ U ˝ !. Indeed, by uniqueness of morphisms
from 0 in L , all of the required diagrams commute. d is the whiskering of this
natural transformation by D, and so is a natural transformation, as required. [\

Thanks to equation 11, for all morphisms ℓ :!A //B in L we have:

D
´

UpuAq|ℓ#
¯

“ d; ℓ, (12)



where ℓ# : UpAq //UpBq is the transpose of ℓ across the adjunction. In partic-
ular, the linear rule dA; dA “ idA holds for any object A of L , since the counit
morphism dA transposes to the identity in (12). As a consequence, by making use
of proposition [BCLS20, 6.2], we have that the product rule is satisfied:

d; c “ d b w ` w b d. (13)

The structure on !A allows us to show an auxiliary lemma, namely that UpuAq

is the unit for the sum operation defined in (8), that will be useful below when
proving Lemma 4.

Lemma 3. For every pointed object a : I // UpAq, we have

a “ a ‘ UpuAq

Proof. Consider a ‘ UpuAq : I – pI ˆ Iq // UpA ˛ Aq // UpAq. The trans-
pose of this morphism is E 1

paˆUpuAqq; E 1
pUp∇Aqq; dA “ E 1

paqbwA; cA; dA
by monoidality of E 1. The bialgebra laws over !A, as described for example
in [BCLS20, Section 7] give us idA bwA; cA “ idA and as such E 1

paq b

wA; cA; dA “ E 1
paq; dA, the transpose of a, so a “ a ‘ UpuAq as required.

The following is a partial reinterpretation of Equation 13 with the functor D.

Lemma 4. The functor D can internalize translations, meaning for any object
a : I // UpAq and morphism pa|gq in pI Ó C q, we have:

Dpa|gq “ DpUpuAq|UpiAq; pidUpAq ˆaq;Up∇q; gq,

where iA is the isomorphism A //A ˛ 0 inverse to the projection π1.

Proof. Consider the diagram in pI Ó Cq:

I

UpAq UpAq ˆ I UpAq ˆ UpAq UpAq B
Up∇Aq

UpuAq
xUpuAq,ay a

UpiAq UpidAqˆa

xUpuAq,idIy

a;g

g

Which wish to show that the image under D of this composite morphism is equal
to Dpa|gq. By compositionality, we may without loss of generality assume g “

idUpAq and show that the remaining composite is mapped to the identity. Indeed,
the image under D is:

A A ˆ 1 A ˆ A A
idA ˆuA ∇Ai

We know the image of the left-hand and right-hand morphisms by the assumption
that D cancels U , and the middle morphism by the further assumption that D
preserves products on images of U and DpidI | aq “ uA by Lemma 1. Thus by
the left unit law for i and ∇, the composite is the identity, as required. [\

A further useful identity is the following.



Lemma 5. For a : I // UpAq, we have:

Dpa|ηUpAqq “ jA; dA b E 1
paq; c̄A, (14)

where jA : A ⊸ A b 1 is the right unit map for b.

Proof. By direct calculation:

Dpa|ηUpAqq “ DpUpuAq|UpiAq; pidUpAq ˆ aq;Up∇q; ηUpAqq by Lemma 4

“ DpUpuAq|
`

!iA; E 1
pidUpAq ˆ aq; !∇

˘#
q by naturality of η

“ dA; !iA; E 1
pidUpAq ˆ aq; !∇ by (12)

“ dA; !iA; id!A b E 1
paq; cA by monoidality of E 1 and definition of c

“ jA; d b E 1
paq; cA by naturality of the right unit for b,

noting that ! being strong monoidal implies !iA “ jA up to the supressed isomor-
phism. [\

This identity enables us to generalize (12).

Lemma 6. For a morphism ℓ : !A ⊸ B in L and a : I // UpAq,

Dpa|ℓ#q “ jA; dA b E 1
paq; cA; ℓ.

Proof. As for equation (12), we have:

Dpa|ℓ#q “ Dpa|ηUpAq;Upℓqq

“ Dpa|ηUpAqq;Dpa; ηUpAq|Upℓqq thanks to Lemma 1

“ Dpa|ηUpAqq; ℓ by (11)

“ jA; dA b E 1
paq; cA; ℓ by Lemma 5.[\

Lemma 7. The co-dereliction dA satisfies the chain rule without a context (al-
ternate chain rule rdC.41

s in [BCLS20]):

dA; νA “ jA; pdA b !uAq; pd!A b νAq; c!A

Proof. Consider the following diagram in pI Ó C q,

I UpAq Up!Aq

Up1q Up!Aq Up!!Aq

ηUpAq

UνAηUpAq

UpuAq

ηUp!Aq

ηI

Up!uAq

which is obtained by pasting together naturality squares for η, recalling that ν “

E 1ηUpAq. The left-hand dashed arrow is p!uAq
# and the right-hand dashed arrow

is ν#. Applying D to the upper and lower paths and applying (12), we conclude:

dA; νA “ dA;D
´

p!uAq
#

| ηUp!Aq

¯

.

Applying Lemma 5, we have:

D
´

p!uAq
#

| ηUp!Aq

¯

“ j!A; d!A b E 1
pp!uAq

#
q; c!A,



but E 1
pp!uAq

#
q simplifies to !uA; νA. Putting this together, we conclude

dA; νA “ dA; j!A;
`

d!A b p!uA; νAq
˘

; c!A,

which can be manipulated into to the stated expression by exploiting naturality
of j and rearranging parallel tensored terms. [\

For this codereliction to fully interpret DiLL, one needs the commutation of d
with promotion within a context, or stated otherwise one need the validity of the
chain rule at any point.

Lemma 8. If C is well-pointed with respect to I , then the co-dereliction dA
agrees with the generalized chain rule (Equation 3):

dA b id!A; cA; νA “ dA b cA; cA b id!A; d!A b νA; c!A.

Proof. Using the isomorphism of the adjunction and the hypothesis that C is well-
pointed,for morphisms f, g : A // B we have f “ g if and only if for all
a : I // UpAq, E 1

paq; f “ E 1
paq; g. So we just need to prove:

idA bE 1
paq; dAbid!A; cA; νA “ idA bE 1

paq; dAbcA; cAbid!A; d!AbνA; c!A.

By Lemma 6,

Dpa|ν#
A q “ jA; dA b E 1

paq; cA; νA.

“ jA; idA bE 1
paq; dA b id!A; cA; νA.

which corresponds to the left-side of our equation.
On the other hand, generalizing the proof of Lemma 7, consider the diagram,

I UpAq Up!Aq

Up!Aq Up!!Aq,

ηUpAq

UνAηUpAq

a

ηUp!Aq

we see that
Dpa|ν#

q “ Dpa|ηUpAqq;Dpa; ηUpAq|ηUp!Aqq,

which expands via two applications of Lemma 5 to conclude:

Dpa|ν#
q “ jA; dA b E 1

paq; cA; j!A; d!A b E 1
pa; ηUpAqq; c!A

“ jA; dA b E 1
paq; cA; j!A; d!A b pE 1

paq; νAq; c!A

“ jA; dA b E 1
paq b E 1

paq; cA b id; d!A b νA; c!A

“ jA; idA b E 1
paq; dA b cA; cA b id; d!A b νA; c!A

The third line is by associativity of b and neutrality of I while the last one holds
as E 1

paq; cA “ E 1
paq b E 1

paq. [\

We just proved the following theorem, and then prove its converse.

Theorem 1. A functorial model of Intuitionnistic DiLL in which L is well-
pointed results in a differential category (Definition 2).



Theorem 2. Any differential category is a functorial model of Intuitionnistic
DiLL, as axiomatized by definition 5.

Proof. Consider L a differential category, with notations as in Definition 2. Let
us note C “ L! the co-Kleisli, ˆ the product on L! inherited by ˛. Then define
the functor D : 0 Ó C //L by:

D

#

pa : !0 //Aq ÞÑ A

pa|fq ÞÑ !a b d; c; f

The image of D on function is the exact categorical translation of Daf , given
the intuitions given in Example 1. Then D is functorial. On one hand we have by
definition and by the chain rule of Definition 2:

Dppa|fqpfpaq; gqq “ Dppa|ν; !f ; gqq “ !a b d; c; ν; !f ; g

“ p!a b idq; id!A b d; c; ν; !f ; g

“ p!a b idq; c b d; 1 b c; ν b d!; c; !f ; g

On the other hand we have

Dppa|fqqDppfpaq; gqq “ !a b d; c; f ; !pa; fq b d; c; g

“ !a b d; c; !a b d; c; !f ; g by naturality

“ p!a b idq; c b d; 1 b c; ν b d!; c; !f ; g hence the result

The fact that Dpa|pd; ℓqq “ ℓ follows directly from d; d “ id, as

Dpa|pd; ℓq “ !a b d; c; d; ℓ “ p!a; dq b id; c; ℓ “ !uA b id; c; ℓ.

D preserves product by definition, and property 9 is straightforward. [\

4 Generalizing chiralities

In this section, we define categorical models of classical DiLL in terms of pairs
of adjunctions. Definition 5 asked that D should be a (Π-relative) left inverse to
the functor p0 Ó Uq. A sufficient condition for this is that D might be a Π-relative
reflection or coreflection. We now make this intuition more formal, by making it
fit into a framework that generalizes chiralities, as introduced in Section 2.2.
Alternatively, the following definitions can be seen as a way to incorporate ˚-
autonomy into functorial models of DiLL, and as such define models of classical
DiLL. We first give a definition in the well-pointed case, generalizing it after-
wards to eliminate that hypothesis.

4.1 D as an adjoint functor in the well-pointed case

If L is ˚-autonomous, then the linear–non-linear adjunction 10 at the heart of
Linear Logic can be reformulated as follows:

pC ,ˆ, Iq pL op,b, 1q;

E

UK

%

(15)



where UK is the composition of U with the interpretation of p q
K, and E is thought

of as the contravariant hom-set of non-linear scalar maps EpAq “ CpA,Kq. Like-
wise, we can either express D as a functor from pUp0q Ó C q to L or as a back-
ward differentiation functor KD : pUp0q Ó C q

op // L , intuitively mapping
pa|fq to pDafq

1, the dual of the linear map pDafq.
Recall the adjunctions involved in a chirality (Definition 3):

p q
KP : P //N op

% p q
KN : N op //P

ˆ : P //N % ´ : N //P

Beware of the notational coincidence: the functor ´ has nothing to do with slice
categories. If pE % UK

q is to be compared with pp q
KP % p q

KN q, we would
like to relate D : pI Ó C q // L to ˆ by showing that D acts on E and UK

analagously to how ˆ acts on p´q
KP and p´q

KL . We can reconcile the evident
difference of typing of functors between differentiation and polarities by noticing
that in an additive setting p0K

Ó Pq » P and as such one can present ˆ as a
functor p0K

Ó Pq // N . To recover an adjunction involving D, we need to
consider a contravariant functor modelling reverse differentiation:

KD : pUp0q Ó C q
op //L .

With this goal in mind, we define the structure below and show that it generalizes
chiralities (Proposition 2) and gives our model of DiLL (Proposition 1).

Definition 7. A generalized chirality consists of two monoidal categories pA ,>q

and pB,?q, where B has terminal object 0, and four functors:

– X : A //Bop and Y : Bop //A ,
– F : pGp0q Ó A q

α //B and G : B //A α,

where α is either empty or op, so that F and G might be covariant or contravari-
ant functors. We ask these four functors to form a pair of adjunctions, with the
first being strong monoidal,

pA ,>q pBop,?q

X

Y

%

pGp0q Ó A q p0 Ó Bq

A α B

ΠA
F

p0ÓGq

ΠB

ö

G

(16)

where on the right-hand side we require that there are natural isomorphisms,

A pΠA p q,Gp qq » BpFp q,Y ˝ X p qq (17)

and
F ˝ p0 Ó Gq – ΠB. (18)

Proposition 1. Consider the case when B is a well-pointed ˚-autonomous ad-
ditive category, pA ,>, Iq is cartesian monoidal with terminal object I , and
α “ op. Then a generalized chirality such that Y “ GK makes B a differen-
tial category, and as such a categorical model of classical DiLL.



Proof. We will simply show that we fit in the setting of Definition 5 and let
Theorem 1 conclude. We adapt the notation of Definition 5 to place ourselves in
the following situation:

pC ,ˆq pL op,`q

E

UK

%

pI Ó C op
q p0 Ó L q

C op L

ΠC
KD

0ÓUK

ΠL

ö

UK

Let us reproduce equation 17:

C op
pUK

p q, ΠC p qq » L pE ˝ Up
K

q, KDp qq

By definition and ˚-autonomy of L we have KD “ p q
K

˝ D. As KD ˝ pI Ó

UK
q “ Π by definition (equation 18), we recover D ˝ pI Ó Uq “ Π . [\

Proposition 2. A generalized chirality leads to a negative chirality under these
hypotheses:

1. α “ id, meaning F and G are covariant functors,
2. 0 is initial in B and Gp0q is initial in A ,
3. X and Y form a reflection,
4. Equation 3 and the commutativity diagram of definition 3 hold.

In particular, if A is additive then a generalized chirality on A is precisely a
chirality.

Proof. Let’s adopt the notation from definition 3, with A “ P and B “ N .

pP,bq pN op,`q

p qKP

p qKN

%

pI Ó Pq p0 Ó N q

P N

ΠP
ˆ

p0Ó´q

ΠB

ö

´
As I and 0 are initial in P and N respectively, one has p0 Ó ´q – ´ up to the
equivalences Π , so the right diagram amounts to:

pI Ó Pq p0 Ó N q

P N

» ˆ

p´q

»ö

´
Equation 17 combined with the fact that p q

KN ˝ p q
KP “ id gives us that ˆ is

left adjoint to ´. Equation 18 gives us that they form a reflection. [\

Proposition 3. Any ˚-autonomous differential category results in a generalized
chirality.

Proof. Let us borrow the notations from Theorem 2, and define B “ A op
“ L ,

A “ L!, X “ p!qK. Y is the contravariant forgetful functor from L to L!

defined by YpAq “ AK and Ypℓq “ d; ℓK, and G “ YK. We just need to
show that, when L is ˚-autonomous with duality p q

K, the functor KD : 0 Ó

C //L op verifies indeed equation 17. This equation translates as :

L op
! pA,BK

q » L p
KDpAq, !pBK

q
K

q

L p!BK, Aq » L pAK, !pBK
q

K
q

which holds as L is ˚-autonomous. [\



4.2 Avoiding well-pointedness

Definition 5 included a well-pointedness hypotheses on the linear category L
exclusively for the purpose of proving Proposition 1. This is not an inherent prob-
lem, since our motivating example of the functor D is most readily specified on
elements of pI Ó C q, which is to say pointed objects of C . In this section, we
examine how the hypothesis of well-pointedness of the linear category L or C
may be dropped.
The simplest option is to simply drop the version of the chain rule in Definition
2. Alternatively, one can generalize by taking the domain of D to be a broader
category, such as:

D : pU Ó C q //L .

Objects of pU Ó C q are triples pE,A, fq with E P L , A P C and f P

C pUpEq, Aq, and morphisms in U Ó C are pairs of a morphism ℓ P L pE1, E2q

and g P C pA1, A2q making the following commute:

UpE1q A1

UpE2q A2

f1

Upℓq g

f2

We choose this example because it extends D when C and L have real vectors
spaces objects and respectively smooth maps and linear maps as morphisms, by
taking:

D

#

pE,A, fq ÞÑ A

pℓ, gq ÞÑ Dfp0qg

This example is not really more general, since it is obtained by composing our
original definition with the coreflection pU Ó C q // pI Ó C q. We do not have
any non-well-pointed examples to hand which might provide strong intuition for
what differentiation might mean outside of this example. This is why we chose
to present the simpler well-pointed version, but in case it should be desired, the
above extends to the definition below.

Theorem 3. The following structure restricts to the data of a differential cate-
gory:

– A monoidal closed category pL ,b, 1q, admitting a biproduct ˛ with neutral
object 0, which is well-pointed.

– A cartesian monoidal category pC ,ˆ, Iq.
– A linear–non-linear adjunction between L and C , which is a strong

monoidal adjunction:

pC ,ˆ, Iq pL ,b, 1q;

E1

U

%

(19)

– A functor D : pU Ó C q //L such that

D ˝ pU Ó Uq “ Π.

Conversely, any differential category verifies the hypotheses of Theorem 3.



Proof. In the forward direction, a functor D : pU Ó C q //L induces a functor
D : pI Ó C q // L by composition with the properties required for Lemmas
1,4, 6 and7.
Conversely, adapting Theorem 2, consider a differential category L with the no-
tations of Definition 2. Define C “ L!, U the forgetful functor form L to L!

and D : U Ó C //L via:

D

#

pE,A, fq ÞÑ A

ppℓ, gq : pE1, A1, f1q // pE2, A2, f2qq ÞÑ d b p!uA; f1q; d; g
(20)

One checks easily that D is functorial and preserves products, and is such that
Dppℓ,Upℓ1

qq “ ℓ1
q. [\

Beware that Lemma 1 relied on the fact that there is a unique morphism 0 //A in
L , which affects Lemma 6, since the identity UpidAq ‘ a “ a would need to be
substituted for another identity, possibly imposing the need for additive structure
on morphisms in L . Assuming this is possible, Lemma 8 should work likewise
without the well-pointed hypothesis at the beginning by computing DpidA, ν

#
A q

instead of Dpa|ν#
A q. We leave the details of these computations to future work.

The definition of chiralities can also be generalized, to make D a relative right-
adjoint in a relative reflection, and Proposition 1 straightforwardly generalizes.

Definition 8. In the non well-pointed setting, Definition 7 generalized to the fol-
lowing diagram

pA ,>q pBop,?q

X

Y

%

pG Ó A q
α

p0 Ó Bq

A α B

ΠA
F

p0ÓGq

ΠB

ö

G

(21)

with equations

A pΠA p q,Gp qq » BpFp q,Y ˝ X p qq F ˝ 0 Ó G “ ΠB

Proposition 4. A generalized chirality in the sense of Definition 8 gives a dif-
ferential category when B is a ˚-autonomous additive category, α “ op and
pA ,>, Iq a category with product > and terminal object I

Proposition 2 also generalizes as one would expect, as does Proposition 3; we
invite the interested reader to compute the details.

5 Conclusion

In this paper, we gave a categorical definition of models of intuitionistic DiLL, by
proving it equivalent to differential categories. This gives a functorial and concise
axiomatization of differentiation in the setting of a linear–non-linear adjunction.
We also generalized the first definition to model classical DiLL, making it fit
into the framework of chiralities, that is into a pair of adjunctions. We give all
definitions in the well-pointed and not necessarily well-pointed setting. There are
several perspectives opened by this work, which we detail now.



Additives Models of DiLL ask for an additive category of linear maps, and
generalized chiralites as defined in Definition 7 and 8 restrict to models of po-
larized multiplicative LL in particular when they are additive. More generally,
when generalized chiralities model multiplicative and exponential connectives of
DiLL, the role of additive connectives ‘ and b is not well understood; neither
are their categorical interpretations in models of polarized Multiplicative and Ad-
ditive LL. In [BK20], the authors asked for a coproduct over P and N . Can this
be refined to shed light on the interaction between polarity and differentiation?

Polaritiy and Differentiation Once this work stabilizes, we would like to ex-
press more precisely what polarized models of DiLL should be, and refine dia-
gram 1 when L is not ˚-autonomous but decomposed in a polarized chirality as
in diagram 4. Combined with a study of additive within our setting, this might
ameliorate Definition 7, unifying the covariant and contravariant case.

Integration One can also notive that when L is a calculus category [CL17],
that is a category with both differentiation and integration, then we have an !b id-
relative adjunction between pI Ó C q and L , where the fundamental theorem of
calculus is expressed exactly as a relative ! b id adjunction between D and an
extension of U :

pI Ó C q L

D

0ÓU
%

pI Ó C qpuA, pb,Bqq » L p!A b A,Bq

Indeed, this theorem states that given the derivative of a function at every point
Df : a ÞÑ v ÞÑ Dapfqpvq, there is a unique function f P C pA,Bq such
that fp0q “ b. Reformulated within the setting of a linear–non-linear ajdunction,
this gives C ppuA, Aq, pb,Bqq » C pA,L pA,Bqq » L p!A b A,Bq as L is
monoidal closed. It would be worthwhile to try and make calculus categories fit
into the framework of generalized chiralities.

Co-digging While our setting expresses the chain rule, it’s also fun to see what
happens in a dual setting with the “co-chain” rule of exponential maps [KL23].
In that situation, ! is a monad and an object of a slice of its Kleisli category are
morphisms a1 : A ⊸ K, that is elements of the dual of A. The co-chain rule is
expressed in a generalized exponential map E : L !

Ó I // L and one might
explore models of DiLL with co-digging in our framework.

Acknowledgments The authors are grateful to Zeinab Galal for suggesting
working with pU Ó C q to avoid well-pointedness, and to Jean-Simon Pacaud
Lemay for enlightening discussions on differential categories.
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