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CLASS NUMBER FORMULAS FOR CERTAIN BIQUADRATIC FIELDS

ELIZABETH ATHAIDE, EMMA CARDWELL, AND CHRISTY THOMPSON

Abstract. We consider the class numbers of imaginary quadratic extensions F (
√
−p), for certain

primes p, of totally real quadratic fields F which have class number one. Using seminal work of
Shintani, we obtain two elementary class number formulas for many such fields. The first expresses
the class number as an alternating sum of terms that we generate from the coefficients of the power
series expansions of two simple rational functions that depend on the arithmetic of F and p. The
second makes use of expansions of 1/p, where p is a prime such that p ≡ 3 (mod 4) and p remains
inert in F . More precisely, for a generator εF of the totally positive unit group of OF , the base-εF
expansion of 1/p has period length ℓF,p, and our second class number formula expresses the class
number as a finite sum over disjoint cosets of size ℓF,p.

1. Introduction

The theory of class numbers has a rich history, beginning with Gauss’s effort to understand how
primes could be represented by positive definite binary quadratic forms [2]. Gauss recognized that
SL2(Z) acts naturally on positive definite integral binary quadratic forms f(X,Y ) = aX2+bXY +cY 2

with fixed discriminant −d = b2−4ac. He proved that the set of equivalence classes under this action
is a finite abelian group; the order of this group is known as the class number h(−d). The class
group for quadratic forms of discriminant d is also isomorphic to the ideal class group for the ring of
integers of the quadratic field Q(

√
d). Therefore, it is natural to ask whether results about Gauss’s

class numbers are glimpses of results for the class numbers hK of more general number fields K. In
this spirit, we recall two surprising results for Gauss’s class numbers.

In the 1970s, Hirzebruch [6] and Zagier [11] found an elegant formula for h(−p), when 7 ≤ p ≡ 3
(mod 4) is prime and h(4p) = 1. If the simple continued fraction for

√
p is written as

√
p = a0 +

1

a1 +
1

a2 +
1

. . .

= [a0, a1, . . . , a2t],

where the repeating period begins with a1 and has minimal even length 2t, they proved that

h(−p) = 1

3

2t∑
k=1

(−1)kak. (1.1)

More recently in the 1990s, Girstmair [4] found another elegant formula as an alternating sum of
numbers that are even simpler to describe. Namely, if g is a primitive root modulo p, he examines
the base g expansion of 1/p, which is eventually periodic with period length p − 1 (see [5], Section
9.6). If this period is x1x2...xp−1, where 0 ≤ xi ≤ g − 1, then he proved that

h(−p) = 1

g + 1

p−1∑
k=1

(−1)kxk. (1.2)

1
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A priori, these results are unexpected relationships between combinatorial sums and class numbers
of binary quadratic forms with discriminant −p. Since class numbers of binary quadratic forms
are also examples of class numbers of number fields, it is natural to ask whether (1.1) and (1.2)
are glimpses of a more general theory where class numbers of number fields can be described as
alternating sums of combinatorial numbers. We show that this is indeed the case for a large class
of imaginary quadratic extensions of real quadratic fields F . To make this precise, suppose that
F = Q(

√
d), where d > 1 is square-free. Throughout, we assume that its ring of integers OF has

class number 1. We note that OF = Z[θF ], where we let

θF :=

{√
d if d ≡ 3 (mod 4)

1+
√
d

2 if d ≡ 1 (mod 4).

The imaginary quadratic extensions of F that we consider are of the form F (
√
−p), where p is

a prime for which 7 ≤ p ≡ 3 (mod 4) and
(
d
p

)
= −1. These conditions imply that the relative

discriminant ideal is the prime ideal pOF (see Lemma 2.3). Moreover, for convenience, we fix a
generator ρF,p := a+ bθF ∈ OF such that (OF /pOF )

× = ⟨ρF,p + pOF ⟩ ∼= F×
p2
.

In this setting, we derive a class number formula for F (
√
−p) as an alternating sum that arises

from p and invariants of F . Our key observation is that the combinatorial structure that underlies
(1.1) and (1.2) can be reformulated in terms of recurrence relations that can be captured by the
coefficients of distinguished rational functions. Therefore, our goal is to define two rational functions
(reflecting that F has degree 2 over Q) whose coefficients can be incorporated into an alternating
sum that yields the class number hF (

√
−p).

To this end, we use ρF,p = a+ bθF to define integers

CF,p := a2 + ab · TrF/Q(θF ) + NormF/Q(θF )b
2, (1.3)

DF,p := 2a+ b · TrF/Q(θF ), (1.4)

and in turn, to define the rational functions as

XF,p(z) =
∑
m≥1

x(m)zm :=
az − CF,pz

2

CF,pz2 −DF,pz + 1
, (1.5)

YF,p(z) =
∑
m≥1

y(m)zm :=
bz

CF,pz2 −DF,pz + 1
. (1.6)

Moreover, we must delicately take into account the presence of nontrivial units as they inform class
number calculations. To make this precise, we recall that Dirichlet’s Unit Theorem implies that

O×
F = {±εjF , j ∈ Z}, where εF = s + tθF is the totally positive fundamental unit. We then define t

pairs of sequences, say {(xi(m), yi(m)) : m ≥ 1}, where t is the coefficient of θF in εF , that encode
the action of εF by means of expressions involving x(m) and y(m) (see (3.3)). Finally, we find that
the analogues of the right hand side of (1.2) turn out to be obtained from the quadratic form

QF (Y1, Y2) := TrF/Q(εF )Y
2
1 + 4Y1Y2 +TrF/Q(εF )Y

2
2 .

In terms of this data, we obtain the following theorem, which gives a formula for the class number
hF (

√
−p).

Theorem 1.1. Assuming the notation and hypotheses above, we have

hF (
√
−p) =

1

16t2p2

∑
1≤m≤p2−1

1≤i≤t

(−1)mQF (xi(m), yi(m)) .
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Remark. For real quadratic fields F with hF = 1, Theorem 1.1 applies for one-fourth of the primes.
This follows from the strong version of Dirichlet’s Theorem on primes in arithmetic progressions,
which implies that the primes p such that p ≡ 3 (mod 4) and

(
d
p

)
= −1 have density 1/4.

Example. Here we illustrate Theorem 1.1 with F = Q(
√
3) and p = 7. The field F (

√
−7) has class

number hF (
√
−7) = 2. Note that F has class number 1, and its totally positive fundamental unit is

εF = 2+
√
3, and so t = 1. The prime p = 7 satisfies the required conditions that p ≡ 3 (mod 4) and(

3
7

)
= −1. Therefore, we have that the principal ideal 7OF ⊂ OF = Z[

√
3] is prime, and so we have

that OF /7OF
∼= F49. One can check that ρF,p = 6 +

√
3 generates the multiplicative cyclic group

(OF /7OF )
× ∼= F×

49. Thus we have a = 6, b = 1, and using (1.3) and (1.4), we find that CF,p = 33,
and DF,p = −12, which in turn by (1.5) and (1.6) give

XF,p(z) =
∑
m≥1

x(m)zm = 6z + 39z2 + 270z3 + 1953z4 + . . . =
6z − 33z2

33z2 + 12z + 1
,

YF,p(z) =
∑
m≥1

y(m)zm = z + 12z2 + 111z3 + 936z4 + . . . =
z

33z2 + 12z + 1
.

Theorem 1.1 offers a formula for hF (
√
−7) as an alternating sum of 72 − 1 = 48 terms that are

assembled from the first 48 coefficients of XF,p(z) and YF,p(z). Furthermore, because t = 1, the
relevant pairs {x1(m), y1(m)} are merely reductions of the pairs of coefficients {x(m), y(m)} to a
specific fundamental domain, as given in (3.3). One finds that

x1(1) = 1, x1(2) = −5, . . . , x1(48) = −5,
y1(1) = −5, y1(2) = −4, . . . , y1(48) = −7.

We now use Theorem 1.1 to calculate hF (
√
−7):

hF (
√
−7) =

1

784

∑
1≤m≤48

(−1)m
[
4x1(m)2 + 4x1(m)y1(m) + 4y1(m)2

]
=

1

784
(−84 + 76− 300 + 52− 28 + · · ·+ 436) = 2.

We circle back to the fact that the class number formula in (1.2) makes use of the base g expan-
sion of 1/p. We stress that the number of terms in the sum, which is p − 1, is the length of the
repeating period of this expansion. Therefore, we ask whether the expression in Theorem 1.1 can
be reformulated so that the number of terms in the sum equals the period length of an analogous
expansion of 1/p. We find, indeed, that this is the case.

In the setting of Theorem 1.1, it is natural to consider the base-εF expansion of elements α ∈ F .
To be precise, there is a unique sequence of integers an, an−1, . . . , a0, a−1, a−2, . . ., with 0 ≤ ai ≤ ⌊εF ⌋,
for which

α = anε
n
F + an−1ε

n−1
F + . . .+ a0 + a−1ε

−1
F + a−2ε

−2
F + . . . . (1.7)

The above expression is called the base-εF expansion of α, and it is well-known that such expansions
are eventually periodic (see, for example, [9]). To recast Theorem 1.1 in terms of these expansions,
we require the following finite set:

RF,p :=

{
r1 + r2εF ∈ 1

p
OF : r1 ∈ Q ∩ (0, 1], r2 ∈ Q ∩ [0, 1)

}
, (1.8)
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which is known as the Shintani set for F at p, when p ≡ 3 (mod 4) and
(
d
p

)
= −1. The totally

positive units define a group action of O×,+
F := ⟨εF ⟩ onto RF,p as follows.

εF ∗ (r1 + r2εF ) := (1− r2) + {r1 + r2TrF/Q(εF )}εF ,

where {x} := x − ⌊x⌋ is the fractional part of x. Under this action, the set RF,p is a finite disjoint
union of orbits, say

RF,p =
⊔

r∈O×,+
F \RF,p

O×,+
F ∗ r.

For r ∈ RF,p\OF , we prove (see Lemma 4.8) that the number of elements in the orbit of r under εF
is equal to the period length of 1/p in base εF , which we denote ℓF,p. This allows us to now state
the desired class number formula as a sum over ℓF,p terms, where we make the following abuse of
notation:

QF (r1 + r2εF ) = QF (r1, r2).

Theorem 1.2. Assuming the notation and hypotheses from Theorem 1.1, we have

hF (
√
−p) =

1

4

ℓF,p∑
i=1

∑
r∈O×,+

F \RF,p

χF (
√
−p)/F (rpOF )QF (ε

i
F ∗ r),

where χF (
√
−p)/F is the unique quadratic Hecke character of conductor pOF .

Example. Now we illustrate Theorem 1.2 with F = Q(
√
3) and p = 7, where hF = 1 and εF = 2+

√
3

(so t = 1). One can check (for example, using SageMath) that the base-εF expansion of 1/7 is

1

7
= ε−2

F +
∞∑
i=0

(
3ε−8i−3

F + 2ε−8i−4
F + 2ε−8i−5

F + 2ε−8i−7
F + 2ε−8i−8

F + 3ε−8i−9
F

)
= 0.0132202230.

Thus, we see that the base εF expansion of 1/7 has period length ℓF,7 = 8. Since |RF,7 − OF | =
tp2 − t = 48 (see Lemmas 2.6 and 2.9), we deduce that O×,+

F \(RF,7 − OF ) contains 48/ℓF,7 = 6
disjoint orbits. One can also verify that the set{

1

7
+

1

7
εF ,

1

7
,
1

7
+

4

7
εF ,

1

7
+

5

7
εF ,

2

7
+

2

7
εF ,

3

7

}
.

is a complete set of orbit representatives for O×,+
F \(RF,7 −OF ). Equipped with these values, Theo-

rem 1.2 states that

hF (
√
−7) =

1

4

8∑
i=1

∑
r∈RF,p\O×,+

F

χF (
√
−7)/F (rpOF )QF (ε

i
F ∗ r)

=
1

4

(
− 220

7
+

228

7
− 188

7
+

212

7
− 180

7
+

204

7

)
= 2.

Theorems 1.1 and 1.2 are generalizations of the results from Hirzebruch-Zagier and Girstmair to
the setting of imaginary quadratic extensions of real quadratic fields F with hF = 1. Within this
new setting, we prove our theorems by working with a class number formula analogous to the one
used in the quadratic setting by Hirzebruch, Zagier, and Girstmair.
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Both (1.1) and (1.2) arise from a finite version of Dirichlet’s class number formula, which relates
the Dirichlet L-function, an infinite series, to the class number of Q(

√
−d):

L(1, χd) =
2π

ω
√
d
h(−d),

where ω represents the number of roots of unity in Q(
√
−d), and χd is a primitive Dirichlet character

of conductor d. Using the functional equation of this L-function, the above equation can be written
in terms of L(0, χd), which in turn allows us to use the Hurwitz ζ-function and the periodicity of χd

to rewrite this class number formula as a finite sum of Bernoulli polynomials evaluated at integer
points. Our work uses an analogous formula of Shintani [10], which expresses the class numbers of
totally imaginary quadratic extensions of totally real fields as finite sums assembled from Bernoulli
numbers.

In Section 2, we review the background needed to state Shintani’s class number formula for
imaginary quadratic extensions of real quadratic fields F with hF = 1. These formulae involve
“Shintani sets,” which are something like fundamental domains for the action of the totally positive
units on 1

pOF . The crux of our work relies on combinatorial properties of these sets, which we derive

in Section 2. Then, we prove Theorem 1.1 in Section 3 and Theorem 1.2 in Section 4. Finally, in
Section 5, we use Theorems 1.1 and 1.2 to calculate class numbers of Q(

√
3,
√
−p), where p ≡ 3

(mod 4) is prime,
(
d
p

)
= −1, and p < 100.
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2. Shintani’s Class Number Formula and Properties of Shintani Sets

In this section, we discuss the background needed to state Shintani’s class number formula. While
Shintani’s theorem is true for totally imaginary quadratic extensions of a totally real field of arbitrary
degree, we restrict the following commentary and definitions to the case that F is quadratic with
class number 1. Throughout this section, we fix a real quadratic field F of class number is 1 and a
totally imaginary quadratic extension of F , which we denote K = F (

√
−p), where p ≡ 3 (mod 4).

2.1. Algebraic Background. Shintani’s formula can be used to calculate the relative class number
hK/hF in terms of invariants of F , K, and the extension K/F itself. Before stating the formula, we
review the definitions of these invariants.

The regulator RL of a number field L measures the density of units in the ring of integers. The
regulator can be determined by considering the matrix

[Nj log(σj(ui))],

where each ui is a fundamental unit from the set u1, · · · , uk generating the unit group in OL, each σj
is a unique Archimedian place of L, and Nj is defined to be 1 if σj is real, and 2 if σj is complex. If we
define r1 and r2 respectively to be the number of real and complex embeddings of L, by Dirichlet’s
unit theorem, we see that this matrix has dimension (r1+r2−1)× (r1+r2). The regulator RL is the
determinant of the square submatrix which is formed by deleting any single column of this matrix.
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Since the sum of the entries in each row of this matrix is 0, this determinant is independent of which
column is deleted. If we consider the rows of this matrix as forming a lattice in Rr1+r2−1, then the
regulator is directly proportional to the volume of the fundamental domain associated to this lattice.

Next, we examine the unit groups of OK and OF . Since F is a real quadratic field, and K is a
totally imaginary quadratic extension of F , Dirichlet’s unit theorem implies that OF and OK are
both Z-modules of rank 1. More precisely, if we let µF and µK represent the groups of roots of
unity in F and K respectively, there exists εF ∈ OF and εK ∈ OK such that O×

F = µF × ⟨εF ⟩ and
O×

K = µK × ⟨εK⟩. Since F is real quadratic and any of εF ,−εF , ε−1
F ,−ε−1

F can generate the free part
of OF , we can choose εF to be totally positive and greater than 1.

Lemma 2.1. We have O×
K = O×

F . In particular, we may choose εK = εF .

Proof. A theorem by Frölich and Taylor shows that [O×
K : O×

F µK ] = 1 or 2 (see Theorem 42 in [3]).

Since K = Q(
√
d,
√
−p) for p ≥ 7, µK = {±1}. Thus µK = µF , so [O×

K : O×
F ] = 1 or 2.

Now, assume for the sake of contradiction that [O×
K : O×

F ] = 2, so εK /∈ O×
F , and ε2K ∈ O×

F .
Since K ∩ R = F, we see that εK ̸∈ R. However, we know that ε2K ∈ OF ⊂ R. Observe that both
εK ∈ C−R and ε2K ∈ R if and only if Re(εK) = 0. Additionally, NormK/Q(εK) = ±1, which implies

that εK = ±i. However, this is a contradiction since ±i /∈ K, so we see that [O×
K : O×

F ] = 1, and

hence O×
K = µF × ⟨εF ⟩ = µK × ⟨εF ⟩, so we can choose εK = εF . □

Equipped with the fact that εK = εF , we may now relate the regulators RK and RF of K and F,
which we do in the lemma which follows.

Lemma 2.2. For F and K as defined in the beginning of this section, we have that RK = 2RF .

Proof. Since εF = εK by Lemma 2.1, the regulators of the fields F and K as previously defined are
determined using the following matrices:

RF :
[
log |εF | log | − εF |

]
RK :

[
2 log |εF | 2 log | − εF |

]
Thus RF = log |εF | and RK = 2 log |εF | = 2RF . □

Next, we review the definition of the relative discriminant ideal DK/F for our fields K and F .
Recall that F has class number 1, so DK/F is principal. Since K/F is quadratic, it is Galois, and its
Galois group consists of two elements: the identity and complex conjugation. In this setting, DK/F

is given by

DK/F :=

(
det

[
ω1 ω2

ω1 ω2

])2

OF ,

where {ω1, ω2} is an integral basis of K/F . We know that an integral basis will exist in our case by
the following argument. From the structure theorem for finitely generated modules over a Dedekind
domain, we have that OK

∼= On
F ⊕ a, where a is an ideal of OF and n ∈ Z≥0 (see Theorem 1.32

of [7]). Since hF = 1, implying OF is a principal ideal domain, OK must be a free OF -module of
rank 2 = [K : F ].

Lemma 2.3. The set {1, 1+
√
−p

2 } is an integral basis of K/F, and thus we have DK/F = pOF .

Proof. Let A be the change-of-basis matrix from the integral basis {ω1, ω2} to the F -basis {1, 1+
√
−p

2 }.
We see that

pOF =

(
det

[
1 1+

√
−p

2

1 1−
√
−p

2

])2

OF = (detA)2DK/F .
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Since OF is a Dedekind domain, ideals in OF factor uniquely. Therefore since pOF is prime by

assumption, detA must be a unit in OF , so A ∈ GL2(OF ). Thus, {1, 1+
√
−p

2 } is an integral basis of
K/F . Using this integral basis, we see that

DK/F =

(
1−

√
−p

2
− 1 +

√
−p

2

)2

OF = pOF .

□

Finally, since Gal(K/F ) ∼= Z/2Z, there is a unique nontrivial character χ : Gal(K/F ) → C×.
By class field theory, we can consider the precomposition of χ with the Artin symbol to obtain a
character χK/F of the group of fractional ideals that are relatively prime to DK/F . This is known
as the Hecke character of K/F with conductor DK/F . By definition of the Artin symbol (see, for
example, [2] page 106), we can explicitly compute the value of χK/F for any prime ideal p:

χK/F (p) =


1 p splits in OK

−1 p remains inert in OK

0 p ramifies in OK .

Remark. Shintani’s class number formula relies on the narrow ideal class group character with
conductor DK/F evaluated at fractional ideals. This corresponds to a primitive Grössencharakter
with modulus DK/F (see Prop. 6.9 in [8]). Since Gal(K/F ) ∼= Z/2Z, the nontrivial charac-

ter χ : Gal(K/F ) → C× is unique and injective, so class field theory implies that the primitive
Grössencharacter with modulus DK/F is unique and corresponds to χ. Hence, we can see that the
character used in Shintani’s formula is exactly the Grössencharakter. For more details, see Sections
6 and 10 in [8].

Remark. For any unit u ∈ K and any ideal a ⊂ OK , u · a = a, and hence χK/F (u · a) = χK/F (a).

2.2. Shintani’s Class Number Formula. In this section, we prove a simplified version of Shin-
tani’s formula for real quadratic base fields F with hF = 1.

Proposition 2.4. For a totally real quadratic extension F of Q with hF = 1 and K = F (
√
−p) a

totally imaginary quadratic extension of F where 7 ≤ p ≡ 3 (mod 4) remains inert in OF , Shintani’s
formula simplifies to the following:

hK =
1

2

∑
r∈RF,p

χK/F

(
(r1 + r2εF )DK/F

) ∑
0≤l1,l2≤2
l1+l2=2

Bl1(r1)

l1!

Bl2(r2)

l2!
TrF/Q(εF )

l2−1,

where

RF,p =
{
r = r1 + r2εF : 0 < r1 ≤ 1, 0 ≤ r2 < 1, r ∈ 1

pOF

}
,

and Bn(x) is the degree n Bernoulli polynomial. As [F : Q] = 2, Shintani’s formula only requires the
following Bernoulli polynomials:

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
.

Proof. We follow [10] by first considering the embedding F → R2 via

F ↪→ R2 α 7→
(
α, α′) ,
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where α 7→ α′ is the nontrivial automorphism in Gal(F/Q). Shintani shows that the first quadrant
R2
+ := {(x, y) ∈ R2 : x, y > 0} can be decomposed as the following disjoint union:

R2
+ =

⋃
η∈O×,+

F

ηC1 ⊔
⋃

η∈O×,+
F

ηC2

where C1 is generated by the images of 1, εF in R2 and C2 is generated by the image of 1:

C1 = {λ1(1, 1) + λ2(εF , ε
′
F ) ∈ R2 : λ1, λ2 > 0}, C2 = {λ(1, 1) ∈ R2 : λ > 0},

and η ∈ O×,+
F acts by component-wise multiplication. Next, for each cone Ci, Shintani defines the

set R(i, 1pOF ) as the following vectors with components in Q ∩ (0, 1]:

R
(
1, 1pOF

)
:=
{
(r1, r2) ∈ Q2 : 0 < r1, r2 ≤ 1, r1 + r2εF ∈ 1

pOF

}
R
(
2, 1pOF

)
:=
{
r3 ∈ Q : 0 < r3 ≤ 1, r3 ∈ 1

pOF

}
.

Let χK/F be the unique quadratic character of the narrow ideal class group of F with conductor
pOF , associated to K. Then, assuming the notation above, we have the class number formula

hK =
2ωKRF

RK

[
O×

F : O×,+
F

]
 ∑

r∈R
(
1,
1
pOF

)χK/F

(
(r1 + r2εF ) pOF

) ∑
(l1,l2)∈Z2

≥0

l1+l2=2

Bl1(r1)Bl2(r2)

2 · l1!l2!
TrF/Q

(
εl2−1
F

)

−
∑

r3∈R
(
2,
1
pOF

)χK/F (r3pOF )B1(r3)

 ,

where ωK is the number of roots of unity in K ([10], Theorem 2).
We first simplify the coefficient term in this formula. Recall from Lemma 2.2 that RF /RK = 1/2.

Since K = Q(
√
d,
√
−p) for p ≥ 7, we have ωK = 2. Furthermore, since we may choose the funda-

mental unit of F to be totally positive, we see that O×
F = {±1} × O×,+

F , so we get [O×
F : O×,+

F ] = 2.
Then,

2ωKRF

RK

[
O×

F : O×,+
F

] = 1.

Next, we reindex the sum. First we split the set R(1, 1pOF ) into two parts. Consider the sets R1, R2

given by

R1 :=
{
(r1, r2) ∈ Q2 : 0 < r1 ≤ 1, 0 < r2 < 1, r1 + r2εF ∈ 1

pOF

}
R2 :=

{
(r1, r2) ∈ Q2 : 0 < r1 ≤ 1, r2 = 1, r1 + r2εF ∈ 1

pOF

}
.

Additionally, for simplicity we denote the inner sum of Shintani’s formula by:

B(r1 + r2εF ) :=
∑

(l1,l2)∈Z2
≥0

l1+l2=2

Bl1(r1)Bl2(r2)

2 · l1!l2!
TrF/Q

(
εl2−1
F

)
.
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By splitting the sum with R(1, 1pOF ) = R1
⊔
R2, we see that

hK =
∑
r∈R1

χK/F

(
(r1 + r2εF ) pOF

)
B(r1 + r2εF )

+
∑
r∈R2

χK/F

(
(r1 + εF ) pOF

)
B(r1 + εF )−

∑
r∈R

(
2,
1
pOF

)χK/F (rpOF )(r − 1/2). (2.1)

Since εF ∈ O×
F and χK/F has conductor pOF , we have χK/F (r1pOF ) = χK/F

(
(r1 + εF )pOF ).

Moreover, comparing B(r1) and B(r1 + εF ), we see that

B(r1) =
r21 − r1 + 1/3

4
TrF/Q(εF )−

r1 − 1/2

2

B(r1 + εF ) =
r21 − r1 + 1/3

4
TrF/Q(εF ) +

r1 − 1/2

2
= B(r1) + r1 − 1/2.

Thus (2.1) simplifies to

hK =
1

2

∑
r∈RF,p

χK/F

(
(r1 + r2εF ) pOF

) ∑
(l1,l2)∈Z2

≥0

l1+l2=2

Bl1(r1)Bl2(r2)

l1!l2!
TrF/Q

(
εl2−1
F

)

where RF,p is given by

RF,p =
{
r = r1 + r2εF : 0 < r1 ≤ 1, 0 ≤ r2 < 1, r ∈ 1

pOF

}
.

□

Definition 2.5. We call RF,p the Shintani set associated to F and p.

2.3. Properties of Shintani Sets. In this subsection, we identify a correspondence between RF,p

and the finite field Fp2 , which will play an important role in our proof of Theorem 1.1. Namely, we

make use of this correspondence and the cyclic structure of the multiplicative group F×
p2

to enumerate

the elements of RF,p −OF using the powers of a generator of F×
p2
.

Throughout this subsection, we fix a totally real quadratic field F and an imaginary quadratic
extension K = F (

√
−p), where p ≡ 3 (mod 4) and p remains inert in OF . We let εF = s+ tθF , and

to simplify notation, we denote

ε := εF and R := RF,p.

We begin by giving an explicit construction of the Shintani set:

Lemma 2.6. The Shintani set R can be written as:

R =

{
A

tp
+
B

tp
ε : A+ sB ≡ 0 (mod t), A ∈ (0, tp] ∩ Z, B ∈ [0, tp) ∩ Z

}
.

Proof. By Lemma 2.3, we have DK/F = pOF . As such, for any element r1 + r2ε ∈ 1
pOF , we have

r1 + r2ε = (r1 + sr2) + tr2θF ∈ 1

p
OF .
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The set {1, θF } constitutes an integral basis of OF , meaning we can write any element of the Shintani

set as r1 + r2ε =
A′

p + B
p θF ∈ 1

pOF , for some A′, B ∈ Z. Note that

A′

p
= r1 + sr2 and

B

p
= tr2.

In particular, we have

r2 =
B

tp
,

and since r2 ∈ [0, 1), we see that B ∈ [0, tp). Additionally, we see that

r1 =
A′

p
− sr2 =

tA′ − sB

tp
=
A

tp

where A := tA′ − sB. We know that r1 ∈ (0, 1], so A ∈ (0, tp]. Moreover, since

A

tp
+
B

tp
ε =

A+ sB

tp
+
B

p
θF ∈ 1

p
OF ,

we must also have A + sB ≡ 0 (mod t). From the expression above, we can see that every element
of the form A

tp + B
tpε with A,B ∈ Z, A ∈ (0, tp], B ∈ [0, tp), A + sB ≡ 0 (mod t) is in the Shintani

set. This finishes the proof. □

Next, we want to identify R with the finite field Fp2 . We begin with the work of Barquero-Sanchez,
Masri, and Tsai, who proved that R is a finite abelian group with respect to the following operation:

r ⊕ r′ := r + r′ + Z[ε]

(see Proposition 4.3 in [1]). This allows us to prove the following proposition relating R to Fp2 , a
property that is central to our proof of Theorem 1.1.

Proposition 2.7. The Shintani set R has a structure as a Z[ε]-module. This structure admits a
surjective Z[ε]-module homomorphism π : R→ Fp2 .

Proof. We begin with the Z[ε]-module structure on R. By definition, the fractional ideal 1
pOF is an

OF -module, and since Z[ε] is a subring of OF , we observe that
1
pOF is a Z[ε]-module by restriction of

scalars. Furthermore, since Z[ε] is a Z[ε]-submodule of 1
pOF , we have that

1
pOF /Z[ε] is a Z[ε]-module.

Moreover, R ⊂ 1
pOF is a complete reduced set of coset representatices for 1

pOF /Z[ε] (see Proposition
4.1 in [1]). Thus R has the structure of a Z[ε]-module and can be identified with 1

pOF /Z[ε].
Since R ⊆ 1

pOF , multiplication by p defines an injective Z[ε]-module homomorphism

R −→ OF , r 7−→ pr + pOF .

If we compose this map with the projection OF −→ OF /pOF , we obtain the map

π : R −→ OF /pOF , r 7−→ pr,

which is surjective, as shown in Proposition 4.4 of [1]. If p remains inert in F , then pOF is prime
and thus maximal, so OF /pOF is a finite field. Then, since F is quadratic and OF = Z[θF ], we know
that

OF /pOF
∼= Z[θF ]/pZ[θF ] ∼= Fp[θ] ∼= Fp2 .

□
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Remark. By the First Isomorphism Theorem,

R/ ker(π) ∼= OF /pOF .

Note that this is an isomorphism of groups, and therefore pertains only to the structure of R as an
additive abelian group. We do not require a multiplicative structure within R here; rather we point
out that the map

π : R/ ker(π) → Fp2

is bijective. We will make use of this bijective correspondence in the proof of Theorem 1.1.

Lemma 2.8. The elements of ker(π) are exactly those elements of R which are in OF .

Proof. Assume r ∈ ker(π). Then, since Im(π) = OF /pOF , we have

π(r) = 0 ⇐⇒ pr ∈ pOF ⇐⇒ r ∈ OF .

□

Now we are in a position to explicitly describe the elements in ker(π).

Lemma 2.9. The kernel of the map π is given by

ker(π) =

{
1−

{si
t

}
[0,1)

+
i

t
ε | 0 ≤ i ≤ t− 1

}
In particular, we have that | ker(π)| = t.

Proof. Consider r ∈ ker(π). Using Lemma 2.6 and noting that ε = s + tθF , we see that r has the
form

r =
A

tp
+
B

tp
ε =

A+ sB

tp
+
B

p
θF .

By Lemma 2.8, r ∈ ker(π) ⇐⇒ r ∈ R ∩ OF , so we have that A+sB
tp ∈ Z and B

p ∈ Z. The second

condition implies p|B, and since B ∈ [0, tp) ∩ Z by Lemma 2.6, we see that B = pi for i ∈ [0, t) ∩ Z.
The condition that A+sB

tp ∈ Z implies that A ≡ −sB = spi (mod tp). Since A ∈ (0, tp]∩Z by Lemma

2.6, A is uniquely determined by B. More precisely,

A = tp− (spi (mod tp))

where spi (mod tp) is the least positive residue of spi ∈ Z modulo tp. We can further simplify this
expression; since

spi (mod tp) = spi− tp
⌊spi
tp

⌋
,

we have that

ker(π) ⊆
{
1−

{si
t

}
[0,1)

+
i

t
ε : i ∈ [0, t) ∩ Z

}
,

where {·} denotes the fractional part function {x}I , defined as the unique element of I satisfying
x − {x}I ∈ Z. The converse containment is seen immediately from the fact that that ε = s + tθF
and the definition of spi (mod tp). Thus, ker(π) has size exactly t. □

We will denote the elements of ker(π) as

κi := 1−
{si
t

}
[0,1)

+
i

t
ε for i ∈ {0, 1, . . . , t− 1}.
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3. Proof of Theorem 1.1

Equipped with these facts about the Shintani set described in the previous section, we now prove
Theorem 1.1. Our proof relies on features of the structure of the Shintani set which come from
from the bijection between RF,p/ ker(π) and Fp2 , as well as some properties we derive of the Hecke
character across the Shintani set. Again, to simplify notation, we let ε = εF , R = RF,p, and ρ = ρF,p.

We are now able to describe the Shintani set using the multiplicative structure of F×
p2

= ⟨ρ+pOF ⟩.
Using the bijection from R/ ker(π) to Fp2 , we have

R = ker(π) ⊔

p2−1⊔
m=1

π−1(ρm + pOF )

 .

For each m between 1 and p2 − 1, choose one element in the coset π−1(ρm + pOF ), which we denote
x̃(m) + ỹ(m)ε ∈ R.

Next, we explicitly calculate each x̃(m) and ỹ(m) in terms of ρm. Note that {1, θF } is a Fp-basis
of Fp2 , so we can write ρm + pOF := x(m) + y(m)θF for some integers x(m), y(m). Observe that,
since ε = s+ tθF , we have

ρm + pOF = x(m)− s · y(m)

t
+
y(m)

t
ε.

Under multiplication by p and reduction modulo p, the point

x(m)

p
− s · y(m)

tp
+
y(m)

tp
ε ∈ 1

p
OF

maps to ρm+pOF . Thus, if we subtract a suitable element of Z[ε] from this point, we obtain a point
x̃(m) + ỹ(m)ε ∈ R that is a preimage of π−1(ρm + pOF ). In particular, we see that

x̃(m) =

{
x(m)

p
− s · y(m)

tp

}
(0,1]

, ỹ(m) =

{
y(m)

tp

}
[0,1)

.

Since π(x̃(m) + ỹ(m)ε) = ρm + pOF , we can construct the entire coset from this element:

π−1(ρm + pOF ) =
{
(x̃(m) + ỹ(m)ε)⊕ κi : 1 ≤ i ≤ t

}
.

For simplicity, we write

x̃i(m) + ỹi(m)ε := (x̃(m) + ỹ(m)ε)⊕ κi. (3.1)

Using our explicit construction of ker(π) given in Lemma 2.9, we can similarly explicitly construct
each x̃i(m), ỹi(m). We see that

x̃i(m) =

{
x(m)

p
− s · y(m)

tp
+ 1−

{si
t

}
[0,1)

}
(0,1]

ỹi(m) =

{
y(m)

tp
+
i

t

}
[0,1)

.

Thus, we can write R as the following disjoint union:

R = ker(π) ⊔

p2−1⊔
m=1

{
x̃i(m) + ỹi(m)ε : 1 ≤ i ≤ t

} .
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By Proposition 2.4, we simplify Shintani’s class number formula to obtain

hK =
1

2

∑
1≤m≤p2−1

1≤i≤t

χK/F

(
(x̃i(m) + ỹi(m)ε) · pOF

)
·
∑

0≤l1,l2≤2
l1+l2=2

Bl1(x̃i(m))

l1!

Bl2(ỹi(m))

l2!
TrF/Q(εF )

l2−1.

(3.2)

We can also simplify the Hecke character term. Consider any element r1 + r2ε ∈ R and any
element k1 + k2ε ∈ ker(π). By Lemma 2.8, we have k1 + k2ε ∈ OF . Since the Hecke character has
conductor pOF , we have

χK/F

(
(r1 + r2ε+ k1 + k2ε)pOF

)
= χK/F

(
((r1 + r2ε)pOF ) + pOF

)
= χK/F

(
(r1 + r2ε)pOF

)
.

Thus, the value of χK/F (r1 + r2ε) depends only on the coset of r1 + r2ε in R/ ker(π). Therefore, we
have that

χK/F

(
(x̃i(m) + ỹi(m)ε)pOF

)
= χK/F

(
(x̃(m) + ỹ(m)ε)pOF

)
.

By definition,

p(x̃(m) + ỹ(m)ε)− ρm ∈ pOF .

Using this and the multiplicativity of the Hecke character, we get

χK/F ((x̃i(m) + ỹi(m)ε)pOF ) = χK/F ((ρ
m + pOF )OF ) = χK/F ((ρ+ pOF )OF )

m.

If χK/F ((ρ+pOF )OF ) = 0, then since (OF /pOF )
× = ⟨ρ+pOF ⟩, we would have that χK/F (rpOF ) =

0 for all r ∈ R. However, this contradicts the definition of χK/F . Moreover, χK/F ((ρ+pOF )OF ) ̸= 1,
since we would then similarly have that χK/F (rpOF ) = 1 for all r ∈ R−OF , but χK/F is a non-trivial
character by construction. Thus, we see that χK/F ((ρ+ pOF )OF ) = −1, which implies

χK/F

(
(x̃i(m) + ỹi(m)ε)pOF

)
= χK/F ((ρ+ pOF )OF )

m = (−1)m.

Thus, Equation 3.2 simplifies further:

hK =
1

2

∑
1≤m≤p2−1

1≤i≤t

(−1)m
∑

0≤l1,l2≤2
l1+l2=2

Bl1(x̃i(m))

l1!

Bl2(ỹi(m))

l2!
TrF/Q(εF )

l2−1.

Next, we simplify the Bernoulli polynomial part of the class number formula. We consider∑
0≤l1,l2≤2
l1+l2=2

Bl1(x̃i(m))

l1!

Bl2(ỹi(m))

l2!
TrF/Q(ε)

l2−1

= TrF/Q(ε)
x̃i(m)2 − x̃i(m) + 1/6

2
+ 2

(
x̃i(m)− 1

2

)(
ỹi(m)− 1

2

)
+TrF/Q(ε)

ỹi(m)2 − ỹi(m) + 1/6

2

=
TrF/Q(ε)

2

(
x̃i(m)− 1

2

)2

+ 4

(
x̃i(m)− 1

2

)(
ỹi(m)− 1

2

)
+

TrF/Q(ε)

2

(
ỹi(m)− 1

2

)2

+ c0,

for some constant c0. Since for any constant c,∑
1≤m≤p2−1

1≤i≤t

(−1)m · c = 0,
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we can ignore the constant term c0 that arises in the inner sum of Bernoulli polynomials. We can
write the class number hK as

hK =
1

4

∑
1≤m≤p2−1

1≤i≤t

(−1)m
[
TrF/Q(ε)

(
x̃i(m)− 1

2

)2

+4

(
x̃i(m)− 1

2

)(
ỹi(m)− 1

2

)
+TrF/Q(ε)

(
ỹi(m)− 1

2

)2 ]
.

If we define

xi(m) := tp(2x̃i(m)− 1) and yi(m) := tp(2ỹi(m)− 1), (3.3)

we can then rewrite the above equation as

hK =
1

16t2p2

∑
1≤m≤p2−1

1≤i≤t

(−1)m
[
TrF/Q(ε)

(
xi(m)

)2
+ 4
(
xi(m)

)(
yi(m)

)
+TrF/Q(ε)

(
yi(m)

)2]
. (3.4)

Finally, by defining the quadratic form

QF (Y1, Y2) := TrF/Q(ε)Y
2
1 + 4Y1Y2 +TrF/Q(ε)Y

2
2 ,

we rewrite (3.4) as

hK =
1

16t2p2

∑
1≤m≤p2−1

1≤i≤t

(−1)mQF (xi(m), yi(m)) .
(3.5)

The last step is to derive recurrence relations for x(m), y(m), the coefficients of ρm + pOF = x(m)+
y(m)θF . The minimal polynomial of θF is x2 − Tr(θF )x+NormF/Q(θF ), which implies

θ2F = TrF/Q(θF )θF −NormF/Q(θF ).

To simplify notation, let T = TrF/Q(θF ) and N = NormF/Q(θF ). Since ρ := a + bε, we have the
initial conditions x(1) = a and y(1) = b. Then, we get

ρm+1 = x(m+ 1) + y(m+ 1)θF = (x(m) + y(m)θF ) · (a+ bθF )

= a · x(m)−Nb · y(m) +
(
b · x(m) +

(
a+ Tb

)
· y(m)

)
θF .

This implies the following recurrence relations:

x(m+ 1) = a · x(m)−Nb · y(m)

y(m+ 1) = b · x(m) + (a+ Tb) · y(m).

Then, consider functions X(z), Y (z) given by

X(z) =

∞∑
m=1

x(m) · zm, Y (z) =
∞∑

m=1

y(m) · zm. (3.6)

Using our recurrence relations, we can set up a system of equations to find explicit expressions for
X(z), Y (z) as rational functions determined by x(1) and y(1). We see that

X(z) = z · [a ·X(z)−Nb · Y (z)] + az

Y (z) = z ·
[
b ·X(z) +

(
a+ Tb

)
· Y (z)

]
+ bz,
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which gives

X(z) =
az − (a2 + abT +Nb2)z2

(a2 + abT +Nb2)z2 − (2a+ bT )z + 1

Y (z) =
bz

(a2 + abT + b2N)z2 − (2a+ bT )z + 1
.

We simplify these by letting CF,p := a2 + abT +Nb2 and DF,p := 2a+ bT to get

X(z) =
az − CF,pz

2

CF,pz2 −DF,pz + 1
, Y (z) =

bz

CF,pz2 −DF,pz + 1
.

Note that the coefficients x(m), y(m) of the power series of these rational functions correspond to
those x(m), y(m) which we use to generate each xi(m), yi(m) using the formulas

xi(m) := tp(2x̃i(m)− 1) and yi(m) := tp(2ỹi(m)− 1).

This concludes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Here we prove Theorem 1.2, which relies heavily on the structure of the Shintani set as a Z[εF ]-
module and the related attributes of the base-εF expansions of its elements. Through a series of
preliminary lemmas, we set up the proof of Theorem 1.2 by relating the base-εF expansion of 1/p to
the orbit of elements in RF,p − ker(π) under the action of εF . This allows us to derive a finite sum
analogous to Girstmair’s (1.2), in which the number of summands is equal to the period length of
the base εF expansion of 1/p.

Thoughout this section, we fix a totally real quadratic field F and an imaginary quadratic extension
K := F (

√
−p), where p ≡ 3 (mod 4) and p remains inert in OF . To simplify notation, we also let

ε := εF and R := RF,p.

Additionally, we denote r ∈ R as r := r1 + r2ε.

4.1. Shintani Cycles. Recall from Section 2 that we can identify R with 1
pOF /Z[ε] to make it into

a Z[ε] module. In particular, the multiplicative group ⟨ε⟩ acts on 1
pOF via scalar multiplication. If

we denote the map for this group action by

µ : ⟨ε⟩ × 1

p
OF −→ 1

p
OF ,

we can compose µ with the projection map

ν :
1

p
OF −→ 1

p
OF /Z[ε]

to yield

µ′ := ν ◦ µ : ⟨ε⟩ × 1

p
OF −→ 1

p
OF /Z[ε].

Note that, since ν is a Z[ε]-module homomorphism, µ′ constitutes a group action of ⟨ε⟩ on 1
pOF /Z[ε].

Lemma 4.1. The map

µ : ⟨ε⟩ × 1

p
OF /Z[ε] −→

1

p
OF /Z[ε], (ε, α+ Z[ε]) 7−→ µ′(ε, α)

is a well-defined group action.



16 ELIZABETH ATHAIDE, EMMA CARDWELL, AND CHRISTY THOMPSON

Proof. Since µ′ is a group action, it is sufficient to show that µ is well-defined. Take α, α′ ∈ 1
pOF

such that α+ Z[ε] = α′ + Z[ε]. Thus, for any n ∈ Z, we have

µ(εn, α+ Z[ε]) = µ′(εn, α+ Z[ε])
= εnα+ Z[ε] = εnα′ + Z[ε]
= µ(εn, α′ + Z[ε]).

Thus, µ is well-defined, so µ constitutes a group action of ⟨ε⟩ on 1
pOF /Z[ε]. □

We know from Proposition 4.1 in [1] that R is a complete and reduced set of representatives of
1
pOF /Z[ε]. Thus, we obtain a group action ⟨ε⟩ ↷ R given by (ε, r) 7→ ε ∗ r, where ε ∗ r = εr+ z, and

z is the unique element of Z[ε] such that εr + z ∈ R. We define the Shintani cycle of any element
r ∈ R to be the orbit of r under this action, and we denote this set as Cr := ⟨ε⟩ ∗ r.

Remark. Note that ε ∗ r ∈ OF ⇐⇒ r ∈ OF . Thus, for any r ∈ R ∩ OF , every element in the
Shintani cycle of r is an element of OF . We will call Shintani cycles containing elements in R−OF

the nontrivial Shintani cycles of R. We refer to Shintani cycles of elements in R ∩ OF as trivial
Shintani cycles because the elements in these cycles are weighted by a factor of 0 in Shintani’s class
number formula (see the remark in Section 4.3), and hence for our purposes are “trivial.”

4.2. Epsilon Expansions. A base-ε expansion is an analogue to the usual decimal expansion. The
base-ε expansion of any element α ∈ F is computed in the following way. Let n := ⌊logε(α)⌋. Then
we have

α = anε
n + an−1ε

n−1 + . . .+ a0 + a−1ε
−1 + . . . ,

where

an := ⌊α/εn⌋, an−1 := ⌊(α− anε
n)/εn−1⌋, . . . , ai := ⌊(α− anε

n − . . .− ai+1ε
i+1)/εi⌋, . . .

We observe that ε is an algebraic integer which is real since F is real quadratic, and that ε must
be > 1 since it is a totally positive fundamental unit. Moreover, ε must have Galois conjugate with
absolute value < 1 since F is a real quadratic field and ε has norm 1. Thus, ε is a Pisot number by
definition, and by consequence, Theorem 3.1 in [9] shows that any element of R has an eventually
periodic base-ε expansion.

For some α ∈ F whose base ε expansion can be written as

α = anε
n + . . .+ a0 + a−1ε

−1 + . . .+ a−kε
−k + a−k−1ε−k−1 + . . .+ a−k−Pαε

−k−Pα ,

we call Pα the period length of the base-ε expansion of α. Additionally, we will call the ordered set

{a−k−1, . . . , a−k−Pα}

the period set of the base-ε expansion of α. We can further observe that any element of F whose
base-ε expansion is finite is an element of Z[ε], by the following argument.

Lemma 4.2. If α ∈ F has a finite base-ε expansion, then α ∈ Z[ε].

Proof. If γ has a finite base-ε expansion, we can express it as

γ =

K2∑
i=K1

miε
i
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where K1,K2 are integers. Using that ε2 = TrF/Q(ε)ε − 1 and that ε−1 = TrF/Q(ε) − ε, we can

perform the following replacement on any term mkε
k where k ̸= 0 or 1:

mkε
k =


mk(TrF/Q(ε)ε− 1)k/2 if k is an even positive integer

mk(TrF/Q(ε)ε− 1)(k−1)/2ε if k is an odd positive integer

mk(TrF/Q(ε)− ε)−k if k is a negative integer.

The third equality implies that any negative integer power of ε can be converted to a linear com-
bination of positive integer powers of ε. Therefore, it suffices to show that a linear combination of
positive integer powers of ε can be expressed as an element of Z[ε]. The first two equalities guarantee
that any positive power of ε can be expressed a strictly lower positive power of ε. Thus by induction,
any finite linear combination of (possibly negative) powers of ε can be expressed as an element of
Z[ε]. □

Proposition 4.3. The repeating part in the base-ε expansion of any two elements in the same
Shintani cycle is the same.

To prove this lemma, we require some preliminaries. Consider some r ∈ R, where r = r1 + r2ε,
and recall that 0 < r1 ≤ 1 and 0 ≤ r2 < 1, r1, r2 ∈ Q. Hence the action of ε on R amounts to:

ε ∗ r = ε · (r1 + r2ε) + z1 + z2ε

where z1+ z2ε is the unique element in Z[ε] such that ε · (r1+ r2ε)+ z1+ z2ε ∈ R. We can explicitly
compute bounds for z1 and z2:

Lemma 4.4. If ε ∗ (r1 + r2ε) = ε · (r1 + r2ε) + z1 + z2ε, then

z1 = 1, and z2 = −⌊r1 + r2TrF/Q(ε)⌋.

Proof. The minimal polynomial of ε is

x2 − TrF/Q(ε)x+NormF/Q(ε) = x2 − TrF/Q(ε)x+ 1,

and thus
ε2 = TrF/Q(ε)ε− 1.

Consider

ε(r1 + r2ε) = r1ε+ r2ε
2 = −r2 + (r1 + r2TrF/Q(ε))ε.

To find ε ∗ (r1 + r2ε), we must shift ε(r1 + r2ε) by some z1 + z2ε ∈ Z[ε] such that

−r2 + z1 ∈ (0, 1], and r1 + r2TrF/Q(ε) + z2 ∈ [0, 1).

It is immediately apparent that z2 = −⌊r1 + r2TrF/Q(ε)⌋. Further, since r1 + r2ε ∈ R, we have that
r2 ∈ [0, 1), so we see that z1 = 1. □

Note that the above proposition and our bounds on r1 and r2 imply that −TrF/Q(ε) ≤ z2 ≤ 0.
Before we show that the repeating part of the base ε of elements in the same Shintani cycle is the
same, we require one more fact about ε, which we now prove.

Lemma 4.5. We have that ⌈ε⌉ = TrF/Q(ε).

Proof. Let ε = s+ t
√
d. We start by showing TrF/Q(ε) ≥ ⌈ε⌉. Observe that

TrF/Q(ε) = ε+
1

ε
=⇒ TrF/Q(ε) > ε =⇒ TrF/Q(ε) ≥ ⌈ε⌉ ,

because the trace of an algebraic integer is always an element of Z.
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Now we will show that TrF/Q(ε) ≤ ⌈ε⌉. Assume for the sake of contradiction that TrF/Q(ε) ≥
⌈ε⌉+ 1. Then we have that

TrF/Q(ε) ≥ ⌈ε⌉+ 1 =⇒ ε2 + 1

ε
≥ ⌈ε⌉+ 1 =⇒ 1− ε ≥ ε⌈ε⌉ − ε2 ≥ 0 =⇒ 1 ≥ ε.

However, by definition, ε > 1, so we see that

TrF/Q(ε) < ⌈ε⌉+ 1 =⇒ TrF/Q(ε) ≤ ⌈ε⌉.

□

Now we proceed to prove that the repeating part in the base-ε expansion of any two elements in
the same Shintani cycle is the same.

Proof of Proposition 4.3. Consider some element r ∈ R, with base-ε expansion

r = a1ε+ a0 + a−1ε
−1 + a−2ε

−2 + a−3ε
−3 + . . .

Note that since r ∈ R, ⌊logε(r)⌋ = 0 or 1, so the highest power of ε appearing in the base-ε expansion
of r is at most 1. Given this base-ε expansion of r, we have that

ε ∗ r = ε · r + z2ε+ 1 = a1ε
2 + (a0 + z2)ε

1 + (a−1 + 1)ε0 + a−2ε
−1 + a−3ε

−2 + . . . (4.1)

Recall that in a base-ε expansion, each digit (in this case ai for i ∈ Z) must be an element of the set
A := {0, 1, . . . , ⌊ε⌋}. We now consider the following two cases: in Case 1, both a0 + z2 and a−1 + 1
are in A; in Case 2, one or both of a0 + z2 and a−1 + 1 is not in A.

Case 1. In Case 1, the expression in (4.1) is already a valid base-ε expansion of ε ∗ r. We can
see that only a finite number of digits differ between the base-ε expansion of ε ∗ r and the base-ε
expansion of r, so in this case the repeating part of ε ∗ r must be the same as r.

Case 2. Now we address Case 2, which we can split into Case 2.1 and Case 2.2. In Case 2.1,
a0 + z2 ̸∈ A; in Case 2.2, a−1 + 1 ̸∈ A.

Case 2.1. Assume that a0+z2 ̸∈ A. Since a0 is a digit in the base-ε expansion of r, 0 ≤ a0 ≤ ⌊ε⌋ by
definition. Additionally, −TrF/Q(ε) ≤ z2 ≤ 0 by Lemma 4.4. Thus it always true that −TrF/Q(ε) ≤
a0 + z2 ≤ TrF/Q(ε). Therefore if a0 + z2 ̸∈ A, it must be that −TrF/Q(ε) ≤ a0 + z2 ≤ −1. Then
we have that 0 ≤ a0 + z2 + TrF/Q(ε) ≤ TrF/Q(ε) − 1, so a0 + z2 + TrF/Q(ε) ∈ A and is hence an

acceptable digit. Since TrF/Q(ε) = ε+ ε−1, we can rewrite (4.1) as

ε ∗ r = (a1 − 1)ε2 + (a0 + z2 +TrF/Q(ε))ε+ (a−1 + 1− 1) + a−2ε
−1 + a−3ε

−2 + . . .

= (a1 − 1)ε2 + (a0 + z2 +TrF/Q(ε))ε+ a−1 + a−2ε
−1 + a−3ε

−2 + . . . (4.2)

Since 0 ≤ a0+ z2+TrF/Q(ε) < TrF/Q(ε), the above base-ε expansion is valid as long as 0 ≤ a1− 1 ≤
⌊ε⌋. Since 0 ≤ a1 ≤ ⌊ε⌋, we know −1 ≤ a1 − 1 ≤ ⌊ε⌋ − 1. Thus unless a1 − 1 = −1, it must be true
that 0 ≤ a1 − 1 ≤ ⌊ε⌋. Let us assume for the sake of contradiction that a1 − 1 = −1. If we let

α = ε2 and

β = (a0 + z2 +TrF/Q(ε))ε+ a−1 + a−2ε
−1 + a−3ε

−2 + . . . ,

then (4.2) implies that ε ∗ r = −α + β. However, it follows directly from the definition of a base-ε
expansion and the fact that ε is a Pisot number that α > β. Thus ε ∗ r = −α + β < 0, which
contradicts the fact that ε ∗ r ∈ R. Thus we have that 0 ≤ a1 − 1 ≤ ⌊ε⌋, so (4.2) is a valid base-ε
expansion of ε ∗ r. We can see that only a finite number of digits differ between the base-ε expansion
of ε ∗ r and the base-ε expansion of r. Therefore the repeating part of ε ∗ r must be the same as r.

Case 2.2 Assume a−1 + 1 ̸∈ A. By Case 2.1, we may assume without loss of generality that
a0 + z2 ∈ A. Since 0 ≤ a−1 ≤ ⌊ε⌋, we know that 1 ≤ a−1 + 1 ≤ ⌊ε⌋ + 1. Thus if a−1 + 1 ̸∈ A,
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it must be that a−1 + 1 = ⌊ε⌋ + 1, so a−1 = ⌊ε⌋. Since ⌈ε⌉ = TrF/Q(ε) by Lemma 4.5, we have

a−1 + 1 = TrF/Q(ε). Again using that TrF/Q(ε) = ε+ ε−1, we can rewrite (4.1) as

ε ∗ r = a1ε
2 + (a0 + z2 + 1)ε+ (a−2 + 1)ε−1 + a−3ε

−2 + . . . (4.3)

Since 0 ≤ a0+z2 ≤ ⌊ε⌋ by assumption, if a0+z2+1 ̸∈ A, then a0+z2+1 = ⌊ε⌋+1. This would imply
that ε∗r > ε+1, which contradicts the fact that ε∗r ∈ R. Thus it must be that 0 ≤ a0+z2+1 ≤ ⌊ε⌋.
With this, we see that if a−2 + 1 ∈ A, then 4.3 is a valid base-ε expansion of ε ∗ r. Otherwise, if
a−2 + 1 ̸∈ A, then since a−2 ∈ A, it must be that a−2 = ⌊ε⌋, so a−2 + 1 = ⌈ε⌉ = TrF/Q(ε). Using

that TrF/Q(ε) = ε+ ε−1, we can rewrite 4.3 as

ε ∗ r = a1ε
2 + (a0 + z2 + 1)ε+ 1 + (a−3 + 1)ε−2 + . . . (4.4)

We note that by the same argument used before, if ai + 1 ̸∈ A for any i ∈ Z, then ai = ⌊ε⌋ =
TrF/Q(ε)− 1. Thus if we let j be the smallest positive integer such that a−j ̸= ⌊ε⌋, then continuing
in the same manner, we see that

ε ∗ r = a1ε
2 + (a0 + z2 + 1)ε+ 1 + ε−1 + ε−2 + . . .+ ε−j+3 + (aj + 1)ε−j+1 + aj+1ε

−j . . . (4.5)

Since the base-ε expansion of r must be finite or periodic, it is certainly possible to choose such an
index j.We can assume that r does not have repeating part ⌊ε⌋, since ⌊ε⌋εi+⌊ε⌋εi−1+⌊ε⌋εi−2+ . . . =
εi+1 for any i ∈ Z. Thus in Case 2.2, we see that only a finite number of digits differ between the
base-ε expansion of ε ∗ r and the base-ε expansion of r. Therefore the repeating part of ε ∗ r must
be the same as r in this case.

Now we have seen that in all cases, the repeating part of the base-ε expansion of ε ∗ r is the same
as that of r, which finishes the proof. □

In many of the results which follow, it will prove useful for us to note the following fact about the
map π as defined in Proposition 2.7.

Lemma 4.6. The map π is equivariant under the action of ⟨ε⟩.

Proof. Since 1
pOF is an ideal of OF , it is also a OF -module. Moreover, OF is trivially an OF -module,

and pOF is a submodule of OF since pOF is an ideal of OF . Thus the map

ϕ :
1

p
OF → OF /pOF

defined by multiplication by p is an OF -module homomorphism. The kernel of this map is OF , so
by the first isomorphism theorem, 1

pOF /OF
∼−→ OF /pOF is an isomorphism of OF -modules. Since

Z[ε] is a subring of OF , by restriction of scalars, 1
pOF /OF

∼= OF /pOF is also an isomorphism of

Z[ε]-modules.
We can also observe that since OF is a submodule of 1

pOF , the projection map

1

p
OF /Z[ε] →

1

p
OF /Z[ε]

/
OF /Z[ε]

is a surjective Z[ε]-module homomorphism. By the third isomorphism theorem, we further have that

1

p
OF /Z[ε]

/
OF /Z[ε] ∼=

1

p
OF /OF ,

which implies

ψ :
1

p
OF /Z[ε] →

1

p
OF /OF
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is a surjective Z[ε]-module homomorphism. Since R ⊂ 1
pOF and R constitutes a complete set of

coset representatives for 1
pOF /Z[ε] (see [1], Proposition 4.1), the identity map

ι : R→ 1

p
OF /Z[ε]

is a Z[ε]-module isomorphism. Now we can see that since π = ϕ ◦ψ ◦ ι, π is a surjective Z[ε]-module
homomorphism. Thus π is equivariant under the action of ⟨ε⟩. □

With this result, we may now examine more closely the action of ε on R. Namely, we can deduce
the following fact about nontrivial Shintani cycles.

Lemma 4.7. All nontrivial Shintani cycles have length equal to the multiplicative order of ε+ pOF

in (OF /pOF ).

Proof. Let M denote the multiplicative order of ε+ pOF in OF /pOF , and consider r ∈ R−OF . We
will show that |Cr| =M. Suppose that εm ∗ r = r for some m ∈ Z+. Then by Lemma 4.6,

π(r) = π(εm ∗ r) = (εm + pOF )π(r) =⇒ (εm − 1 + pOF )π(r) = 0.

By assumption r ̸∈ OF , so π(r) ̸= 0 by Lemma 2.8. Since OF /pOF is a field, it must be that
(εm − 1 + pOF ) = 0. Therefore εm ≡ 1 mod pOF , so M |m. As a consequence, if we denote the
stabilizer subgroup associated to r under the action of ε as ⟨ε⟩r, then ⟨ε⟩r ⊂ ⟨εM ⟩. Moreover, we

note that since ⟨ε⟩r is a subgroup of ⟨εM ⟩, it must be that ⟨ε⟩r = ⟨εM ′⟩ for someM ′ such thatM |M ′.
Moreover, we also have that

εM
′ ∗ r = r =⇒ (εM

′ − 1 + pOF )π(r) = 0

where π(r) ̸= 0, so that εM
′ ≡ 1 mod pOF . Thus it must also be that M ′|M, so M ′ = M, and

hence ⟨ε⟩r = ⟨εM ⟩. In other words, ⟨εM ⟩ is the stabilizer subgroup of r for all r ∈ R − OF . By the
orbit-stabilizer theorem, we then have that |Cr| = [⟨ε⟩ : ⟨εM ⟩] =M. □

In the lemma which follows, we equate M with the minimal period length of the base-ε expansion
of r for all r ∈ R−OF . This fact, combined with Lemma 4.7, will then imply that for all r ∈ R−OF ,
|Cr| = Pr, where Pr denotes the minimal period length of the base-ε expansion of r.

Lemma 4.8. For any r ∈ R − OF , the minimal period length of the base-ε expansion of r is equal
to the multiplicative order of ε+ pOF in (OF /pOF ).

Proof. Consider an element r = r1 + r2ε ∈ R−OF . We start by showing that Pr|M . As mentioned
at the beginning of Section 4.2, the base-ε expansion of r is always eventually periodic, say

r =
N−1∑
i=−1

a′iε
−i + ε−N

∞∑
j=0

(
a1ε

−jPr + a2ε
−jPr−1 + . . .+ aPrε

−jPr−Pr+1
)
. (4.6)

We remind the reader that since r ∈ R, ⌊logε(r)⌋ = 0 or 1, so the highest power of ε in (4.6) is 1.
Multiplying (4.6) by εPr , we obtain

εPrr =

N−1∑
i=−1

a′iε
−i+Pr + ε−N

∞∑
j=0

(
a1ε

−(j−1)Pr + a2ε
−(j−1)Pr−1 + . . .+ aPrε

−(j−1)Pr−Pr+1
)
.

Reindexing (4.6), we get

r =
N−1∑
i=−1

a′iε
−i + ε−N

∞∑
j=1

(
a1ε

−(j−1)Pr + a2ε
−(j−1)Pr−1 + . . .+ aPrε

−(j−1)Pr−Pr+1
)
.
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And thus

εPrr − r =

(
N−1∑
i=−1

a′iε
−i+Pr − a′iε

−i

)
+ ε−N

(
a1ε

Pr + a2ε
Pr−1 + . . .+ aPrε

)
.

Let

α =

N−1∑
i=−1

a′iε
−i+Pr , and β = −

N−1∑
i=−1

a′iε
−i, and γ = ε−N

(
a1ε

Pr + a2ε
Pr−1 + . . .+ aPrε

)
.

Note that, because α, β, and γ have finite ε expansions, we have that α, β, γ ∈ Z[ε], and thus

α+ β + γ = εPrr − r ∈ Z[ε].

By definition, we know that

εPr ∗ r = εPrr + z

for some z ∈ Z[ε]. Thus, using Lemmas 2.8 and 4.6, we have

εPr ∗ r − r − z = εPrr − r =⇒ π(εPr ∗ r − r − z) = π(εPrr − r) =⇒ (εPr + pOF − 1)π(r) = 0.

Since F is a field in which π(r) ̸= 0 since r ̸∈ OF , we have that

εPr − 1 + pOF = 0 =⇒ εPr ≡ 1 (mod pOF ).

for any r ∈ R−OF . Recall that M is the multiplicative order of ε in OF /pOF , so we see that M |Pr.
Next, we show that Pr|M . Since both r and ε ∗ r have periodic base-ε expansions, we let N1

represent the smallest integer such that the repeating part of the base-ε expansion of r begins in
the ε−N1 place. Similarly, let N2 represent the smallest integer such that the repeating part of the
base-ε expansion of ε ∗ r begins in the ε−N2 place.

Let S = max(N1, N2) be the smallest integer such that the base-ε expansion of both r and ε ∗ r
is periodic for all indices greater than S. Thus, the digits in the ε−S , ε−S−1, . . . , ε−S−Pr place of the
base-ε expansion of r constitute a full period, and we let the ordered set

{x1, x2, . . . , xPr}

represent the period set of r. As shown in Proposition 4.3, the operation ε∗ r shifts the digits within
the repeating part of the base-ε of r to the left by one index. In other words, the period set of ε ∗ r
is the ordered set

{x2, . . . , xPr , x1}.

Note that moving between the period set of r and the period set of ε ∗ r can be represented by
applying the permutation

τ = (1 2 · · · Pr) ∈ SPr

to the period set of r. Additionally, we have that r = εM ∗ r, so the period sets of r and εM ∗ r must
be equal. Thus,

τM{x1, x2, . . . , xPr} = {x1, x2, . . . , xPr},

which implies that τM is the identity permutation. Since the order of τ ∈ SPr is Pr, we have that
Pr|M . So, we see that Pr =M . □

In our final lemma before we prove Theorem 1.2, we show that for any nontrivial Shintani cycle,
the sum of the coefficients r1 and r2 where r = r1 + r2ε of all the elements r in the Shintani cycle is
a constant. In fact, these coefficients sum to M.
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Lemma 4.9. For any r ∈ R−OF , let r
′ := r′1 + r′2ε. Then,∑
r′∈Cr

(r′1 + r′2) =M.

Proof. Let εi ∗ r := r1(i) + r2(i)ε, so r1(i+ 1) + r2(i+ 1)ε = ε ∗ (r1(i) + r2(i)ε). Recall that

ε ∗ (r1(i) + r2(i)ε) = (1− r2(i)) + {r1(i) + TrF/Q(ε)r2(i)}ε

by Lemma 4.4. Comparing coefficients, we see that r1(i + 1) + r2(i) = 1 for all i ∈ Z. Moreover,
since M = |Cr| for all r ∈ R−OF by Lemma 4.7, we have that r1(m) = r1(m+M) for any integer
m. Using these facts, we see that∑

r∈Cr

(r1(i) + r2(i)) =
M∑
i=1

(r1(i) + r2(i)) = r1(1) + r2(M) +
M−1∑
i=1

r1(i+ 1) +
M−1∑
j=1

r2(j)

= r1(M + 1) + r2(M) +
M−1∑
i=1

(
r1(i+ 1) + r2(i)

)
= 1 + (M − 1) =M.

□

4.3. Proof of Theorem 1.2. Since ⟨ε⟩ acts on R, R decomposes into a disjoint union of Shintani
cycles, under this action. Letting L denote a complete reduced set of Shintani cycle representatives
for R, and recalling that Cr denotes the Shintani cycle of r, we can rewrite Shintani’s formula as
follows:

hK =
1

2

∑
r∈R

χK/F (rpOF )
∑

0≤l1,l2≤2
l1+l2=2

Bl1(r1)

l1!

Bl2(r2)

l2!
TrF/Q(ε)

l2−1

=
1

2

|Cr|∑
i=1

∑
r∈L

χK/F (ε
i
F ∗ r · pOF )

∑
0≤l1,l2≤2
l1+l2=2

Bl1(r1)

l1!

Bl2(r2)

l2!
TrF/Q(ε)

l2−1 (4.7)

First, we show that χK/F (r
′ · pOF ) is constant for all r

′ ∈ Cr. By definition of ε ∗ r, we see that
ε ∗ r = εr + z for some z ∈ OF . Thus

χK/F (ε
i ∗ r · pOF ) = χK/F ((ε

ir + z) · pOF ) = χK/F (ε
irpOF + zpOF ).

Since zpOF ⊂ pOF , pOF |zpOF , and since pOF is the conductor of this Hecke character, we see that

χK/F (ε
i ∗ r · pOF ) = χK/F (ε

irpOF ).

Additionally, ε is a unit, so we know

rOF = εirOF

for any integer i. Therefore

χK/F (ε
i ∗ r · pOF ) = χK/F (ε

irpOF ) = χK/F (rpOF ),

and thus the Hecke character value in (4.7) is constant throughout each Shintani cycle.
By Lemma 4.7, all nontrivial Shintani cycles in R contain the same number of elements. Since

1/p is an element of R−OF by Lemma 4.8, the period length ℓF,p of the base-ε expansion of 1/p is
equal to the length of each nontrivial cycle.

Remark. Note that, for all r ∈ R∩OF , the Hecke character χK/F (rpOF ) evaluates to 0, so elements
r ∈ R∩OF are all weighted by a factor of 0 in (4.7). Hence, we can ignore them in our calculations.
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Using these facts, we obtain

hK =
1

2

ℓF,p∑
i=1

∑
r∈L

χK/F (rpOF )
∑

0≤l1,l2≤2
l1+l2=2

Bl1(r1)

l1!

Bl2(r2)

l2!
TrF/Q(ε)

l2−1. (4.8)

As shown in [1], we have that∑
r∈R

χK/F (rpOF ) =
∑

r∈R∩OF

χK/F (rpOF ) +
∑

r∈R−OF

χK/F (rpOF ) = 0.

For all r ∈ OF , we have already seen that χK/F (rpOF ) = 0. Thus,

0 =
∑

r∈R−OF

χK/F (rpOF ) =
∑

r∈L−OF

χK/F (rpOF ) · ℓF,p = ℓF,p
∑

r∈L−OF

χK/F (rpOF ),

which yields ∑
r∈L−OF

χK/F (rpOF ) = 0.

In other words, we have character orthogonality across the elements r ∈ L − OF . With this, we
consider the sum over Bernoulli polynomials within this formula. Letting

B(r1 + r2ε) :=
∑

0≤l1,l2≤2
l1+l2=2

Bl1(r1)Bl2(r2)

l1!l2!
TrF/Q

(
εl2−1

)
,

we see that

B(r1 + r2ε) =
r21 − r1 +

1
6

2
TrF/Q(ε) + 2

(
r1 −

1

2

)(
r2 −

1

2

)
+
r22 − r2 +

1
6

2
TrF/Q(ε)

=
TrF/Q(ε)

2

(
r21 + r22 − (r1 + r2) +

1

3

)
+ 2r1r2 − (r1 + r2) +

1

2
. (4.9)

Recall that by Lemmas 4.9, for all r ∈ L −OF ,∑
r′∈Cr

r′1 + r′2 =M.

Thus, we can further simplify (4.9) to

B(r1 + r2ε) =
TrF/Q(ε)

2

(
r21 + r22 −M +

1

3

)
+ 2r1r2 −M − 1

2
. (4.10)

Because we have character orthogonality over L−OF , we can add a constant to the inner Bernoulli
sum of (4.8) without changing the value of the whole expression. In particular, if we let

c :=
TrF/Q(ε)

2

(
−M +

1

3

)
−M − 1

2
,

we see that (4.10) can be rewritten as

B(r1 + r2ε) =
TrF/Q(ε)

2

(
r21 + r22

)
+ 2r1r2 + c

=
1

2

(
TrF/Q(ε)r

2
1 + 4r1r2 +TrF/Q(ε)r

2
2

)
+ c.
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Using these results and letting ε ∗ r := r1(i) + r2(i)ε, we obtain

hK =
1

4

ℓF,p∑
i=1

∑
r∈L−OF

χK/F

(
rpOF

)(
TrF/Q(ε)r1(i)

2 + 4r1(i)r2(i) + TrF/Q(ε)r2(i)
2
)
.

Recall that QF (Y1, Y2) := TrF/Q(ε)Y
2
1 + 4Y1Y2 + TrF/Q(ε)Y

2
2 . Thus if we make a slight abuse of

notation by letting QF (ε
i ∗ r) = TrF/Q(ε)(r1(i)

2 + 4r1(i)r2(i) + TrF/Q(ε)r2(i)
2, then we can express

hK as

hK =
1

4

ℓF,p∑
i=1

∑
r∈L−OF

χK/F (rpOF )Q(εi ∗ r).

5. Examples

Here we illustrate Theorems 1.1 and 1.2 for Q(
√
3,
√
−p), where p is prime. Note that the ring of

integers of F = Q(
√
3) is given by Z[

√
3], and its totally positive unit group O×,+

F is generated by

εF = 2+
√
3. We require that p ≡ 3 (mod 4),

(
3
p

)
= −1, and 7 ≤ p. The first two conditions imply that

the relative discriminant ideal is the prime ideal pZ[
√
3]. Consequently, Z[

√
3]/pZ[

√
3] ∼= Fp[

√
3].

5.1. Theorem 1.1 with F = Q(
√
3). Let ρF,p = a + b

√
3 be a generator of Fp[

√
3]. Table 1 lists

values of ρF,p as computed with SageMath. Using these values, we use (1.3) and (1.4) to calculate
CF,p and DF,p, then use (1.5) and (1.6) to find the corresponding rational functions XF,p(z) and
YF,p(z), which are also displayed in Table 1.

We extract the first p2 − 1 coefficients from our rational functions by taking the kth derivative of
X(z) and Y (z), evaluating each function at z = 0, and dividing by k!. Note that in this case, since
t = 1, we obtain only 1 sequence x1(m), and y1(m), from each of XF,p(z) and YF,p(z) respectively.
Since TrF/Q(εF ) = 4, we have

QF (Y1, Y2) = 4Y 2
1 + 4Y1Y2 + 4Y 2

2 .

Now we may apply Theorem 1.1 to obtain

hF (
√
−p) =

1

16p2

∑
1≤m≤p2−1

(−1)mQF

(
x1(m), y1(m)

)
.

The smallest suitable prime for which we can apply Theorem 1.1 here is p = 7, for which we calculate

hF (
√
−7) =

1

784
(− 84 + 76− 300 + 52− 28 + 436− 100 + 148− 196 + 52− 108 + 124− 84 + 148

− 36 + 172− 28 + 124− 12 + 76− 196 + 172− 4 + 156− 84 + 76− 300 + 52− 28

+ 156− 100 + 316− 196 + 52− 108 + 124− 84 + 316− 36 + 228− 28 + 124− 12

+ 76− 196 + 228− 4 + 436) = 2.

In Table 1, we list some terms of our alternating sum for the class numbers of all such primes less
than 100, along with the corresponding class numbers calculated using Theorem 1.1 and verified
using SageMath.
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p ρF,p XF,p(z) YF,p(z) hF(
√
−p) Calculation

7 6 +
√
3

6z − 33z2

33z2 − 12z + 1

z

33z2 − 12z + 1
1

784

(
− 84 + 76− . . .+ 436

)
= 2

19 1 + 4
√
3

6z + 47z2

−47z2 − 12z + 1

4z

−47z2 − 12z + 1
1

5776

(
− 364 + 252− . . .+ 3892

)
= 2

31 1 + 6
√
3

z + 107z2

−107z2 − 2z + 1

6z

−107z2 − 2z + 1
1

15376

(
− 1084 + 676− . . .+ 10804

)
= 6

43 1 + 5
√
3

z + 74z2

−74z2 − 2z + 1

5z

−74z2 − 2z + 1
1

29584

(
− 3556 + 4836− . . .+ 21172

)
= 6

67 2 + 5
√
3

2z + 71z2

−71z2 − 4z + 1

5z

−71z2 − 4z + 1
1

71824

(
− 11772 + 2212− . . .+ 52276

)
= 6

79 2 + 6
√
3

2z + 104z2

−104z2 − 4z + 1

6z

−104z2 − 4z + 1
1

99856

(
− 16068 + 7372− . . .+ 73012

)
= 30

Table 1. Theorem 1.1 for primes p < 100.

5.2. Theorem 1.2 with F = Q(
√
3). We illustrate Theorem 1.2 in the same setting. Letting

F = Q(
√
3), we calculate hK for p ≡ 3 (mod 4) where 7 ≤ p and

(
3
p

)
= −1. We remind the reader

that εF = 2 +
√
3, so t = 1. Thus by Lemma 2.9, ker(π) = RF,p ∩ OF = {1}.

In the case that p = 7, we first calculate the base-εF expansion of 1/7,

1

7
= ε−2

F + 3ε−3
F + 2ε−4

F + 2ε−6
F + 2ε−7

F + 3ε−8
F + 3ε−11

F + 2ε−12
F + 2ε−14

F + 2ε−15
F + 3ε−16

F + . . .

= 0.0132202230.

Noticing that 1/7 has period length ℓF,7 = 8, by Lemma 4.8, we can then deduce that there are

|RF,7 −OF |
ℓF,7

=
1 · 72 − 1

8
= 6

disjoint Shintani cycles which comprise RF,7 −OF . We can generate these Shintani cycles explicitly,
by calculating εiF ∗ r for 0 ≤ i < 8 for r ∈ RF,7 −OF . One can verify that

L =

{
1

7
+

1

7
εF ,

1

7
,
1

7
+

4

7
εF ,

1

7
+

5

7
εF ,

2

7
+

2

7
εF ,

3

7

}
is a complete reduced set of representatives for all 6 distinct nontrivial cycles in RF,7. With these
values, we now calculate hF (

√
−7) using Theorem 1.2. Noting that TrF/Q(εF ) = 4 so QF (Y1, Y2) =
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4Y 2
1 + 4Y1Y2 + 4Y 2

2 , we compute

hF (
√
−7) =

1

4

8∑
i=1

∑
r∈L

χF (
√
−7)/F (rpOF )

(
4r1(i)

2 + 4r1(i)r2(i) + 4r2(i)
2
)

=
1

4

(
− 220

7
+

228

7
− 188

7
+

212

7
− 180

7
+

204

7

)
= 2.

In Table 2, we carry out the same procedure for all suitable primes less than 100.

p Base εF Expansion of 1/p ℓF,p hF(
√
−p) Calculation

7 0.01 32202230 8 1
4

(
− 220

7 + 228
7 − 188

7 + 212
7 − 180

7 + 204
7

)
= 2

19 0.002 22231 5 1
4

(
396
19 + 400

19 − 360
19 + . . .+ 332

19 + 328
19

)
= 2

31 0.001 2132023120322221002303200122
2230

32 1
4

(
3876
31 − 3788

31 − 3764
31 − . . .− 3444

31 + 3420
31

)
= 6

43 0.001 02311222230 11 1
4

(
1856
43 + 1848

43 + 1940
43 + . . .+ 1656

43 + 1624
43

)
= 6

67 0.0002 3110011313222221320122102312
222231

34 1
4

(
8908
67 + 9228

67 − 8604
67 + . . .+ 7492

67 + 7860
67

)
= 6

79 0.0002 122101031011213031211013010
122113222222010012113021100303001
12031121001022222231

80 1
4

(
22740
79 − 22364

79 + . . .− 22372
79 + 22500

79

)
= 30

Table 2. Theorem 1.2 for primes p < 100.
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