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Abstract

Properties of strong mixing have been established for the stationary linear Hawkes pro-

cess in the univariate case, and can serve as a basis for statistical applications. In this paper,

we provide the technical arguments needed to extend the proof to the multivariate case. We

illustrate these properties by establishing a functional central limit theorem for multivariate

Hawkes processes.

Keywords: multivariate Hawkes process, strong mixing (α-mixing), functional central limit
theorem.

1 Introduction

Linear Hawkes processes form a versatile family of models for point processes that exhibit self-

excitation properties: in addition to a constant rate of arrivals, each new arrival increases the

rate at which future arrivals occur. This additive dependence structure can also be decomposed

such that the process can be viewed as a branching process with immigration, thus admitting

a Poisson cluster structure where each cluster is itself a branching process without immigration

(Hawkes and Oakes, 1974). While they were initially introduced by Hawkes (1971) in order to

model seismic aftershocks (Ogata, 1988), Hawkes processes have become increasingly popular due

to their wide applicability to various other �elds including but not limited to �nance (Embrechts

et al., 2011), ecology (Gupta et al., 2017), neurophysiology (Chornoboy et al., 1988), and social

network analysis (Zannettou et al., 2018). The study of Hawkes processes in itself is also of

interest, as theoretical advances in the past decades have paved the way to the development for

statistical inference methods (Hansen et al., 2015; Bacry et al., 2020) and thus to the popularity

of the model.

In particular, works interested in the ergodic and mixing properties of the Hawkes process

play an important role, for they can provide strong moment inequalities and coupling methods

useful to prove asymptotic properties. It is well known that the linear Hawkes process is er-

godic due to its Poisson cluster structure (Westcott, 1971). When the reproduction function

has compact support, Reynaud-Bouret and Roy (2006) used this structure to derive exponential

inequalities which specify the rate of convergence in the ergodic theorem. Recently, Graham

(2021) extended these results by proving regenerative properties for the linear Hawkes process,

even when the reproduction function has unbounded support. Issues arise for the nonlinear
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Hawkes process � in which the rate at which future arrivals occur is non-linearly dependent on

the past arrivals � since the Poisson cluster structure of the process no longer exists. While

the existence and stationarity of the process can be proven under general sets of assumptions

(Bremaud and Massoulie, 1996), studies of the mixing properties of the process have only been

established under speci�c conditions. In Costa et al. (2020), by assuming a bounded support

for the reproduction function (which may take negative values), the authors obtained expo-

nential concentration inequalities using renewal techniques, further extending the results from

Reynaud-Bouret and Roy (2006). Without the bounded support assumption, but supposing

the reproduction function is exponential, Dion et al. (2021) showed that the non-linear Hawkes

process is exponentially β-mixing, relying on the general theory of Markov processes.

In this work, we focus on establishing rates of convergence for the α-mixing of the linear

Hawkes process, using the Poisson cluster decomposition of the process. Initially used to prove

asymptotic properties for time series and random �elds (see e.g. Rosenblatt, 1956), the α-
mixing property can be straightforwardly extended to the �eld of point processes (Westcott,

1972; Poinas et al., 2019). In the univariate context, Cheysson and Lang (2022) already derived

a polynomial rate of α-mixing under tail assumptions for the reproduction function of the Hawkes
process. However, their proof cannot be directly extended to the multivariate case, as a critical

argument of independence within each Poisson cluster, that is between the arrivals' times and

the number of arrivals in any given generation of the branching representation of the cluster,

does not hold when multiple components can mutually excit each other. This is solved by

establishing an exponential inequality in the multitype branching process, which allows us to

bound the covariance measure of the branching process.

In turn, the α-mixing of the process can serve as a basis for statistical applications, for

example by using central limit theorems (CLTs) that already exist in the literature (Doukhan

et al., 1994). To provide useful tools for statistical applications related to the multivariate

Hawkes process, we enunciate both a classical and a functional CLTs in this context, and show

that the parameters appearing in these CLTs can be easily calculated in practice, using the

spectral representation of the process. Indeed, while the covariance structure of the Hawkes

process is often non-explicit, except for exponential reproduction functions (Da Fonseca and

Zaatour, 2014, 2015), its Bartlett spectrum (i.e. the Fourier transform of the autocovariance

of the process) has an explicit and simple form (Daley and Vere-Jones, 2003). Speci�cally, this

yields a simple estimator of the long run variance of the process which appears naturally in the

CLTs.

Section 2 introduces the notation we use throughout and the Hawkes model. In Section 3, we

establish the main results of our contribution, namely an α-mixing property and a functional CLT
for the multivariate Hawkes process. Proofs are postponed to subsequent sections, respectively

in Section 4 and 5.

2 Main de�nitions

2.1 Notation

Throughout this paper, we consider a probability space (Ω,F ,P) and the measurable space

(N,N ) of locally �nite counting measures on R with values in Nd, with d ≥ 1. We denote by

B(A) the Borel σ-algebra generated over a subset A ⊂ R, and for a multivariate point process

N = (N1, . . . , Nd) i.e. a measurable map from (Ω,F ,P) to (N,N ), by E(A) the cylindrical

σ-algebra generated by N on A and de�ned by

E(A) := σ({N ∈ N : N(B) = m}, B ∈ B(A),m ∈ Nd).
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Finally, denote byN|A the point process restricted to A, that is the process de�ned byN|A(B) =
N(A ∩B) for all B ∈ B(R).

We also introduce some notation for function and vector norms. For a function f : R → R,
denote its L1-norm by ∥f∥L1 ,

∥f∥L1 =

∫
R
|f(x)|dx.

For a vector u = (u1, . . . , un) ∈ Rn, denote its ℓ1-norm by ∥u∥1,

∥u∥1 =
n∑

k=1

|uk|,

and its supremum norm by ∥u∥∞,

∥u∥∞ = sup
1≤k≤n

|uk|.

2.2 The multivariate linear Hawkes process

The multivariate Hawkes process N = (N1, . . . , Nd) can be de�ned as a point process such that

� For all 1 ≤ j ≤ d, the conditional intensity λj(t) of the component Nj � satisfying

P
(
Nj

(
(t, t+ h)

)
= 1 | Ft−

)
= λj(t)h+ o(h),

with Ft the natural �ltration of the process N � is a left-continuous stochastic process

given by

λj(t) = ηj +

d∑
i=1

∫ t

−∞
hij(t− u)Ni(du)

= ηj +
d∑

i=1

∑
{n:Tn

i <t}

hij(t− Tn
i ),

where ηj > 0 is the baseline intensity of Nj , hij : R+ → R+ the reproduction function

from component i to j, and {Tn
i }n are the atoms of Ni.

� The point process is orderly: for all 1 ≤ i ̸= j ≤ d, Ni and Nj never jump simultaneously,

P
(
∥N
(
(t, t+ h)

)
∥1 ≥ 2 | Ft−

)
= o(h).

The multivariate Hawkes process N can also be seen as a Poisson cluster process (see Hawkes

and Oakes, 1974), where clusters are mutually independent branching processes generated re-

cursively as follows:

� Cluster centres, also called immigrants of the process, form the generation 0 of the branch-

ing processes. Immigrants of type j arrive according to a homogeneous Poisson process

with rate ηj .

� Then, an individual Tn
ki of generation k and type i generates o�springs of generation k+1

and type j according to an inhomogeneous Poisson process with intensity hij(· − Tn
ki).

For a single branching process, denoting by Zki the number of individuals of generation k and

type i, we have that (Zki)k∈N,1≤i≤d is a multivariate Galton�Watson process. We will make the

following assumption, which ensures the existence and stationarity of the multivariate Hawkes

process (Bremaud and Massoulie, 1996).

Assumption 2.1. The spectral radius of the reproduction matrix, de�ned byM := (∥hij∥L1)1≤i,j≤d,

is strictly less than 1.
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3 Main results

3.1 Strong mixing of the multivariate Hawkes process

For a probability space (Ω,F ,P) and A,B two sub σ- algebras of F , the strong mixing coe�cient

is de�ned as the measure of dependence between A and B (Rosenblatt, 1956):

α(A,B) := sup{|P(A ∩B)− P(A)P(B)| , A ∈ A, B ∈ B.}

The de�nition of the strong mixing coe�cient can be adapted to a multivariate point process

N, by de�ning (see Poinas et al., 2019)

αN(τ) = α(E t
−∞, E+∞

t+τ ) = sup
t∈R

sup
A∈Et

−∞
B∈E∞

t+τ

∣∣Cov(1A(N),1B(N)
)∣∣

where Eb
a stands for E((a, b]), i.e the σ-algebra generated by the cylinder sets on the interval

(a, b], and 1A(N) is the indicator function of the cylinder set A, i.e for any elementary cylinder

set AB,n = {N ∈ N : N(B) = n}, 1A(N) = 1 if N(B) = n and 0 otherwise. As in the univariate
case, the process is said to be strongly mixing if αN(τ) → 0 as τ → ∞.

In the context of multivariate Hawkes processes, the main result of this contribution is the

following theorem. Theorem 3.1 can serve as a basis for various statistical applications, as

exampli�ed by the next subsection.

Theorem 3.1. Let N be a multivariate Hawkes process with reproduction functions (hij)1≤i,j≤d

such that Assumption 2.1 holds true. Further assume that there exists β > 0 such that the

reproduction kernels have �nite moment of order 1 + β:

sup
1≤i,j≤d

∫
R
t1+βhij(t)dt < ∞.

Then, for any 0 < γ < β, as τ → ∞,

αN(τ) = O
(
τ−γ

)
. (1)

While the proof (postponed to Section 4) mostly extends that of Cheysson and Lang (2022)

to the multivariate case, it also circumvents a lemma in the proof of the aforementioned article:

in the univariate Galton-Watson process, the number of individuals in any given generation

is independent from the arrival times of all individuals, and vice versa, whereas this is only

valid conditionally on the genealogy of individuals in the multivariate case. This is the heart

of the proof and the focus of Lemmas 4.3 and 4.4, which aim to prove that we can make

do with exponential inequalities instead of independence when bounding the strong mixing

coe�cient, thanks to the asymptotic contraction property of the reproduction matrixM, ensured

by Assumption 2.1.

3.2 An application to statistics

3.2.1 A functional central limit theorem

Suppose that we observe a point process N = (N1, . . . , Nd) from a stationary multivariate

Hawkes model with intensities mi ≥ 0, and that we are interested in the asymptotic behaviour

of statistics of the form
d∑

i=1

Ni(fi
∣∣
[0,T ]

) =

d∑
i=1

∫
[0,T ]

fi(x)Ni(dx),
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or rather their centered version,

ST =
d∑

i=1

∫
[0,T ]

fi(u)
(
Ni(du)−midu

)
, (2)

where fi : R → R denote bounded measurable functions (1 ≤ i ≤ d) and fi
∣∣
[0,T ]

: x 7→
fi(x)1[0,T ](x) their restriction to [0, T ]. The variance of ST can be related to the covariance

measure of N, whose elements are denoted Cij , through the use of Campbell's formula:

σ2
T = VarST =

d∑
i=1

d∑
j=1

∫∫
[0,T ]2

fi(u)fj(v)Cij(du× dv).

Finally, for 0 ≤ u ≤ 1, de�ne

vT (u) = inf{t ∈ (0, T ) : σ2
t /σ

2
T ≥ u} and WT (u) = σ−1

T SvT (u).

The following proposition is a consequence of the functional central limit theorem for nonsta-

tionary strongly mixing processes in Merlevède and Peligrad (2020, Corollary 2.2), in conjunction

with the mixing property derived in Theorem 3.1. Its proof is deferred until Section 5.

Proposition 3.1. Let N be a multivariate Hawkes process satisfying the conditions of Theorem

3.1. Assume also that σ2
T = Tσ2+ o(T ) as T → ∞, and that each fi is locally (2+ δ)-integrable,

with β, δ > 0, such that (β− 1)δ > 2. Then, {WT (u), u ∈ (0, 1)} converges in distribution in the

Skorokhod space D([0, 1]) (equipped with the uniform topology) to the standard Brownian motion.

Note also that this result implies that ST satis�es the classical central limit theorem (see

Merlevède and Peligrad, 2020, Section 2.1.3).

Corollary 3.1. Let N be a multivariate Hawkes process as in Proposition 3.1. Then σ−1
T ST

converges in distribution to the standard normal distribution.

However, in practice, the covariance measure of the Hawkes process has no explicit form

(except in the case of exponential kernels, see Da Fonseca and Zaatour, 2015), so we can turn

to the spectral properties of the process. Recall that the Bartlett spectrum of a stationary

multivariate point process N on R is de�ned as the unique, positive-de�nite, Hermitian measure

Γ of auto- and cross-spectral measures (Γij(·)) such that, for any rapidly decaying function f
and g on R (Daley and Vere-Jones, 2003, chapter 8),

Cov
(
Ni(f), Nj(g)

)
=

∫
R
Ff(ξ)Fg∗(ξ)Γij(dξ), (3)

where F· denotes the Fourier transform,

Ff(ξ) =

∫
R
e−2iπξuf(u)du, (4)

and g∗(u) = g(−u), so that Fg∗ is the complex conjugate of Fg.
It turns out that the Bartlett spectrum for the multivariate Hawkes process is known, and

has density given by

γ(ξ) =
(
I− [H̃(2πξ)]⊺

)−1
diag(m1, . . . ,md)

(
I− H̃(−2πξ)

)−1
,
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with diag(m1, . . . ,md) = (I− [H̃(0)]⊺)−1η; discrepancies with the expression in Daley and Vere-

Jones (2003, example 8.3(c)) can be attributed to the de�nition of the reproduction matrix H
and our choice of convention for the Fourier transform (4). Then the variance of ST can be

calculated by the relation

σ2
T = VarST =

d∑
i=1

d∑
j=1

∫
R
Ffi

∣∣
[0,T ]

(ξ)Ffj
∣∣∗
[0,T ]

(ξ)γij(ξ)dξ. (5)

3.2.2 Two examples

Though the integral appearing in (5) can be di�cult to compute analytically, we highlight two

cases where the computation is explicit, so that it may be used in applications.

Asymptotically constant functions. Assume each fi is of the form fi(·) = ki + gi(·) with
ki constants such that ∥k∥1 > 0 and gi bounded and integrable functions. Then, we �nd that

σ2
T = T

d∑
i=1

d∑
j=1

kikjγij(0) + o(T ) = Tk⊺γ(0)k+ o(T ),

yielding that the process
{
(Tk⊺γ(0)k)−1/2STu, u ∈ (0, 1)

}
converges in distribution to the stan-

dard Brownian motion, and (Tk⊺γ(0)k)−1/2ST to the standard normal distribution.

Proof. Since F1[0,T ](ξ) = Te−iπξT sinc(πξT ), the leading term in the variance (5) is given by

d∑
i=1

d∑
j=1

kikj

∫
R
F1[0,T ](ξ)F1∗[0,T ](ξ)γij(ξ)dξ =

d∑
i=1

d∑
j=1

kikjT
2

∫
R
sinc2(πξT )γij(ξ)dξ

=

d∑
i=1

d∑
j=1

kikjT

∫
R
sinc2(πω)γij(ω/T )dω.

The dominated convergence theorem then yields that∫
R
sinc2(πω)γij(ω/T )dω −−−−→

T→∞
γij(0)

∫
R
sinc2(πω)dω = γij(0).

Asymptotically periodic functions. Assume each fi is of the form fi(·) = hi(·)+gi(·), with
hi τ -periodic functions such that

∑d
i=1

∫ τ
0 hi(t)dt ̸= 0 and gi bounded and integrable functions.

Then

σ2
T =

T

τ2

d∑
i=1

d∑
j=1

∑
k∈Z

Fhi
∣∣
[0,τ ]

(
k

τ

)
Fhj

∣∣∗
[0,τ ]

(
k

τ

)
γij

(
k

τ

)
+ o(T ),

so that the process
{
σ
−1/2
T STu, u ∈ (0, 1)

}
has the desired convergence to the standard Brownian

motion.

Proof. Choose T = nτ with n ∈ N+. Then,

Fhi
∣∣
[0,T ]

(ξ) =
n∑

k=1

∫ kτ

(k−1)τ
e−2iπξxhi(x)dx

=
n∑

k=1

e−2iπξ(k−1)τFhi
∣∣
[0,τ ]

(ξ),
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so that the leading term in the variance (5) is given by

d∑
i=1

d∑
j=1

∫
R
Fhi

∣∣
[0,T ]

(ξ)Fhj
∣∣∗
[0,T ]

(ξ)γij(ξ)dξ

=

d∑
i=1

d∑
j=1

∫
R

n∑
k=1

n∑
l=1

e−2iπξ(k−l)τFhi
∣∣
[0,τ ]

(ξ)Fhj
∣∣∗
[0,τ ]

(ξ)γij(ξ)dξ.

A bit of calculus gives that

n∑
k=1

n∑
l=1

e−2iπξ(k−l)τ = n+ 2Re

(
e2iπξnτ

n−1∑
k=1

ke−2iπξkτ

)

=
1− cos(2πξnτ)

1− cos(2πξτ)

so that, for any ϕ absolutely integrable,

1

n

∫
R

1− cos(2πξnτ)

1− cos(2πξτ)
ϕ(ξ)dξ =

1

n

∑
k∈Z

∫ 1/2τ

−1/2τ

1− cos(2πξnτ)

1− cos(2πξτ)
ϕ

(
ξ +

k

τ

)
dξ

=
1

2πn2τ

∑
k∈Z

∫ πn

−πn

1− cos(ξ)

1− cos(ξ/n)
ϕ

(
ξ

2πnτ
+

k

τ

)
dξ

=
1

2πτ

∑
k∈Z

∫ ∞

−∞

1[−πn,πn](ξ)

n2

1− cos(ξ)

1− cos(ξ/n)
ϕ

(
ξ

2πnτ
+

k

τ

)
dξ.

Since the integrand is bounded above by ξ 7→ |ϕ(ξ/(2πnτ) + k/τ)| which is integrable, and

lim
n→∞

1[−πn,πn](ξ)

n2

1− cos(ξ)

1− cos(ξ/n)
ϕ

(
ξ

2πnτ
+

k

τ

)
= 2

1− cos(ξ)

ξ2
ϕ

(
k

τ

)
,

the dominated convergence theorem yields that

lim
n→∞

∫ ∞

−∞

1[−πn,πn](ξ)

n2

1− cos(ξ)

1− cos(ξ/n)
ϕ

(
ξ

2πnτ
+

k

τ

)
dξ = 2ϕ

(
k

τ

)∫ ∞

−∞

1− cos(ξ)

ξ2
dξ = 2πϕ

(
k

τ

)
.

Hence,

ξ 7→ 1

n

1− cos(2πξnτ)

1− cos(2πξτ)
converges, in the sense of distributions, to ξ 7→ 1

τ

∑
k∈Z

δk/τ (ξ),

yielding the desired variance.

Finally, when T ̸= nτ , write T = nτ + ε with ε < τ so that the leading term in the variance

remains the same.

4 Proof of Theorem 3.1

Most of the proofs follow those of Cheysson and Lang (2022), extended here to the multivariate

setup. We �rst present the layout of the proof, introducing auxiliary results when needed, then

in subsequent subsections prove these results.
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4.1 Layout of the proof

Recall that the strong mixing coe�cient of a point process N is de�ned by

αN(τ) = α(E t
−∞, E+∞

t+τ ) = sup
t∈R

sup
A∈Et

−∞
B∈E∞

t+τ

∣∣Cov(1A(N),1B(N)
)∣∣.

The �rst step of the proof is to bound the covariance of the indicator functions with that of

the point process itself, using the positive association of Hawkes processes (Gao and Zhu, 2018,

Section 2.1, key property (e)). Recall that a X -valued random variable X is positively associated

if for each pair of bounded, Borel measurable, non-decreasing functions f, g : X → R, we have
Cov(f(X), g(X)) ≥ 0. This property can be used to bound the covariance of an associated point
process, using Theorem 2.5 from Poinas et al. (2019), which we extend to the multivariate setup.

Proposition 4.1. Let N = (N1, · · · , Nd) be an associated multivariate point process and A,B ⊂
R two disjoint bounded subsets of R. Let f : N → R and g : N → R be two functions such that

f(N|A) and g(N|B) are bounded, then∣∣∣Cov (f(N|A), g(N|B)
)∣∣∣ ≤ ∥f∥A ∥g∥B

∣∣∣Cov (∥N(A)∥1, ∥N(B)∥1
)∣∣∣ ,

where

∥f∥A := sup
N∈N

sup
1≤i≤d
x∈A

|f(N|A + δix)− f(NA)|,

and δix denotes the multivariate point process with a single atom at component i and position x.

For the Hawkes process, this leads to the following lemma, whose proof uses the Poisson

cluster structure of the process.

Lemma 4.1. Let N be a multivariate Hawkes process satisfying Assumption 2.1. Let s, t, v ∈ R
and τ > 0 such that s < t < t + τ < v, A ∈ E t

s, B ∈ Ev
t+τ , and A = (s, t] and B = (t + τ, v].

Then ∣∣∣Cov (1A(N),1B(N)
)∣∣∣ ≤ d∑

i=1

d∑
j=1

d∑
k=1

∫ ∣∣∣Cov (Ni(A | y), Nj(B | y)
)∣∣∣M c

k(dy), (6)

where M c
k denotes the �rst-order moment measure of the k-th component N c

k of the cluster centre

process.

Without loss of generality, we consider a cluster whose immigrant is located at time 0. Let
Zki denote the number of points of generation k of the i-th component of the point process, and

Zki(A) those that are located in the set A ⊂ R. By de�nition, we have

Ni(A | 0) =
∞∑
k=0

Zki(A).

Then, the covariance between two components of a single branching process can be written

Cov
(
Ni(A | 0), Nj(B | 0)

)
=

∞∑
k=0

∞∑
l=0

Cov
(
Zki(A), Zlj(B)

)
. (7)
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As Zki(A), Zlj(B) ≥ 0, the terms appearing in the sum on the right hand side can be bounded

by

|Cov(Zki(A), Zlj(B))| =
∣∣E [Zki(A)Zlj(B)

]
− E

[
Zki(A)

]
E
[
Zlj(B)

]∣∣
≤ max

(
E
[
Zki(A)Zlj(B)

]
,E
[
Zki(A)

]
E
[
Zlj(B)

])
.

Let Tm
lj denote the m-th time of arrival of generation l and type j, and consider the �rst term

appearing in the maximum above. Noting that for a non-negative integer I, I =
∑∞

n=1 1{I≥n},
we have that

E[Zki(A)Zlj(B)] ≤ E[Zki(R)Zlj(B)] =

∞∑
n=1

∞∑
m=1

E
[
1{Zki≥n}1{Zlj≥m}1{Tm

lj ∈B}

]
≤

∞∑
n=1

∞∑
m=1

E
[
1{Zki≥n}

]1/p E
[
1{Zlj≥m}

]1/q E
[
1{Tm

lj ∈B}
]1/r

=

∞∑
n=1

∞∑
m=1

P(Zki ≥ n)1/p P(Zlj ≥ m)1/q P(Tm
lj ∈ B)1/r.

(8)

where the second line follows from Hölder's inequality with any p, q, r ≥ 1, 1
p + 1

q +
1
r = 1.

Remark. Note that the use of Hölder's inequality and the need for an exponential bound on

P(Zki ≥ n) and P(Zlj ≥ m) di�er from the univariate case (see Cheysson and Lang (2022)),

for which the times of arrival in a generation k and the number of points in a generation l are
independent, for all k and l. This is not the case in the multivariate setup, since the distribution

of an arrival time may depend on its genealogy, through the types of its ancestors.

We can establish a simple upper bound on P(Tm
lj ∈ B) using Markov's inequality.

Lemma 4.2. Let β > 0 and assume that

ν1+β = sup
1≤i,j≤d

∫
R
t1+βh∗ij(t)dt < ∞,

with h∗ij = hij/∥hij∥L1 . Then,

P(Tm
lj ∈ B) ≤

l1+βν1+β

(t+ τ)1+β
. (9)

The following two lemmas form the heart of the proof, and make it distinct to the univariate

case: in order to bound the right-hand side of (8) with the fastest rate of convergence to zero,

the term P(Tm
lj ∈ B)1/r = O

(
τ−(1+β)/r

)
must converge as fast as possible, so that r should

be chosen as small as possible. Consequently, in Hölder's inequality, p and q may be arbitrary

large. To ensure that the terms P(Zki ≥ n)1/p and P(Zlj ≥ m)1/q are summable with respect

to n and m, we �rst prove an exponential inequality for the multitype Galton-Watson process

(Zki), through its Laplace transform, yielding the following lemma.

Lemma 4.3. Let u = (u1, . . . , ud) ∈ Rd with strictly positive entries. Then,

∞∑
n=1

P(Zki ≥ n)1/p ≤ C1

(
L{Zk}(u)− 1

)1/p
, (10)

where L{Zk}(u) = E[exp(Z⊺
ku)] denotes the Laplace transform of Zk and C1 denotes a constant

that can be chosen uniformly with respect to 1 ≤ i ≤ d.

9



Remark. Throughout the rest of the proof, the Ck are absolute constants.

Plugging both (9) and (10) into (8) yields

E[Zki(A)Zlj(B)] ≤
∞∑
n=1

∞∑
m=1

P(Zki ≥ n)1/p P(Zlj ≥ m)1/q P(Tm
lj ∈ B)1/r

≤ C2

(
L{Zk}(u)− 1

)1/p(L{Zl}(u)− 1
)1/q ( l1+βν1+β

(t+ τ)1+β

)1/r

.

The same reasoning can be applied to E[Zki(A)]E[Zlj(B)], leading to an analogous Hölder

inequality, so that we only detailed the proof for E[Zki(A)Zlj(B)] which is the slightly more

complicated case. Then, from (7),∣∣∣Cov (Ni(A | 0), Nj(B | 0)
)∣∣∣

≤
∞∑
k=0

∞∑
l=0

C2

(
L{Zk}(u)− 1

)1/p(L{Zl}(u)− 1
)1/q ( l1+βν1+β

(t+ τ)1+β

)1/r

. (11)

We now focus on proving the summability of the series
∑

k

(
L{Zk}(u)−1

)1/p
. The di�culty

of this proof is algebraic in nature, as even though the spectral radius of the reproduction

matrix M := (∥hij∥L1)1≤i,j≤d is strictly less than 1 (by Assumption 2.1), it does not ensure

that ∥Mu∥1 ≤ ∥u∥1 for all u. However, this holds asymptotically, such that for n large,

∥Mnu∥1 ≤ ∥u∥1. Then, a recurrence on the Laplace transform of Zk with a good choice for u
yields the summability of the series.

Lemma 4.4. There exists u = (u1, . . . , ud) with uj > 0 for all 1 ≤ j ≤ d such that
∑

k

(
L{Zk}(u)−

1
)1/p

and
∑

l l
(1+β)/r

(
L{Zl}(u)− 1

)1/q
are summable.

The inequality in (11) can then be simpli�ed to

∣∣∣Cov (Ni(A | 0), Nj(B | 0)
)∣∣∣ ≤ C3

(
ν1+β

(t+ τ)1+β

)1/r

. (12)

Finally, choose r = (1 + β)/(1 + γ) and p = q = 2 (1 + β)/(β − γ), such that (1 + β)/r =
1 + γ > 1. Then, plugging (12) into (6) yields

∣∣∣Cov (1A(N),1B(N)
)∣∣∣ ≤ d∑

i=1

d∑
j=1

d∑
k=1

∫ ∣∣∣Cov (Ni(A | y), Nj(B | y)
)∣∣∣ ηkdy

≤ C4d
3ν

1/r
1+β

∫ t

−∞

1

(t+ τ − y)1+γ
sup

1≤k≤d
{ηk} dy

≤ C5τ
−γ .

which is the desired bound.

4.2 Proof of Proposition 4.1

The layout of this proof is identical to that of Poinas et al. (2019), but for clarity we detail it

within the multivariate setup. Consider a positively associated multivariate point processN. We
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consider the functions f+, f− : N → R, E(A)-measurable, and g+, g− : N → R, E(B)-measurable,
de�ned by {

f±(N) = f(N|A)± ∥f∥A ∥N(A)∥1,
g±(N) = g(N|B)± ∥g∥B ∥N(B)∥1.

For all 1 ≤ i ≤ d and x ∈ A,

f+(N+ δix)− f+(N) = f(N|A + δix)− f(N|A) + ∥f∥A
which is positive by the de�nition of ∥f∥A. Therefore, f+ is an increasing function respective to

the partial order de�ned by N ≤ M if and only if for all 1 ≤ i ≤ d,

∀A ⊂ R, Ni(A) ≤ Mi(A).

With the same reasoning, g+ is also increasing, and f−, g− are decreasing. While f+ is not

bounded, it is non-negative and almost surely �nite so that by a limiting argument, using the

sequence of functionsmin(f+, k) when k goes to in�nity, the association inequality can be applied
to f+. The other functions can be treated the same way, which leads to the inequalities

Cov
(
f+(N), g+(N)

)
≥ 0 and Cov

(
f−(N), g−(N)

)
≥ 0.

We can then expand these expressions

Cov
(
f+(N), g+(N)

)
= Cov

(
f(N|A), g(N|B)

)
+ ∥f∥A ∥g∥B Cov

(
∥N(A)∥1, ∥N(B)∥1

)
+ ∥g∥B Cov

(
f(N|A), ∥N(B)∥1

)
+ ∥f∥ACov

(
∥N(A)∥1, g(N|B)

)
and

Cov
(
f−(N), g−(N)

)
= Cov

(
f(N|A), g(N|B)

)
+ ∥f∥A ∥g∥B Cov

(
∥N(A)∥1), ∥N(B)∥1

)
− ∥g∥B Cov

(
f(N|A), ∥N(B)∥1

)
− ∥f∥ACov

(
∥N(A)∥1, g(N|B)

)
.

Adding these two expressions together yields the lower bound:

Cov
(
f(N|A), g(N|B)

)
≥ −∥f∥A ∥g∥B Cov

(
∥N(A)∥1, ∥N(B)∥1

)
. (13)

The upper bound is obtained similarly by replacing f by −f in the previous expression.

4.3 Proof of Lemma 4.1

Using Proposition 4.1 with f = 1A and g = 1B, we have∣∣∣Cov (1A(N),1B(N)
)∣∣∣ ≤ ∣∣∣Cov (∥N(A)∥1, ∥N(B)∥1

)∣∣∣
≤

d∑
i=1

d∑
j=1

∣∣∣Cov (Ni(A), Nj(B)
)∣∣∣ .

Then, denoting by M c
k the �rst-order moment measure of the k-th component N c

k of the cluster

centre process, and by Cc
kl the covariance measure between the k-th and l-th components of the

cluster centre process (1 ≤ k, l ≤ d), we have, by conditioning on the cluster centre process (see

for example Daley and Vere-Jones, 2003, Exercise 6.3.4),

Cov
(
Ni(A), Nj(B)

)
=

d∑
k=1

∫
Cov

(
Ni(A | y), Nj(B | y)

)
M c

k(dy)

+
d∑

k=1

d∑
l=1

∫ ∫
E(Ni(A) | x)E(Nj(B) | y)Cc

kl(dx× dy).

Since the centre process is Poisson, Cc
kl ≡ 0 and the second term vanishes.
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4.4 Proof of Lemma 4.2: an upper bound for P(Tm
lj ∈ B)

Consider the inter-arrival times between a parent and its o�springs. Since an individual Tn
ki

of generation k and type i generates o�springs of generation k + 1 and type j according to an

inhomogeneous Poisson process with intensity hij(· − Tn
ki), these inter-arrival times are inde-

pendent of each other, and their distributions only depend on the type i of the parent and the

type j of the o�spring. Consequently, any single arrival time Tm
lj can be written as the sum of l

independent inter-arrival times,

Tm
lj =

l∑
ι=1

∆ι(T
m
lj ),

where the density functions of the ∆ι(T
m
lj ) are amongst the (h∗ij)i,j .

Hölder's inequality then gives,

Tm
lj =

l∑
ι=1

∆ι(T
m
lj ) ≤

(
l∑

ι=1

1

)β/(1+β)

×

(
l∑

ι=1

(
∆ι(T

m
lj )
)1+β

)1/(1+β)

,

and by independence of the ∆ι(T
m
lj ),

E

[
l∑

ι=1

(
∆ι(T

m
lj )
)1+β

]
≤ l sup

1≤ι≤l
E
[(
∆ι(T

m
lj )
)1+β

]
≤ l ν1+β.

Hence,

E
[(
Tm
lj

)1+β
]
≤ l1+βν1+β.

Finally, we can apply Markov's inequality to P(Tm
lj ∈ B), recalling that B = (t+ τ, v]:

P(Tm
lj ∈ B) ≤ P(Tm

lj > t+ τ) ≤
l1+βν1+β

(t+ τ)1+β
.

4.5 Proof of Lemma 4.3: exponential inequality for P(Zki ≥ n) and P(Zlj ≥ m)

First recall that the Laplace transform of a Poisson variable X with intensity λ is given by

L{X}(u) = E[euX ] = eλ(e
u−1). (14)

For a N-valued random variable Y and a constant α ≥ 0, de�ne the reproduction operator ◦ by

α ◦ Y =

Y∑
n=1

ξ(α)n ,

where ξ
(α)
n

i.i.d.∼ P(α), independently of Y .
Denoting by Zk = (Zk1, . . . , Zkd)

⊺ the random vector for the number of points of generation

k for each component of the branching process, we have that conditionally on Zk−1, the vari-

ables Zkj are Poisson with intensity (Z⊺
k−1M)j =

∑d
i=1 Zk−1,iMij (k > 0, 1 ≤ j ≤ d). More

speci�cally, we have that

Zkj =
d∑

i=1

Mij ◦ Zk−1,i =
d∑

i=1

Zk−1,i∑
n=1

ξ
(Mij)
n

12



where ξ
(Mij)
n

i.i.d.∼ P(Mij) independently of all Zk−1,i.

For all u = (u1, · · · , ud) ∈ Rd, consider now the Laplace transform of Zk,

L{Zk}(u) = E
[
exp(Z⊺

ku)
]
= E

exp
 d∑

j=1

ujZkj


= E

exp
 d∑

j=1

d∑
i=1

ujMij ◦ Zk−1,i


= E

exp
 d∑

j=1

d∑
i=1

Zk−1,i∑
n=1

ujξ
(Mij)
n


= E

 d∏
j=1

d∏
i=1

Zk−1,i∏
n=1

E
[
exp

(
ujξ

(Mij)
n

) ∣∣∣Zk−1

]
= E

 d∏
j=1

d∏
i=1

Zk−1,i∏
n=1

exp (Mij(e
uj − 1))

 (15)

= E

exp
 d∑

j=1

d∑
i=1

Zk−1,iMij(e
uj − 1)


= E

[
exp

(
Z⊺
k−1M(eu − 1)

)]
,

where (15) was obtained using (14) and the fact that ξ
(Mij)
n and Zk−1 are independent, and eu

denotes the component-wise exponentiation of u.
De�ne the function g by g(u) = M(eu − 1). By recurrence, we therefore have

L{Zk}(u) = L{Zk−1}(g(u)) = . . . = L{Z0}(gk(u)), (16)

where gk stands for the k-fold composition of g with itself.

Finally, we can apply Markov's inequality to Zki for any 1 ≤ i ≤ d,

P(Zki ≥ n) = P(euiZki − 1 ≥ euin − 1) ≤ EeuiZki − 1

euin − 1
≤ L{Zk}(u)− 1

euin − 1
,

where u = (u1, . . . , ud) was chosen with strictly positive entries. Then, as
∑

n(e
uin − 1)−1/p is

summable,
∑

n P(Zki ≥ n)1/p is also summable and

∞∑
n=1

P(Zki ≥ n)1/p ≤ C1 (L{Zk}(u)− 1)1/p ,

where C1 is an absolute constant, which can be chosen uniformly with respect to 1 ≤ i ≤ d.

4.6 Proof of Lemma 4.4: summability of
∑

k(L{Zk}(u)− 1)1/p

De�ne δ such that 1 < δ < ρ−1, where ρ = Sp(M) < 1 denotes the spectral radius of the

reproduction matrix M. Then there is a u0 > 0 such that, for all u ∈ [0, u0], e
u − 1 ≤ δu.

Applying this to the vector u = (u1, . . . , ud) with uj ∈ [0, u0] for all 1 ≤ j ≤ d, we �nd that

g(u) = M(eu − 1) ≤ δMu, (17)

where the inequality holds term by term.
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Lemma 4.5. There exists u = (u1, . . . , ud) with uj > 0 for all 1 ≤ j ≤ d such that, for all

k ∈ N,
gk(u) ≤ δkMku.

Furthermore, there exists a constant 0 < c < 1 and an integer k0 > 0 such that, for all k ≥ k0,

∥gk(u)∥1 ≤ ck ∥u∥1. (18)

Proof. First note that, since ρ < 1, then for any matrix norm ∥·∥,

lim
n→∞

∥Mn∥1/n = ρ.

De�ne ε = 1/2 (δ−1 − ρ) > 0 such that cε = δ(ρ + ε) < 1. Then there exists k0 > 0 such that,

for all k ≥ k0,
∥Mk∥1 ≤ (ρ+ ε)k.

Therefore, for all k ≥ k0,

∥δkMku∥1 ≤ δk(ρ+ ε)k∥u∥1 = ckε ∥u∥1 −−−→
k→∞

0.

Since ∥δkMku∥∞ ≤ ∥δkMku∥1, the sequence (∥δkMku∥∞)k∈N is bounded for any u. Choose u
with strictly positive entries such that ∥δkMku∥∞ ≤ u0 for all k ∈ N (such a u exists since the

function u 7→ supk∈N∥δkMku∥∞ is continuous and non-decreasing). Then, a straightforward

recurrence from (17) yields the result.

Plugging (18) into the recurrence relation for the Laplace transform of Zk, (16), for a u, c
and k0 de�ned as in Lemma 4.5 and k ≥ k0, we �nd that

L{Zk}(u) = E[exp(Z⊺
0g

k(u))] ≤ exp
(
∥gk(u)∥1

)
≤ exp

(
ck∥u∥1

)
, (19)

noting for the �rst inequality that for the branching process, Z0 is a vector with only one non-zero

component, equal to one. Therefore, when k ≥ k0, we have that

|L{Zk}(u)− 1| ≤ |exp
(
ck∥u∥1

)
− 1| =

k→∞
ck∥u∥1 + o(ck).

Hence,
∑

k

(
L{Zk}(u) − 1

)1/p
is summable. Similarly, the series

∑
l l

(1+β)/r
(
L{Zl}(u) − 1

)1/q
is summable.

5 Proof of Proposition 3.1

Let us �rst write the functional central limit theorem proven in Merlevède and Peligrad (2020) in

the context of Rosenblatt's traditional α-mixing coe�cient (Rosenblatt, 1956), for non-triangular
sequences. Consider a sequence {Xk}k≥1 of centered (E[Xk] = 0) variables, with partial sums

Sn =
∑n

k=1Xk. Let σ
2
n = VarSn. For 0 ≤ t ≤ 1, de�ne

vn(t) = inf
{
m : 1 ≤ m ≤ n, σ2

m/σ2
n ≥ t

}
and Wn(t) =

vn(t)∑
k=1

Xk.

Consider, for δ > 0, the conditions

sup
n≥1

1

σ2
n

n∑
k=1

E[X2
k ] < ∞, and

1

σ2+δ
n

max
1≤k≤n

E[|Xk|2+δ] → 0, (20)

and

sup
n≥1

1

σ2
n

n∑
k=1

∥Xk∥22+δ < ∞ and
∑
τ≥1

τ2/δα(τ) < ∞. (21)
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Theorem 5.1 (Merlevède and Peligrad, 2020). Assume that conditions (20) and (21) are satis-

�ed for some δ > 0. Then, {σ−1
n Wn(u), u ∈ (0, 1]} converges in distribution in D([0, 1]) (equipped

with the uniform topology) to the standard Brownian motion.

We look to apply this result to functions of Hawkes processes. De�ne the sequence {Xk}k≥1

as

Xk =
d∑

i=1

∫ k

k−1
fi(u)

(
Ni(du)−midu

)
,

so that its partial sums Sn coincide with the statistic de�ned in (2) when T = n is integer.

First note that

n∑
k=1

E[X2
k ] =

n∑
k=1

d∑
i=1

d∑
j=1

∫∫
[k−1,k]2

fi(u)fj(v)Cij(du× dv)

≤
n∑

k=1

d∑
i=1

d∑
j=1

∥fi∥∞∥fj∥∞
∫∫

[0,1]2
Cij(du× dv) =: nκ1,

where the inequality comes from the boundedness of fi and the stationarity of N. Then,

sup
n≥1

1

σ2
n

n∑
k=1

E[X2
k ] ≤ sup

n≥1

nκ1
nσ2 + o(n)

< ∞.

and the left part of condition (20) is ful�lled. Next, we have that

E[|Xk|2+δ] ≤ d1+δ
d∑

i=1

E
∣∣∣∣∫ n

n−1
fi(u)

(
Ni(du)−midu

)∣∣∣∣2+δ

≤ (2d)1+δ
d∑

i=1

(
E
∣∣∣∣∫ n

n−1
fi(u)Ni(du)

∣∣∣∣2+δ

+ E
∣∣∣∣∫ n

n−1
fi(u)midu

∣∣∣∣2+δ
)

≤ (2d)1+δ
d∑

i=1

∥fi∥2+δ
∞

(
E
[∣∣Ni((0, 1])

∣∣2+δ
]
+m2+δ

i

)
=: κ2,

where the �rst two inequalities follow from Jensen's inequality and the third from the bound-

edness of fi and the stationarity of Ni. Then, as Ni admits �nite exponential moments as a

Poisson cluster of subcritical multitype Poisson branching processes, we �nd that κ2 < ∞, and

since σ2
n = nσ2 + o(n) as n → ∞, the right part of condition (20) is veri�ed.

For the left hand side condition in (21), we write

sup
n≥1

1

σ2
n

n∑
k=1

∥Xk∥22+δ ≤ sup
n≥1

nκ
2/(2+δ)
2

nσ2 + o(n)
< ∞,

and the right hand side is satis�ed when (β − 1)δ > 2 according to Theorem 3.1.

Finally, Proposition 3.1 follows by applying the Theorem 5.1 to {Xk}k≥1, and whenever

T ̸∈ N using Slutsky's lemma for ST = S⌊T ⌋ +R(T ) with R(T ) = oP(σT ).
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