
HAL Id: hal-04292650
https://hal.science/hal-04292650v1

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the Threat Level of Software Supply Chains
with the Log Model

Luıs Soeiro, Thomas Robert, Stefano Zacchiroli

To cite this version:
Luıs Soeiro, Thomas Robert, Stefano Zacchiroli. Assessing the Threat Level of Software Supply Chains
with the Log Model. 2023 IEEE International Conference on Big Data - 6th Annual Workshop on
Cyber Threat Intelligence and Hunting, Dec 2023, Sorrento, Italy, France. �hal-04292650�

https://hal.science/hal-04292650v1
https://hal.archives-ouvertes.fr


Assessing the Threat Level of Software Supply
Chains with the Log Model

Luı́s Soeiro∗, Thomas Robert∗, Stefano Zacchiroli∗
∗LTCI, Télécom Paris, Institut Polytechnique de Paris, France
{luis.soeiro, thomas.robert, stefano.zacchiroli}@telecom-paris.fr

Abstract—The use of free and open source software (FOSS)
components in all software systems is estimated to be above
90%. With such high usage and because of the heterogeneity of
FOSS tools, repositories, developers and ecosystem, the level of
complexity of managing software development has also increased.
This has amplified both the attack surface for malicious actors
and the difficulty of making sure that the software products are
free from threats. The rise of security incidents involving high
profile attacks is evidence that there is still much to be done to
safeguard software products and the FOSS supply chain.

Software Composition Analysis (SCA) tools and the study of
attack trees help with improving security. However, they still lack
the ability to comprehensively address how interactions within
the software supply chain may impact security.

This work presents a novel approach of assessing threat levels
in FOSS supply chains with the log model. This model provides
information capture and threat propagation analysis that not
only account for security risks that may be caused by attacks
and the usage of vulnerable software, but also how they interact
with the other elements to affect the threat level for any element
in the model.

Index Terms—software supply chain, threat propagation, open
source, software build, formal model

I. INTRODUCTION

The security of technological supply chains is a hot topic
especially for software, with a growing amount of high-profile
attacks [1], [2], like the highly-publicized one on SolarWinds
product Orion [3]. While security of supply chains for manu-
facturers have been deeply studied for years, the way software
is produced, stored, and distributed adds different challenges
to the security of supply chains for software [4], [5]. Most
software systems depend on many third party free and open
source software artifacts [6], [7] that have been copied, trans-
formed, or combined to form the executable software product.
Each of those artifacts, in turn, might be a combination of other
software artifacts, and so on, recursively forming the software
supply chain for the final software product. If any of those
components is vulnerable or compromised there is a possibility
that the end software products of the related Software Supply
Chain (SSC) may be be affected.

The study of software dependencies (e.g., source code, li-
braries, other components) has been the main focus of software
development practitioners [8] and empirical researchers [9].

Supported by the industrial chair Cybersecurity for Critical Networked
Infrastructures (cyberCNI.fr) with support of the FEDER development fund
of the Brittany region, France.

Such analyses target different goals: to check for license
compliance issues [10], or to determine the vulnerability of
a software product. Software Composition Analysis (SCA)
tools [11] usually help by generating a list of dependencies for
a package and then searching for vulnerable or compromised
components that were included with it [12]. The purpose of
these analyses is to propagate knowledge about dependencies
up to the end product. Yet, propagating security threat infor-
mation only from components identified as “parts” of the end
product is not satisfactory. In [2], authors pointed out that there
was mainly two strategies to compromise a software product:
compromising the host of the build process, or compromising
the storage and distribution infrastructure of software artifacts.

The presence of vulnerabilities in the operational part of
the software supply chain can make it possible for an attacker
to compromise software artifacts in the build environment
used during builds. Compromised tools executed to carry out
required steps such as compilation, linking or packaging of
the software are even more concerning in terms of security
than a vulnerable library as they may contain code that runs
at build time to inject delayed attacks. The already mentioned
SolarWinds’Orion attack [3] is a perfect example of this.

In terms of threat modeling and attack scenario description,
the state of the art of research is to rely on attack trees [13].
This formalism is generally used to describe attacks or threat
for classes of systems without accounting for any specific
knowledge of it. Hence, there is a lack of formalism that
integrates insights about vulnerable or compromised software
artifacts, and compromised hosts that run build processes or
distribute packages to determine the threat level represented
by a piece of software.

Paper contributions: We propose the log model as the
basis for an approach to keep a history of software supply
chain activities for a given software product, which allows
practitioners to gather a better picture of the threat level
represented by a software component. We then propose an
algorithm to calculate the resulting propagated security status
for any element of the supply chain captured by the model.
Such approach is complementary to direct detection procedure
of malicious content in software product, but may spare a lot a
time identifying the components that are most likely to actually
contain malicious code or the most critical vulnerabilities.

Paper structure: Section II details related works and
motivating literature relevant for our proposal. Section III



details the approach and the core elements needed to be able
to carry the above mentioned analysis. Section IV details the
threat levels for each entity and gives the intuition about how it
can propagate down to the end products of the SSC. Section V
presents the model used to capture how the software supply
chain has been used to produce a given end product, or a set
of related products. From those elements, section VI details
the proposal for a threat level propagation analysis that can be
used to grasp first insights on SSC vulnerabilities. It can also
be used to determine which elements of the SSC might be
compromised when additional knowledge about compromised
artifacts, execution or storage resources is provided. Such
cases are illustrated in section VII. Finally, section VIII
presents the conclusions.

II. RELATED WORK

Core principles about supply chains security have been
studied and led to the identification of abstract threat types [5]
that apply to supply chains in general and to SSC specifically.
Yet, we are focusing on detailed threat modeling, which is
most often part of Cyber-Threat Intelligence and is close to
detection concerns [14]. Attack trees [13] and attacks graphs
are two complementary tools for identifying and describing
attack requirements and to reason about attack propagation.

The most up to date attack tree in this field is provided
by Ladisa et al. [2] extending previous work by Ohm et
al. [1]. It identifies three main vectors to carry out attacks
by compromising or abusing: the way software source code
is contributed and injected into software supply chains, build
environments, or the distribution infrastructure of software
(e.g., package managers, repositories). Hence, we cover two
out of three of the main attack vectors, but the coverage of
repositories is less clear as the attack scenarios most often
do not assume compromised repositories but abuses of the
mechanisms and bad practices when it comes to consume
software. This point of view is consistent with the general
understanding of the core issues a SSC has to cope with [15].

Examples of attack graphs integrating attacks steps on the
supply chain can be found in [16]. The advantage of attack
graphs over attack trees is that they should account for the ac-
tual system for which one wants to determine whether a piece
of software is a threat. The main issue of this contribution is
that the knowledge of compromised software artifacts should
be an input of the graph model. Instead, the graph simply
accounts for such events, not helping to see how such events
propagate into software supply chains.

Other graph-based strategies have been proposed to bet-
ter identify or detect vulnerabilities by trying to understand
changes in versions and evaluating how they change the
semantics to detect vulnerabilities [17], [18]. Such approaches
are complementary to ours. They require actual access to the
source code used in the SSC and do not provide a clear strategy
to study the impact of a software component vulnerability
on the SSC, they only account for vulnerability of source
packages. Their advantage is then to avoid too pessimistic
conclusions by considering which ones are actually reachable

during end product potential execution (e.g., thanks to call
graph analysis). A vulnerable software in our case can have
two impacts: i) introduce directly the same vulnerability in the
product; ii) make some step of the SSC vulnerable and open
the door to the production of a compromised end product.
Hence, we provide less accurate information in terms of
potential compromises, but we require less information.

From the detection point of view, the dependencies of an
end product on sources are used to infer from the source code
an estimate of the level of compromises or vulnerabilities for
each commit in a version control system [19]. Despite the
advantages of being able to determine those vulnerabilities
for each commit, the propagation of their impact needs to be
understood [20]. The latter publication shows how detection
is interesting but limited without the means to propagate the
knowledge to dependent software artifacts, build processes,
execution resources, provider-consumer links, or versions his-
tories.

Another approach to reason about software security risks is
to use Software Bills of Materials (SBOMs) to look for vulner-
able components [21]. The leading industry standards, SWID,
SPDX, and ClycloneDX, can represent software components
and be automatically generated and consumed. However, there
are no agreements on the data fields that should be present.
Also, SBOM adoption is still lacking [22], despite many years
of availability of the SPDX specification [23]. Additionally,
even a comprehensive SBOM only captures a static snapshot
of the dependencies for a software product. It doesn’t include
information on the interactions that have occurred among all
the elements of the software supply chain during the build
processes. Those interactions may affect threat propagations
and so are necessary for our current work.

To our knowledge the existing software supply chain models
and information capture approaches suffer from a lack of
requirements and semantics for the dependencies that they can
record. It does not make them incorrect but ultimately it does
make them impossible to exploit for the kind of automated
propagation analysis we target.

III. APPROACH

Our approach can be seen as an extension of usual recursive
dependency analyses for vulnerable software [24]. As pointed
out in the previous section, the outcome of a SSC does not
only represent a threat because it may distribute vulnerable
software. Since a SSC can also be a vector to distribute
malicious software, our proposal offer a method to reason
about both cases.

We introduce a dependency graph model that accounts for
resources that were used along the software supply chain (e.g.,
host machines, software tools) of a given product. This model,
called the log model, identifies different elements involved
along the supply chain that have a direct role in either prop-
agating vulnerabilities or injecting and distributing malicious
code. From such a model, we define a set of generic inference
rules that help to identify all the consequences of a current
state of knowledge in terms of threats. These rules allows



the propagation of knowledge of vulnerable or malicious
software, and of vulnerable or malicious host machines along
the dependencies among the SSC operations. The advantage
of this approach is to combine different sources of information
by using with this notion of state of knowledge, and then to
infer the consequences of this state of knowledge for the end
product.

Hence the first step is to decompose the main element types
of the SSC. At first two types of elements are distinguished:
host machines, called hosts, and software elements, called
software artifacts. It helps us to distinguish components that
execute something from those that could be executed. We
need to be able to describe the steps of the SSC that produce
something: transformers. Such components allow us to capture
three distinct behaviors for software dependencies: software
artifacts that carry out the operations related to transformers
(e.g., compilers, packagers), artifacts that are integrated di-
rectly or indirectly to the product (e.g., libraries, source code),
and artifacts that are necessary for operations of hosts (e.g.,
operating systems, hypervisors, containers). Because a host
can be involved in different steps of the SSC, it may provide
for each of these transformers a different environment in which
the operation is carried out. This is the last type we introduce,
the build environment, to capture the exact context in which
the operations took place.

In the next section, we provide the details of the information
we propose to attach to each element, and the inference
rules that can be used to capture the interplay of software
artifacts, hosts, build environments and transformers in terms
of propagation of vulnerabilities and malicious content.

IV. A THREAT MODEL FOR SOFTWARE SUPPLY CHAINS

The focus of the proposed threat model is on the impact of
attacks rooted within the resources found on software supply
chains. We aim to calculate the security status of any element
of the software supply chain.

Definition IV.1 (Security Status Calculus). The resulting
security status for an element in a software supply chain is
the security status of maximum impact of all elements that
contribute directly to it.

The elements necessary to perform such analyses are pre-
sented, along its possible security implication.

Definition IV.2 (Host). A host is a computer system which
stores and uses software resources.

Definition IV.3 (Software Artifact). A software artifact is a
named set of software parts that are made available to be
executed on host machines.

Let QS = [safe, vulnerable,malicious] be an ordered list of
possible software security states for a software artifact. They
are arranged from the lowest to the highest impact they may
have on the system, where:

• safe - there are no known vulnerabilities reported, so it
has no adverse impact on the security of the system, a
priori;

• vulnerable - there is at least one known vulnerability
reported that makes it exploitable, but it requires at least
one action from the attacker to carry the exploitation;

• malicious - the software contains code that is already
intended to perform malicious activities in a potentially
automated way (e.g., open backdoors for remote shell
access, injection of malicious code into other artifacts).

We consider the final security status of a software artifact the
result of combining its known initial security status with the
propagated security level from other elements. For the initial
state we need existing security information related to vulnera-
ble and malicious software artifacts. For vulnerable software,
there has been ongoing identification efforts by the software
community and to make the information searchable [25]. Let
χSV be the set of software artifacts with known vulnerabilities,
already extracted from such information sources.

Since the first self replicating software was crafted and ob-
served [26], malicious software (e.g., virus, trojans) has been
studied. Such software often use evasion techniques to make
them harder to be detected [27]. Since we can’t rely on usual
software artifact identifiers (e.g., file name, version, author) or
even on intrinsic ones (e.g,. cryptographic hashes), malicious
software databases are not feasible. One must instead rely on
file system scanning and intrusion detection techniques (e.g.,
cryptographic hash alteration). Let χSM be the set of malicious
software artifacts detected or inferred on the system by any
means.

In the current work, we assume a worst case scenario: when
a host is known to have being compromised, all software
artifacts that come from it are considered to be malicious.
However, there is an exception. There might be an uncompro-
mised host (e.g., no attacks were reported or observed) where
a malicious software was published to be distributed, but was
not itself executed. If this malicious software artifact is in
the supply chain for other software artifacts, this host will be
considered compromised for that supply chain, because it is
distributing compromised software artifacts. If, on the other
hand, another safe software artifact is fetched from this same
uncompromised host, as part of another software supply chain,
it won’t be classified as malicious for that software supply
chain.

Let QH = [safe, vulnerable, compromised] be an ordered
list of possible software security states for a host. The list is
arranged from the lowest to the highest impact they may have
on the system, where:

• safe - all software artifacts present on the system have the
safe security status and there are no reports of security
breaches of the host system;

• vulnerable - there is at least one software artifact present
in the host that has the vulnerable security status, but
none that has the malicious security status, and there are
no reports of security breaches of the host system;

• compromised - there is at least one software artifact
present in the host that has the malicious security status
or there is at least one report of a security breach for the
host.



TABLE I
RULES FOR EVALUATING THE CURRENT SECURITY STATUS FOR A HOST

StatusS StatusH Host result
safe safe safe

vulnerable safe vulnerable
malicious safe compromised

safe compromised compromised
vulnerable compromised compromised
malicious compromised compromised

Let StatusS be the result of combining the security status
of all software artifacts that were observed to be present in
a host during the execution of build activities. We combine
them with the initial security status of the host to obtain its
security result.

In order to obtain the initial security status of host, it might
be necessary to rely on external attack disclosures or intrusion
detection techniques [28]. We assume such information is
already available. Let χHV be the set of hosts that are known
to be vulnerable and χHM be the set of hosts that are known
to have been compromised. For a host h, let StatusH be
malicious if h ∈ χHM , vulnerable if h /∈ χHM ∧ h ∈ χHV ,
and safe otherwise. Table I presents the possible combinations
of resulting security status for a host.

Besides providing storage and distribution functionalities for
storage artifacts, hosts also provide an environment to execute
transformers.

Definition IV.4 (Transformer). A transformer is a step of the
software supply chain where specified software artifacts are
executed to carry out operations (e.g., fetching, compiling,
packaging) on other software artifacts to generate one or more
related software artifacts.

A transformer has two distinct types of input software
artifacts: those that carry out the execution and those that are
to be acted upon. It has just one kind of output, the software
artifacts that were generated.

The security status of a transformer is calculated in two
phases. Let Btools be the set of software artifacts that are carry
out operations and A the set of all other software artifacts. In
the first phase we calculate the combined security status of
Btools and A according to the table II, where column “Build
tools” shows the combined security of Btools, column “Other
inputs” shows the combined security of software artifacts that
are integrated directly or indirectly to the generated artifacts,
and column “T1 result” shows the security status for the phase
1 of transformer calculus. The second phase will be presented
later.

Definition IV.5 (Build environment). An build environment is
a computer system in which software artifacts can be executed
while performing activities related to generating other software
artifacts.

One host can provide a number of build environments,
possibly concurrently, for preparation of different software
artifacts in different supply chains. The security status of a

TABLE II
RULES FOR TRANSFORMER PHASE 1

Build tools Other inputs T1 result
safe safe safe

vulnerable safe safe
malicious safe malicious

safe vulnerable vulnerable
vulnerable vulnerable vulnerable
malicious vulnerable malicious

safe malicious malicious
vulnerable malicious malicious
malicious malicious malicious

TABLE III
RULES FOR BUILD ENVIRONMENT SECURITY CALCULUS

Host status Input artifacts B.env result
safe safe safe

vulnerable safe safe
malicious safe compromised

safe vulnerable safe
vulnerable vulnerable safe
malicious vulnerable compromised

safe malicious compromised
vulnerable malicious compromised
malicious malicious compromised

build environment is the combination of the security statuses
of its host and the software artifacts that were present during
the build.

Vulnerable software artifacts that performed a supporting
role for the build environment, i.e., operating system com-
ponents, don’t propagate vulnerabilities to the transformer
generated artifacts, because they can’t directly or indirectly
modify the generated software artifacts.

On the other hand, when a malicious software is present in
a build environment, we consider that it may have the ability to
compromise other software artifacts, including the transformer
components. For a build environment, we use the same set of
possible security states of hosts, and its security status is a
result of the security status of its underlining host combined
with the security status of all input software artifacts that
there were present. The rules are shown in the table III. The
columns “Host status”, “Input artifacts”, and “B.env result”
show respectively, the current security statuses for the host,
input software artifacts, and the resulting build environment.

Finally we compute the second phase of the transformer
security status by combining the results of the phase 1 (column
“T1 result” in Table II) with column “B.env result” in Table
III), shown in Table IV. The column “Transformer result”
shows the resulting status for the transformer.

We now introduce the log model which captures the threat
propagation contributions for the software supply chain.

V. THE LOG MODEL

We propose the log model to capture information about the
build process of a software product. We record the actions that
took place, the artifacts that were involved, and the choices that
were made within a software supply chain for the building of



TABLE IV
RULES FOR TRANSFORMER PHASE 2

T1 result B.env result Transformer result
safe safe safe

vulnerable safe vulnerable
malicious safe malicious

safe compromised malicious
vulnerable compromised malicious
malicious compromised malicious

a specific software product. We also capture the topology of
the data flows that took place.

We define the log model GLM , by adding vertex types,
edge types and properties to a standard property graph model
G [29]. We recall it here for referencing purposes:

Definition V.1 (Log Model). Let L be a finite set of labels,
K be a set of property keys and N be a set of values. Let
GLM = (V,E, η, λ, ν) be the log model for a software supply
chain, where:

• V is a finite set of vertices;
• E is a finite set of edges such that E ∩ V = ∅;
• η : E 7→ V × V is a total function that maps each edge

to an ordered pair of vertices;
• λ : V ∪ E 7→ P (L) is a function that assigns to each

vertex and edge a finite set of labels;
• ν : (V ∪ E)×K 7→ N is a partial function that assigns

property values to elements, such that the set of domain
values where ν is defined is finite.

We constrain a general property graph to the set of vertices
type in which we are interested in.

Definition V.2 (Vertex types). Let L (V ) be the set of labels
for V , such that: L (V ) ⊆ { softwareArtifact, transformer,
host, buildEnvironment }

The vertex types defined by those labels are:
1) softwareArtifact - see definition IV.3;
2) transformer - see definition IV.4;
3) host - see definition IV.2;
4) buildEnvironment - see definition IV.5.
Let S ∈ V be the set of all softwareArtifact vertices, T ∈ V

be the set of all transformer vertices, H ∈ V be the set of all
host vertices, and B ∈ V be the set of all buildEnvironment
vertices.

We further constrain the property graph GLM to contain
only the following edge types:

Definition V.3 (Edge types). Let L (E) be the set of labels
for E, such that: L (E) ⊆ { hosted, executed, wasInputTo,
wasPresent, generated, wasPublishedTo, transferred }

The edges are all directed and their labels represent their
types as explained bellow:

1) hosted - an edge that designates which host provided
a build environment. It connects a host vertex to an
buildEnvironment vertex;

TABLE V
EDGE TYPES AND THE COMBINATION OF VERTICES ALLOWED

Edge type Source vertices Target vertices
hosted host buildEnvironment

executed buildEnvironment transformer
wasInputTo softwareArtifact transformer
wasPresent softwareArtifact buildEnvironment, host
generated transformer softwareArtifact

wasPublishedTo softwareArtifact host
transferred host softwareArtifact

2) executed - an edge that specifies which build environ-
ment was used to generate the build. It connects an
buildEnvironment vertex to a transformer vertex.

3) wasInputTo - an edge that specifies the input of a
transformation. It connects a softwareArtifact vertex to
a transformer vertex.

4) wasPresent - an edge that specifies what software
artifacts were present in the buildEnvironment and at the
host when the build process was executed. It connects
a softwareArtifact vertex to an buildEnvironment or to a
host vertex.

5) generated - an edge that specifies the results of a
transformation. It connects a transformer vertex to a
softwareArtifact vertex.

6) wasPublishedTo - an edge that designates where gener-
ated artifacts were published to be consumed by others.
It connects a softwareArtifact to a host vertex.

7) transferred - an edge that designates where the artifacts
came from. It connects a host vertex to a softwareArti-
fact vertex.

The edges connection rules are summarized in Table V.
An example of a log model property graph GLM is rendered

in figure 1. Hosts (vertices 1, 5 and 11) are rendered with
rectangle shapes, software artifacts (vertices 2, 3, 4, 6, 9 and
10) are rendered in rounded corners. Build environments (ver-
tex 7) and transformers (vertex 8) are rendered with diagonal
corners. For brevity we show only some of the properties for
each element of the graph. Element #4, a software artifact, was
present in element #5, a host, which hosted element #7, a build
environment, which used a virtual machine (VM) to execute
element #8, a transformer. Element #2, a software artifact, was
a build tool to the transformer, while element #6, a software
artifact, was input to the same transformer, which generated
elements #9 and #10, software artifacts. Finally, those artifacts
were published to element #11, a host. In this example, those
actions and characteristics were observed during the building
run of element #8, the transformer.

VI. SECURITY STATUS CALCULUS

This sections defines how to calculate the software security
status of the elements of a software supply chain, as captured
by the log model. For any starting element, it is necessary to
consider all the other elements among all the paths that lead
to it.



1 :host

name = Debian host 1

location = https://debian.org

2 :softwareArtifact

name = GCC

version = 10.2.1

transferred

3 :softwareArtifact

name = OS component 1

version = 1.5.0

transferred

4 :softwareArtifact

name = OSLib1

version = 1.8.0

transferred

6 :softwareArtifact

name = App

version = 7.3.1

transferred

8 :transformer

runStart = 05-06-2023 11:00:00

runEnd = 05-06-2023 12:00:00

wasBuildToolTo

7 :buildEnvironment

isolation = VM

wasPresent

5 :host

name = CodeForge 1

location = https://forge.example

wasPresent

hosted

wasInputTo

executed

9 :softwareArtifact

name = Apt1

version = 1.0.0

generated

10 :softwareArtifact

name = Lib2

version = 1.8.0

generated

11 :host

name = Mirror 2

location = https://mirror.example

wasPublishedTo wasPublishedTo

Fig. 1. An example of the Log Model

We introduce the following notation for typing purposes: S,
H , T , and B stand for softwareArtifact, host, transformer, and
buildEnvironment vertices, respectively. We introduce the set
of status Q = {safe, vulnerable,malicious}, to represent
the status of both hosts and software artifacts (see IV). If a
host has the label malicious it means it is equivalent to being
compromised. For a given set X , P(X ) designates the subsets
of X . The list of security status Q is ordered and defined for
any X ∈ P(Q) and max(X) returns the singleton equal to
the greatest label in X or the empty set if X is empty. The
function parentsOf(v : V ) returns a set of parent vertices of V ,
possibly empty. Let nil be a symbol indicating no value. The
sets χSV and χSM , and the log model are considered to be
globally available to be consulted from all functions.

Definition VI.1 (Results). Let a calculated state of the security
calculus be the 5-ple Res = (q, SV , SM , HV , HM ) , where:

• q ∈ Q is the security status of the desired element;
• SV is a set of vulnerable softwareArtifact vertices;

• SM is a set of malicious softwareArtifact vertices
• HV is a set of vulnerable host vertices
• HM is a set of malicious host vertices

All functions that can be called for getting an element status
in the algorithm listings return a Res 5-ple so all the host and
softwareArtifact vertices security states from the origins to the
selected element in the log model will be available (see VII
for use cases).

We will use the following notation for operating with
instances of type Res. For any element r = (x1, x2, . . . , x5):

• r[i] means read the xi value;
• r[i] := y means attribute value y to element xi;
We will use the special helper function merge to define the

first element q and to apply the individual unions of all other
elements of the 5-tuples of type Res.

Definition VI.2 (merge). Let merge : Q × Res 7→ Res be a
function that merges two instances of 5-ples Res, such that:
merge(q,X, Y ) = (q, x2 ∪ y2, x3 ∪ y3, . . . , x5 ∪ y5)

The entry point for the algorithm for calculating the status
of a softwareArtifact is shown in Listing 1. Later we will
present the functions that gather information about other
vertex types. We combine the initial condition of vertex s
(initialSoftwareStatus in Listing 2) with the recursively
calculated status of all parents of s.

Listing 1

1 function getSoftwareStatus(s : S, r0 : Res): Res
2 let r : Res := copyOf(r0)
3 let rp : Res := getAllStatuses(s, parentsOf(s), r0)
4 let q : Q := max(initialSoftwareStatus(s), rp[1])
5 // add this sw to the corrensponding set
6 if q = vulnerable then
7 r[2] := r[2] ∪ s
8 if q = malicious then
9 r[3] := r[3] ∪ s

10 return merge(q, r, rp)

Listing 2

1 function initialSoftwareStatus(s : S): Q
2 let a,b := safe,safe
3 if s ∈ χSV then
4 a := vulnerable
5 if s ∈ χSM then
6 b := malicious
7 return max(a, b)

Given a set of vertices V returned by the function
parentsOf , we calculate the final security status by com-
bining all V statuses, according to the specific rules for each
type of vertex. We do that by calling the specific function as



required, as shown in Listing 3. When any of those specific
functions are called, they call the parentsOf function again,
recursively visiting the remaining incoming edges of the graph.
There is an exceptional rule that will be presented later,
which requires the knowledge of the current analyzed software
artifact s ∈ S to calculate the status of a host.

Listing 3

1 function getAllStatuses(s : S, Vx : P(V), r0 : Res): Res
2 let r : Res := copyOf(r0)
3 for each v ∈ Vx
4 let rp:Res := getOneStatus(s, v, r0)
5 r := merge(max(r[1], rp[1]), r, rp)
6 return r

1 function getOneStatus(s : S, v : V , r0 : Res): Res
2 if v 6= nil then
3 case typeOf(v) of
4 S: return getSoftwareStatus(v, r0))
5 T : return getTransformerStatus(v, r0))
6 B: return getBuildEnvironmentStatus(v, r0)
7 H: return getHostStatus(s, v, r0)
8 // v doesn’t exist or element not known
9 let r := copyOf(r0)

10 r[1] := malicious
11 return r

For a transformer node we look at the incoming edges and
separate the source vertices into two sets: Btools ⊆ S, the
set of software artifacts that are build tools, and A ⊆ V ,
the set of any other vertices. For a transformer to propagate
a vulnerability downstream it must come from a vulnerable
component that it is used as a building block (i.e., from a
wasInputTo edge). A vulnerable build tool, meanwhile, is not
copied to the generated components, so its security status is
not propagated. However, a malicious software artifact that
is used as a build tool (e.g., a compiler, an archiver) can
inject malicious code into the generated artifacts [30] and thus,
it propagates the malicious security status. For this reason,
we need to check if there is malicious status related to a
building tool. If there is not, the resulting security status will
result exclusively from the calculations of the other vertices.
Listing 4 shows the algorithm.

There are only two possible edges that end in a buildEn-
vironment vertex b ∈ B: hosted and wasPresent. Since
nothing is copied from b by a transformer, the vulnerable
security status is never propagated from b. However, both a
compromised host or a malicious software artifact that was
present inside b could inject malicious code into the other
software artifacts being processed by the transformer that
executed inside b. Listing 5 shows the algorithm that calculates
de security status for b.

The security calculus of a host is the combination of its
initial security status (i.e., whether or not it was known as
compromised during the execution of the buildEnvironment)

Listing 4

1 function getTransformerStatus(t : T , r0 : Res): Res
2 let Btools : S := ∅
3 let A : V := ∅
4 // Separate building tools from other elements
5 for each v ∈ parentsOf(t)
6 if typeOf(v) = S ∧
7 outgoing edge of v = wasBuildToolTo then
8 Btools := Btools ∪ {v}
9 else

10 A := A ∪ {v}
11 let rt : Res := getAllStatuses(nil, Btools, r0)
12 let ra : Res := getAllStatuses(nil, A, r0)
13 // consider build tools status only if malicious
14 let q : Q := safe
15 if mailicous = rt[1] then
16 q := mailicous
17 //Merge all elements
18 return merge(max(q, ra[1]), rt, ra)

Listing 5

1 function getBuildEnvironmentStatus(b : B, r0 : Res): Res
2 let r : Res := getAllStatuses(nil, parentsOf(b), r0)
3 if r[1] = malicious then
4 return r
5 //Only malicious threats propagate
6 r[1] = safe
7 return r

with all the possible security risks that its parent vertices might
bring. The propagation rules depend on the role the host is
performing.

When the host is executing a buildEnvironment (i.e., it is
the parent of a buildEnvironment) vertex, the only possibility
of propagating threats is when it is compromised and thus, it
is able to inject malicious code. For that to happen the host
has to be attacked or it has to execute some softwareArtifact
that is malicious and was connected by a wasPresent edge.
A vulnerable software that is among the supporting software
from a host, but is not a building block type of dependency
(i.e., it is not copied or transformed by the transformer) has
no effect on the propagation of security status from the host
on this role.

When the host is performing the role of a storage from
which to transfer one or more software artifacts, the prop-
agation rules also must account for the children (e.g., who
was using each software artifact). Since in this role software
artifacts are copied from the host to be processed by the
transformer, the security status propagation must account for
this usage. So the algorithm consider the special case where
a software artifact was transferred and it is indicated in the



algorithm by specifying the child s. Listing 6 shows the
algorithm that calculates the security status for a host h,
considering the possibility where the child vertex may be the
softwareArtifact s.

Listing 6

1 function getHostStatus(s : S, h : H , r0 : Res): Res
2 let r : Res = copyOf(r0)
3 if h ∈ χH then
4 r[1] := malicious
5 let Ph : P(V) := parentsOf(h)
6 let Pos : P(V) := {v|v.edge = wasPresent ∧ v ∈ Ph}
7 let ros := getAllStatuses(s, Pos, r0)
8 r := merge(max(r[1], ros[1]), r, ros)
9 if r[1] = vulnerable then

10 r[4] := r[4] ∪ h // saves h in the set
11 r[1] := safe // can’t propagate vuln. here
12 let rs : Res := copyOf(r0)
13 if s 6= nil ∧ Ph 6= ∅ then
14 //Look for a copy of s that was
15 // transferred to the host
16 let p := x|x ∈ Ph, id(x) = id(s)
17 // Sw building block contribution
18 if p 6= nil then
19 rs = getOneStatus(s, p, r0)
20 // if h not compromised, rs (re)defines status
21 let q : Q := malicious
22 if r[1] 6= malicious then
23 q := rs[1]
24 r = merge(q, r, rs)
25 if r[1] = malicious
26 // saves h in the compromised set
27 r[5] := r[5] ∪ h
28 return r

VII. USE CASES

We present use cases where the log model can be used to
give first insights on the SSC security status and additional
insights when more security information becomes available.

Use case VII.1 (Vulnerable components, but safe software
products). Figure 2 shows the SSC for software artifacts App1
(i.e., vetertex 9) and Lib2 (i.e., vertex 10). Let’s suppose that
just after our building and publishing of those artifacts, it
was disclosed by the software community that the artifacts
GCC v9.0.0 (i.e., vertex 2), OS component 1 v1.0.0 (i.e.,
vertex 3), and OSLib1 v1.0.0 (i.e., vertex 4) are all vulnerable
to attacks. Thus {v3, v4, v5} ∈ χV . By applying function
getSoftwareStatus (Listing 1) on vertices 9 and 10, we
are reassured that even though there were some vulnerable
artifacts in the SSC, vertices 9 and 10 still have the safe
security status. Additionally, we might want to verify if there
are known attacks in the wild that exploit those vulnerabilities
of vertices 2, 3 and 4. If it is so, we might want to request

1 :host

name = Debian host 1

location = https://debian.org

2 :softwareArtifact

name = GCC

version = 9.0.0

transferred

3 :softwareArtifact

name = OS component 1

version = 1.0.0

transferred

4 :softwareArtifact

name = OSLib1

version = 1.0.0

transferred

6 :softwareArtifact

name = App

version = 7.3.1

transferred

8 :transformer

runStart = 05-06-2023 11:00:00

runEnd = 05-06-2023 12:00:00

wasBuildToolTo

7 :buildEnvironment

isolation = VM

wasPresent

5 :host

name = CodeForge 1

location = https://forge.example

wasPresent

hosted

wasInputTo

executed

9 :softwareArtifact

name = App1

version = 1.0.0

generated

10 :softwareArtifact

name = Lib2

version = 1.8.0

generated

11 :host

name = Mirror 2

location = https://mirror.example

wasPublishedTo wasPublishedTo

Fig. 2. Vulnerability in some components (shown by dashed lines), don’t
propagate to software products.

an audit of the host CodeForge 1 (i.e., vertex 5), because its
risk of future compromise grows when exploits are already
observed in the wild.

Use case VII.2 (Vulnerable component causes vulnerable
software products). Figure 3 shows the SSC for software
artifacts App1 (i.e., vertex 9) and Lib2 (i.e., vertex 10). In
this case, there was the late disclosure that the artifact App
v7.2.0 (i.e., vertex 6) is vulnerable. Therefore, {v6} ∈ χV . By
applying function getSoftwareStatus (Listing 1) on vertices
9 and 10, we see that both also have the vulnerable security
status. Additionally, we can analyze how to patch or upgrade
vertex 6 in such a way as to remove its vulnerability and
prepare a new release of the software products App1 and Lib2.

Use case VII.3 (Malicious software component compromises
SSC). Figure 4 shows the SSC for software artifacts App1
(i.e., vertex 9) and Lib2 (i.e., vertex 10). After the build is



1 :host

name = Debian host 1

location = https://debian.org

2 :softwareArtifact

name = GCC

version = 10.2.1

transferred

3 :softwareArtifact

name = OS component 1

version = 1.5.0

transferred

4 :softwareArtifact

name = OSLib1

version = 1.8.0

transferred

6 :softwareArtifact

name = App

version = 7.2.0

transferred

8 :transformer

runStart = 05-06-2023 11:00:00

runEnd = 05-06-2023 12:00:00

wasBuildToolTo

7 :buildEnvironment

isolation = VM

wasPresent

5 :host

name = CodeForge 1

location = https://forge.example

wasPresent

hosted

wasInputTo

executed

9 :softwareArtifact

name = Apt1

version = 1.0.0

generated

10 :softwareArtifact

name = Lib2

version = 1.8.0

generated

11 :host

name = Mirror 2

location = https://mirror.example

wasPublishedTo wasPublishedTo

Fig. 3. A vulnerability in component #9 propagates to the software products.
(Vulnerabilities shown by dashed lines)

finished, it comes to attention that there was an attack which
resulted of malicious code being present in the component
OSLib1 v1.7.9 (i.e., vertex 4). So {v4} ∈ χM . By applying
function getSoftwareStatus (Listing 1) on vertices 9 and 10
we are able to discover that both can be considered malicious
(they have a high risk of being malicious). Furthermore,
the result of the calculation (see VI) shows that the set
of calculated compromised hosts HM = {5}, and the set
of malicious software artifacts SM = {4, 9, 10}. We could
request a security audit for the host depicted in vertex 5
and request the removal of the software products App1 and
Lib2 from the host depicted in vertex 11, to prevent them to
contaminate other parties.

VIII. CONCLUSION

The security of software supply chains is a growing concern
and the task of assessing the threat risks associated with any
given software product is non trivial.

1 :host

name = Debian host 1

location = https://debian.org

2 :softwareArtifact

name = GCC

version = 10.2.1

transferred

3 :softwareArtifact

name = OS component 1

version = 1.5.0

transferred

4 :softwareArtifact

name = OSLib1

version = 1.7.9

transferred

6 :softwareArtifact

name = App

version = 7.3.1

transferred

8 :transformer

runStart = 05-06-2023 11:00:00

runEnd = 05-06-2023 12:00:00

wasBuildToolTo

7 :buildEnvironment

isolation = VM

wasPresent

5 :host

name = CodeForge 1

location = https://forge.example

wasPresent

hosted

wasInputTo

executed

9 :softwareArtifact

name = Apt1

version = 1.0.0

generated

10 :softwareArtifact

name = Lib2

version = 1.8.0

generated

11 :host

name = Mirror 2

location = https://mirror.example

wasPublishedTo wasPublishedTo

Fig. 4. The propagation of malicious status of component #4 (shown by
dotted lines)

The main contribution presented in this paper is the log
model, an approach to keep the history of software supply
chain activities that occurred during the production of a
software artifact. The model allows the use of rules for tracing
the threat propagation among the software supply chain ele-
ments. The application of all the rules combined with external
knowledge of host compromises and vulnerabilities disclosures
can help practitioners assess the security risks for software
artifacts, hosts, and other elements of a SSC. Moreover, the
information obtained can be used to help determine the best
course of action for corrective measures, if required (e.g., what
software components to patch or upgrade, what hosts to further
look for security breaches). Finally, by mapping all elements
in the software supply chain that may be vulnerable, the model
allows practitioners to watch more closely for related exploits
found in the wild and take preventive action.

For future research, it could be helpful to augment the
threat propagation rules by considering temporal markers



for disclosed compromises and vulnerabilities. The current
proposal assumes that the set of software vulnerabilities and
compromises and the set of host compromises occurred in
an interval of time that overlapped with the time interval
where software building took place in the software supply
chain. By including fine grained temporal handling in the
calculation, the model could help avoid false positives (e.g.,
even if there was a compromised host involved in the process,
its compromise could have happened after its participation was
already finished in a build, leaving other transformations going
on other unrelated parts of the software supply chain).

Another area of research is the possibility of adding other
external measures to the propagation calculations, such as
reputation of a resource, and quantifying the threats levels in
each category by range of values.

REFERENCES

[1] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,”
in Detection of Intrusions and Malware, and Vulnerability Assessment,
pp. 23–43, Springer International Publishing, 2020.

[2] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Taxonomy of attacks
on open-source software supply chains,” 2022.

[3] S. Peisert, B. Schneier, H. Okhravi, F. Massacci, T. Benzel, C. Landwehr,
M. Mannan, J. Mirkovic, A. Prakash, and J. B. Michael, “Perspectives on
the SolarWinds incident,” IEEE Security & Privacy, vol. 19, pp. 7–13,
mar 2021.

[4] A. Ghadge, M. Weiß, N. D. Caldwell, and R. Wilding, “Managing cyber
risk in supply chains: A review and research agenda,” Supply Chain
Management: An International Journal, vol. 25, no. 2, pp. 223–240,
2020.

[5] B. Hammi, S. Zeadally, and J. Nebhen, “Security threats, countermea-
sures, and challenges of digital supply chains,” ACM Comput. Surv.,
vol. 55, jul 2023.

[6] N. Harutyunyan, “Managing your open source supply chain-why and
how?,” Computer, vol. 53, pp. 77–81, jun 2020.

[7] D. L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta,
“Lastpymile replication package,” 2021.

[8] P. Abate, R. D. Cosmo, G. Gousios, and S. Zacchiroli, “Dependency
solving is still hard, but we are getting better at it,” in 27th IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2020, London, ON, Canada, February 18-21, 2020
(K. Kontogiannis, F. Khomh, A. Chatzigeorgiou, M. Fokaefs, and
M. Zhou, eds.), pp. 547–551, IEEE, 2020.

[9] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empir. Softw. Eng., vol. 24, no. 1, pp. 381–416, 2019.

[10] Y. Wu, Y. Manabe, T. Kanda, D. M. Germán, and K. Inoue, “Analysis
of license inconsistency in large collections of open source projects,”
Empir. Softw. Eng., vol. 22, no. 3, pp. 1194–1222, 2017.

[11] P. Ombredanne, “Free and open source software license compliance:
Tools for software composition analysis,” Computer, vol. 53, pp. 105–
109, oct 2020.

[12] N. Imtiaz, S. Thorn, and L. Williams, “A comparative study of vulnera-
bility reporting by software composition analysis tools,” in Proceedings
of the 15th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), ACM, oct 2021.

[13] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, pp. 21–
29, 1999.

[14] V. Mavroeidis and S. Bromander, “Cyber threat intelligence model:
An evaluation of taxonomies, sharing standards, and ontologies within
cyber threat intelligence,” in 2017 European Intelligence and Security
Informatics Conference (EISIC), pp. 91–98, 2017.

[15] B. A. Sabbagh and S. Kowalski, “A socio-technical framework for threat
modeling a software supply chain,” IEEE Security & Privacy, vol. 13,
no. 4, pp. 30–39, 2015.

[16] O. Duman, M. Ghafouri, M. Kassouf, R. Atallah, L. Wang, and
M. Debbabi, “Modeling supply chain attacks in iec 61850 substations,”
in 2019 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–
6, IEEE, 2019.

[17] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy, pp. 590–604, IEEE, 2014.

[18] A. M. Mir, M. Keshani, and S. Proksch, “On the effect of transitivity
and granularity on vulnerability propagation in the maven ecosystem,”
in 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 201–211, 2023.

[19] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck,
S. Fahl, and Y. Acar, “VCCFinder: Finding potential vulnerabilities in
open-source projects to assist code audits,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015 (I. Ray, N. Li, and C. Kruegel,
eds.), pp. 426–437, ACM, 2015.

[20] P. Behnamghader, R. Alfayez, K. Srisopha, and B. Boehm, “Towards
better understanding of software quality evolution through commit-
impact analysis,” in 2017 IEEE International Conference on Software
Quality, Reliability and Security (QRS), pp. 251–262, 2017.

[21] N. Zahan, E. Lin, M. Tamanna, W. Enck, and L. Williams, “Software
bills of materials are required. are we there yet?,” IEEE Security &
Privacy, vol. 21, pp. 82–88, mar 2023.

[22] B. Xia, T. Bi, Z. Xing, Q. Lu, and L. Zhu, “An empirical study on
software bill of materials: Where we stand and the road ahead,” Jan.
2023.

[23] K. Stewart, P. Odence, and E. Rockett, “Software package data exchange
(spdx) specification,” IFOSS L. Rev., vol. 2, p. 191, 2010.

[24] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Sv-af — a security
vulnerability analysis framework,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), pp. 219–229,
2016.

[25] Y.-Y. Chang, P. Zavarsky, R. Ruhl, and D. Lindskog, “Trend analysis of
the CVE for software vulnerability management,” in 2011 IEEE Third
Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE
Third Int'l Conference on Social Computing, IEEE, oct 2011.

[26] H. Orman, “The morris worm: a fifteen-year perspective,” IEEE Security
& Privacy, vol. 1, pp. 35–43, sep 2003.

[27] P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, “A study
on malicious software behaviour analysis and detection techniques:
Taxonomy, current trends and challenges,” Future Generation Computer
Systems, vol. 130, pp. 1–18, may 2022.

[28] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, pp. 16–24, jan 2013.

[29] A. Bonifati, G. Fletcher, H. Voigt, and N. Yakovets, Querying Graphs.
Springer International Publishing, 2018.

[30] K. Thompson, “Reflections on trusting trust,” Communications of the
ACM, vol. 27, pp. 761–763, aug 1984.


	Introduction
	Related Work
	Approach
	A Threat Model for Software Supply Chains
	The Log Model
	Security Status Calculus
	Use Cases
	Conclusion
	References

