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SUMMARY
Multi-axial perfectly matched layer (M-PML), known to have lost the perfect-matching 
property owing to multi-axial coordinate stretching, has been numerically validated to be 
long-time stable and it is thus used extensively in linear anisotropic wave simulation and in 
isotropic cases where the PML becomes instable. We are concerned with the construction of 
the M-PML for anisotropic wave simulation on basis of second order wave equation 
implemented with displacement-based numerical method. We address the benefit of the 
incorrect chain rule implicitly adopted in the previous derivation of the M-PML. We show 
that using the frequency-shifted stretching function improves the absorbing efficiency of the 
M-PML for near-grazing incident waves. Then, through multi-axial complex-coordinate 
stretching the second order anisotropic wave equation in weak form, we derive a time-domain 
multi-axial unsplit frequency-shifted PML (M-UFSPML) using the frequency-shifted 
stretching function and the incorrect chain rule. A new approach is provided to reduce the 
number of memory variables needed for computing convolution terms in the M-UFSPML. 
The obtained M-UFSPML is well suited for implementation with a finite element or spectral 
element method. By providing several typical examples, we verify numerically the accuracy 
and long-time stability of the implementation of our M-UFSPML with Legendre spectral 
element method.

Keywords: Computational seismology; Seismic anisotropy; Wave propagation; 
Elastodynamics

1. INTRODUCTION
Linear elastic anisotropy is common to wave propagation in the Earth’s interior 

(Babuška & Cara 1991; Savage, 1999; Deuss et al. 2010; Almqvist & Mainprice, 2017) and 
its ice cover (Diez & Eisen, 2015; Sayers, 2018). Such anisotropy can be caused by factors 
such as a preferred orientation of crystals, aligned inclusions, or regular sequences of thin 
layers (Cerveny, 2005). In anisotropic media, seismic wave speeds depend on the local 
directions of wave propagation and wave polarization. In recent years, wave simulation 
integrated as part of adjoint seismic full-waveform tomography has increasingly been used in 
investigating the regional-scale anisotropic structure of the Earth (Zhu et al., 2017).

In wave simulation, taking anisotropy into account makes it difficult to establish stable 
techniques for infinite domain truncation (Komatitsch et al. 2000). It is now well-known that 
Perfectly Matched Layer (PML; Bérenger, 1994) is intrinsically instable for certain types of 
anisotropic medium (Bécache et al. 2003). Such instability is irrelevant to the type of 
complex coordinate stretching function used in deriving the PML and the PML formulation, 
such as a split, unsplit or auxiliary differential PML formulation derived for either the 
velocity-stress-based wave equation in first-order form or the displacement-based wave 
equation in second-order form (Komatitsch & Martin, 2007, Ping et al. 2014).

In the first-order case, Meza-Fajardo & Papageorgiou (2008) proposed an approach to 
stabilize the split PML and produce what is referred to as a multi-axial PML (M-PML) in 
anisotropic-wave simulation. Zeng et al. (2011) showed that the M-PML can stabilize wave 
simulation for a horizontally layered isotropic solid medium having a high Poisson ratio. In 
the M-PML, aside from damping in the direction normal to interfaces between the M-PML 
and the truncated domain, additional nonzero damping in tangential directions is introduced. 
Although the tangential damping is usually set to be much smaller than the normal damping, 
an important drawback is that the M-PML is not perfectly matched (Dmitriev & Lisitsa, 
2011). Therefore, the M-PML can be interpreted as a compromise between the PML and 
absorbing layers with the same level of tangential and normal damping (Cerjan et al., 1985; 
Sochacki et al., 1987; Semblat et al., 1987; Halpern et al., 2011). To achieve the same level of 
accuracy, M-PML is more often more computationally efficient than standard absorbing 
layers but less efficient than PML. Gao & Huang (2017) developed a numerical algorithm to 
determine optimally the level of tangential damping. 

The first-order M-PML cannot be directly used in the second-order wave equation 
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simulation with displacement-based numerical simulation methods, such as the finite element 
(FE) method (e.g., Bao et al., 1998), spectral element (SE) method (e.g., Komatitsch & 
Tromp, 1999) and some finite difference methods (e.g., Moczo et al., 2002). Festa & Vilotte 
(2005) showed how to couple the first-order split PML, implemented with the staggered finite 
difference method, into the second-order wave equation implemented with the FE/SE method 
and Newmark-beta time-stepping scheme, using the equivalence between the Newmark 
time-stepping scheme and the midpoint difference rule. Following Festa & Vilotte’s 
observation, Martin, Komatitsch and Gedney (2008) extended the first-order convolutional 
frequency-shifted PML to the multi-axial case and then coupled it into the second-order wave 
equation simulation with the SE method and Newmark-beta time-stepping scheme. Such 
coupling remains an open problem in the case that other time-stepping schemes are used (Liu 
& Zhang, 2019).

Following the idea of Meza-Fajardo & Papageorgiou (2008), several second-order 
M-PMLs have been derived via multi-axial coordinate stretching the second-order wave 
equation. Li & Bou (2010) developed a second-order convolutional frequency-shifted 
M-PML in the frequency domain. In principle, Li & Bou’s formulation is not fit for layered 
heterogenous infinite-domain truncation because Li and Bou treated the gradient of all 
convolutional terms in stress as additional body forces. Ping et al. (2014, 2016) extended the 
second-order split PML proposed by Komatitsch & Tromp (2003) to the multi-axial case. The 
formulation of Ping et al. (2014, 2016) inherited the shortcomings of the PML of Komatitsch 
& Tromp (2003) arising from the introduced hybrid second-order and third-order ordinary 
differential equations. The number of split displacement variables is at least five times that of 
the original variables (Ma & Liu, 2006). Moreover, Ping et al. (2014, 2016) obtained an 
inconsistent result that unlike the obtained M-PML with a damping parameter defined in the 
high-order polynomial profile, the M-PML with a damping parameter defined in the 
commonly used second-order polynomial profile loses its stability in long-time simulation. 
Fathi et al. (2015) showed without theoretical justification that though the chain rule 
prevalently used in the M-PML derivation is incorrect, the resulting M-PML performed better 
than the M-PML derived with the corrected chain rule.

In this paper, we develop a second-order multi-axial unsplit frequency-shifted PML 
(M-UFSPML). We firstly show the importance of introducing the non-rigorous chain rule for 
stabilize M-UFSPML and the introduce of frequency-shifted coordinate stretching can also 
improve the absorbing efficiency of the M-PML. We then derive the M-UFSPML by 
multi-axial complex-coordinate stretching the second-order wave equation in weak form, 
instead of the strong wave equation, to avoid possible improper matching between the 
obtained PML wave equation and boundary or interface conditions. The improper matching is 
an important mechanism that leads to an unstable PML (Duru & Kreiss, 2014). We introduce 
a new way to reduce the number of memory variables needed for dealing with the 
computation of convolution terms. The obtained M-UFSPML is in weak form and thus ready 
for implementation using the FE/SE method. We verify numerically the accuracy and 
long-time stability of the M-UFSPML through theoretical and practical applications in wave 
simulation with the high-order Legendre spectral element method and explicit time-stepping 
scheme.

2. NOTES ON THE CHOICE OF MULTI-AXIAL COORDINATE STRETCHING 
Dmitriev & Lisitsa (2011) showed that the loss of the perfectly matched property of 

M-the PML is due to multi-axial coordinate stretching. On the basis of their work, we 
investigate the effects of multi-axial coordinate stretching, frequency-shifted coordinate 
stretching and the implicitly adopted incorrect chain rule on the absorbing efficiency of the 
M-PML, which leads to a useful remark on our late M-PML derivation.

For the simplest wave simulation in , we specify the computation domain as  ,x y R

. Within this domain, the wave equation is 0,x y R 
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,            (1)
2 2
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x y

i u u u

i u u u

i p c p c p

 
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          
                    
                    

where  is the density,  the acoustic wave speed, and the displacements in x and  c xu yu

y directions respectively, and the pressure. A caret above a variable denotes a Fourier p

transformation. and  is the circular frequency. Following Meza-Fajardo & 1i   
Papageorgiou (2008), we introduce complex coordinates in  as 0,x y R 

,  ,  (2)     
0

, +
x

x x y x d x x i dx        %      /, 1 +y xy x y p d x x i y       %

where  is the damping profile in the x direction and the constant  refers to the  d x /y xp

level of additionally introduce damping in the y direction.  serves to enhance the  x
attenuation of evanescent and near-grazing waves and was set to zero by Meza-Fajardo & 
Papageorgiou (2008). With the incorrect chain rules given by Meza-Fajardo & Papageorgiou 
(2008), we obtain

, , , , ,      (3)xdx = s dx% ydy = s dy% x ydxdy = s s dxdy%%  1 /x x xs  %  1 /y y ys  %

where  and  denote the coordinate    1 +xs d x x i         /1 +y x
ys p d x x i     

stretching factor. We obtain the frequency-shifted M-PML by first mapping Eq. (1) to 
complex coordinates and then transforming to real coordinates using (3): 

.    (4)

 
 

2 2

0 0 0ˆ ˆ ˆ0 0 1
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                                               
However, because  depends on the variable x, in the corrected sense, the chain rule should ys

be written as

, , , , ,    (5)xdx = s dx% x ydy = s dx + s dy% x ydxdy = s s dxdy%%
1

x x
xs

  %

1x
y x y

x y y

s

s s s
     %

where . Following the same process, the M-PML derived with Eq. (5) can  ,x x ys y s x y 

be written as

.(6)
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 
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                                                
Following the plane-wave analysis presented by Dmitriev & Lisitsa (2011), we obtain 

the same reflection coefficient along the interface of the M-PML presented in Eq. (4):

,                       (7) 
2 2

2 2

cos 1 sin /
,

cos 1 sin /

y

y

y

s
R s

s

 

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 


 

where denotes the absolute norm. The reflection coefficient along the interface of the 

M-PML presented in Eq. (6) is

.      (8) 
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
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Taking the commonly used profile , with   and   0x      2
3 2d x c L x L 1500 /c m s

, Figure 1 shows the distributions of  and  010 /L c f   , yR s    , , ,y y xR s R s s 

evaluated at and . The results show the clear loss of the perfect-matching / 2x L / 2y L
property in the M-PML, particularly for a near-grazing incident wave. The M-PML derived 
using the incorrect chain rule performs almost the same as that derived with the corrected 

chain rule but performs better in the region around . Moreover, we present in Figure 2 0 

the distribution of  with the same set of parameters taking into account commonly  , yR s

used nonzero . The figure clearly shows that nonzero  serves to    03 1x f x L    x

improve the absorbing efficiency of the near-grazing incident wave. Thus, in the later 
construction of the second-order M-PML, we reuse the non-rigorous chain rule but take into 

account the nonzero . x

Figure 1. Distributions of (left) and  (right) computed with , , yR s    , , ,y y xR s R s s    0x 

( ), , , and .     2
3 2d x c L x L 1500 /c m s 010 /L c f  / 0.1y xp  / 2x L / 2y L

Figure 2. Distributions of (left) computed with the same set of parameters as in Figure 1 except  , yR s

that  and the distribution of (right).   03 1x f x L      
0 0

, ,y yR s R s
 

 
 


3. THE SECOND-ORDER M-UFSPML
By multi-axial complex stretching the second-order anisotropic wave equation in its 

weak form, we derive the second-order M-UFSPML with the incorrect chain rule and 
frequency-shifted coordinate stretching function. Moreover, we introduce a new way to 
approximately halve the memory cost in handling the computation of convolution terms via 
memory variables. At the end of the section, we summarize M-PML formulations and the 
number of additional memory variables needed in their implementation.
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3.1. Second-order anisotropic wave equation
Following the matrix notation used by Carcione (2015), the second-order anisotropic 

wave equation can be written as

   ,                                (9)
2

2t
    


u
fσ +

where  and are respectively vectors of  1 2 3

T T

x y zu u u u u u   u  1 2 3

T
f f ff

the displacement and body force and , 1 2 3 4 5 6

T T

xx yy zz yz xz xy              σ

,  .            (10)T    C e C uσ
1 3 2

2 3 1

3 2 1

0 0 0

0 0 0

0 0 0

   
      
    

Here,  and  is the elasticity  1 2 3 4 5 6

T T

xx yy zz yz xz xye e e e e e e e e e e e   e C

matrix. Let us restrict ourselves to the anisotropic medium with orthorhombic symmetry, 
which plays the most important role in seismology and seismic exploration. It covers the 
isotropic medium and anisotropic medium of VTI (vertical transverse isotropy) symmetry, 
HTI (Horizontal Transverse Isotropy) symmetry and the hexagonal symmetry. The elasticity 
matrix of an orthorhombic medium reads

.                      (11)

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c c c

c c c

c c c

c

c

c

 
 
 
 

  
 
 
  
 

C

In the two-dimensional case (having x–y Cartesian coordinates), the in-plane wave equation 
can be obtained by simply omitting the variables and the spatial variation related to the z 

coordinate. We then have , , ,  1 2

T
u uu  1 2 6

T  σ  1 2 6

T
e e ee

, and .                     (12)1 2

2 1

0

0

  
     

11 12

12 22

66

0

0

0 0

c c

c c

c

 
   
 
 

C

3.2. DERIVATION OF THE SECOND-ORDER M-UFSPML
The PML is derived classically through complex coordinate stretching of the wave 

equation written in strong form. Recently, the weak-form approach for the PML derivation 
has been introduced. In the weak-form approach, the PML is derived through the complex 
coordinate stretching of the wave equation written in weak form (Bindel & Govindjee, 2005; 
Matuszyk & Demkowicz, 2013; Xie & Zhang, 2017). In the classical way, the derivation of 
the wave equation in the PML and that of the boundary and/or interface conditions are 
independent, and the two may be improperly matched, which can lead to numerical instability 
and reduced numerical accuracy as shown by Duru & Kreiss (2014). However, in taking the 
weak-form approach, such a mismatch can be naturally avoided because the free and interface 
conditions are simultaneously stretched in a consistent way. In the following sections, we 
derive the second-order M-UFSPM using the weak-form approach. We start from the 
second-order wave equation in weak form specified in the infinite domain ,  0, 0x y 
which is written as

,   (13)
    
   

2 ˆ ˆ ˆ ˆ ˆ ˆ+

ˆ ˆ ˆ ˆ

x x y y x x xx y x xy x y yx y y yy

x xx y yx x xy y yy

u w u w dxdy w w w w dxdy

w w dy w w dx

     

   
 



        

     

 
i

where  denotes the whole domain in  and  represents the boundary of   0, 0x y  
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. Mapping Eq. (13) into complex coordinates defined by

,    (14)            /

0 0
, + +

x xx y m
x xx x y x d x p d y x i dx x d i dx             %

   (15)          /

0 0
, + +

y yy x m
y yy x y y p d x d y y i dy y d i dy                 %

and transforming into the real coordinates using the incorrect chain rule (3), we get

,    (16)
   
   
ˆ ˆ ˆ ˆ ˆ ˆ+

ˆ ˆ ˆ ˆ

x x y y x x xx y x xy x y yx y y yy

x xx y yx x xy y yy

u w u w dxdy w w w w dxdy

w w dy w w dx

    

   

 



       

      

 



% % % % % %% % % % % %

% % % %% % % %i

, ,                      (17) 2ˆ ˆx x y xu s s u %%  2ˆ ˆy x y yu s s u %%

, ,            (18) 11 12ˆ ˆ ˆxx y x x x y yc s s u c u    %%  66 66ˆ ˆ ˆxy x y y x x yc s s u c u    %%

, ,            (19) 66 66ˆ ˆ ˆyx y x y x x yc u c s s u    %%  12 22ˆ ˆ ˆyy x x x y y yc u c s s u    %%

where  and . The inverse Fourier transformations of  1 +m
x x xs d i    1 +m

y y ys d i  

, , and  can be formally written as 2
x ys s x ys s x ys s

,     (20)           1 2
0 1 2 3

yx tt
x ys s t a t a t a e H t a e H t            

&& &F

,              (21)       1
4 5

m
y yx

d tt
x ys s t a e H t a e H t

        F

.             (22)       1
6 7

m
x xy

d tt

y xs s t a e H t a e H t
        F

The detailed expression of ,  can be found in Appendix B of the study of Xie et ia 1, ,7i  L
al. (2014). Substituting Eqs. (20)–(22) into (17)–(19), we get the time-domain M-UFSPML in 
weak form:

.   (23)
   
   

+x x y y x x xx y x xy x y yx y y yy

x xx y yx x xy y yy

u w u w dxdy w w w w dxdy

w w dy w w dx

    

   
 



       

     

 


% % % % % %% % % % % %

% % % %% % % %i
Taking  as an example,xu%%

,   (24)     2
0 1 2 3ˆ yx tt

x x y x x x x x xu s s u u a u a u a e H t u a e H t u               
%%% && &%

within which two convolution terms exist. To compute convolution terms, we need to 

introduce a memory variable such as . Denoting the evaluation of      btt e H t g t    
 at  by ,  can be updated using the recursive convolution technique  t nt n t  n 1n 

summarized by Xie et al. (2014). Thus, 12 memory variables are needed to deal with all 
convolution terms in the time-domain M-UFSPML. To reduce the number of memory 
variables, we restructure the M-UFSPML as

,   (25)
   
   

+x x y y x x xx y x xy x y yx y y yy

x xx y yx x xy y yy

u w u w dxdy w w w w dxdy

w w dy w w dx

    

   
 



       

     

 


% % % % % %% % % % % %

% % % %% % % %i
, ,     (26)0 1 2 3

yx
x x x x x xu u a u a u a u a u    % && &% 0 1 2 3

yx
x y y y y yu u a u a u a u a u    % && &%

, ,                     (27)
m
j jdm

ij ij j ijd     %% , ,i j x y

, , (28)   11 12
y xm m

xx x x y x y y x yc u d u c u d u           66 66
yxm m

xy y x x x x y y yc u d u c u d u      

, ,          (29) yx xy     12 22
y xm m

yy x x y x y y x yc u d u c u d u       

where , , . Through simple    j j t

i iu e H t u t    
     

mm
j jj j

d td

ij ije H t t
       

, ,i j x y

counting, we see that only eight memory variables are needed in the restructured 
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M-UFSPML. In the three-dimensional case, only 18 memory variables are needed in the 
restructured M-UFSPML, whereas in the original formulation, 39 memory variables are 
needed. However, in the case that , the number of additionally needed memory 0i 
variables in the M-UFSPML presented in Eqs. (25)–(29) is greater than that in the 
M-UFSPML presented in Eqs. (16)–(19), which is four in the two-dimensional case.

For comparison, we summarize the M-PML formulations and the number of additional 
variables needed for their implementation in time-domain elastodynamics in Table 1. The 
number listed in the table is the number of additional variables introduced in the M-PML 
relative to the wave equation in the computational domain. Notably, in the first-order case, 
there are five wave equations (two for velocities and three for stresses), whereas in the 
second-order case, there are two wave equations (two for displacements). The table thus 
shows that the memory cost is lowest for our formulation. Moreover, in their M-USFPML, Li 
& Bou (2010) treated the convolutional terms involving the divergence of stress, containing 
second-order space partial differentials, as body force terms. The direct computation of 
second-order space partial differentials in the FE or SE method requires a dense grid in the 
case that high-order ( ) element interpolant functions are used and such computation could 2
be wrong in the case of low-order ( ) element interpolant functions (Zhebel et al., 2014). 2
The same problem exists for the first-order M-UFSPML given by Martin, Komatitsch and 
Gedney (2008). Thus, the M-UFSPML presented here is more suitable for implementation 
using FE/SE methods, irrespective of the order of element interpolants. The weak-form 
M-UFSPML shares the same structure as the weak-form wave equation, and the 
implementation of the M-UFSPML can thus use the same code as the wave equation except 
for the additional treatment of convolution within the element-wise stress and strain 
computation. The detailed implementation of the second-order wave equation was described 
by Komatitsch & Tromp (1999), and we do not repeat it in this paper.
4. NUMERICAL EXPERIMENTS

We present three numerical experiments to test the accuracy and long-time stability of 
our M-UFSPML formulation. The first example involves isotropic wave simulation in a 
homogeneous semi-infinite model. The second involves anisotropic wave simulations in a 
homogeneous infinite model. The third involves simulation using a horizontally layered 
model filled with coupled isotropic and anisotropic media. We compare the accuracy of our 
M-UFSPML against that of the extended-domain solution obtained by enlarging the truncated 
domain and other results obtained using different infinite-domain truncation techniques. A 
fixed-boundary condition (setting the displacement to zero) is applied along the outside 
boundary of the M-UFSPML.

Unless otherwise specified, in all experiments, we use a polynomial degree N = 5 for the 
Lagrange interpolants within each Legendre spectral element. For time-stepping, we use the 
second-order explicit Newmark scheme ( , ) combined with a recursive 0  1/ 2 
convolution technique given in Eq. (73) of the paper of Xie et al. (2014). According to 
Collino & Tsogka (2001), the damping profile normal to the M-UFSPML interface is

,                           (30)   2,max3

2
P

i i

V
d x x L

L


where L is the thickness of the M-UFSPML , xi  is the distance along the normal direction 
measured from the interface, and  is the maximum velocity of the primary arriving ,maxPV

wave in the media. Following Zhang & Shen (2010), we set
,                            (31)   03 1i ix f x L  

where  is the dominant frequency of the source time function0f

                   (32)       20 02

0 01 2
f t t

R t f t t e



         

and t0 is its onset time. We study the decay of energy with time throughout the domain to 
check the long-time stability of our formulation by evaluating the total energy, which is the 
sum of the kinetic and potential energies:
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,                       (33), ,

2

1 1
+

2 2
e j e j
lk lk

e j

E    U&

where is the norm of the velocity vector and  are respectively the stress and 
2

U& , ,,e j e j
lk lk 

strain components.
4.1 Isotropic wave simulation in semi-infinite domain

We consider a homogeneous isotropic semi-infinite model with a traction-free boundary at 
its top. The M-UFSPML is applied for infinite-domain truncation along the other three sides. 
The elastic properties of the medium and geometrical and discretization parameters of the 
model are listed in the second column of Table 2. Within the M-UFSPML, we set  and |x yp

 equal to 0.1. Owing to the loss of the perfect-matching property of the M-UFSPML, we |y xp

compare first the accuracy of the normalized displacement of the USFPML having a thickness 
of 300 m with that of the M-UFSPML having different thicknesses, namely 300, 900 and 
1500 m, corresponding to 3, 9 and 15 elements, respectively. For the P wave, the respective 
ratios of the M-UFSPML thickness to the dominant wavelength are approximately 0.23, 0.70 
and 1.17. For the S wave, the ratios are approximately equal to 0.40, 1.20 and 2.00. Figure 3 
shows snapshots of the wavefield at 2, 4, and 8 s computed with the nine-element 
M-UFSPML and three-element UFSPML. Owing to the unified scale used for all snapshots, 
we do not see a clear difference between the snapshots obtained with the nine-element 
M-UFSPML and the three-element UFSPML. However, Figure 4, showing the time history of 
the normalized displacement at the receiver, reveals that the accuracy of the M-UFSPML 
increases with the thickness of the M-UFSPML but is always lower than that of the UFSPML. 
Only in the case of thickness of 15 elements is the accuracy of the M-UFSPML close to that 
of the UFSPML. The accuracy of the nine-element M-UFSPML is sufficiently fine for 
practical application. The M-UFSPML has no clear difference in its absorbing efficiency 
between body waves and Rayleigh waves. We compare the accuracy of the M-UFSPML in 
our paper with that of the M-UFSPML obtained by Li & Bou (2010), both having a thickness 
set as nine elements. Figure 5, comparing the time history of the displacement at the receiver, 
shows that the accuracy of the M-UFSPML is slightly better than that of the M-UFSPML 
obtained by Li & Bou (2010), referred to as the M-UFSPML-Li. Additionally, the accuracy of 
the M-UFSPML is better than that of the M-UPML within which  and the widely   0ix 
used first-order Stacey absorbing boundary condition (Stacey, 1988). To ensure a fair 
comparison, in the case that the Stacey absorbing boundary condition is used, the computation 
domain is extended to include the space occupied by the M-UFSPML.
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Figure 3. Snapshots of the normalized displacement taken at 2, 4, and 8 s, computed with 2 2
x yu u

different infinite-domain truncation techniques: (left column) M-UFSPML with a thickness of nine elements 
and (right column) UFSPML with a thickness of three elements (isotropic medium, semi-infinite model, 
vertical excitation).

Figure 4. Comparison of time histories of the normalized horizontal and vertical displacements at the 
receiver computed with M-UFSPMLs having thickness of 3, 9, and 15 elements and an UFSPML having 
thickness of three elements (isotropic medium, semi-infinite model, vertical excitation).

Figure 5. Comparison of time histories of the normalized horizontal and vertical displacements at the 
receiver computed with an M-UFSPML, M-UPML, and M-UFSPML-Li having thickness of nine elements 
and an UFSPML having thickness of three elements. M-UFSPML-Li refers to the result obtained with the 
M-UFSPML by Li & Bou (2010) (isotropic medium, semi-infinite model, vertical excitation).
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Figure 6. Total decay of energy throughout the domain computed with the M-UFSPML, M-UPML, and 
M-UFSPML-Li having thickness of nine elements and the UFSPML having thickness of three elements. 
M-UFSPML-Li refers to the result obtained with the M-UFSPML by Li & Bou (2010) (isotropic medium, 
semi-infinite model, vertical excitation).
4.2 Anisotropic wave simulation in infinite domain

We now consider the anisotropic wave simulation in homogeneous infinite domain. 
Three types of anisotropic medium are considered. The geometry and discretization 
parameters are given in the second and third columns of Table 2. The elastic properties of the 
anisotropic medium are given in Table 3. In all cases, we set  and  of the |x yp |y xp

M-UFSPML equal to 0.1 except for anisotropic medium Ⅲ, for which we use

. For each case, we compare the absorbing efficiency of the M-UFSPML, of | | 0.25x y y xp p 
which the thickness is set uniformly as nine times the element size, with the efficiency of the 
standard Stacey ABC. The wave speed in the anisotropic medium depends on the azimuth, 
and the ratios of the M-UFSPML thickness to the dominate wavelength are thus different for 
waves having a different azimuth; that is, approximately 0.7 for primary arriving waves and 
1.2 for secondary arriving waves. To ensure a fair comparison, in the case that the Stacey 
ABC is used, the computation domain is extended to include the space occupied by the 
M-UFSPML. In all cases, we first present snapshots of the normalized displacement at three 
different times for a vertical excitation. The left panel of Figure 7 shows waves at an evolving 
stage, whereas the center and right panels show the absorption of waves in the M-UFSPML 
region. In Figures 7, 9 and 11, there are no discernible reflections from the M-UFSPML 
interface, indicating satisfactory performance of the nine-element M-UFSPML. Figures 10, 
12 and 14 compare the normalized horizontal and vertical displacement time histories at the 
receiver computed with the M-UFSPML, Stacey ABC and infinitely extended domain, the 
solution of which is referred to as an extended solution. We observe that fairly good 
absorbing efficiency is achieved with the nine-element M-UFSPML, which is less than 2% in 
the case of medium Ⅲ and less than 1% in other cases. The excellent performance of the 
M-UFSPML is partially attributable to the non-grazing incident waves in all cases. Reflection 
can also be observed owing to the imperfect interface of the M-UFSPML. We therefore 
recommend using the UFSPML for an anisotropic medium with elastic properties, satisfying 
the sufficient conditions for PML stability given by Bécache et al. (2003).
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Figure 7. Comparison of snapshots of the normalized displacement  taken at 3, 6, 9 s and 2 2
x yu u

computed with different infinite-domain truncation techniques: M-UFSPML having a thickness of nine 
elements (anisotropic medium III, infinite model, vertical excitation).

Figure 8. Comparison of time histories of the normalized horizontal and vertical displacements at the 
receiver computed with the M-UFSPML having thickness of nine elements, Stacey ABC and the extended 
domain (anisotropic medium III, infinite model, vertical excitation).
    

Figure 9. Comparison of snapshots of the normalized displacement taken at 3.0, 4.6, and 6.0 s 2 2
x yu u

and computed with different infinite-domain truncation techniques: M-UFSPML having thickness of nine 
elements (anisotropic medium IV, infinite model, vertical excitation).

Figure 10. Comparison of time histories of normalized horizontal and vertical displacements at the receiver 
computed with M-UFSPML having thickness of nine elements, Stacey ABC and the extended domain 
(anisotropic medium IV, infinite model, vertical excitation).
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Figure 11. Comparison of snapshots of the normalized displacement taken at 32, 60, and 90 μs 2 2

x yu u

and computed with different infinite-domain truncation techniques: M-UFSPML having thickness of nine 
elements (anisotropic medium Apatite, infinite model, vertical excitation).

   
Figure 12. Comparison of normalized horizontal and vertical displacement time histories at the receiver 
computed with M-UFSPML of 9 elements size thickness, Stacey ABC and the extended domain (anisotropic 
medium apatite, infinite model, vertical excitation).
4.3. Coupled isotropic and anisotropic wave simulation in a layered model

We present the performance of the M-UFSPML in a heterogeneous medium. We 
consider a two-dimensional four-layer model adapted from the work of Zhu (2017) with the 
medium properties given in Table 4. The media in the first and fourth layers are isotropic. In 
the second layer, a medium having vertical transverse isotropy is considered. To consider the 
main anisotropic medium used in seismology, the medium in the third layer is set as a single 
set of vertical fractures embedded in an isotropic medium, resulting in horizontal transverse 
isotropy. The discretization parameters are given in Table 5. We set  and  of the |x yp |y xp

M-UFSPML at 0.1 and the M-UFSPML thickness as nine elements. The wave speed in an 
anisotropic medium depends on the azimuth, and the ratios of the M-UFSPML thickness to 
the dominate wavelength thus differ between waves with different azimuth; that is, 
approximately 0.7 for primary arriving waves and 1.2 for secondary arriving waves. As 
shown in Figure 13, the M-UFSPML performs well in absorbing complex waves in the 
layered model. A long-time numerically stable simulation can be conducted. Figure 14 shows 
the energy decay curve for the entire domain containing the truncated computational domain 
and M-UFSPML. Additionally, we compare the energy decay curve computed with Stacey 
ABC and the M-UFSPML given by Li & Bou (2010), where the thickness is set to nine 
elements. The energy decay is quicker when our M-UFSPML is used owing to the better 
absorbing efficiency. However, from the time history of the two components of the 
normalized displacement at the receiver 100 m from the right of the M-UFSPML as shown in 
Figure 15, clear spurious reflections returning to the physical domain could be observed in all 
cases owing to near-grazing waves generated by multiple reflections and transmission. 
Finally, it is worth noting that the long penetration depth associated with surface waves must 
be considered to avoid their interference with the M-UFSPML. The same problem exists for 
PML application. Xie et al. (2016) illustrated that for PML application in wave simulation 
within an elastic Pekeris waveguide, when surface waves interfere with the PML, the 
absorbing efficiency of the PML decreases and cannot be improved by simply increasing the 
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thickness of the PML.

Figure 13. Comparison of snapshots of the normalized displacement taken at 0.6 s (left), 1.2 s 2 2
x yu u

(center), and 1.8 s (right) computed with different infinite-domain truncation techniques: M-UFSPML 
having thickness of nine elements (coupled isotropic and anisotropic medium, layered model, vertical 
excitation).

Figure 14. Total decay of energy throughout the domain computed with the M-UFSPML, M-UFSPML-Li 
having thickness of nine elements and Stacy ABC (coupled isotropic and anisotropic medium, layered 
model, vertical excitation). M-UFSPML-Li refers to the result obtained with the M-UFSPML by Li & Bou 
(2010).

Figure 15. Comparison of time histories of normalized horizontal and vertical displacements at the receiver 
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computed with the M-UFSPML, M-UFSPML-Li with thickness of nine elements, Stacey ABC and the 
extended solution (coupled isotropic and anisotropic medium, layered model, vertical excitation). 
M-UFSPML-Li refers to the result obtained with the M-UFSPM by Li & Bou, (2010).

5. CONCLUSIONS

We developed a second-order M-UFSPML for infinite-domain truncation in the 
simulation of a linear anisotropic wave. Using plane wave analysis, we validate the 
importance of the usage of the non-rigorous chain rules in Meza-Fajardo & Papageorgiou 
(2008), which has not been addressed before. The non-rigorous chain rules, instead of the 
rigorous ones, lead to the improve absorbing efficiency of M-PML for low frequency incident 
waves, which is importance for low-frequency seismic wave simulation adopted in seismic 
hazard analysis. Moreover, we show the importance of complex frequency-shifted stretching 
function can also improve the absorbing efficiency of M-PML for near-grazing incident 
waves. Based on above inspection, Our M-UFSPML is derived through the multi-axial 
complex stretching of the second-order anisotropic wave equation written in its weak form. 
The formulation readily works with standard displacement-based FE and SE wave simulation 
with only minor modification of the code in the computational domain. It is simple to 
implement and allows for a natural application of traction-free boundary conditions or 
interface conditions. The accuracy and long-time stability of the formulation was 
demonstrated using high-order SE discretization with a second-order explicit Newmark time 
integrator, which showed the accuracy of the method and its ability to solve wave propagation 
in anisotropic media having orthorhombic symmetry. Although the interface of the M-PML is 
not perfectly matched, it remains more efficient at absorbing both body waves and interface 
waves than low-order absorbing boundary conditions such as the widely used Stacey ABC in 
engineering. One topic of interest for future study would be to extend this work to forward 
and adjoint wave simulation in anisotropic viscoelastic media (Carcione, 2015). Another topic 
of interest for future studies would be to set up a community model for accurate comparison 
of the computational efficiency of different infinite-domain truncation technologies (e.g., Liao 
et al., 1984, Panji et al., 2014; Zhao et al., 2018).
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Table 1. M-PML formulations and number of additional variables needed for their 
implementation in time-domain elastodynamics (in-plane wave)

first order second order
split Meza-Fajardo & Papageorgiou (2008)#; 10#

Gao & Huang (2017)#; 10

Ping et al. (2014, 2016)#; 10#

unsplit Martin et al. (2008)*; 8*

Gao & Huang (2017)*; 8*

Li & Bou (2010)#*; 8#(8*)

Fathi et al. (2015)#; 6#

This paper#*; 4#(8*)
(# or * denotes the use of a frequency-shifted or classical coordinate stretching function)

Table 2. Geometrical and discretization parameters for the homogeneous isotropic 
semi-infinite model and anisotropic infinite model

Isotropic
Anisotropic medium 

Ⅲ, IⅤ
Apatite

                            Physical domain dimension             

Length 11km 8m 25cm

Width 4km 8m 25cm

                           Physical domain properties

Density 2700kg/m3 1kg/m3 3200kg/m3 

 Elastic 
coefficients

=3200m/s, 
PV

=1870m/s.
SV

Given by Table 3 
Given by Table 

3

                  Source location
From left 
boundary

0.25km 4m 12.5cm

From bottom 
boundary

3.75km 4m 12.5cm

                    Receiver location                                               
From left 
boundary

9.8km 5m 22.5cm

From bottom 
boundary

4km 6m 20.5cm

                            Ricker wavelet parameters  

Dominant 
frequency

2.5Hz 1Hz 170kHz

Onset time 0.4s 0.5s 5.88μs

                           Discretization parameters                                       

Element size 0.1km 0.25m 0.25cm
Layer of 

elements used in 
PML

3, 9, 15 9 9

Time step 0.0004s 0.001s 0.02μs

Total duration 20s 100s 2000μs
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Table 3. Elasticity coefficients of an anisotropic medium

Elasticity coefficients (N/m2) Ⅲ Ⅳ Apatite

c11 4 10 1.65e+11

c22 20 20 6.20e+10

c66 2 6 3.96e+10

c12 7.5 2 5.00e+10

Table 4. Media properties of the adapted layered model from Zhu (2017)

Layers Thickness
VP

(m/s)
VS

(m/s)


(kg/m3)
c11

(N/m2)
c22

(N/m2)
c66

(N/m2)
c12

(N/m2)

1 300m 1900 1200 1800

2 250m 2300 2.33e+10 1.32e+10 2.78e+9 6.56e+9

3 150m 2200 1.35e+10 1.98e+10 8.8e+9 1.04e+10

4 3200 1500 2500

Table 5. Geometrical and discretization parameters for the adapted layered model from Zhu 
(2017)

Truncated computational 
domain dimension

Receiver location                                                  Discretization parameters                                       

Length 1000m
From left 
boundary

900m
Polynomial 
degree of 

SE
5

Width 1000m
From 

bottom 
boundary

100m Element size 10m

Source location
   Ricker wavelet 

parameters  

Layer of 
elements 
used in 
PML

9

From left 
boundary

300m
Dominant 
frequency

10Hz Timestep 0.0002s

From 
bottom 

boundary
900m Onset time 0s

Total 
duration

20s
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Response: Thank you so much. I have added one of above paper as references. The modification let 

me to think about to setup a community model for precise comparison of accuracy and 

computational efficiency for difference infinite domain truncation techniques. I hope this kind of 

work do give the guidelines of the choice of infinite-domain truncation technique to meet the 

different requirement of users.
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Thank you so much for your hard work and patience. We have modified our paper carefully 

according to the nice comments of the two reviewers. We do not show the detail modification with 

colors since there are too much due to our poor English. However, we uploaded a file to show the 

difference between the original and modified version. We hope our modifications can meet your 

expectation. 
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