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Abstract 16 
 17 
Sensing internal bodily signals, or interoception, is fundamental to maintain life. However, 18 
interoception should not be viewed as an isolated domain, as it interacts with exteroception, 19 
cognition and action to ensure the integrity of the organism. Focusing on cardiac, respiratory 20 
and gastric rhythms, we review evidence that interoception is anatomically and functionally 21 
intertwined with the processing of signals from the external environment. Interactions arise at 22 
all stages, from the peripheral transduction of interoceptive signals to sensory processing and 23 
cortical integration, in a network that extends beyond core interoceptive regions. Interoceptive 24 
rhythms contribute to functions ranging from perceptual detection up to sense of self, or 25 
conversely compete with external inputs. Renewed interest for interoception revives long-26 
standing issues on how the brain integrates and coordinates information in distributed regions, 27 
by means of oscillatory synchrony, predictive coding or multi-sensory integration. Considering 28 
interoception and exteroception in the same framework paves the way for biological modes of 29 
information processing specific to living organisms. 30 
 31 
 32 
  33 
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Introduction 34 
The heart beats, the lungs fill, the stomach contracts: the organism is alive. All three organs 35 
constantly send information up to the brain where it is sensed and processed. This central 36 
monitoring or interoception1,2 mostly takes place unconsciously, but also occasionally gives 37 
rise to interoceptive conscious percepts in humans 3. The overall function of interoception is to 38 
process internal bodily parameters, to keep the organism alive by regulating (homeostasis) and 39 
anticipating (allostasis) bodily needs, in a loop of interoceptive perception – interoceptive 40 
control analogous to the (exteroceptive) perception-cognition-action loop. However, the 41 
interoceptive and exteroceptive loops should not be considered in isolation: interoception is 42 
tightly intertwined with the processing of the external environment, interacting with all stages 43 
of the exteroceptive loop. Such close interactions make sense from an evolutionary perspective: 44 
because interoception relates to vital functions, it is likely to constitute a driving force for 45 
exteroception, action and cognition. For instance, feeding behavior stems from physiological 46 
needs, but foraging for food also involves sensory sampling of the external environment, 47 
attentional orienting and memorization, as well as deciding whether to explore new venues or 48 
to exploit resources at the current location. Both interoception and exteroception thus contribute 49 
to the same overall function. Here we focus on the interplay between interoception and 50 
exteroception, rather than on how interoception contributes to the regulation of bodily state, 51 
reviewing both the human and animal literature at the system and cognitive levels. 52 
 53 
The organization of core interoceptive pathways has been reviewed in detail4-6 and we only 54 
briefly summarize it here. Core interoceptive pathways begin with chemo-, thermo- and 55 
mechano- receptors within the body. Peripheral information is relayed up to the central nervous 56 
system through the cranial nerves, including the vagus and glossopharyngeal nerves, and 57 
visceral sensory nerves such as the splanchnic, phrenic and cardiac nerves traveling through the 58 
spinal cord (Figure 1, right). Both pathways target the major interoceptive relays in the 59 
brainstem, the nucleus tractus solitarius7 (NTS) and parabrachial nucleus8 (PBN). These nuclei 60 
project in turn to other subcortical structures including hypothalamus, amygdala and directly or 61 
indirectly to neuromodulatory nuclei, as well as to several nuclei of the thalamus, 62 
ventroposterior medial and lateral nuclei9 but also paraventricular nucleus10. Cortical targets 63 
are reached after a thalamic relay or through direct projections from PBN to cortex11. The main 64 
known cortical targets are the posterior granular insula, which has a viscerotopic organization9, 65 
as well as the cingulate motor areas12 and somatosensory cortices13.  66 
 67 
We focus here on the cardiac, respiratory and gastric rhythms in both human and animal studies. 68 
The three rhythms are transduced via mechanoreceptors, can be easily measured non-invasively, 69 
and their respective periods, from a few hundreds of ms to ~20s, are short enough to match 70 
fluctuations in perception and cognition. In the first part of the review, we consider each rhythm 71 
in turn, from its generation and mechano-transduction to cortical targets, and describe the 72 
olfactory, somatosensory, proprioceptive and vascular pathways which complement core 73 
interoceptive pathways. The influence of bodily rhythms on brain and behavior comes in 74 
different forms, and reveals contributions to a range of functions, from perceptual detection up 75 
to the self, but also competition with external inputs. The cortical network impacted is spatially 76 
extensive, mostly consistent across the three rhythms, and includes cortices not classically 77 
considered to be interoceptive. Finally, we present the three candidate mechanisms of 78 
integration of bodily rhythms with external inputs or ongoing brain activity, namely oscillatory 79 
synchrony, predictive coding and multi-sensory integration, which underlie, sometimes 80 
implicitly, the interpretation of experimental studies. 81 
 82 
 83 
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Cardiac interoception 84 
 85 
Functions and pathways 86 
The heart provides the necessary force for blood circulation. It contains its own autonomous 87 
pacemaker (Figure1) generating the cardiac cycle (Figure 2B), characterized by the alternation 88 
of contraction (or systole, of a relatively fixed duration) and relaxation (or diastole, of more 89 
variable duration) of the atria and ventricles. Both descending pathways and local self-90 
regulating neural mechanisms further regulate heart rate and heart contraction, often in 91 
coordination with respiration (e.g., inspiration accelerates the heart) and vascular control. This 92 
results in a cardiac contraction typically every ~900 ms in adult healthy humans and every ~100 93 
ms in mice.  94 
 95 
Heartbeats are transduced by mechanoreceptors and relayed through core interoceptive 96 
pathways (Figure 1, right). Mechanoreceptors sensitive to the transient increase in blood 97 
pressure are located in the heart itself, but also in the carotid, the aortic arch or pulmonary 98 
vessels. Those baroreceptors discharge at each cardiac cycle14, with various latencies depending 99 
on receptor location and subtype15. The carotid and aortic baroreceptors are the most studied 100 
since they are involved in the so-called baroreflex16,17, going through nucleus tractus solitarius 101 
to regulate heart rate and blood pressure. Other cardiac mechanoreceptors inform about the 102 
occurrence of a cardiac contraction, independently of pressure changes, with large inter-species 103 
differences in the proportion of the different types of mechanoreceptors18. 104 
 105 
A number of other pathways exist for cardiac interoception (Figure 1, left). First, cardiac 106 
contractions are transduced into neural signals through proprioceptive or tactile peripheral 107 
receptors which detect the pulsatility of blood vessels19-21 or the change in thoracic volume. 108 
Second, some pathways recently discovered in rodents might also contribute. Astrocytes play 109 
many roles, and it appeared recently that astrocytes can function as intracranial 110 
baroreceptors22,23, in turn modulating brainstem neurons involved in blood flow sympathetic 111 
control in anesthetized rats23 and inducing firing in cortical neurons in acute brain slices22. Pulse 112 
transduction from vessels might even occur directly in pyramidal cells24, since those cells 113 
express the PIEZO2 channel, a mechanosensitive channel transducing membrane tension into 114 
electrical and biochemical signals25. While the last two mechanisms might profoundly alter 115 
current views of pulse-to-brain communication and suggest novel computational roles for 116 
hemodynamics26, the involvement of those mechanisms in freely moving animals as well as in 117 
humans remains to be demonstrated.  118 
 119 
Cardiac parameters: heart-rate variability, temporal contingencies and heartbeat 120 
evoked responses  121 
Under normal condition, the heart rate is irregular. Heart rate variability is the consequence of 122 
descending influence of cortical regions27,28 down to the heart. Changes in heart rate and heart-123 
rate variability are well-established phenomena, in particular under threat29 or fear30. In 124 
perceptual and cognitive paradigms, cardiac cycle duration is also systematically modified31-36 125 
with a small but consistent change of cardiac cycle duration induced by stimulus presentation 126 
and target detection. We review in more depth two other aspects of heart-brain communication: 127 
the influence of temporal contingencies (or relationships) between heartbeats and external 128 
stimuli or action, and the cognitive relevance of the transient neural response evoked by each 129 
heartbeat. 130 
 131 
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Temporal contingencies between heartbeats and external stimuli  132 
The predictability of the temporal relationship between heartbeats and external stimuli has been 133 
explicitly studied in experiments where external stimuli are repeatedly presented at a fixed 134 
latency after each heartbeat. This rationale extends the logic of both exteroceptive multi-sensory 135 
integration and predictive coding, where temporal contingencies play an important role, to the 136 
integration of interoceptive and exteroceptive signals. A series of studies rooted in the 137 
predictive coding framework showed two-ways interactions, with the processing of heartbeats 138 
in the central nervous system modulated by temporally congruent, predictable auditory 139 
stimuli37,38, and the processing of either auditory39 or visual40 stimuli attenuated when 140 
synchronized with the heartbeat. Sensitivity to temporal contingencies is also revealed in 141 
behavior: both infants41 and monkeys42 spend less time looking at a stimulus moving in 142 
synchrony with their heartbeats. The sense of body ownership in bodily illusions is enhanced 143 
when the virtual hand43, face44 or body45 is illuminated synchronously with the participant’s 144 
own heartbeats, in line with the idea that the integration of interoceptive and exteroceptive 145 
might be key to the sense of self in humans46-49. 146 
 147 
Another line of studies revealed that a broad range of perceptual, motor, cognitive and 148 
emotional functions depend on whether an external stimulus or an action occurs early or late in 149 
the cardiac cycle (Figure 2E). This line of studies is rooted in the hypothesis that baroreceptor 150 
activation during systole would induce a generalized cortical inhibition. Indeed, the sustained 151 
stimulation of carotid sinus baroreceptors induces immobility and sleep in dogs and monkeys50 152 
and the appearance of slow waves in cats and dogs51, an effect which could be mediated by the 153 
noradrenergic locus coeruleus52. In humans, artificially boosting baroreceptor activation 154 
reduces pain sensation53. It was therefore hypothesized that the cortex is transiently inhibited 155 
during each systole, resulting in pulsed inhibition. Pain consistently decreases during systole54-156 
56, which might account for the enduring popularity of the pulsed inhibition hypothesis57. 157 
However, findings are more mixed when it comes to other modalities. In the somatosensory 158 
domain, findings are mostly congruent with the pulsed inhibition hypothesis35,36,58,59; in 159 
audition, findings are mixed, with both positive60-63 and null findings64,65; and in vision, mostly 160 
null results are reported for emotionally neutral stimuli33,66,67. Finally, as opposed to the pulsed 161 
inhibition hypothesis, action would be facilitated during systole compared to diastole68-73, but 162 
again this finding is not consistent across studies74,75. 163 
 164 
A number of factors might account for such mixed findings. Given the anatomical convergence 165 
of interoceptive and somatosensory pathways, somatosensation might differ from vision and 166 
audition. Both the measure (ECG, pulse at different locations) and temporal definition of systole 167 
and diastole vary from one study to the other, whether stimuli are at or above threshold might 168 
also make a difference, and a variety of statistical approaches has been used (Box 1). Finally, 169 
and probably more crucially, in some experiments stimuli are delivered randomly and their 170 
position in the cardiac cycle is determined a posteriori, while in others the timing of stimuli is 171 
controlled on line to fall at a specific moment in the cardiac cycle. This might lead not only to 172 
subtle differences in heart rate31-34,36 but also to the development of expectancy processes when 173 
temporal contingencies are predictable76, for instance learning to expect an external stimulus 174 
200 ms after the heartbeat (Box 1). Understanding the mechanisms at play in cycle effects might 175 
be important to better understand brain-body interactions, as further detailed in the section 176 
entitled “Integrating bodily rhythms to brain dynamics: candidate mechanisms”, but detailed 177 
neurophysiological evidence might be difficult to obtain in rodents given their very fast heart 178 
rate. Besides, it remains to be determined whether cycle effects have an impact on perception 179 
and cognition outside the highly constrained laboratory settings imposing the temporal 180 
alignment of external stimuli and heartbeats. 181 
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 182 
Heartbeat-evoked responses 183 
Heartbeat-evoked responses (HERs) correspond to the transient neural activity observed when 184 
averaging neural data locked to heartbeats (Figure 2C). HERs were initially assumed to reflect 185 
baroreceptor activity77,78, but they could arise from any of the pathways described above for 186 
cardiac interoception. So far, cardiac parameters themselves such as heart rate or stroke volume 187 
seem to have only a limited influence on HERs’ variability79-81. Compared to responses evoked 188 
by exteroceptive stimuli, HERs’ recording and analysis require extra caution (Box 1). In 189 
humans HERs are observed (Figure 3) in somatosensory cortex49,59,82,83, ventromedial 190 
prefrontal cortex33,83-85 and posterior cingulate/ventral precuneus 59,84-87, insula and frontal 191 
operculum 85,88-91, as well as (mostly right) parietal lobule33,59,83 and extrastriate visual cortices 192 
91.  193 
 194 
Turning attention inwards and explicitly attending to one’s own heartbeats consistently 195 
modulates HERs92-98. Whether and how the attentional modulation of HERs translates into a 196 
more accurate conscious percept of heartbeats92,94,99 is currently being re-examined (see, e.g.100) 197 
since behavioral procedures to measure the conscious perception of heartbeats are being 198 
revised101,102. Beyond attentional modulations, HERs have been related to three different 199 
frameworks that we will discuss in turn: emotions, predictive coding, and self and 200 
consciousness. Because bodily changes have long been associated with emotions, HERs have 201 
been studied in the context of the somatic marker hypothesis103. HERs depend on the valence 202 
of emotional stimuli presented90,104,105 as well as on mood88,106 and arousal107. In such 203 
paradigms cardiac parameters also change108, making it difficult to know whether HERs vary 204 
because cardiac parameters change, or because heart-brain communication is altered – echoing 205 
the long-standing debate on the interplay between bodily changes and emotions. By analogy 206 
with exteroception, HERs have been viewed not as sensory responses per se, but as prediction 207 
errors signaling the discrepancy between the predicted and observed signal. HERs are 208 
modulated by cardiac-driven prediction of auditory stimuli37, by the predictability of outcome 209 
states109 and expected emotional content105. 210 
 211 
Last, HERs have also been related to the self. Indeed, the organism which has to be fed, 212 
protected and regulated can be considered as the simplest biological definition of the self 110. 213 
In line with this hypothesis, HERs do reflect self-relatedness during mind-wandering84,85, the 214 
strength of body ownership during bodily illusions44,86 and self-other distinction in mental 215 
imagery87, and contribute to the stability of decisions based on subjective preferences83. Finally, 216 
subjective experience, the hallmark of consciousness, requires the existence of a subject of 217 
experience47, a minimal form of self which might be biologically grounded in bodily 218 
signals47,111. HERs could index the subject of conscious experience, since they predict the 219 
likelihood of the conscious detection of a visual33 or somatosensory58 stimulus at threshold, 220 
covary with subjective pain perception112, and reliably index residual consciousness in post-221 
comatose patients113. Interestingly, patients suffering from depersonalization/derealization 222 
disorders, who experience a detachment from their own sensations, body and emotions, do not 223 
show the modulation of HERs by interoceptive attention114. 224 
 225 
 226 

Respiration 227 
 228 
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Functions and pathways 229 
The main, vital function of respiration is to allow for gaseous exchanges in the lung for blood 230 
oxygenation, but respiration is also used for sniffing and odor sampling, and the precise 231 
temporal regulation of air flow is fundamental for swallowing and vocalization115. In some 232 
species (e.g., dogs), respiration also plays a role in temperature regulation. As opposed to the 233 
heart or the stomach, which both generate their own pacemaker electrical activity, breathing 234 
patterns are generated within the central nervous system, in the pre-Bötzinger complex116 and 235 
surrounding nuclei located in the ventral medulla117. Another distinctive feature of respiration 236 
is that it can be voluntarily controlled (Box 2).  237 
So far, experimental data reveal that the influence of breathing on brain activity, particularly in 238 
the limbic system, appears mostly due to nasal respiration118-120, with the detection of airflow 239 
by mechanoreceptors in the olfactory bulb121. However other pathways exist, with potentially 240 
different cortical targets. Diaphragm stretch and contraction are relayed by the phrenic nerve 241 
up to primary somatosensory cortex122,123, and lung movement124 is relayed by the vagus nerve 242 
and influences hippocampal activity125 via intermediate nuclei. Chest expansion/contraction 243 
might also be detected by the skin and relayed by somatosensory pathways. Finally, the pre-244 
Bötzinger complex projects directly to a number of subcortical structures, including the 245 
interoceptive NTS and PBS as well the thalamus126 and the neuromodulatory locus coeruleus127. 246 
Such non-olfactory pathways could account for some of the respiratory patterns observed at the 247 
cortical level128.  248 
Coupling between the respiratory rhythm and neural activity has been mostly determined by 249 
analyzing the modulation of neural firing or brain rhythms (see Box 1 on experimental 250 
challenges with other methods) with the phase of respiration, either by searching for brain 251 
activity at respiration frequency, or by extending to brain-body rhythm interactions the rationale 252 
of phase-amplitude coupling, where the phase a low frequency brain rhythm modulates the 253 
amplitude of a higher frequency rhythm (Figure 2D). Behavior might depend on the strength of 254 
such coupling, or show differences between inspiration and expiration (Figure 2E).  255 
 256 
Nasal respiration and limbic system 257 
The influence of nasal respiration on brain activity129 has long been documented in the olfactory 258 
bulb and olfactory piriform cortex, but it extends well beyond olfactory structures. Modulation 259 
of neural activity by respiration has been observed in limbic regions, most notably in the 260 
hippocampus in both humans120 and rodents119,130 where it is distinct from the theta rhythm131,132. 261 
Respiration also modulates neural activity in medial prefrontal cortex in rodents130,133-135, a 262 
region considered to be analogous to the anterior cingulate cortex in humans. The involvement 263 
of large portions of the limbic system (amygdala, hippocampus, insula, cingulate) is confirmed 264 
in human intra-cranial recordings136,137. The coupling between nasal respiration and neural 265 
activity in limbic regions is also associated with the modulation of memory 266 
performance120,138,139 and of emotional ratings in humans120, and it influences freezing behavior 267 
in mice134,135. 268 
 269 
Respiration and neural activity in other regions 270 
The coupling between respiration and brain activity is far from being confined to the limbic 271 
system. First, respiratory-related activity is observed in the somatosensory cortex, both in 272 
humans137,140 and in different parts of the rodent or cat somatosensory cortex: the whisker barrel 273 
cortex118,141, trunk122,123 and nose142 representation. In humans, the detection of faint tactile 274 
stimuli is facilitated at the beginning of expiration36. Second, coupling between respiration and 275 
neural activity has also been observed in motor regions in both rodents141 and humans137. The 276 
link with motor activity is also revealed by enhanced cortico-muscle coherence143 and startle 277 
reflex responses144 during expiration, but more voluntary movement initiation75,140 during 278 
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inspiration. Reaction times in various auditory and visual tasks vary along the respiratory 279 
cycle145. Third, respiration is also coupled to neural activity in the visual system128,141,146 and 280 
influences visual performance140,146,147. Respiration-locked modulations were also reported in 281 
the human posterior cingulate cortex 140,148. Finally, a whole-brain investigation in humans 282 
during resting-state reveals an even larger array of regions coupled with respiration, including 283 
nodes of the default, saliency and dorsal attention networks as well as cerebellum148. From a 284 
more cognitive perspective, the strength of bodily illusions is enhanced when the virtual avatar 285 
either breathes149 or is illuminated150 in synchrony with the participant’s respiration. 286 
 287 
The directionality of the coupling is not always resolved in the experiments described above: 288 
is coupling due to an entrainment of neural activity by respiration, or to a neural command 289 
altering respiration rate and depth151? For instance, stimulation152,153 of the motor cortex in 290 
humans elicits twitches in the diaphragm, and in cats respiration-related activity in the 291 
hippocampus can drive respiratory changes154. The coupling between respiratory cycles and 292 
neural activity might also be due to neuromodulation. While there is no direct evidence for this 293 
yet, the selective manipulation of the projection of the pre-Bötzinger complex to the locus 294 
coeruleus leads to both slower respiration rate and less active exploration behavior in mice127.  295 
 296 
In the experimental literature on respiration, the interpretation most often put forward is that 297 
beyond olfactory sampling, respiration-entrained oscillations would play a role in the large-298 
scale coordination of neural dynamics, and may contribute to optimizing perception, emotion 299 
and cognition. This interpretation echoes the role ascribed to oscillatory synchrony in general, 300 
but results could also be interpreted in other frameworks, a point we will develop further in the 301 
section entitled “Integrating bodily rhythms to brain dynamics: candidate mechanisms”.  302 
 303 
 304 

Gastric interoception 305 
 306 
Functions and pathways 307 
The stomach mixes and grinds food during digestion. It senses a rich variety of stimuli, some 308 
related to stomach content155-157, others, upon which we focus, related to gastric electrical 309 
activity or mechanical distorsion158,159. Like the heart, the stomach generates its own 310 
rhythm160,161, with cycles lasting about 20s in both humans and rodents. The rhythm is 311 
intrinsically generated by non-neuronal pacemaker cells, the Interstitial Cells of Cajal162,163, 312 
which contact both smooth muscles and vagal afferents. The gastric rhythm is continuously 313 
generated but during digestion, under the pressure of gastric content, its amplitude increases 314 
and it coordinates the contractions of the stomach smooth muscles. Gastric rhythm amplitude 315 
and frequency can be modulated by both local influences from the enteric nervous system and 316 
descending influences from the central nervous system164,165, with descending projections from 317 
insula, medial prefrontal cortex, motor and somatosensory cortices166. 318 
 319 
Different forces (distension, contraction, stroking) applied to the stomach wall activate both the 320 
vagal167-169 and the spinal splanchnic170,171 nerves, which then follow the core interoceptive 321 
pathways presented in Figure 1. In humans, whole-brain imaging studies during experimentally-322 
induced gastric distention show responses in the somatosensory cortices, anterior cingulate 323 
cortex, hippocampus, insula, ventromedial prefrontal cortex and occipital cortex172-177, a pattern 324 
similar to the network activated by gastric stimulation in rats178. The involvement of occipital 325 
cortex has also been observed in sleeping cats179, where the electrical stimulation of the stomach 326 
elicits firing in early visual cortices.  327 
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 328 
Coupling between the gastric rhythm and spontaneous brain activity in an extensive 329 
network 330 
Outside the acute phase of digestion, the stomach only occasionally contracts, but the gastric 331 
rhythm is still generated. Neural activity coupled with the gastric rhythm is observed in a quite 332 
extensive network in both the human180,181 brain during resting-state and in the anesthetized 333 
rodent182 brain. The so-called gastric network includes all exteroceptive cortices as well as 334 
motor regions, some default-network regions but very few transmodal, cognitive regions181. 335 
The directionality of interactions remains to be firmly established, but in humans part of the 336 
coupling observed corresponds information flowing from stomach to brain183. In rodents, 337 
sectioning the vagus nerve reduces stomach-brain coupling except in somatosensory cortex182, 338 
a pattern reminiscent of the spinal pathways connecting stomach to somatosensory cortex12. 339 
 340 
The gastric network has been recently discovered180 and little is known about its functional role. 341 
It does not appear to be modulated by moderate fasting in humans181, but the combination of 342 
more stringent diet control and fasting/feeding intervention alters the gastric network in 343 
anesthetized rats182. In humans, the network predicting weight loss overlaps with the gastric 344 
network184, and weight concern and body shame are associated with decreased gastric-brain 345 
coupling185. Beyond diet and body-related aspects, given the extent of the gastric network, the 346 
gastric rhythm has been proposed to orchestrate brain dynamics between the different modules 347 
of the external senses and action, bypassing higher-level regions181, but this hypothesis has not 348 
been experimentally tested so far. Finally, gastric activity has also been related to arousal: 349 
neural responses to gastric stimulation in the visual cortex are larger during sleep than 350 
wakefulness179.  351 
 352 
 353 

Bodily rhythms are observed in an extensive cortical network 354 
 355 
Figure 3 presents a graphical summary of the findings reported in the previous three sections. 356 
Obviously, this figure comes with cautionary notes. We collapsed results from animal and 357 
human studies with potential issues regarding homologies between species (see e.g. 186). For 358 
cardiac interoception, we plotted heartbeat-evoked responses only, which correspond to 359 
responses to an interoceptive input, while for the respiratory and gastric rhythms, the 360 
directionality might be either ascending (e.g. gastric stimulation) or undetermined (coupling). 361 
Finally, sampling biases depend on technique and species, with both whole-brain and local 362 
studies in humans and mostly local studies in animals. Bearing those limitations in mind, Figure 363 
3 shows that despite the variety of possible pathways (Figure 1), effects (Figure 2) and 364 
experimental challenges (Box 1), the resulting network is mostly consistent across species, 365 
rhythms and recording methods.  366 
 367 
First, Figure 3 confirms the known involvement of limbic regions (insula, 368 
amygdala/hippocampus, cingulate cortex) in interoceptive processing. Note that we did not 369 
distinguish between the posterior interoceptive insula with its viscerotopic organization9,187 370 
from more anterior insular regions. Second, cardiac, respiratory and gastric influences on 371 
somatosensory cortex are also confirmed. Whether they stem from core interoceptive pathways 372 
and/or tactile and proprioceptive pathways, and in which proportion, remains to be determined, 373 
and whether somatosensory cortex is viscerotopically organized is an open question. Thirdly, 374 
and more surprisingly, there is a consistent link between the respiratory and gastric rhythms 375 
and neural activity in visual, auditory, and (pre)motor cortices. The anatomical origins of 376 
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interoceptive signals in exteroceptive cortices are not known. They might result from 377 
intracortical projections from interoceptive to exteroceptive cortices, but the interplay might 378 
also be subcortical. For instance, the parabrachial nucleus, which receives visceral inputs, also 379 
projects to the main thalamic relay of visual information, the lateral geniculate nucleus188-190, 380 
and has functional links with auditory pathways, as revealed by its role in vocalization-381 
respiration coupling 191,192. The parabrachial nucleus might also act on sensory cortices through 382 
neuromodulation8. The coupling with motor and premotor cortices, which appear quite common 383 
for the respiratory and gastric rhythms, might include a descending influence, since anatomical 384 
evidence points to a visceromotor role of those regions166,193.  385 
 386 
Finally, in humans, the two core midline nodes of the default network, ventro-medial prefrontal 387 
cortex and posterior cingulate cortex/ventral precuneus, appear coupled to bodily rhythms, with 388 
all three rhythms consistently found in posterior cingulate cortex, and mostly heartbeat-evoked 389 
responses in ventro-medial prefrontal cortex. Another key region, comprising the anterior insula, 390 
frontal operculum and inferior-frontal gyrus is a node of the saliency network. All three regions 391 
are cortical hubs, i.e. regions with a dense anatomical and functional connectivity with other 392 
networks194. Reports in the parietal lobe are both scarce and scattered, some relating to the 393 
lateral node of the default network and others to dorsal parietal regions. To the best of our 394 
knowledge, no animal study has investigated those regions yet. It is also worth noting that so 395 
far, cognitive prefrontal regions seem quite disconnected from bodily rhythms. 396 
 397 
In conclusion, the cortical network influenced by cardiac, respiratory and gastric rhythms is 398 
quite extensive, comprising not only expected interoceptive limbic regions but also sensory and 399 
motor regions, as well as some connectivity hubs of the default and salience networks. This 400 
calls for a refined anatomical characterization of interoceptive routes, from transduction site to 401 
cortical target, and a better understanding of the functional role of interoceptive signals in both 402 
exteroceptive cortices and connectivity hubs.  403 
 404 
 405 

Integrating bodily rhythms to brain dynamics: candidate mechanisms 406 
 407 
How are bodily rhythms integrated with ongoing brain dynamics and exteroceptive or cognitive 408 
processing? This question has been considered in the light of three different frameworks – 409 
oscillatory synchrony, predictive coding and multisensory integration – which were initially 410 
devised for exteroception. We present each candidate mechanism in turn below, and discuss 411 
how it was adapted to cardiac, respiratory and gastric inputs (Figure 4). The three frameworks 412 
are not mutually exclusive (see, e.g. 195), but they influence experimental paradigms and color 413 
the interpretation of findings, sometimes implicitly.  414 
 415 
Extending oscillatory synchrony to brain-bodily rhythms interactions: the scaffolding 416 
hypothesis 417 
Oscillatory synchrony between brain regions is thought to play a role in the coordination of 418 
large-scale brain dynamics and in between-area communication196,197. Because increasing 419 
membrane potential makes firing more likely, synchronous oscillations would open or close 420 
windows of communication between potentially distant groups of neurons. In its original 421 
version, oscillatory synchrony is independent from bodily rhythms and would emerge from 422 
neural interactions196,197. The scaffolding hypothesis states that because the temporal structure 423 
of neural activity in different regions reflects that of the cardiac, respiratory and gastric rhythms, 424 
those regions can be considered to be synchronized. This framework has mostly been put 425 
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forward for respiration129 and the gastric rhythm180,183. In this view, bodily rhythms act as 426 
carrier waves, imposing temporal windows of more or less excitability (Figure 4A). Whether 427 
respiration is deep or shallow, or whether the heart ejects a small or large volume of blood could 428 
be of little importance, as long as a rhythmic pattern is generated in different brain areas. The 429 
scaffolding hypothesis is thus relatively disconnected from actual bodily physiological states. 430 
 431 
In this framework, the rhythmic pattern of neural activity related to bodily rhythms is important 432 
as it would open or close windows of communication. Experimentally, there are only few 433 
studies detailing whether different brain regions are coupled to a bodily rhythm with the same 434 
phase or different ones, and they are not congruent: the phase alignment of respiratory-driven 435 
neural activity seems rather good128, whereas the areas coupled to the stomach are organized 436 
along a gradient of phases180, more suggestive of a traveling wave than near-zero phase-lag 437 
synchrony. While the frequency of intrinsic brain rhythms tends to be conserved by evolution198, 438 
this is not the case for bodily rhythms: both the cardiac and respiratory rhythms of mice are 439 
about 8 to 12 times faster than those of humans, while gastric frequency is relatively similar 440 
across species199. It is not yet known whether between-organs and between-species differences 441 
in frequency have functional consequences for coupling between bodily rhythms and brain or 442 
behavior. Finally, an enduring question regarding the role of oscillatory synchrony is how the 443 
brain determines which groups of neurons should be synchronized200. So far, synchronization 444 
by bodily rhythms does not offer any satisfying answer to this question. Still, the possibility 445 
that vascular pulsatility is directly transduced by astrocytes and/or pyramidal cells22,23 opens 446 
new leads: the combination of an increased local metabolic demand due to firing, and of the 447 
temporal tagging due to vessel pulsatility, may generate a novel means to achieve flexible yet 448 
relevant neuronal coordination. 449 
 450 
Interpretation of self and consciousness related findings as well as cycle effects under 451 
the scaffolding hypothesis 452 
In its original formulation, oscillatory synchrony solves the binding problem, i.e. how 453 
distributed neural activities are flexibly combined to generate an object representation196, and 454 
could thus contribute to the unity of conscious experience. However, conscious experience has 455 
other properties47, such as first person perspective, i.e. an egocentric viewpoint on the world, 456 
and intrinsic mineness, i.e. the fact that a conscious percept belongs to the observer, and that 457 
the observer rarely fails to perceive it as his or her own experience – at least in healthy human 458 
adults. These properties pertain to the subject of experience, requiring a self-centered viewpoint 459 
whose neural definition could be rooted in the neural representation of bodily signals. More 460 
precisely, the pieces of information which are bound together in a conscious experience are not 461 
only scattered in different areas, they are also expressed in different frame of references, for 462 
instance eye-centered in early visual regions up to more complex cognitive spaces201. Because 463 
visceral signals are constantly present and distributed across many areas, they could facilitate 464 
the alignment and coordination of different systems of coordinates by providing common 465 
reference points, corresponding to the same input expressed in each frame of reference49, 466 
accounting both for the first-person perspective and intrinsic mineness of conscious experience 467 
(Figure 4B). Note that under this hypothesis, visceral signals play a coordination role to align 468 
external senses in an egocentric framework, rather than contribute to an explicit sense of bodily 469 
self. This extension of the binding-for-consciousness hypothesis to integrate bodily signals can 470 
accommodate the various findings on the link between the neural monitoring of bodily signals 471 
and self and consciousness, but it remains speculative.  472 
 473 
The scaffolding hypothesis also allows one to interpret the differential processing of external 474 
stimuli in systole/diastole, or during inspiration/expiration in a rather straightforward manner: 475 
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cycle effects would be a consequence of the existence of temporal windows of enhanced and 476 
dampened sensory sampling (e.g.146), by analogy with previous work on intrinsically generated 477 
oscillatory synchrony and visual attentional sampling202. Another interpretation of cycle effects 478 
is rooted in the literature on nasal respiration, where inspiration corresponds to olfactory 479 
sensory intake203. Given the evolutionary importance of olfaction in guiding behavior, the 480 
influence of (nasal) respiration on brain activity might have spilled over and be generalized to 481 
non-olfactory guided cognition140,146 – a similar reasoning could hold for the gastric rhythm, 482 
which might derive from the evolutionary ancient rhythms of “floating stomachs” such as 483 
jellyfishes. Cycle effects have also been interpreted in the predictive coding framework, further 484 
detailed in the next paragraph. 485 
 486 
 487 
From rhythms to allostatic regulations, emotions and self: the extended predictive 488 
framework 489 
Because rhythms are predictable, bodily-entrained neural oscillations204 could help align phases 490 
optimal for sensory processing with the expected timing of stimulus inputs. This logic seems 491 
particularly relevant for nasal respiration, where the respiratory-induced neural rhythm would 492 
be aligned with olfactory sensory intake. By extension, the response to a tactile stimulus would 493 
be inhibited during systole because the timing of the heartbeat has been predicted and the 494 
response to tactile stimuli inhibited. The fact that at least some cycle effects need a prolonged 495 
period of synchronization between bodily rhythms and external inputs argues in favor of 496 
predictive coding139. The extended predictive framework can also easily accommodate the link 497 
with motor behavior, with various actions initiated at the best moment given internal state – for 498 
instance sniffing, synchronized with inhalation, corresponds to external sensory intake, whereas 499 
shooting precision would benefit from an initiation away from the small bodily displacement 500 
induced by heartbeats72. This logic has been formalized for both cardiac57,205 and respiratory206 501 
cycle effects, with the rationale that interoceptive inference and exteroceptive inference are 502 
most precise at different moments of the cycle.  503 
 504 
More generally, because interoception senses bodily states, it is involved in reactive 505 
homeostatic regulations, but also allostatic regulations, i.e. anticipating bodily needs given the 506 
external environment and planned behavior – such as salivating in anticipation of food 507 
consumption. Allostatic regulations can be expressed in an extended predictive coding 508 
framework, where the brain constantly generates and updates not only a model of the external 509 
environment, but also of the organism state207 (Figure 4C). This framework might work at short 510 
time scales (e.g., from one respiration cycle to the next), but is best suited for longer time scales 511 
(minutes, hours), with for instance predictions about future physiological states in insular 512 
cortex208. Beyond allostasis, the predictive coding framework proposes that estimating the most 513 
likely cause of changes in internal bodily parameters, given a certain exteroceptive context, 514 
gives rise to emotional feelings209-211, with a particular role for anterior cingulate and anterior 515 
insular cortices to generate visceral predictions212. Emotional feelings relating to actual or 516 
mentally simulated changes in the body have been proposed as a basis of the (emotional) self110. 517 
Alternatively, having a predictive model of the (interoceptive, proprioceptive, somatosensory) 518 
body could be the basis of the self210 (Figure 4D). In this interpretation, actual and predicted 519 
bodily states matter, but the rhythmic nature of inputs and associated neural activity is only one 520 
parameter among others that can be predicted.  521 
 522 
Extero- and interoceptive multi-sensory integration 523 
Another line of interpretation considers that exteroceptive and interoceptive processing 524 
converge, in an extended multisensory integration framework48. Multisensory integration 525 



 12 

(Figure 4E) requires the convergence of both intero- and extero-ceptive information onto the 526 
same neurons, as shown for instance for bladder and tactile inputs in primary somatosensory 527 
cortex213 or at earlier subcortical stages214. Inputs are then combined in a super-additive (resp. 528 
sub-additive) manner, i.e. presenting simultaneously the two inputs would lead to larger (resp. 529 
smaller) responses, as compared to the sum of the responses to each input presented 530 
separately215. For instance, the inhibition of the neural response to tactile stimuli during systole 531 
could be interpreted as a multisensory competition between tactile and baroreceptor inputs in 532 
somatosensory cortex59. Multisensory integration has been proposed to underlie the bodily self 533 
(Figure 4F), as suggested by experimentally-induced bodily illusions. Such illusions arise from 534 
congruent or incongruent visuo-tactile stimulation216 but are also further modulated by the 535 
visual illumination of the virtual body in synchrony with heartbeats43-45 or respiration149,150. 536 
Bodily parameters are relevant in this framework, but the rhythmic pattern of inputs is 537 
presumably of little importance. The intraparietal sulcus would play a major role in the 538 
integration of external and internal inputs48, but this hypothesis remains to be demonstrated 539 
experimentally, and so far, this region has seldom been reported to be coupled to bodily rhythms 540 
(Figure 3).  541 
 542 
 543 

Concluding remarks and open questions 544 
 545 
The anatomical extent of the coupling between bodily rhythms and neuronal activity as well as 546 
the range of sensory and cognitive functions impacted open many questions about underlying 547 
mechanisms. The integration of interoceptive signals with other sources of information revives 548 
central questions on the nature of the neural code, from integration of multisensory information 549 
by convergence to oscillatory synchrony and predictive coding. Arousal, loosely defined as a 550 
brain-body activation state, is rarely put forward as an explanatory framework in the literature 551 
we reviewed, and its role should be reconsidered. Interoception also imposes novel biological 552 
constraints. The most obvious ones are related to functions, i.e. the integration of interoception 553 
and exteroception related to the survival of the organism, but interoception also suggests novel 554 
physiological routes for information processing which would not exist in silico, for instance the 555 
pulsatility of the vascular system that might be detected within the central nervous system. A 556 
more biological stance on information processing might be key to understand the neural code 557 
as well as to tackle the difficult questions of self and consciousness, and of animal vs. human 558 
consciousness.  559 
 560 
 561 
 562 
 563 
  564 
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Figures and Figure legends 565 
 566 

 567 
 568 
Figure 1. Cardiac, respiratory and gastric rhythms generation and mechanosensory 569 
signaling: core interoceptive pathways (right) and somatosensory, proprioceptive, 570 
vascular and olfactory pathways (left). The heart and the stomach contain their own 571 
autonomous electrical pacemaker whereas respiratory cycles are centrally generated in the 572 
ventral medulla. Organ contractions are sensed by mechanoreceptors located in the viscera wall 573 
itself, including the diaphragm for the respiratory system. Pressure changes occurring at each 574 
heartbeat are also detected by baroreceptors located in large vessels such as the carotid and the 575 
aortic arch. Viscera-related activity is transmitted to the CNS via two main afferent pathways, 576 
that is cranial nerves (vagus and glossopharyngeal) directly entering the brainstem and cardiac, 577 
phrenic and splanchnic nerves traveling through the spinal cord (spinal pathways). Both 578 
pathways directly or indirectly target major interoceptive relays such as the NTS, PBN - which 579 
in turn project to neuromodulatory nuclei – and several nuclei of the thalamus. Organs activities 580 
are also sensed through other pathways (left). (A) In the CNS, astrocytes directly detect changes 581 
in cerebral intravascular pressure and activate pyramidal neurons, which presumably could also 582 
be directly depolarized following pressure changes via PIEZO2 channels. (B) The airflow 583 
during respiration can also be sensed by tactile receptors, as well as (C) by mechanoreceptors 584 
in the olfactory bulb. (D) Changes in organs’ volume (i.e., chest expansion/contraction) can be 585 
detected by the skin, and (F) vessel pulsatility by both tactile and proprioceptive pathways. 586 
CNS, central nervous system; NTS, nucleus tractus solitarius; PBN, parabrachial nucleus.  587 
 588 
  589 
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590 
Figure 2. Measuring cardiac, respiratory and gastric interoception. A. Settings in humans 591 
to measure cardiac and gastric199 rhythms with cutaneous electrodes in humans, and respiratory 592 
rhythm with a belt. B. Example of raw data from an abdominal electrode, showing the slow 593 
gastric rhythm, the faster respiration rate and the heartbeats. C. Intracranial recordings in the 594 
human somatosensory cortex show that each heartbeat evokes a transient neuronal response 595 
(single responses in light gray, aligned to the R peak of the electrocardiogram). Averaging 596 
single responses generates the heartbeat-evoked response (red). D. The influence of bodily 597 
rhythms on neuronal activity can also be measured with phase-phase coupling (not illustrated) 598 
or phase-amplitude coupling, where the amplitude of a neuronal rhythm (light gray) is 599 
modulated according to the phase of the bodily rhythm (black). E. Both the respiration and 600 
cardiac cycles are composed of two phases (respectively inspiration and expiration, systole and 601 
diastole). Cycle effects refer to the different behavioral outcomes in response to exteroceptive 602 
stimuli which are sometimes observed between the two phases. 603 
 604 
 605 
  606 
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 607 

 608 
 609 
Figure 3. Bodily rhythms in the brain: an extensive network. Regions where heartbeats 610 
elicit a response, or where neuronal activity is related to the respiratory and gastric rhythm, 611 
collapsed across studies in humans and animals, mostly rodents. Each number corresponds to 612 
a reference, and indicates the contribution of the region, not to an exact location. We did not 613 
distinguish between posterior and anterior insula, and the border between the most ventral part 614 
of the ACC and vmPFC is difficult to establish. In addition to expected limbic regions, neuronal 615 
activity is related to bodily rhythms in somatosensory, but also visual and auditory cortices, as 616 
well as motor and premotor areas. Two medial nodes of the default network (vmPFC, 617 
PCC/precuneus) and one node of the saliency network (anterior insula, inferior frontal gyrus) 618 
are present. Reports in the parietal lobe are few and anatomically scattered. ACC: anterior 619 
cingulate cortex; MCC: mid-cingulate cortex; PCC: posterior cingulate cortex; vmPFC: ventro-620 
medial prefrontal cortex. 621 
 622 
 623 
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 624 
Figure 4. Bodily rhythms in the brain: candidate mechanisms. The effects of cardiac, 625 
respiratory and gastric rhythms on brain dynamics and cognition can be explained under 626 
different frameworks. (A) Rhythmic visceral signals facilitate synchronization of neuronal 627 
oscillations between remote brain regions and thus promote integration by offering a common 628 
oscillatory scaffold between distributed brain circuits. (B) Visceral signals could facilitate the 629 
integration of signals originating from different systems of coordinates (e.g. eye-centered and 630 
body-centered reference frames) by providing a common frame of reference. (C) Visceral 631 
signals are predicted and suppressed from being consciously perceived to minimize their 632 
interference on brain processing. (D) Interpreting visceral inputs given priors and exteroceptive 633 
context gives rise to emotional feelings, which would in turn constitute the basis of the 634 
emotional self. (E) Exteroceptive and interoceptive sensory inputs are super-additively 635 
combined in multisensory neurons (or sub-additively), and the multisensory integration of 636 
interoceptive and exteroceptive signals build the brain’s body representation and the experience 637 
of the bodily self (F). The thermometers symbolize the relative importance of bodily state and 638 
of the rhythmic structure of visceral inputs, for each of the framework.  639 
 640 
  641 
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BOX 1 – Measuring brain responses to visceral activity: Artefacts and 642 
pitfalls  643 
 644 
Investigating the influence of internal organs on brain activity is experimentally challenging. 645 
First, visceral activity can induce relative motion between sensors and brain, artefactually 646 
modulating the data. For instance, both breathing movement and cardiac pulsatility affect 647 
magnetic resonance imaging data217,218. Similarly, brain movements occurring at each heartbeat 648 
during in vivo recordings modulate action potential waveform219 and affect intracranial HER 649 
recordings82. Moreover, local changes in vascular tone (i.e. vasomotion) or hemodynamic 650 
oscillations linked to respiration modulate near-infrared spectroscopy signals220. Distinguishing 651 
artefacts due to motion from the neural activity resulting from the transduction of heart, pulse 652 
and respiration signals is an important technical challenge.  653 
 654 
Second, brain electrophysiological sensors might also directly capture distant organs electrical 655 
activity. Cardiac electrical activity, as detected by the electrocardiogram, is directly visible in 656 
EEG221 and MEG222 recordings, typically on temporal sensors. This so-called cardiac field 657 
artefact can be only partially corrected, and specific experimental design and control analysis 658 
are required to extract meaningful information49,79,80. 659 
 660 
Third, the periodic nature of organs’ contractions calls for particular attention. It precludes the 661 
existence of “baseline activity”, since the activity preceding a given cycle also corresponds to 662 
the end of the previous cycle. In addition, data analysis involves circular statistics, which 663 
probably require more methodological work to identify all pitfalls and caveats223,224. 664 
 665 
Fourth, the experimental paradigm itself might influence visceral rhythms. For instance, the 666 
conscious perception of an external stimulus slows down the heart33, and when stimulus 667 
presentation times are predictable, participants tend to inhale and hence increase their heart rate 668 
at stimulation onset36. The entrainment of cardiac and respiratory rhythms by experimental 669 
variables might account for some of the differences in cycle effects observed between 670 
paradigms where stimuli are delivered randomly and their position in the cycle determined a 671 
posteriori, and paradigms where experimenters impose stimulus presentation at a specific 672 
moment in the cycle139. 673 
 674 
Finally, establishing the directionality of interactions is challenging. Tampering with visceral 675 
organs might result in non-ecological, stressful conditions (i.e., ingestion of an inflatable 676 
balloon for gastric interoception173), and is likely to draw attention to bodily state. More 677 
fundamentally, identifying causality in complex systems is intrinsically difficult.  678 
 679 
 680 
  681 
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BOX 2 – Fast and slow breathing: respiration can be voluntarily 682 
controlled 683 
Breathing is automatic, but is tightly regulated for active sniffing, swallowing and vocalization. 684 
Emotions are also typically associated with changes in respiratory pattern225. More subtle 685 
changes have recently been observed in non-emotional situations, where participants might 686 
spontaneously align their respiratory pattern to the movement generated226 or to the 687 
experimental paradigm36,145, although such behavior is not systematic33. Respiration, as 688 
opposed to cardiac or gastric rhythm, is also under explicit volitional control, which is 689 
associated in humans with a limbic circuit including insula and anterior cingulate cortex137,227. 690 
 691 
Fast breathing is generally associated with stress and anxiety, and more precisely to dyspnea, 692 
or the feeling of breathlessness. It is a central feature of panic attacks228 – although respiratory 693 
rates increase for positive emotions as well225. Neuroimaging studies of dyspnea, induced by 694 
flow-resistive load or altered O2/CO2 content, indicate the involvement of most limbic 695 
structures as well as somato-motor regions229, with an anxiety-dependent engagement of the 696 
anterior insula230. Intracranial EEG confirm those findings and reveal in addition the 697 
contribution of occipital regions137. Fast breathing increases the coupling between neuronal 698 
activity and respiration in the orbitofrontal cortex, insula and amygdala, but does not affect the 699 
respiratory influence in somatosensory cortex137. Finally, asking participants to inhale or exhale 700 
once, as fast as possible, increases motor excitability and finger flexion force231. 701 
 702 
Conversely, controlled, slow breathing is often used in cognitive behavioral therapy and is an 703 
important component of increasingly popular practices such as meditation or yoga, which 704 
involve a larger repertoire of controlled breathing – fast, slow, left/right nostril breathing, 705 
sometimes associated with specific postures and vocalization232. While there is considerable 706 
interest for yoga and meditation as a way to improve mood, sleep and the general sense of well-707 
being233, the specific role of respiratory patterns and/or attention to respiration234 remains 708 
difficult to isolate from other components. When practiced in isolation, slow-paced breathing 709 
is associated with stress reduction235 and influences brain activity236. Still, the literature reveals 710 
mixed findings when it comes to pain or emotional feelings237,238. The detailed mechanism of 711 
the influence of slow-paced breathing remains to be fully elucidated. It might be mediated by 712 
an interplay between the respiratory system and both the cardiac and vascular systems235,237, 713 
but the hypothesis is still debated239.  714 
 715 
  716 
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