
HAL Id: hal-04292680
https://hal.science/hal-04292680

Preprint submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Another rational solutions to the Burgers’ equation
Pierre Gaillard

To cite this version:

Pierre Gaillard. Another rational solutions to the Burgers’ equation. 2023. �hal-04292680�

https://hal.science/hal-04292680
https://hal.archives-ouvertes.fr


Another rational solutions to the

Burgers’ equation

Pierre Gaillard,
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Abstract

From particular polynomials, we construct rational solutions to the
Burgers’ equation as a quotient of a polynomial of degree n− 1 in x and

n− 1−
[

n

2

]

in t, by a polynomial of degree n in x and
[

n

2

]

in t, [n] being

the greater integer less or equal to n. We call these solutions, solutions of
order n.
We construct explicitly these solutions for orders 1 until 20.
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1 Introduction

We consider the Burgers’ equation which can be written as

ut + uxx + uux = 0 (1)

where the subscripts x and t denote partial derivatives.
In 1915, Bateman [1] introduced this equation (1). This equation appears in
different contexts in physics as in gas dynamics [2], acoustics [3], heat conduc-
tion [4], in soil water [5], in hydrodynamics turbulence [6, 7, 8], in shock waves
[9],...
The first solutions has been constructed by Bateman [1] in 1915. Other types of
methods have been used to solve this equation. We can quote the exp-function
method [13], the tanh-coth method [14], the groups actions on coset bundles
[15], the Cole-Hopf method [16, 17, 18], the homotopy perturbation method
[19],...

1



We can quote some recent results in connection with this study as [10], [11],
[12].
Rational solutions to the Burgers’ equation are constructed in this paper. We

give solutions as a quotient of a polynomial of degree n−1 in x and n−1−
[n

2

]

in t by a polynomial of degree n in x and
[n

2

]

in t, [p] being the greater integer

less or equal to p.

We explicitly build these solutions for orders between 1 and 20.

2 Rational solutions to the Burger’s equation

We consider the following polynomials defined by

pn(x, t) =
∑n

k=0

xk

k!

(−t)

n− k

2

n− k

2
!

(

1−

(

n− k − 2

[

n− k

2

]))

, for n ≥ 0,

pn(x, t) = 0 for n < 0.

(2)

With the choice of these polynomials, we have the following statement

Theorem 2.1 The function vn defined by

vn(x, t) = −2
pn−1(x, t)

pn(x, t)
, (3)

where pn are defined by previous relations (2), is a solution to the Burgers’
equation (1)

ut + uxx + uux = 0.

Remark 2.1 In the following, we will call the solution vn, the solution of order
n of the Burgers’ equation (1).

Remark 2.2 More explicitly, the previous polynomials can be written as

p2k(x, t) =
∑n

l=0

x2l

(2l)!

(−t)k−l

k − l!
, for k ≥ 0,

p2k+1(x, t) =
∑n

l=0

x2l+1

(2l + 1)!

(−t)k−l

k − l!
, for k ≥ 0,

pn(x, t) = 0 for n < 0.

3 Explicit first order solutions

All these rational solutions are singular. At each order, we see the appearence
of curves of singularities. The patterns of singularities are lines or horseshoe
type depending on the order of the solution.
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3.1 First order solutions

Proposition 3.1 The function v defined by

v1(x, t) =
2

x
(4)

is a solution to the Burgers’ equation (1).

Figure 1. Solution of order 1 to (1).

3.2 Solutions of order two

Proposition 3.2 The function v2 defined by

v2(x, t) =
−4x

−x2 + 2 t
, (5)

is a solution to the Burgers’ equation (1).

Figure 2. Solution of order 2 to (1).
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3.3 Solutions of order three

Proposition 3.3 The function v3 defined by

v3(x, t) = 6
−x2 + 2 t

x (−x2 + 6 t)
, (6)

is a solution to the Burgers’ equation (1).

Figure 3. Solution of order 3 to (1).

3.4 Solutions of order four

Proposition 3.4 The function v4 defined by

v4(x, t) = −8
x
(

−x2 + 6 t
)

x4 − 12 x2t+ 12 t2
, (7)

is a solution to the Burgers’ equation (1).

Figure 4. Solution of order 4 to (1).
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3.5 Solutions of order five

Proposition 3.5 The function v5 defined by

v5(x, t) = 10
x4 − 12 x2t+ 12 t2

x (x4 − 20 x2t+ 60 t2)
, (8)

is a solution to the Burgers’ equation (1).

Figure 4. Solution of order 5 to (1).

3.6 Solutions of order six

Proposition 3.6 The function v6 defined by

v6(x, t) = −12
x
(

x4 − 20 x2t+ 60 t2
)

−x6 + 30 x4t− 180 x2t2 + 120 t3
, (9)

is a solution to the Burgers’ equation (1).

Figure 6. Solution of order 6 to (1).
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3.7 Solutions of order seven

Proposition 3.7 The function v7 defined by

v7(x, t) = 14
−x6 + 30 x4t− 180 x2t2 + 120 t3

x (−x6 + 42 x4t− 420 x2t2 + 840 t3)
, (10)

is a solution to the Burgers’ equation (1).

Figure 7. Solution of order 7 to (1).

3.8 Solutions of order eight

Proposition 3.8 The function v8 defined by

v8(x, t) = −16
x
(

−x6 + 42 x4t− 420 x2t2 + 840 t3
)

x8 − 56 x6t+ 840 x4t2 − 3360 x2t3 + 1680 t4
, (11)

is a solution to the Burgers’ equation (1).

Figure 8. Solution of order 8 to (1).
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3.9 Solutions of order nine

Proposition 3.9 The function v9 defined by

v9(x, t) = 18
x8 − 56 x6t+ 840 x4t2 − 3360 x2t3 + 1680 t4

x (x8 − 72 x6t+ 1512 x4t2 − 10080 x2t3 + 15120 t4)
, (12)

is a solution to the Burgers’ equation (1).

Figure 9. Solution of order 9 to (1).

3.10 Solutions of order ten

Proposition 3.10 The function v10 defined by

v10(x, t) = 20
x
(

x8 − 72 x6t+ 1512 x4t2 − 10080 x2t3 + 15120 t4
)

−x10 + 90 x8t− 2520 x6t2 + 25200 x4t3 − 75600 x2t4 + 30240 t5
, (13)

is a solution to the Burgers’ equation (1).

Figure 10. Solution of order 10 to (1).
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3.11 Solutions of order eleven

Proposition 3.11 The function v11 defined by

v11(x, t) = 22
−x10 + 90 x8t− 2520 x6t2 + 25200 x4t3 − 75600 x2t4 + 30240 t5

x (−x10 + 110 x8t− 3960 x6t2 + 55440 x4t3 − 277200 x2t4 + 332640 t5)
, (14)

is a solution to the Burgers’ equation (1).

Figure 11. Solution of order 11 to (1).

3.12 Solutions of order twelve

Proposition 3.12 The function v12 defined by v12(x, t) =
n(x, t)

d(x, t)
,

n(x, t) = −24x(−x10+110 x8t−3960 x6t2+55440 x4t3−277200 x2t4+332640 t5),

d(x, t) = x12−132 tx10+5940 t2x8−110880 t3x6+831600 t4x4−1995840 t5x2+
665280 t6

is a solution to the Burgers’ equation (1).

Figure 12. Solution of order 12 to (1).
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3.13 Solutions of order thirteen

Proposition 3.13 The function v13 defined by v13(x, t) =
n(x, t)

d(x, t)
,

n(x, t) = 26(x12−132 tx10+5940 t2x8−110880 t3x6+831600 t4x4−1995840 t5x2+
665280 t6),

d(x, t) = x(x12−156 tx10+8580 t2x8−205920 t3x6+2162160 t4x4−8648640 t5x2+
8648640 t6)

is a solution to the Burgers’ equation (1).

Figure 13. Solution of order 13 to (1).

3.14 Solutions of order fourteen

Proposition 3.14 The function v14 defined by v14(x, t) =
n(x, t)

d(x, t)
,

n(x, t) = −28x(x12−156 tx10+8580 t2x8−205920 t3x6+2162160 t4x4−8648640 t5x2+
8648640 t6),

d(x, t) = −x14+182 tx12−12012 t2x10+360360 t3x8−5045040 t4x6+30270240 t5x4−

60540480 t6x2 + 17297280 t7

is a solution to the Burgers’ equation (1).
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Figure 14. Solution of order 14 to (1).

3.15 Solutions of order fifthteen

Proposition 3.15 The function v15 defined by v15(x, t) =
n(x, t)

d(x, t)
,

n(x, t) = 30(−x14+182 tx12−12012 t2x10+360360 t3x8−5045040 t4x6+30270240 t5x4−

60540480 t6x2 + 17297280 t7),

d(x, t) = x(−x14+210 tx12−16380 t2x10+600600 t3x8−10810800 t4x6+90810720 t5x4−

302702400 t6x2 + 259459200 t7)

is a solution to the Burgers’ equation (1).

Figure 15. Solution of order 15 to (1).

3.16 Solutions of order sixteen

Proposition 3.16 The function v16 defined by v16(x, t) =
n(x, t)

d(x, t)
,
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n(x, t) = −32x(−x14 + 210 tx12 − 16380 t2x10 + 600600 t3x8 − 10810800 t4x6 +
90810720 t5x4 − 302702400 t6x2 + 259459200 t7),

d(x, t) = x16−240 tx14+21840 t2x12−960960 t3x10+21621600 t4x8−242161920 t5x6+
1210809600 t6x4 − 2075673600 t7x2 + 518918400 t8

is a solution to the Burgers’ equation (1).

Figure 16. Solution of order 15 to (1).

3.17 Solutions of order seventeen

Proposition 3.17 The function v17 defined by v17(x, t) =
n(x, t)

d(x, t)
,

n(x, t) = 34(x16−240 tx14+21840 t2x12−960960 t3x10+21621600 t4x8−242161920 t5x6+
1210809600 t6x4 − 2075673600 t7x2 + 518918400 t8),

d(x, t) = x(x16−272 tx14+28560 t2x12−1485120 t3x10+40840800 t4x8−588107520 t5x6+
4116752640 t6x4 − 11762150400 t7x2 + 8821612800 t8)

is a solution to the Burgers’ equation (1).
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Figure 17. Solution of order 17 to (1).

3.18 Solutions of order eighteen

Proposition 3.18 The function v18 defined by v18(x, t) =
n(x, t)

d(x, t)
,

n(x, t) = −36x(x16 − 272 tx14 + 28560 t2x12 − 1485120 t3x10 + 40840800 t4x8 −

588107520 t5x6 + 4116752640 t6x4 − 11762150400 t7x2 + 8821612800 t8),

d(x, t) = −x18 + 306 tx16 − 36720 t2x14 + 2227680 t3x12 − 73513440 t4x10 +
1323241920 t5x8 − 12350257920 t6x6 + 52929676800 t7x4 − 79394515200 t8x2 +
17643225600 t9

is a solution to the Burgers’ equation (1).

Figure 18. Solution of order 18 to (1).

3.19 Solutions of order nineteen

Proposition 3.19 The function v19 defined by v19(x, t) =
n(x, t)

d(x, t)
,

n(x, t) = 38(−x18 + 306 tx16 − 36720 t2x14 + 2227680 t3x12 − 73513440 t4x10 +
1323241920 t5x8 − 12350257920 t6x6 + 52929676800 t7x4 − 79394515200 t8x2 +
17643225600 t9),

d(x, t) = x(−x18 + 342 tx16 − 46512 t2x14 + 3255840 t3x12 − 126977760 t4x10 +
2793510720 t5x8−33522128640 t6x6+201132771840 t7x4−502831929600 t8x2+
335221286400 t9)

is a solution to the Burgers’ equation (1).
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Figure 19. Solution of order 19 to (1).

3.20 Solutions of order twenty

Proposition 3.20 The function v20 defined by v20(x, t) =
n(x,t)
d(x,t) ,

n(x, t) = −40x(−x18+342 tx16−46512 t2x14+3255840 t3x12−126977760 t4x10+
2793510720 t5x8−33522128640 t6x6+201132771840 t7x4−502831929600 t8x2+
335221286400 t9),

d(x, t) = x20−380 tx18+58140 t2x16−4651200 t3x14+211629600 t4x12−5587021440 t5x10+
83805321600 t6x8−670442572800 t7x6+2514159648000 t8x4−3352212864000 t9x2+
670442572800 t10

is a solution to the Burgers’ equation (1).

Figure 20. Solution of order 20 to (1).
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4 Conclusion

We have given an expression of rational solutions to the Burgers’ equation in-
volving particular polynomials.
In particular, we have constructed explicit solutions to the Burgers’ equation
for the orders n = 1 until n = 20.
All these solutions are singular. We can classify them by the pattern of their
singulatities.
The singularities of these solutions depend on the orders of the solutions. When
we consider odd order solutions we have always the line x = 0 of singularities.
In the case of even order solutions n = 2p, the singularities form horseshoe
patterns with p branches.
It will be interesting to construct solutions of this equation depending on some
real parameters.
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