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Multi-axial unsplit frequency-shifted perfectly matched layer for displacement-based anisotropic wave simulation in infinite domain

INTRODUCTION

Linear elastic anisotropy is common to wave propagation in the Earth's interior [START_REF] Babuška | Seismic anisotropy in the Earth[END_REF][START_REF] Savage | Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting[END_REF][START_REF] Deuss | Regional variation of inner core anisotropy from seismic normal mode observations[END_REF][START_REF] Almqvist | Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure[END_REF] and its ice cover [START_REF] Diez | Seismic wave propagation in anisotropic ice-Part 1: Elasticity tensor and derived quantities from ice-core properties[END_REF][START_REF] Sayers | Elastic anisotropy of polycrystalline ice with transversely isotropic and orthotropic symmetry[END_REF]. Such anisotropy can be caused by factors such as a preferred orientation of crystals, aligned inclusions, or regular sequences of thin layers [START_REF] Cerveny | Seismic ray theory[END_REF]. In anisotropic media, seismic wave speeds depend on the local directions of wave propagation and wave polarization. In recent years, wave simulation integrated as part of adjoint seismic full-waveform tomography has increasingly been used in investigating the regional-scale anisotropic structure of the Earth [START_REF] Zhu | Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray[END_REF].

In wave simulation, taking anisotropy into account makes it difficult to establish stable techniques for infinite domain truncation [START_REF] Komatitsch | Simulation of anisotropic wave propagation based upon a spectral element method[END_REF]. It is now well-known that Perfectly Matched Layer (PML; [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF] is intrinsically instable for certain types of anisotropic medium [START_REF] Bécache | Stability of perfectly matched layers, group velocities and anisotropic waves[END_REF]. Such instability is irrelevant to the type of complex coordinate stretching function used in deriving the PML and the PML formulation, such as a split, unsplit or auxiliary differential PML formulation derived for either the velocity-stress-based wave equation in first-order form or the displacement-based wave equation in second-order form [START_REF] Komatitsch | An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[END_REF][START_REF] Ping | A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second order equations[END_REF]).

In the first-order case, [START_REF] Meza-Fajardo | A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis[END_REF] proposed an approach to stabilize the split PML and produce what is referred to as a multi-axial PML (M-PML) in anisotropic-wave simulation. [START_REF] Zeng | Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves[END_REF] showed that the M-PML can stabilize wave simulation for a horizontally layered isotropic solid medium having a high Poisson ratio. In the M-PML, aside from damping in the direction normal to interfaces between the M-PML and the truncated domain, additional nonzero damping in tangential directions is introduced. Although the tangential damping is usually set to be much smaller than the normal damping, an important drawback is that the M-PML is not perfectly matched [START_REF] Dmitriev | Application of M-PML reflectionless boundary conditions to the numerical simulation of wave propagation in anisotropic media[END_REF]. Therefore, the M-PML can be interpreted as a compromise between the PML and absorbing layers with the same level of tangential and normal damping [START_REF] Cerjan | A nonreflecting boundary condition for discrete acoustic and elastic wave equations[END_REF][START_REF] Sochacki | Absorbing boundary conditions and surface waves[END_REF]Semblat et al., 1987;[START_REF] Halpern | The analysis of matched layers[END_REF]. To achieve the same level of accuracy, M-PML is more often more computationally efficient than standard absorbing layers but less efficient than PML. [START_REF] Gao | Optimal damping profile ratios for stabilization of perfectly matched layers in general anisotropic media[END_REF] developed a numerical algorithm to determine optimally the level of tangential damping.

The first-order M-PML cannot be directly used in the second-order wave equation simulation with displacement-based numerical simulation methods, such as the finite element (FE) method (e.g., [START_REF] Bao | Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers[END_REF], spectral element (SE) method (e.g., [START_REF] Komatitsch | Introduction to the spectral element method for three-dimensional seismic wave propagation[END_REF] and some finite difference methods (e.g., [START_REF] Moczo | 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities[END_REF]. [START_REF] Festa | The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics[END_REF] showed how to couple the first-order split PML, implemented with the staggered finite difference method, into the second-order wave equation implemented with the FE/SE method and Newmark-beta time-stepping scheme, using the equivalence between the Newmark time-stepping scheme and the midpoint difference rule. Following Festa & Vilotte's observation, [START_REF] Martin | A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation[END_REF] extended the first-order convolutional frequency-shifted PML to the multi-axial case and then coupled it into the second-order wave equation simulation with the SE method and Newmark-beta time-stepping scheme. Such coupling remains an open problem in the case that other time-stepping schemes are used [START_REF] Liu | Reducing computation cost by Lax-Wendroff methods with fourth order temporal accuracy[END_REF].

Following the idea of [START_REF] Meza-Fajardo | A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis[END_REF], several second-order M-PMLs have been derived via multi-axial coordinate stretching the second-order wave equation. [START_REF] Li | Convolutional perfectly matched layer for elastic second order wave equation[END_REF] developed a second-order convolutional frequency-shifted M-PML in the frequency domain. In principle, Li & Bou's formulation is not fit for layered heterogenous infinite-domain truncation because Li and Bou treated the gradient of all convolutional terms in stress as additional body forces. [START_REF] Ping | A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second order equations[END_REF][START_REF] Ping | Efficiency of perfectly matched layers for seismic wave modeling in second order viscoelastic equations[END_REF] extended the second-order split PML proposed by [START_REF] Komatitsch | A perfectly matched layer absorbing boundary condition for the second order seismic wave equation[END_REF] to the multi-axial case. The formulation of [START_REF] Ping | A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second order equations[END_REF][START_REF] Ping | Efficiency of perfectly matched layers for seismic wave modeling in second order viscoelastic equations[END_REF] inherited the shortcomings of the PML of [START_REF] Komatitsch | A perfectly matched layer absorbing boundary condition for the second order seismic wave equation[END_REF] arising from the introduced hybrid second-order and third-order ordinary differential equations. The number of split displacement variables is at least five times that of the original variables [START_REF] Ma | Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods[END_REF]. Moreover, [START_REF] Ping | A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second order equations[END_REF][START_REF] Ping | Efficiency of perfectly matched layers for seismic wave modeling in second order viscoelastic equations[END_REF] obtained an inconsistent result that unlike the obtained M-PML with a damping parameter defined in the high-order polynomial profile, the M-PML with a damping parameter defined in the commonly used second-order polynomial profile loses its stability in long-time simulation. [START_REF] Fathi | Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media[END_REF] showed without theoretical justification that though the chain rule prevalently used in the M-PML derivation is incorrect, the resulting M-PML performed better than the M-PML derived with the corrected chain rule.

In this paper, we develop a second-order multi-axial unsplit frequency-shifted PML (M-UFSPML). We firstly show the importance of introducing the non-rigorous chain rule for stabilize M-UFSPML and the introduce of frequency-shifted coordinate stretching can also improve the absorbing efficiency of the M-PML. We then derive the M-UFSPML by multi-axial complex-coordinate stretching the second-order wave equation in weak form, instead of the strong wave equation, to avoid possible improper matching between the obtained PML wave equation and boundary or interface conditions. The improper matching is an important mechanism that leads to an unstable PML [START_REF] Duru | Numerical interaction of boundary waves with perfectly matched layers in two space dimensional elastic waveguides[END_REF]. We introduce a new way to reduce the number of memory variables needed for dealing with the computation of convolution terms. The obtained M-UFSPML is in weak form and thus ready for implementation using the FE/SE method. We verify numerically the accuracy and long-time stability of the M-UFSPML through theoretical and practical applications in wave simulation with the high-order Legendre spectral element method and explicit time-stepping scheme. STRETCHING Dmitriev & Lisitsa (2011) showed that the loss of the perfectly matched property of M-the PML is due to multi-axial coordinate stretching. On the basis of their work, we investigate the effects of multi-axial coordinate stretching, frequency-shifted coordinate stretching and the implicitly adopted incorrect chain rule on the absorbing efficiency of the M-PML, which leads to a useful remark on our late M-PML derivation.

NOTES ON THE CHOICE OF MULTI-AXIAL COORDINATE

For the simplest wave simulation in , we specify the computation domain as
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where is the damping profile in the x direction and the constant refers to the 

    1 + x s d x x i             / 1 + y x y s p d x x i       
 stretching factor. We obtain the frequency-shifted M-PML by first mapping Eq. ( 1) to complex coordinates and then transforming to real coordinates using (3): 
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 Following the plane-wave analysis presented by [START_REF] Dmitriev | Application of M-PML reflectionless boundary conditions to the numerical simulation of wave propagation in anisotropic media[END_REF], we obtain the same reflection coefficient along the interface of the M-PML presented in Eq. (4):
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where denotes the absolute norm. The reflection coefficient along the interface of the M-PML presented in Eq. ( 6) is 
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Taking the commonly used profile , with and 1 shows the distributions of and property in the M-PML, particularly for a near-grazing incident wave. The M-PML derived using the incorrect chain rule performs almost the same as that derived with the corrected chain rule but performs better in the region around . Moreover, we present in Figure 2    
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THE SECOND-ORDER M-UFSPML

By multi-axial complex stretching the second-order anisotropic wave equation in its weak form, we derive the second-order M-UFSPML with the incorrect chain rule and frequency-shifted coordinate stretching function. Moreover, we introduce a new way to approximately halve the memory cost in handling the computation of convolution terms via memory variables. At the end of the section, we summarize M-PML formulations and the number of additional memory variables needed in their implementation. 

Second-order anisotropic wave equation

Following the matrix notation used by [START_REF] Carcione | Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media[END_REF], the second-order anisotropic wave equation can be written as , ( 9)
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Here, and is the elasticity   
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In the two-dimensional case (having x-y Cartesian coordinates), the in-plane wave equation can be obtained by simply omitting the variables and the spatial variation related to the z coordinate. We then have , , ,
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DERIVATION OF THE SECOND-ORDER M-UFSPML

The PML is derived classically through complex coordinate stretching of the wave equation written in strong form. Recently, the weak-form approach for the PML derivation has been introduced. In the weak-form approach, the PML is derived through the complex coordinate stretching of the wave equation written in weak form [START_REF] Bindel | Elastic PMLs for resonator anchor loss simulation[END_REF][START_REF] Matuszyk | Parametric finite elements, exact sequences and perfectly matched layers[END_REF][START_REF] Xie | Weak-form time-domain perfectly matched layer[END_REF]. In the classical way, the derivation of the wave equation in the PML and that of the boundary and/or interface conditions are independent, and the two may be improperly matched, which can lead to numerical instability and reduced numerical accuracy as shown by [START_REF] Duru | Numerical interaction of boundary waves with perfectly matched layers in two space dimensional elastic waveguides[END_REF]. However, in taking the weak-form approach, such a mismatch can be naturally avoided because the free and interface conditions are simultaneously stretched in a consistent way. In the following sections, we derive the second-order M-UFSPM using the weak-form approach. We start from the second-order wave equation in weak form specified in the infinite domain ,
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where and . The inverse Fourier transformations of
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within which two convolution terms exist. To compute convolution terms, we need to introduce a memory variable such as
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, can be updated using the recursive convolution technique [START_REF] Xie | Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML[END_REF]. Thus, 12 memory variables are needed to deal with all convolution terms in the time-domain M-UFSPML. To reduce the number of memory variables, we restructure the M-UFSPML as 
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counting, we see that only eight memory variables are needed in the restructured
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M-UFSPML. In the three-dimensional case, only 18 memory variables are needed in the restructured M-UFSPML, whereas in the original formulation, 39 memory variables are needed. However, in the case that , the number of additionally needed memory 0 i   variables in the M-UFSPML presented in Eqs. ( 25)-( 29) is greater than that in the M-UFSPML presented in Eqs. ( 16)-( 19), which is four in the two-dimensional case.

For comparison, we summarize the M-PML formulations and the number of additional variables needed for their implementation in time-domain elastodynamics in Table 1. The number listed in the table is the number of additional variables introduced in the M-PML relative to the wave equation in the computational domain. Notably, in the first-order case, there are five wave equations (two for velocities and three for stresses), whereas in the second-order case, there are two wave equations (two for displacements). The table thus shows that the memory cost is lowest for our formulation. Moreover, in their M-USFPML, [START_REF] Li | Convolutional perfectly matched layer for elastic second order wave equation[END_REF] treated the convolutional terms involving the divergence of stress, containing second-order space partial differentials, as body force terms. The direct computation of second-order space partial differentials in the FE or SE method requires a dense grid in the case that high-order (

) element interpolant functions are used and such computation could 2  be wrong in the case of low-order ( ) element interpolant functions [START_REF] Zhebel | A comparison of continuous mass-lumped finite elements with finite differences for 3-D wave propagation[END_REF]. 2  The same problem exists for the first-order M-UFSPML given by Martin, [START_REF] Martin | A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation[END_REF]. Thus, the M-UFSPML presented here is more suitable for implementation using FE/SE methods, irrespective of the order of element interpolants. The weak-form M-UFSPML shares the same structure as the weak-form wave equation, and the implementation of the M-UFSPML can thus use the same code as the wave equation except for the additional treatment of convolution within the element-wise stress and strain computation. The detailed implementation of the second-order wave equation was described by [START_REF] Komatitsch | Introduction to the spectral element method for three-dimensional seismic wave propagation[END_REF], and we do not repeat it in this paper.

NUMERICAL EXPERIMENTS

We present three numerical experiments to test the accuracy and long-time stability of our M-UFSPML formulation. The first example involves isotropic wave simulation in a homogeneous semi-infinite model. The second involves anisotropic wave simulations in a homogeneous infinite model. The third involves simulation using a horizontally layered model filled with coupled isotropic and anisotropic media. We compare the accuracy of our M-UFSPML against that of the extended-domain solution obtained by enlarging the truncated domain and other results obtained using different infinite-domain truncation techniques. A fixed-boundary condition (setting the displacement to zero) is applied along the outside boundary of the M-UFSPML.

Unless otherwise specified, in all experiments, we use a polynomial degree N = 5 for the Lagrange interpolants within each Legendre spectral element. For time-stepping, we use the second-order explicit Newmark scheme ( , ) combined with a recursive 0

  1 / 2  
convolution technique given in Eq. ( 73) of the paper of [START_REF] Xie | Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML[END_REF]. According to [START_REF] Collino | Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[END_REF], the damping profile normal to the M-UFSPML interface is , (30)

    2 ,max 3 2 P i i V d x x L L 
where L is the thickness of the M-UFSPML , x i is the distance along the normal direction measured from the interface, and is the maximum velocity of the primary arriving ,max P V wave in the media. Following [START_REF] Zhang | Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling[END_REF], we set , (31)

    0 3 1 i i x f x L    
where is the dominant frequency of the source time function

0 f (32)           2 0 0 2 0 0 1 2 f t t R t f t t e                  
 and t 0 is its onset time. We study the decay of energy with time throughout the domain to check the long-time stability of our formulation by evaluating the total energy, which is the sum of the kinetic and potential energies: 

F o r R e v i e w O n l y , ( 33) 

Isotropic wave simulation in semi-infinite domain

We consider a homogeneous isotropic semi-infinite model with a traction-free boundary at its top. The M-UFSPML is applied for infinite-domain truncation along the other three sides. The elastic properties of the medium and geometrical and discretization parameters of the model are listed in the second column of Table 2. Within the M-UFSPML, we set and | x y p equal to 0.1. Owing to the loss of the perfect-matching property of the M-UFSPML, we | y x p compare first the accuracy of the normalized displacement of the USFPML having a thickness of 300 m with that of the M-UFSPML having different thicknesses, namely 300, 900 and 1500 m, corresponding to 3, 9 and 15 elements, respectively. For the P wave, the respective ratios of the M-UFSPML thickness to the dominant wavelength are approximately 0.23, 0.70 and 1.17. For the S wave, the ratios are approximately equal to 0.40, 1.20 and 2.00. Figure 3 shows snapshots of the wavefield at 2, 4, and 8 s computed with the nine-element M-UFSPML and three-element UFSPML. Owing to the unified scale used for all snapshots, we do not see a clear difference between the snapshots obtained with the nine-element M-UFSPML and the three-element UFSPML. However, Figure 4, showing the time history of the normalized displacement at the receiver, reveals that the accuracy of the M-UFSPML increases with the thickness of the M-UFSPML but is always lower than that of the UFSPML. Only in the case of thickness of 15 elements is the accuracy of the M-UFSPML close to that of the UFSPML. The accuracy of the nine-element M-UFSPML is sufficiently fine for practical application. The M-UFSPML has no clear difference in its absorbing efficiency between body waves and Rayleigh waves. We compare the accuracy of the M-UFSPML in our paper with that of the M-UFSPML obtained by [START_REF] Li | Convolutional perfectly matched layer for elastic second order wave equation[END_REF], both having a thickness set as nine elements. Figure 5, comparing the time history of the displacement at the receiver, shows that the accuracy of the M-UFSPML is slightly better than that of the M-UFSPML obtained by [START_REF] Li | Convolutional perfectly matched layer for elastic second order wave equation[END_REF], referred to as the M-UFSPML-Li. Additionally, the accuracy of the M-UFSPML is better than that of the M-UPML within which and the widely

  0 i x  
used first-order Stacey absorbing boundary condition [START_REF] Stacey | Improved transparent boundary formulations for the elastic-wave equation[END_REF]. To ensure a fair comparison, in the case that the Stacey absorbing boundary condition is used, the computation domain is extended to include the space occupied by the M-UFSPML. 

Anisotropic wave simulation in infinite domain

We now consider the anisotropic wave simulation in homogeneous infinite domain. Three types of anisotropic medium are considered. The geometry and discretization parameters are given in the second and third columns of Table 2. The elastic properties of the anisotropic medium are given in Table 3. In all cases, we set and of the We observe that fairly good absorbing efficiency is achieved with the nine-element M-UFSPML, which is less than 2% in the case of medium Ⅲ and less than 1% in other cases. The excellent performance of the M-UFSPML is partially attributable to the non-grazing incident waves in all cases. Reflection can also be observed owing to the imperfect interface of the M-UFSPML. We therefore recommend using the UFSPML for an anisotropic medium with elastic properties, satisfying the sufficient conditions for PML stability given by [START_REF] Bécache | Stability of perfectly matched layers, group velocities and anisotropic waves[END_REF]. 

Coupled isotropic and anisotropic wave simulation in a layered model

We present the performance of the M-UFSPML in a heterogeneous medium. We consider a two-dimensional four-layer model adapted from the work of [START_REF] Zhu | Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation[END_REF] with the medium properties given in Table 4. The media in the first and fourth layers are isotropic. In the second layer, a medium having vertical transverse isotropy is considered. To consider the main anisotropic medium used in seismology, the medium in the third layer is set as a single set of vertical fractures embedded in an isotropic medium, resulting in horizontal transverse isotropy. The discretization parameters are given in Table 5. We set and of the | x y p | y x p M-UFSPML at 0.1 and the M-UFSPML thickness as nine elements. The wave speed in an anisotropic medium depends on the azimuth, and the ratios of the M-UFSPML thickness to the dominate wavelength thus differ between waves with different azimuth; that is, approximately 0.7 for primary arriving waves and 1.2 for secondary arriving waves. As shown in Figure 13, the M-UFSPML performs well in absorbing complex waves in the layered model. A long-time numerically stable simulation can be conducted. Figure 14 shows the energy decay curve for the entire domain containing the truncated computational domain and M-UFSPML. Additionally, we compare the energy decay curve computed with Stacey ABC and the M-UFSPML given by [START_REF] Li | Convolutional perfectly matched layer for elastic second order wave equation[END_REF], where the thickness is set to nine elements. The energy decay is quicker when our M-UFSPML is used owing to the better absorbing efficiency. However, from the time history of the two components of the normalized displacement at the receiver 100 m from the right of the M-UFSPML as shown in Figure 15, clear spurious reflections returning to the physical domain could be observed in all cases owing to near-grazing waves generated by multiple reflections and transmission. Finally, it is worth noting that the long penetration depth associated with surface waves must be considered to avoid their interference with the M-UFSPML. The same problem exists for PML application. [START_REF] Xie | A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms[END_REF] illustrated that for PML application in wave simulation within an elastic Pekeris waveguide, when surface waves interfere with the PML, the absorbing efficiency of the PML decreases and cannot be improved by simply increasing the M-UFSPML-Li refers to the result obtained with the M-UFSPM by [START_REF] Li | Convolutional perfectly matched layer for elastic second order wave equation[END_REF].

CONCLUSIONS

We developed a second-order M-UFSPML for infinite-domain truncation in the simulation of a linear anisotropic wave. Using plane wave analysis, we validate the importance of the usage of the non-rigorous chain rules in [START_REF] Meza-Fajardo | A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis[END_REF], which has not been addressed before. The non-rigorous chain rules, instead of the rigorous ones, lead to the improve absorbing efficiency of M-PML for low frequency incident waves, which is importance for low-frequency seismic wave simulation adopted in seismic hazard analysis. Moreover, we show the importance of complex frequency-shifted stretching function can also improve the absorbing efficiency of M-PML for near-grazing incident waves. Based on above inspection, Our M-UFSPML is derived through the multi-axial complex stretching of the second-order anisotropic wave equation written in its weak form. The formulation readily works with standard displacement-based FE and SE wave simulation with only minor modification of the code in the computational domain. It is simple to implement and allows for a natural application of traction-free boundary conditions or interface conditions. The accuracy and long-time stability of the formulation was demonstrated using high-order SE discretization with a second-order explicit Newmark time integrator, which showed the accuracy of the method and its ability to solve wave propagation in anisotropic media having orthorhombic symmetry. Although the interface of the M-PML is not perfectly matched, it remains more efficient at absorbing both body waves and interface waves than low-order absorbing boundary conditions such as the widely used Stacey ABC in engineering. One topic of interest for future study would be to extend this work to forward and adjoint wave simulation in anisotropic viscoelastic media [START_REF] Carcione | Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media[END_REF]. Another topic of interest for future studies would be to set up a community model for accurate comparison of the computational efficiency of different infinite-domain truncation technologies (e.g., [START_REF] Liao | A transmitting boundary for transient wave analysis[END_REF], Panji et al., 2014;Zhao et al., 2018). Response: Thank you so much for your comment. We fully agree the importance of developing deterministic wave simulation method for seismic hazard analysis. Thus, we add some sentences in conclusion section.
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  Figure 1. Distributions of (left) and (right) computed with ,   , y R s 

  us restrict ourselves to the anisotropic medium with orthorhombic symmetry, which plays the most important role in seismology and seismic exploration. It covers the isotropic medium and anisotropic medium of VTI (vertical transverse isotropy) symmetry, HTI (Horizontal Transverse Isotropy) symmetry and the hexagonal symmetry. The elasticity matrix of an orthorhombic medium reads .

Figure 3 .

 3 Figure 3. Snapshots of the normalized displacement taken at 2, 4, and 8 s, computed with 2 2 x y u u  different infinite-domain truncation techniques: (left column) M-UFSPML with a thickness of nine elements and (right column) UFSPML with a thickness of three elements (isotropic medium, semi-infinite model, vertical excitation).

Figure 4 .

 4 Figure 4. Comparison of time histories of the normalized horizontal and vertical displacements at the receiver computed with M-UFSPMLs having thickness of 3, 9, and 15 elements and an UFSPML having thickness of three elements (isotropic medium, semi-infinite model, vertical excitation).

Figure 5 .

 5 Figure 5. Comparison of time histories of the normalized horizontal and vertical displacements at the receiver computed with an M-UFSPML, M-UPML, and M-UFSPML-Li having thickness of nine elements and an UFSPML having thickness of three elements. M-UFSPML-Li refers to the result obtained with the M-UFSPML by Li & Bou (2010) (isotropic medium, semi-infinite model, vertical excitation).

Figure 6 .

 6 Figure 6. Total decay of energy throughout the domain computed with the M-UFSPML, M-UPML, and M-UFSPML-Li having thickness of nine elements and the UFSPML having thickness of three elements. M-UFSPML-Li refers to the result obtained with the M-UFSPML by Li & Bou (2010) (isotropic medium, semi-infinite model, vertical excitation).

  equal to 0.1 except for anisotropic medium Ⅲ, for which we use . For each case, we compare the absorbing efficiency of the Mis set uniformly as nine times the element size, with the efficiency of the standard Stacey ABC. The wave speed in the anisotropic medium depends on the azimuth, and the ratios of the M-UFSPML thickness to the dominate wavelength are thus different for waves having a different azimuth; that is, approximately 0.7 for primary arriving waves and 1.2 for secondary arriving waves. To ensure a fair comparison, in the case that the Stacey ABC is used, the computation domain is extended to include the space occupied by the M-UFSPML. In all cases, we first present snapshots of the normalized displacement at three different times for a vertical excitation. The left panel of Figure7shows waves at an evolving stage, whereas the center and right panels show the absorption of waves in the M-UFSPML region. In Figures7, 9and 11, there are no discernible reflections from the M-UFSPML interface, indicating satisfactory performance of the nine-element M-UFSPML. Figures 10, 12 and 14 compare the normalized horizontal and vertical displacement time histories at the receiver computed with the M-UFSPML, Stacey ABC and infinitely extended domain, the solution of which is referred to as an extended solution.

  Figure 7. Comparison of snapshots of the normalized displacement taken at 3, 6, 9 s and 2 2 x y u u  computed with different infinite-domain truncation techniques: M-UFSPML having a thickness of nine elements (anisotropic medium III, infinite model, vertical excitation).

Figure 8 .

 8 Figure 8. Comparison of time histories of the normalized horizontal and vertical displacements at the receiver computed with the M-UFSPML having thickness of nine elements, Stacey ABC and the extended domain (anisotropic medium III, infinite model, vertical excitation).

Figure 9 .

 9 Figure 9. Comparison of snapshots of the normalized displacement taken at 3.0, 4.6, and 6.0 s 2 2 x y u u  and computed with different infinite-domain truncation techniques: M-UFSPML having thickness of nine elements (anisotropic medium IV, infinite model, vertical excitation).

Figure 10 .

 10 Figure 10. Comparison of time histories of normalized horizontal and vertical displacements at the receiver computed with M-UFSPML having thickness of nine elements, Stacey ABC and the extended domain (anisotropic medium IV, infinite model, vertical excitation).

Figure 11 .

 11 Figure 11. Comparison of snapshots of the normalized displacement taken at 32, 60, and 90 μs 2 2 x y u u  and computed with different infinite-domain truncation techniques: M-UFSPML having thickness of nine elements (anisotropic medium Apatite, infinite model, vertical excitation).

Figure 12 .

 12 Figure 12. Comparison of normalized horizontal and vertical displacement time histories at the receiver computed with M-UFSPML of 9 elements size thickness, Stacey ABC and the extended domain (anisotropic medium apatite, infinite model, vertical excitation).

Figure 13 .

 13 Figure 13. Comparison of snapshots of the normalized displacement

Figure 14 .

 14 Figure 14. Total decay of energy throughout the domain computed with the M-UFSPML, M-UFSPML-Li having thickness of nine elements and Stacy ABC (coupled isotropic and anisotropic medium, layered model, vertical excitation). M-UFSPML-Li refers to the result obtained with the M-UFSPML by Li & Bou (2010).
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 15 Figure 15. Comparison of time histories of normalized horizontal and vertical displacements at the receiver
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	evaluated at	x L 	/ 2	and	y L 	/ 2	. The results show the clear loss of the perfect-matching

  transforming into the real coordinates using the incorrect chain rule (3), we get
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Table 1 .

 1 M-PML formulations and number of additional variables needed for their implementation in time-domain elastodynamics (in-plane wave)

	e
	w
	O n
	l y

Table 2 .

 2 Geometrical and discretization parameters for the homogeneous isotropic semi-infinite model and anisotropic infinite model

			Isotropic	Anisotropic medium Ⅲ, IⅤ	Apatite
				Physical domain dimension
	Length		11km	8m	25cm
	Width		4km	8m	25cm
				Physical domain properties
	Density	2700kg/m 3	1kg/m 3	3200kg/m 3
	Elastic coefficients	P V	=3200m/s, =1870m/s.	Given by Table 3	Given by Table 3
				Source location	
	From left boundary		0.25km	4m	12.5cm
	From bottom boundary		3.75km	4m	12.5cm
				Receiver location	
	From left boundary		9.8km	5m	22.5cm
	From bottom boundary		4km	6m	20.5cm
				Ricker wavelet parameters
	Dominant frequency		2.5Hz	1Hz	170kHz
	Onset time		0.4s	0.5s	5.88μs
				Discretization parameters
	Element size		0.1km	0.25m	0.25cm
	Layer of				
	elements used in		3, 9, 15	9	9
	PML				
	Time step		0.0004s	0.001s	0.02μs
	Total duration		20s	100s	2000μs

S V

Table 3 .

 3 Elasticity coefficients of an anisotropic medium

	Elasticity coefficients (N/m 2 )	Ⅲ	Ⅳ	Apatite
	c 11	4	10	1.65e+11
	c 22	20	20	6.20e+10
	c 66	2	6	3.96e+10
	c 12	7.5	2	5.00e+10

Table 4 .

 4 Media properties of the adapted layered model from[START_REF] Zhu | Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation[END_REF] 

	Layers Thickness	V P (m/s)	V S (m/s)	 (kg/m 3 )	c 11 (N/m 2 )	c 22 (N/m 2 )	c 66 (N/m 2 )	c 12 (N/m 2 )
	1	300m	1900 1200	1800			
	2	250m			2300	2.33e+10 1.32e+10 2.78e+9	6.56e+9
	3	150m			2200	1.35e+10 1.98e+10	8.8e+9	1.04e+10
	4		3200 1500	2500			

Table 5 .

 5 Geometrical and discretization parameters for the adapted layered model from[START_REF] Zhu | Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation[END_REF] 

	Truncated computational domain dimension	Receiver location	Discretization parameters
	Length	1000m	From left boundary	900m	Polynomial SE degree of	5
			From			
	Width	1000m	bottom	100m	Element size	10m
			boundary			
					Layer of	
	Source location	Ricker wavelet parameters	elements used in	9
					PML	
	From left boundary	300m	Dominant frequency	10Hz	Timestep	0.0002s
	From bottom boundary	900m	Onset time	0s	Total duration	20s
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