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Radon transforms (RT) in R 2 , defined on simple integration manifolds such as straight lines or circles, have attracted extensive interest since they provide the reconstruction of physical density functions in various applicative inverse problems, via a closed form inversion formula. In an attempt to see whether RT on more involved integration manifolds would still admit closed form inversion formulas, A. M. Cormack has sought to invert RT defined on a class of nontrivial curves in the plane, called α-curves. They are generated by application of a specially conceived geometric transform on straight lines, so that the RT inversion process remains as close as possible to that of the RT on the lines. It was hoped that the inversion of RT on lines would show the way to invert the RT on α-curves. However Cormack could only establish a closed form inversion formula for RT on 1 m -curves, with m = 1, 2, .... In this paper, we generalize his formula to RT on algebraic α-curves, i.e. for α = m m with (m, m ), a pair of positive relatively prime integers and thereby give support to his initial conjecture. * The terminology was originally coined by M. Ein-Gal in [10] as consistency conditions on the set of linear equations he derived as equivalent formulation to the Line-RT.

Introduction

The Radon problem is accurately formulated in the title of J. Radon's seminal paper as "(On) the determination of functions from their integrals along certain manifolds" [START_REF] Radon | Über die Bestimmung von Funktionnen durch ihre Integralwerte längs gewisser Mannigfaltikeiten Ber[END_REF]. This problem may be viewed as an inverse problem in diverse fields of application such as medical imaging [START_REF] Kuchment | The Radon Transform and Medical Imaging[END_REF], industrial control [START_REF] Kershaw | The determination of the density distribution of a gas flowing in a pipe from mean density measurements[END_REF], geological prospection [START_REF] Beyklin | The inversion problem and applications of the generalized Radon transforms[END_REF] or astronomical research [START_REF] Bracewell | Strip integration in radio astronomy[END_REF], in which the data arise as integrals of some physical density function over curves (resp. surfaces) in two-(resp. three-) dimensional Euclidean space. The key issue is the recovery of this physical density function by an inverse formula from a complete integral data set. This is by no means an easy task in particular when the manifolds (curves or surfaces) are imposed by the measurement processes. The natural question to ask is to which extent the geometric properties of the integration manifolds affect the derivation of a Radon transform (RT) inverse formula. In view of this vast problem, it seems logical to tackle this question first in two dimensions.

The simplest Radon transform is defined on straight lines in R 2 . For our purposes in this paper, it will be called Line Radon Transform (or Line-RT). This Line-RT, which enjoys translational and rotational invariance, has been inverted initially by J. Radon himself in [START_REF] Radon | Über die Bestimmung von Funktionnen durch ihre Integralwerte längs gewisser Mannigfaltikeiten Ber[END_REF], and then later on by several other methods, see e.g. [START_REF] Barrett | The Radon Transform and its Applications in Progress in Optics[END_REF]. The only inversion method exploiting rotational invariance is the one due to A. M. Cormack [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications I[END_REF]. In this approach, the Line-RT forward equation is replaced by an integral transform, called Circular Harmonic Transform (CH-T), which relates the circular harmonic components (CH-C) of the unknown function to its Line-RT CH-C. Cormack was able to obtain the exact inverse (CH-T) -1 in [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications I[END_REF]. However his solution, which satisfies the so-called the "hole theorem" [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF], turned out to be numerically unstable because "any noise in the Radon data will be amplified by the (CH-T) -1 kernel" at large integration variable values, as he put it in [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF][START_REF] Cormack | Radon's problem -Old and New[END_REF] ‡. To bypass this problem, Cormack has used orthogonal function expansions [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications II[END_REF] to express his solution. Much later in 1975, a stable (in the previous sense) inversion formula was obtained independently by R. M. Perry also in the framework of a CH-C treatment [START_REF] Perry | Reconstruction of a function by circular harmonic analysis of its Radon transform[END_REF]. Subsequently, another line of research was launched in 1973 by M. Ein-Gal [START_REF] Ein-Gal | The circular harmonic transform[END_REF], who made use of the Mellin transform to invert the CH-T and recovered the Cormack reconstruction formula. In this process, he found Consistency Conditions to be imposed on the data in the CH-T inversion. These conditions have already appeared in Cormack's earlier work [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications I[END_REF], but not used in his solution. A few years later E. W. Hansen [START_REF] Hansen | Theory of circular harmonic image reconstruction[END_REF], as well as J. Verly [START_REF] Verly | Circular and extended circular harmonic transforms and their relevance to image reconstruction from line integrals[END_REF] have reinvestigated the CH-T inversion procedure by Mellin transform and discovered that it is subjected to a choice of Bromwich integration contour in the complex plane, leading to causal and non-causal inverses of CH-T in the language of signal processing. Cormack's solution is identified to the causal and instable inverse whereas Perry's solution to the non-causal and stable inverse. It is only in 1984 that Cormack realized that Consistency Conditions on the data must be imposed in order to recover the Perry Line-RT closed form inversion formula [START_REF] Cormack | Radon's problem -Old and New[END_REF]. As pointed out later by Chapman and Cary [START_REF] Chapman | The circular harmonic Radon transform[END_REF], the above instability issue can be cured only by either going to orthogonal expansions (as in [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications II[END_REF]) or by using Consistency Conditions. But how the Perry's closed form inversion formula is obtained from Cormack's original solution remains to be established at this point.

As the Line-RT inversion problem seems to be somewhat settled, attention is then turned to more general RT inversion problems, in which integral manifolds are non-trivial curves in R 2 . Since there are no hints on how to proceed, A. M. Cormack has sought to explore a new idea. Since straight lines in R 2 have given rise to an invertible RT, why not seek to obtain an invertible RT defined on new curves, which are geometric transforms of straight lines? Of course this geometric transform should be so cleverly conceived that the new RT inversion process follows closely that of the Line-RT. Presumably this idea may have come up to his mind when he established the inversion of the RT on circles intersecting a fixed point, which are known to be just geometric inverses of straight lines in the plane, with inversion pole at a fixed point and arbitrary inversion modulus (see [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications I[END_REF]). The new integration curves are called by A. M. Cormack α-curves [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF]. They are so tailored as to produce an expression of ‡ This paper is not concerned by reconstruction stability estimates, but is aimed at the removal of this Radon data noise amplification by the (CH-T) -1 kernel. The question whether this removal is sufficient to prevent further noise propagation is also not addressed here and apparently it has not yet been considered in the current literature.

the α-curve Radon data almost identical to the Line-RT data. For α = 1 2 , 1, 2, 3, the α-curves are simple algebraic curves: parabola, straight line, one branch rectangular hyperbola, and one branch Humbert cubic [START_REF] Humbert | Sur le théorème d'Abel et quelques unes de ses applications géométriques[END_REF].

Cormack had hoped to establish a closed form inversion formula of these new α-curve RT, now called RT α for short. But his RT -1 α solution, which also satisfies the "hole-theorem", turned out to be plagued also by the above numerical instability. Only in 1984, could Cormack make a decisive progress step by establishing Consistency Conditions for the RT α with the aim to derive a closed form inversion formula for the RT α CH-T forward equation. Unfortunately he could do it only for α = 1 m , where m = 1, 2, .... He concluded his paper by briefly suggesting a mapping of an α-curve to a straight line as a alternative way to recover his RT 1 m inversion result. This mapping turns out to belong to the class of factorable mappings between two Riemannian spaces, which was introduced by V. P. Palamodov [START_REF] Palamodov | Reconstructive Integral Geometry[END_REF], on the basis of his rich experience on Radon transforms. In an unsophisticated formulation, a factorable mapping C from R 2 to R 2 is defined as a differentiable one-to-one mapping for points M → M = C(M ) and for smooth differentiable curves C → C = C(C), such that the line elements of the curve dl C (M ) and its C-transform dl C (M ) satisfy the following factorization property

dl C (M ) = h(M ) g(C) dl C (M ), (1) 
where h(M ) is a function of M ∈ C and g(C) is a function of the curve C parameters. As a consequence, the Radon transform of a function f (M ) on curves C and the Radon transform of f (M ) on curves C are related by

C dl C (M ) f (M ) = g(C) C dl C (M ) h(M ) f (M ). (2) 
This means that the invertibility of any one of the two RTs would imply the invertibility of the other. Several examples of this inversion property are given in [START_REF] Palamodov | Reconstructive Integral Geometry[END_REF]. In [START_REF] Palamodov | Reconstruction from Integral Data[END_REF], the RT α inversion is claimed to be deduced from the Line-RT inversion using the previous Cormack mapping for α = 1 m and for α = m, with m and m positive integers. However no new closed form inversion formula was reported in [START_REF] Palamodov | Reconstruction from Integral Data[END_REF].

The objective of this paper is to make further progress on this problem initiated by Cormack more than forty years ago, by establishing an exact closed form inversion formula for RT m m , where (m, m ) is a pair of relatively prime positive integers. This would prove Cormack's untold conjecture that the Radon transform on α-curves (as special geometric transforms of the straight line) are as invertible as the Line-RT. This paper is organized as follows. Section 2 gives a concise review of A. M. Cormack's work [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF][START_REF] Cormack | Radon's problem -Old and New[END_REF] on the α-curve Radon transform. This is necessary to understand how his approach has led him to the inverse formula of the Radon problem for α = 1 m , m = 1, 2, ..., but not for other values of α. Next, in section 3, we present a new form of Cormack's reconstruction kernel with which a formal inversion formula for general α can be derived. Section 4 gives the main result: a closed form inversion formula for the case α = m m , where (m, m ) is a pair of positive relatively prime integers. This formula shows that the full function reconstruction in polar coordinates is a direct sum of m partial angular function reconstructions because the original Fourier summation on angular components l ∈ Z is split into a direct sum of m partial Fourier summations on m equivalence classes l = (ml 0 , ml 1 + 1, ..., ml m-1 + m -1) where l j ∈ Z with j = 0, 1, ..., m -1. The paper ends with some possible follow-up research perspectives in the conclusion. In the Appendix are gathered some topics of interest but not directly relevant for the derivation of the RT m m inversion formula: i ) The algebraic nature of the α = m m Cormack curves when (m, m ) are relatively prime integers, ii ) The RT 1 m -Consistency Conditions as RT 1 m range characterization and iii ) The factorable mapping of the α-curve RT to the Line-RT, suggested by A. M. Cormack in [START_REF] Cormack | Radon's problem -Old and New[END_REF], as provider of a new derivation of the closed form inversion formula for RT 1 m . It seems that this factorable mapping has not been discussed in the literature.

Radon's problem on α-curves: a review of A. M. Cormack's work

This section reviews Cormack's derivation of the RT α Consistency Conditions, shows how they are taken into account in his former RT α inversion solution but fails to deliver a closed form inversion formula for general α, except for α = 1 m , m = 1, 2, ....

Circular Harmonic Component forward equation

For α ∈ R + A. M. Cormack, in [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF] has introduced and studied the Radon's problem on the family of α-curves with parameters (s,

φ) ∈ R + × [0, 2π] given in polar equation coordinates (r, θ) ∈ R + × [0, 2π] by r α cos α(θ -φ) = s α , with |θ -φ| < π 2α . (3) 
The Radon transform of a smooth and rapidly decreasing function

f (r, θ) in R 2 is f α (s, φ), the α-curve integral of f (r, θ) f α (s, φ) = π/2α -π/2α
s dγ

(cos αγ) 1+ 1 α f s (cos αγ) 1 α , γ + φ . (4) 
Because of rotational symmetry around the coordinate system origin O, it is most convenient to convert (4) into an integral equation for circular harmonic components (CH-C) f l (r) (resp. f α,l ) of f (r, θ) (resp. f α (s, φ)), defined by

f l (r) = 1 2π 2π 0 dθ e -ilθ f (r, θ), and f α,l (s) = 1 2π 2π 0 dφ e -ilφ f α (s, φ). (5) 
(4) is now replaced by the CH-C "forward " equation

f α,l (s) = 2 ∞ s dr 1 -s 2α r 2α cos l α cos -1 s α r α f l (r), (6) 
which is subsequently converted into a forward equation for new CH-C

F α,l (r ) = 1 α f l (r 1 α ) r 1 α -1 and F α,l (s ) = f α,l (r 1 α ), (7) 
obtained by the substitutions of variables (r , θ ) = (r α , αθ) and parameters (s , φ ) = (s α , αφ), as

F α,l (s ) = 2 ∞ s dr cos l α cos -1 s r 1 -s 2 r 2 F α,l (r ). (8) 
Originally Cormack has succeeded to invert this integral equation ( 8) in [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF] with the help of a remarkable integral identity listed in [START_REF] Hansen | A table of series and products[END_REF] 

r2 r1 ds s cosh l α cosh -1 s r1 s 2 r 2 1 -1 cos l α cos -1 s r2 1 -s 2 r 2 2 = π 2 . ( 9 
)
The solution is shown to be

F α,±l (r ) = - 1 πr ∞ r ds cosh l α cosh -1 s r s r 2 -1 d ds F α,±l (s ), (10) 
for l = 0, 1, 2, .... From now on we shall concentrate on working with (10).

Consistency Conditions and consequences

Cormack has readily realized that the CH-C inversion kernel in [START_REF] Ein-Gal | The circular harmonic transform[END_REF] has the form

cosh l α cosh -1 x √ x 2 -1 = (x - √ x 2 -1) l α + (x + √ x 2 -1) l α 2 √ x 2 -1 , (11) 
where x = s r . It behaves like (2x) l α -1 , for x → ∞ and large l. Hence "any noise in the data d ds F α,l (s ) for large s is badly propagated into the calculation of F l (r )" [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF][START_REF] Cormack | Radon's problem -Old and New[END_REF].

But simultaneously he also realized that, for α = 1 (or for the Line-RT), his reconstruction equation ( 10) is identical to the Perry's Line-RT inversion formula [START_REF] Perry | Reconstruction of a function by circular harmonic analysis of its Radon transform[END_REF] F 1,l (r ) = ( 12)

1 πr r 0 ds U l-1 s r d ds F 1,l (s ) - 1 πr ∞ r ds s r -s 2 r 2 -1 l s 2 r 2 -1 d ds F 1,l (s ),
where U l (x) is the second kind Chebyshev polynomial in x as defined in [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF] on page 257, provided that "Consistency Conditions" on the Line-RT data represented by

∞ 0 ds (s ) κ F l (s ) = 0, for κ = l -2, l -4, ... > -1, (13) 
are taken into account in [START_REF] Ein-Gal | The circular harmonic transform[END_REF]. This is why his 1984 work [START_REF] Cormack | Radon's problem -Old and New[END_REF] is devoted to the derivation of the Consistency Conditions for the RT α , with which a new reconstruction kernel (without data noise propagation into F α,l (r ) at this level) is obtained.

Cormack's RT α -Consistency Conditions can be stated in an equivalent form as Proposition 2.1 Let κ > -1, the κ th radial moment of the circular harmonic component F α,l (s ) of the RT α data satisfies the condition

∞ 0 ds s κ d ds F α,l (s ) = 0, for κ = l α -1, l α -3, ... > -1. (14) 
Proof: In the integral defining the κ-moment of d ds F α,l (s ), perform s -partial integration with zero boundary conditions at s = 0, ∞ to get the (κ -1) moment of F α,l (s ). Then replace F α,l (s ) by its integral expression [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications II[END_REF]. Next after exchanging the integration order between r and s , one ends up with an s -integral which a trigonometric integral listed in table [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF]. The zeros of Gamma functions in the integration result yield the quoted values of κ, see [START_REF] Cormack | Radon's problem -Old and New[END_REF] p. 35, which leads to [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF].

Proposition 2.2

The new form of the circular harmonic component inversion equation, after inclusion of Consistency Conditions, is the following

F α,l (r ) = 1 πr r 0 ds U α l s r d ds F α,l (s ) (15) - 1 πr ∞ r ds      V α l s r + s r -s 2 r 2 -1 l α 2 s 2 r 2 -1      d ds F α,l (s ),
where

(U α l (x), V α l (x)) =   k * l k=0 , ∞ k=k * l +1   (-1) k l α -1 -k k (2x) l α -1-2k . (16) 
k * l is chosen so that the smallest exponent of (2x) in U α l (x) is larger than -1, and

l α -1 -k k = 1 k! l α -1 -k l α -1 -k -1 ... l α -1 -k -k + 1 ,( 17 
)
is the binomial coefficient symbol as defined in [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF].

Proof: The proof can be found in [START_REF] Cormack | Radon's problem -Old and New[END_REF]. It starts with the decomposition of the CH-C inversion kernel in two parts, one of which is represented by a hypergeometric function, using the last formula on page 38 of [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF],

cosh l α cosh -1 x √ x 2 -1 = x - √ x 2 -1 l α 2 √ x 2 -1 + (2x) l α -1 F 2 -l α 2 , 1 -l α 2 ; 1 - l α ; 1 x 2 .( 18 
)
Inserting the power series representation of the hypergeometric function (see Chap II of [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF]) but split this expansion in two parts according to the powers of (2x), we obtain the functions U α l (x) and V α l (x) as given by ( 16).

The RT α -Consistency Conditions (14) imply the vanishing of the integral

1 πr ∞ 0 ds U α l s r d ds F α,l (s ) = 0. ( 19 
)
This is used to replace the unwanted behavior at large s -integration by the behavior near the origin 0 in F α,l (r ) as given by [START_REF] Hansen | A table of series and products[END_REF]. This is why this form (15) avoids data noise amplification as observed before in the original form and allows in principle a l re-summation before performing s -integration.

Inspection of [START_REF] Cormack | Radon's problem -Old and New[END_REF] shows that the (2x)-power series representing U α l (x) and V α l (x) appear as extensions of the power series representing (i) U l (x), the second kind Chebyshev polynomial in x of order l, see [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF] page 257,

(ii) (x- √ x 2 -1) l 2 √ x 2 -1
a known elementary algebraic function, in which the integer index l is replaced by real values l α . Unfortunately little is known about these functions, (see e.g. [START_REF] Ricci | A survey on pseudo-Chebyshev functions[END_REF]) and the Fourier series

{U α (x, γ), V α (x, γ)} = {U α 0 (x), V α 0 (x)} + l=1,2,... {U α l (x), V α l (x)} (e ilγ + e -ilγ ).
needed for a RT α closed form inversion formula, cannot be computed at this stage.

A closed form inversion formula for

α = 1 m with m = 1, 2, ... However Cormack did notice that, for α = 1 m , m = 1, 2, ... (or l α = lm integer), (i) U 1 m l (x) = U lm (x), the second kind Chebyshev polynomial in x of order lm , (ii) V 1 m l (x) = (x- √ x 2 -1) lm 2 √ x 2 -1
, a known elementary algebraic function.

They satisfy the so-called Pell's identity (see equation ( 16) in [START_REF] Cormack | Radon's problem -Old and New[END_REF])

T lm (x) √ x 2 -1 = U lm (x) + (x - √ x 2 -1) lm √ x 2 -1 , (20) 
where T lm (x) = cosh(lm cosh -1 x) is the first kind Chebyshev polynomial of order lm in x. Then the full inversion of RT 1 m is given by

Proposition 2.3 For α = 1 m , m = 1, 2, ..., F 1 m (r , θ) has the closed form F 1 m (r , θ) = - 1 2π 2 r 2π 0 dφ ∞ 0 ds U m -1 s r T m s r -cos(θ -φ) ∂ ∂s F 1 m (s , φ), (21) 
which has appeared as equation [START_REF] Ricci | A survey on pseudo-Chebyshev functions[END_REF] in [START_REF] Cormack | Radon's problem -Old and New[END_REF].

Proof: The RT 1 m CH-C inversion formula (15) becomes now after using ( 19)

F 1 m ,l (r ) = 1 πr r 0 ds U lm s r d ds F 1 m ,l (s ) - 1 πr ∞ r ds s r -s 2 r 2 -1 lm s 2 r 2 -1 d ds F 1 m ,l (s ). (22) 
Inserting

d ds F 1 m ,l (s ) = 1 2π 2π 0 dφ e -ilφ ∂ ∂s F 1 m ,l (s , φ), (23) 
in the θ-Fourier series

∞ l=-∞ F 1 m ,l (r ) e ilθ to reconstruct F 1 m (r , θ), we find F 1 m (r , θ) = 1 2π 2 r 2π 0 dφ r 0 ds U 1 m (s , θ -φ) ∂ ∂s F 1 m ,l (s , φ) (24) 
-

1 2π 2 r 2π 0 dφ ∞ r ds V 1 m (s , θ -φ) ∂ ∂s F 1 m ,l (s , φ),
where

U 1 m (s , θ -φ) = ∞ l=0 U |l|m -1 s r (e il(θ-φ) + e -il(θ-φ) ), ( 25 
) V 1 m (s , θ -φ) =          1 + ∞ l=i s r -s 2 r 2 -1 |l|m s 2 r 2 -1 (e il(θ-φ) + e -il(θ-φ) )          . ( 26 
)
As Cormack has pointed out in [START_REF] Cormack | Radon's problem -Old and New[END_REF], after setting s r = cosh λ and U l-1 (x) = sin lµ sin µ , these series [START_REF] Truong | Radon transforms on generalized Cormack's curves and a new Compton scatter tomography modality[END_REF][START_REF] Truong | On geometric aspects of circular arcs Radon transforms for Compton scatter tomography[END_REF] are geometric series in e m σ±iγ or e -m σ±iγ with γ = (θ -φ) and σ = (λ, iµ). They can be easily summed with a convergence factor introduced by hand for series convergence and removed in the summation result afterwards, so that

U 1 m (s , θ -φ), V 1 m (s , θ -φ) = (-, +) U m -1 s r T m s r -cos(θ -φ) , (27) 
This yields (21) §.

The closed form reconstruction formula for the original f (r, θ) is, by inverting ( 7)

f (r, θ) = - 1 2π 2 m r 2π 0 dφ ∞ 0 ds U m -1 m s r T m m s r -cos(θ -φ) ∂ ∂s f 1 m (s, φ). (28) 
Note that the usual inversion formula for the Line-RT is recovered for m = 1 and the sintegral is understood as principal value. This review of Cormack's work on the Radon transform on α-curves shows why a new approach is needed when α = 1 m , m = 1, 2, ....

A new approach to the Radon Transform on α-curves (RT α )

In this section we introduce a new form of the CH-C reconstruction kernel appearing in [START_REF] Ein-Gal | The circular harmonic transform[END_REF], with which, after application of the RT α -Consistency Conditions, a formal closed form reconstruction of F (r , θ) emerges for arbitrary α > 0.

Let l α = (N l + δ l ) , where for every l integer, N l = l α is the largest integer in l α and δ l is its positive fractional part i.e. 0 < δ l < 1. Clearly both N l and δ l depend also on α, but we refrain from expressing this α-dependence to simplify the writing.

Lemma 3.1 Let λ = cosh -1 x with x = s r , the RT α CH-C inversion kernel can be put under the form

cosh l α λ sinh λ = (2x) δ l U N l -1 (x) + e λδ l -(2x) δ l U N l -1 (x) + cosh λδ l sinh λ e -N l λ , ( 29 
)
where U N l -1 (x) is the second kind Chebyshev polynomial of order N l in x.

Proof: In (29) the left hand side is even in l, this means that we should have (N |l| , δ |l| ). But to save writing, we follow Cormack [START_REF] Cormack | Radon's problem -Old and New[END_REF] and keep on writing (N l , δ l ).

(i) Expand cosh (N l + δ l ) λ, use hyperbolic function representation for U N l -1 (x) and (ii) Observe that (2x) δ l U N l -1 (x) is a finite sum of powers of (2x) κ where κ = (N l -1 -2n + δ l ) are precisely the Consistency Conditions exponents of ( 14), since using the (2x) power expansion of U N l -1 (x) given in [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF], we have

(2x) δ l U N l -1 (x) = (2x) δ l N l -1 2 n=0 N l -1 -n n (2x) N l -1-2n . ( 30 
)
By adding and subtracting (2x) δ l U N l -1 (x) in the obtained expression of the CH-C inversion kernel, one gets a sum of the three terms as given by (29).

The reconstructed CH-C F α,l (r ) of the RT α has now a new expression given by Lemma 3.2 Let F α,l (s ) be the s -derivative of F α,l (s ), then the reconstructed CH-C F α,l (r ) is given by

F α,l (r ) = 1 πr × (31) r 0 ds (2 s r ) δ l U N l -1 ( s r ) F α,l (s ) - ∞ r ds e λδ l U N l -1 ( s r ) + cosh δ l λ sinh λ e -N l λ F α,l (s ) ,
after application of the Consistency Conditions (14) (with λ = cosh -1 x and x = s r ). Proof: In [START_REF] Ein-Gal | The circular harmonic transform[END_REF], replace the original CH-C inversion kernel by its new form (29). Then use the RT α Consistency Conditions integral

∞ 0 ds (2x) δ l U N l -1 (x) F α,l (s ) = 0, (32) 
to replace the first s -integral in the expression of F α,l (s ), i.e. replace

- 1 πr ∞ r ds (2 s r ) δ l U N l -1 ( s r ) F α,l (s ) by 1 πr r r0 ds (2 s r ) δ l U N l -1 ( s r ) F α,l (s ),
to get the result (31).

Theorem 3.3 Taking into account (31), a formal closed form reconstruction formula for F α (r , θ) reconstruction can be obtained as

F α (r , θ) = 1 2π 2 r 2π 0 dφ ∞ 0 ds U α (x, θ -φ) ∂ F α ∂s (s , φ), (33) 
where the reconstruction kernel U α (x, θ -φ) is defined by its formal Fourier series

U α (x, γ) = ∞ l=0 (2 s r ) δ l U N l -1 ( s r ) e ilγ + e -ilγ . (34) 
Proof: F α (r , θ) is given by its θ-Fourier series l∈Z F α,l (r ) e ilθ . Inserting (31), we find that F α (r , θ) is made up of two parts

F α (r , θ) = 1 2π 2 r 2π 0 dφ ∞ 0 ds U α (s /r , (θ -φ)) ∂ F α ∂s (s , φ) - 1 2π 2 r 2π 0 dφ ∞ r ds V α (s /r , (θ -φ)) + W α (s /r , (θ -φ)) ∂ F α ∂s (s , φ). ( 35 
)
where V α (s /r , (θ -φ)) and W α (s /r , (θ -φ)) are generalizations of the sums in [START_REF] Truong | Radon transforms on generalized Cormack's curves and a new Compton scatter tomography modality[END_REF][START_REF] Truong | On geometric aspects of circular arcs Radon transforms for Compton scatter tomography[END_REF] appearing in the case α = 1 m . They are given by the formal Fourier series ¶

V α (x, γ) = ∞ l=0 e λδ l U N l -1 (x) e ilγ + e -ilγ , (36) 
W α (x, γ) = 1 sinh λ 1 + ∞ l=1 e -N l λ cosh λδ l e ilγ + e -ilγ , (37) 
where as before λ = cosh -1 x and x = s r . Right now the convergence of these series (35,36,37) cannot be asserted since for general α, the dependence of N l and δ l is unknown. However we have the following lemma Lemma 3.4 Setting cosh λ = x, the sum of V α (x, γ) and W α (x, γ) in (36,37) is just

V α (x, γ) + W α (x, (γ) = l∈Z cosh l α cosh -1 x sinh λ e ilγ = 0. ( 38 
)
Proof: Formula (29) shows that

V α (x, (γ) + W α (x, (γ) = l∈Z cosh l α cosh -1 x sinh λ e ilγ .
This l-sum here is also a geometric series in e l λ α ±ilγ or in e -l λ α ±ilγ , which can be evaluated immediately as follows

l∈Z cosh l α λ sinh λ e ilγ = 1 2 sinh λ l∈Z (e l( λ α +iγ) + e l(-λ α +iγ) ) = 1 sinh λ -1 + 1 2 e -λ α -cos γ cosh λ α -cos γ + 1 2 e λ α -cos γ cosh λ α -cos γ = 0.( 39 
)
At this step the kernel U α (x, γ) in (34) does not give rise to data noise amplification (in the sense of A. M. Cormack [START_REF] Cormack | Radon's problem -Old and New[END_REF]) since the RT α -Consistency Conditions have been correctly taken into account. However its defining Fourier series cannot be summed exactly for general α > 0. In section 4, it will be shown that when α = m m is an irreducible fraction a concrete new inversion formula can be obtained.

Inversion formula for α = m m with (m, m ) relatively prime integers

Originally in [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF], A. M. Cormack has introduced α-curves and β-curves. We have chosen to leave out the β-curves since they may be deduced from the α-curves by geometric inversion with inversion pole at the coordinate system origin O and unit inversion modulus. Moreover as geometric inversion is a Palamodov factorable mapping [START_REF] Palamodov | Reconstructive Integral Geometry[END_REF], Radon Transforms on β-curves inversion formulas can be deduced from their partner Radon Transforms on α-curves inversion formulas.

The RT α inversion formula (33) will be explicitly worked out for α = m m when (m, m ) are relatively prime integers. The result is expressed by the following theorem ¶ This form of these series is due to the application of the RTα-Consistency Conditions. As the CH-C F α,±l (r ) share the same kernel because of the cosh function, the factor (e ilγ + e -ilγ ) appears. There is no "hole theorem" as in [START_REF] Cormack | Radon's problem -Old and New[END_REF]. 

F m m (r , θ) = 1 2π 2 r 2π 0 dφ ∞ 0 ds U m m ( s r , θ -φ) ∂ F m m ∂s (s , φ). ( 40 
)
where

U m m (x, γ) = -   m-1 j=0 (2x) j m m T j (cos γ)   U m -1 (x) T m (x) -T m (cos γ) , (41) 
and T n (x) (resp. U n-1 (x)) are first kind (resp. second kind) Chebyshev polynomials of order n in x [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF].

Proof: The main job is the evaluation of U m m (x, γ), which is given by the series

U m m (x, γ) = ∞ l=0 (2x) δ l U N l -1 (x) e ilγ + e -ilγ . (42) 
Now the Fourier summation on l ∈ Z in ( 42) is split into a direct sum over m groups of partial summations of the form l = (ml j + j) on l j ∈ Z for j = 0, 1, ..., (m -1), i.e. 

.).(43)

Then F m m (r , θ) appears to be a direct sum of m partial reconstructions

F j m m (r , θ) + F m m ( r , θ) = (m-1) j=0 F j m m (r , θ). (44) 
Yet each F j m m (r , θ) is reconstructed by a formula of type (33) with kernel U j m m (x, γ) of type (42), in which l is replaced by (ml j + j) and (i) N lj = m l j , where l j ∈ Z, (ii) δ lj = j m m , which is independent of l j . Since the factor (2x) δ l stands outside the l j -summation, the kernel U j m m (x, γ) can be evaluated exactly using the following lemma Lemma 4.2 The second kind Chebyshev polynomials U n-i (x) represented for 0 < x < 1 (resp. for 1 < x < ∞) by sin nµ sin µ (resp. by sinh nλ sinh λ ) satisfy the identity

∞ l=0 U lm -1 (x) e i(lm+j)γ = - e ijγ 2 U m -1 (x) T m (x) -T m (cos γ) , (45) 
where (j, m, m ) are positive integers, γ ∈ [0, 2π] and T n (x) the first kind Chebyshev polynomial of order n in x.

Proof: The proof can be done either by the trigonometric or the hyperbolic representation. Here we use the trigonometric representation of

∞ l=0 U lm -1 (x) e i(lm+j)γ = (46) ∞ l=0 U lm -1 (x) e i(lm+j)γ = e ijγ 2i sin µ ∞ l=0 (e il(m µ+mγ) -e il(-m µ+mγ) ) = e ijγ 2i sin µ 1 1 -e im µ+imγ - 1 1 -e -im µ+imγ , = - e ijγ 2 U m -1 (cos µ) T m (cos µ) -T m (cos γ) .
Hence

U j m m (x, γ) = -(2x) j m m T j (cos γ) U m -1 (x) T m (x) -T m (cos γ) , (47) 
Finally collecting all the j-partial results, equations (40,41) are established.

Clearly U m m (x, γ) is an extension of the Line-RT inversion kernel with m controlling the angle γ = (θ -φ) and m the scaled length s r . The recovery of the original function f (r, θ) can be done easily via [START_REF] Cormack | Representation of a function by its line integrals, with some radiological applications I[END_REF], but shall not be given here.

As illustrations, we give the results for m = 1, 2, 3 and m = 1.

(i) For m = 1, A. M. Cormack's formula in [START_REF] Cormack | Radon's problem -Old and New[END_REF] given by ( 28) is exactly recovered.

(ii) For m = 2, this result F 2 (r , θ) is new and corresponds to the Radon transform on the family of one branch rectangular hyperbolas in a π 2 -wide sector,

F 2 (r , θ) = - 1 2π 2 r 2π 0 ∞ 0 dφds 1 + 2 s r cos(θ -φ) s r -cos 2(θ -φ) ∂ F 2 ∂s (s , φ).
(iii) For m = 3, the curves are one-branch Humbert cubic [START_REF] Humbert | Sur le théorème d'Abel et quelques unes de ses applications géométriques[END_REF] in a π 3 -wide sector,

F 3 (r , θ) = - 1 2π 2 r 2π 0 ∞ 0 dφds 1 + 2 s r 1 3 cos(θ -φ) + 2 s r 2 3 cos 2(θ -φ) s r -cos 3(θ -φ) ∂ F 3 (s , φ)
∂s .

Conclusion and perspectives

In this paper we have established the closed form inversion formula for Radon transforms (RT) defined on non-trivial higher order algebraic α-curves in Euclidean plane (or RT α ) introduced by A. M. Cormack in [START_REF] Cormack | The Radon transform on a family of curves in the plane[END_REF]. Originally Cormack has sought to see whether Radon transforms (RT) defined on more complicated curves than simple lines or circles can be exactly invertible. His basic idea is to use curves which are special geometric transforms of the line, with the hope that the Line-RT inversion would lead directly to the RT α inversion. He was able to prove his conjecture for α = 1 m with m = 1, 2, ..... This paper extends his results to α = m m -curves, where (m, m ) is a pair of relatively prime integers. The final inversion formula does bear a characteristic closeness to the Line-RT inversion formula as expected from the fact that the α-curves emanate from the straight line by geometric transforms. Hence Cormack's expectation is found to be supported in this case of algebraic α-curves and incite to work on more general RT α inversion formulas when α = m m . The availability of this exact closed form inversion formula for algebraic RT α may open the way to some new investigation directions such as Transform, introduced in [START_REF] Verly | Circular and extended circular harmonic transforms and their relevance to image reconstruction from line integrals[END_REF] (but not solved) by J. Verly, who did not realize that ECHT is related to RT α , (iii) Extension Cormack's α-mapping (subsection 7.3) to three classes of circles with constant power of the coordinate origin O in the plane [START_REF] Truong | Radon transforms on generalized Cormack's curves and a new Compton scatter tomography modality[END_REF][START_REF] Truong | On geometric aspects of circular arcs Radon transforms for Compton scatter tomography[END_REF] and search for closed form inverse formula for Radon transforms on these generalized α-curves. ). ( 49)

for α = m, s r m = T m (cos θ), x r = cos θ, ⇒ s r m = T m ( x r ). (50) 
Using the T m (x) power expansion (see [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF] p. 257),

T m (x) = m 2 = [ m 2 ] k=0 (-1) k (m -k -1)! k!(m -2k)! 2 x r m-2k
, we see that (49) (resp. ( 50)) is an algebraic curve equation of order m (resp. m).

More generally the formal solutions of equations (48) are

θ = q 1 m cos -1 s r m m + q 2π m , q = 0, 1, ..., m -1, (51) 
θ = p 1 m cos -1 x r + p 2π m , p = 0, 1, ..., m -1, (52) 
where ( q , p ) = (±, ±). θ-elimination can be done by equating the cosines of θ from (51,52). Then the Cartesian equation of the (q, p)-branch of the sought curve arises as

cos 1 m cos -1 s r m m + q 2π m = cos 1 m cos -1 x r + p 2π m . (53) 
The full curve is given by the set of the mm equations for all possible (q, p) pairs. The statement that this curve is algebraic of order mm requires too a lengthly proof to be given but its validity may be illustrated by the observation that the line x = constant intersects the curve at mm points whose y coordinates are given by equations (53). 

m κ = (-1) κ ∞ 0 ds s κ f (s, φ + π) + ∞ 0 ds s κ f (s, φ). (54) 
Switching to circular harmonic components f l (s) of f (s, φ), it becomes

m κ = l∈Z e ilφ (1 + (-1) κ+l ) ∞ 0 ds s κ f l (s). (55) 
In this l-sum, only terms with l of same parity as κ will contribute and the corresponding s-integral is calculable in terms of the Gamma function (see [START_REF] Cormack | Radon's problem -Old and New[END_REF]), i.e.

∞ 0 ds s κ f l (s) = ∞ 0 dr r κ+1 f l (r) π Γ(κ + 1) 2 κ+1 Γ κ+l 2 + 1 Γ κ-l 2 + 1 .( 56 
)
For κ = 2k even, there are an infinite number of even l which corresponds to poles of the Gamma function and this lead to no contribution to the l-sum in (55)

l = ±(κ + 2), ±(κ + 4), ±(κ + 6), ... (57) 
The only values of l remaining are in the range (-κ) ≤ l ≤ (+κ). As this conclusion holds also for κ odd, we recover the Ludwig Line-RT characterization [START_REF] Ludwig | The Radon transform on Euclidean space[END_REF].

Proposition 7.2 A Ludwig's type of range characterization of the α-RT exists for α = 1 m . The κ-moment of the 1 m -RT data f α (s, φ) is a homogeneous polynomial in (cos φ, sin φ) of order (m (κ + 1) -1).

Proof: For α > 0 and κ ∈ N, the κ-moment of the α-RT data m κ α is the integral

m κ α = R ds s κ f α (s, φ), (58) 
Using a standard δ-function of the α-curve and assuming Fubini's theorem to be valid, perform the s-integration to get

m κ α = R 2 r dθ dr r κ (cos(θ -φ)) κ+1 α -1 . (59) 
If the exponent κ+1 α -1 is required to be a positive integer valued function of κ for fixed value of α, the unique solution is α

= 1 m , Then m κ 1 m
is a homogeneous polynomial in (cos φ, sin φ) of order (m (κ + 1) -1). For m = 1, we recover the case of the Line-RT. Cormack has suggested at the end of his paper [START_REF] Cormack | Radon's problem -Old and New[END_REF] to use the substitutions (r α , αθ) = (r , θ ) and (s α , αφ) = (s , φ ) to convert the α-curve equation in variables (r, θ) and parameters (s, φ) to the straight line equation in variables (r , θ ) and parameters (s , φ ). Then it is easy to see that f α (s, φ), the RT α of a function f (r, θ) (see (4)) will be converted to the Line-RT of the function

g α (r , θ ) = 1 α r 1-1 α f r 1 α , θ α . ( 60 
) Its Line-RT transform g α (s, φ) = f α (s 1 α , φ α ) is then given by g α (s , φ ) = π 2 -π 2 s dγ cos 2 γ g α (r , γ + φ ). (61) 
Consequently with complete Line-RT data g α (s , φ ), reconstruction of g α (r , θ ), via the well-known closed form Line-RT inversion formula, is given by (see e.g [START_REF] Barrett | The Radon Transform and its Applications in Progress in Optics[END_REF][START_REF] Nievergelt | Elementary inversion of Radon's transform[END_REF]), Hence reversing to the original variables (r, θ), parameters (s, φ) and functions (f (r, θ), f α (s, φ)) this Line-RT closed form inversion formula would in principle yield a closed form inversion formula for the RT -1 α . However this cannot be done for arbitrary α. For α = m = 2, 3, ..., the complete Line-RT data parameterized by (s ∈ R + , φ ∈ [0, 2π]) is generated by an incomplete set of actual RT α data in (s ∈ R + , φ ∈ [0, 2π m ]) since φ = mφ. Since a set of incomplete actual data cannot faithfully reconstruct the original f (r, θ), this reconstruction formula becomes meaningless. However for α = 1 m with m = 1, 2, ..., this is not so, as shown below. Proposition 7.3 Under these assumptions, the required Line-RT inversion data parameterized by (s > 0, 0 < φ < 2π) appears as the direct sum of m copies of the physical RT α data parameterized by (s > 0, 0 < φ < 2πm ). Then using the 2π periodicity of the actual data (see (4)), the Line-RT inversion formula (54) reproduces the RT 1 m inversion formula of equation (28).

g α (r , θ ) = - 1 2π 2 r
Proof: Proceed with equation (62) and go back to the original variables (r, θ) and parameters (s, φ). As (66)

This j-sum in (66) is given by the following lemma. 

Proof: The left-hand-side of (67) can be expressed as a logarithmic derivative of a product P m (ξ, γ) 

where P m (ξ, γ) is a polynomial in ξ with highest order term ξ m and having m zeros at cos (γ-2πj) m , with j = 0, 1, ..., (m -1). Such a polynomial can be found as follows. Let Q m (ξ, cos γ) = (T m (ξ) -cos γ), where T m (ξ) is a first kind Chebyshev polynomial of order m . Next for any j = 0, 1, ..., (m -1), we can express cos γ as

cos γ = cos m γ -2πj m = T m cos γ -2πj m . ( 69 
)
Thus we have P m (ξ, γ) = ( 12 ) m -1 Q m (ξ, cos γ). Then (67) is established by using the identity d dξ T m (ξ) = m U m -1 (ξ) (see [START_REF] Oberhettinger | Formulas and Theorems for the Special Functions of Mathematical Physics 3rd Ed[END_REF] p. 258).

Theorem 4 . 1

 41 The full closed form RT m m inversion formula for F m m (r , θ) is

  l∈Z (...l...) = l0∈Z (...(m l 0 )...)+ l1∈Z (...(m l 1 +1)...)+...+ lm-1∈Z (...(m l m-1 +(m-1))..

  (i) Search for new orthogonal function expansions arising from the RT -1 m m , as generalizations of those found by Cormack in the case of RT -1 1 m in [24], (ii) Inversion of the Extended Circular Harmonic Transform (ECHT) by Mellin

7. 3 .

 3 On Cormack's suggested mapping and a new derivation of RT 1 m inversion formula

∂ 1 m

 1 g α (s , φ ) ∂s ds = ∂ g α (s, φ) ∂s ds, s theorem to be valid, an exchange of s and φ integrations in (64) allows to rewrite the g 2π-periodicity of g α (s, φ) = g α (s, φ + 2π) (see subsection 3.1), we may re-express the kernel K 1 m (s, r, θ), after setting φ = (ψ + j2π) with j = 0, 1, ...(mcos θ-ψ-j2π m .

Lemma 7 . 4

 74 For given γ ∈ [0, 2π], the Chebyshev polynomials U m -1 (ξ) and T m (ξ) satisfy the identity(m -1) j=0 1 ξ -cos γ-j2π m = m U m -1 (ξ) T m (ξ) -cos γ .

  ln P m (ξ, γ), with P m (ξ, γ) =

  7.2. On RT α "Consistency Conditions" and their meaning As the RT α -Consistency Conditions * are crucial to the derivation of the RT α inverse formula, it is useful to see what they mean in the context of Cormack's 1984 results. In [27], it is shown that the Ludwig's Line Radon transform range characterization in polar coordinates are equivalent to the vanishing of a finite number of moments of a given radial component of the Line Radon data, although the name of Consistency Conditions has not been spelled out. Here we give a short proof of this equivalence in a form which can be extended to the α = 1 m curve Radon transform. Proposition 7.1 For the Line-RT (or RT 1 ), Cormack's Consistency Conditions imply Ludwig's characterization. Proof: The κ-moment of the Radon data f (s, φ) with κ ∈ N is by definition m κ = ∞ -∞ ds s κ f (s, φ). It may be put under the form

† To whom correspondence should be addressed (truong@cyu.fr)

§ In[START_REF] Cormack | Radon's problem -Old and New[END_REF], this formula was given with a missing global minus sign. Cormack, who had initiated this representation in[START_REF] Cormack | Radon's problem -Old and New[END_REF], did not use it in his CH-C inversion kernel.

+ This may be viewed as a generalization of the (even or odd) half-wave symmetry in signal theory which is represented by Fourier series only odd components.

Acknowledgements The author is grateful to the anonymous referees for their remarks and suggestions, as well as providing additional relevant references. They have greatly contributed to improve the quality of this paper.