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Inhibitory neurons control 
the consolidation of neural 
assemblies via adaptation 
to selective stimuli
Raphaël Bergoin 1,2*, Alessandro Torcini 3, Gustavo Deco 2,4, Mathias Quoy 1,5 & 
Gorka Zamora‑López 2

Brain circuits display modular architecture at different scales of organization. Such neural assemblies 
are typically associated to functional specialization but the mechanisms leading to their emergence 
and consolidation still remain elusive. In this paper we investigate the role of inhibition in structuring 
new neural assemblies driven by the entrainment to various inputs. In particular, we focus on the role 
of partially synchronized dynamics for the creation and maintenance of structural modules in neural 
circuits by considering a network of excitatory and inhibitory θ-neurons with plastic Hebbian synapses. 
The learning process consists of an entrainment to temporally alternating stimuli that are applied 
to separate regions of the network. This entrainment leads to the emergence of modular structures. 
Contrary to common practice in artificial neural networks—where the acquired weights are typically 
frozen after the learning session—we allow for synaptic adaptation even after the learning phase. 
We find that the presence of inhibitory neurons in the network is crucial for the emergence and the 
post-learning consolidation of the modular structures. Indeed networks made of purely excitatory 
neurons or of neurons not respecting Dale’s principle are unable to form or to maintain the modular 
architecture induced by the stimuli. We also demonstrate that the number of inhibitory neurons in 
the network is directly related to the maximal number of neural assemblies that can be consolidated, 
supporting the idea that inhibition has a direct impact on the memory capacity of the neural network.

Inhibition has an essential role for the dynamics and the adaptation ability of the brain1,2. Inhibitory interac-
tions are mediated by the GABAergic neurotransmitters whose effect is to reduce the probability of their target 
neurons to emit spikes. This is usually true in the adult brain operating in normal conditions3. Inhibition has 
been shown to be fundamental for perceptual decision making4 as well for the emergence of brain rhythms5. It 
also plays a crucial role in adaptation processes of the brain, in order to shape and preserve the structure of the 
network according to the correlations between inputs6–8.

Many models have been proposed in the literature to study the properties of plastic neural networks that 
account for excitation and inhibition. For example, models that treat neurons as oscillators have been use-
ful to explore the synchronization phenomena of the networks as a function of the ratio between excitation 
and inhibition9,10. Synaptic plasticity is usually mimicked by introducing adaptive coupling between the 
oscillators11–13, this can promote the emergence of multi-stable regimes characterized by synchronized and 
desynchronized clusters of oscillators13–16; analogous to observations in the presence of spike-timing-dependent 
plasticity (STDP)17,18.

While the simplicity of these models favours their analysis, they typically omit several biological aspects. Two 
major omissions are shared with common models for artificial neural networks employed in artificial intelligence 
and machine learning. On the one hand, excitation and inhibition are considered at the level of individual links 
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and thus no distinction is made between excitatory and inhibitory neurons11–13,19. Despite the fact that from a 
biological point of view Dale’s principle20 requires that the nature of the neurons should be uniquely defined such 
that all post-synaptic connections of a neuron are either excitatory or inhibitory. On the other hand, plasticity is 
only accounted for during the learning phase in which the networks are entrained. After the training, the result-
ing synaptic weights are frozen. However, in biological neural networks adaptation is constantly active raising 
the question of how could memories be consolidated in a network that is susceptible to permanent change.

The aim of this paper is to study the role of inhibitory neurons in the emergence and consolidation of neural 
assemblies due to stimulus-driven plasticity. Therefore, we model networks of excitatory and inhibitory neu-
rons (represented as θ-neurons21) shaped by external stimuli applied to differentiated subsets of neurons. The 
formation of assemblies is obtained thanks to a symmetric Hebbian-like phase-difference-dependent plasticity 
rule allowing the correlated neurons to reinforce their synaptic weights. Our results show that the presence of 
inhibitory neurons is crucial not only for the formation of clusters of neurons triggered by the stimuli, but also 
for the consolidation and the recall of memories. We find that violation of the biological constraints, either by 
constructing networks of excitatory-only neurons or by omitting Dale’s principle, leads to networks unable to 
maintain these memories. Furthermore, we show that the memory capacity of the network is directly related to 
the number of inhibitory neurons and that the conservation of the inhibitory synaptic weights is sufficient for 
memory recalls even if the synaptic patterns associated to the excitatory neurons are forgotten. The robustness 
of the results is tested against variations of the entrainment protocol and replacing the θ-neuron model by other 
models of oscillators such as the Kuramoto and the Stuart-Landau models.

Background
Numerous studies have shown that the brain’s connectivity follows a modular organization at different spatial and 
functional scales, with neurons and regions associated to common modalities or functions being more strongly 
connected22–26. These modules are usually associated to particular sensory modality (e.g. vision, audition and 
motor control) or to specific features within a modality, emerging in an autonomous way23,24,26–28. Plastic con-
nection strengths seem to play a significant role in the specification of neural assemblies involved in a particular 
function under the action of co-activation zones29. This highlights the concept of semantic memory where cor-
related information or functions share a common structure30,31. Some models suggest this concept of semantic 
memory by having association between mental representations and topology32,33. Also, it has been observed 
that during rest (no task activity) small series of sequence activation replays occur, akin to a memory retrieval 
and consequently to a process of memory consolidation34,35. This memory retrieval process in the dynamics 
seems based on the activation of particular semantic subgroups34, again highlighting the impact of the physical 
organization of the network on these dynamics.

Regarding inhibition, it has been proposed that the interconnections between excitatory and inhibitory cells 
play a relevant role balancing between fast adaptation and long-term conservation of the memories in neural 
circuits36,37. The problem of consolidating over the long term the memories a network has learned, while keeping 
an on-going adaptation process that avoids forgetting past memories by new ones, is a relevant issue encoun-
tered in models of various fields from biology to machine learning and artificial intelligence. In the brain, the 
connections between excitatory neurons are more volatile implying both forgetting in the absence of inputs and 
relearning in the presence of new information36. Therefore, it seems that while excitatory plasticity initially shapes 
the connectivity, driven by the input information36,38–40, long-term maintenance appears to be mediated by the 
inhibitory plasticity36. Indeed, it has been shown that inhibitory plasticity has a fundamental role in balancing 
excitation and inhibition in recurrent networks, as well as in storing synaptic memories41. Inhibitory neurons 
can modulate the level of synchronization of the network, making it possible to preserve consistency in the 
dynamics of modular areas10. The interplay between excitatory and inhibitory currents also makes it possible 
to have a more efficient coding42,43, which can be of great interest especially in the field of artificial intelligence.

Methods
This section describes the model employed for the dynamics of the membrane potentials of the neurons in the 
network, the learning rules governing the weight adaptation and the protocols followed to induce structural 
patterns and their consolidation, as well as the protocols used to analyse the stability of the emerged patterns.

Neuronal dynamics.  To mimic the membrane potential evolution of a neuron we employ the θ-neuron 
model introduced by Ermentrout and Kopell as the normal form for class I excitable cells21. This model has the 
advantage of reproducing quite faithfully the behaviour of spiking neurons through the description of the evo-
lution of the corresponding “membrane potential” while remaining a phase model44. Indeed, it can be put in a 
one to one correspondence with the Quadratic Integrate and Fire (QIF) spiking neuronal model via a non-linear 
transformation linking the phase to the membrane potential45. Furthermore, the θ model can describe bursting 
dynamics observable at the level of the membrane potential of specific cells of the Aplysia mollusc21,44. In addi-
tion, networks of coupled θ-neurons can exhibit a variety of behaviours ranging from asynchronous regimes 
to multi-stability, from partial synchronization to chaos46–49. In a network of N = NE + NI neurons, where NE 
( NI ) is the number of excitatory (inhibitory) neurons, the dynamical evolution of the phase θi of a neuron 
( i = 1, . . . ,N ) is governed by the following equation:

(1)
dθi

dt
= (1− cos θi)+ (1+ cos θi)

[

ηi +
g

N

(

N
∑

j=1

κij sin(θj − θi)

)

+ Ii(t)+ ξi(t)
]

,
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where ηi is the excitability or the bifurcation parameter controlling the intrinsic frequency of the neuron, g 
represents a global synaptic strength modulating the overall level of coupling among the neurons, and κij is a 
matrix term measuring the relative synaptic weight from the pre-synaptic neuron j to the post-synaptic neuron 
i. The latter term is subject to a temporal evolution, therefore we can speak of adaptive coupling. The rules for 
the evolution of the κij terms will be introduced in the next sub-section. Furthermore, we consider a diffusive 
sinusoidal coupling function based on the phase differences as in the Kuramoto model50.  In other words, the 
couplings between neurons are considered as electrical gap junctions. The phases θi are defined in the range 
[−π ,π [ and we assume that whenever the phase θi reaches the threshold π a spike is emitted by the i-th neuron.

External inputs are incorporated via the current terms Ii(t) representing time-dependent stimuli. Positive 
external currents increase the frequency of the neurons, thus imitating the typical biological response of sensory 
neurons exposed to stimuli of varying intensity. Finally, an independent Gaussian noise ξi(t) term is applied to 
each neuron mimicking background noise always present in real neural circuits.

Simulations are performed by integrating Eq. (1) via an Euler scheme, where the multiplicative stochastic 
term is treated in the Stratonovich sense51, with an integration time step dt = 0.01.

In order to quantify the degree of synchronization in the network, we introduce the Kuramoto–Daido order 
parameters Zn(t)52–54. The nth order parameter is defined as follows:

where Rn is the modulus of the complex order parameter Zn and �n the corresponding phase. The modulus of 
Z1 is employed to characterize the level of phase synchronization in the network: R1 > 0 ( R1 = 1 ) for a partially 
(fully) synchronized network, while R1 ≃ O (1/

√
N)) for an asynchronous dynamics. The other moduli Rn with 

n > 1 are used to characterize the emergence of multi-clusters, in particular R2 is finite whenever two clusters 
in anti-phase are present in the network.

Learning and adaptation.  Plasticity function.  The synaptic weights κij are modified according to a sym-
metric Hebbian-like rule depending on the instantaneous phase differences between the neurons instead of spike 
timings as observed in real neurons55. Since θ-neurons are phase oscillators this choice allows to have a relatively 
precise temporal adaptation—as compared to a frequency based rule—that can be numerically integrated si-
multaneously with the neuronal dynamics. A symmetric plasticity facilitates the convergence of the weights 
and highlights better the correlations with respect to the inputs. Nevertheless it shall be noted that a symmetric 
plasticity is possible in this case because the transmission delays are ignored56–58.

We first consider the plasticity function introduced by Aoki et al.11,12 and recently employed in Berner 
et al.13,16. Given the phase difference �θ = (θj − θi) , this plasticity function is defined as:

see Fig. 1, blue line. This rule follows the principle of Hebbian learning with a reinforcement (depression) of 
the weights when the neurons are in phase (in anti-phase). However although simple, the relevance in terms of 
realism of this function can be questioned due to the symmetry of the positive and negative parts, corresponding 
to long-term potentiation (LTP) and depression (LTD), respectively. Indeed, in biology LTP and LTD do not act 
on symmetric time windows59,60. To remedy this, we propose a plasticity function inspired by Lucken et al.61 and 
Shamsi et al.62. We define the new plasticity function as:

(2)Zn(t) = Rn(t)e
i�n =

1

N

N
∑

j=1

einθj

(3)�0(�θ) = cos(�θ),

Figure 1.   Hebbian phase difference-dependent plasticity functions �(�θ) versus �θ . In blue the function 
�0 reported in Eq. (3) and in red the function �1 defined Eq. (4). Despite having different potentiation and 
depression phase windows, the two functions attain the same maximum and minimum values.
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where we assume that �1(�θ) is 2π periodic as shown in Fig. 1, red curve. This rule follows the same general 
principle of Hebbian learning as the one in Eq. (3) but the cosine is replaced by a combination of exponential 
functions making the potentiation (where �1(�θ) > 0 ) and the depression (where �1(�θ) < 0 ) phase intervals 
asymmetric. Since for phase oscillators, the phase evolution can be mapped into a time evolution, these asym-
metric phase intervals correspond to asymmetric time windows. Indeed, this asymmetry is more consistent 
with the biological features: as a matter of fact, in the cortex depression operates over a longer time window 
with respect to potentiation63,64. Specifically in60, the authors have shown that for CA3 pyramidal cells in rat 
hippocampus, the STDP presents a depression time scale five times longer than the potentation one, analogously 
to our choice in Eq. (4).

In the following, unless stated otherwise, we will employ the function �1 and for simplicity we will refer to 
it as �(�θ).

Slow and fast adaptation.  External stimulations have a direct impact on the adaptation of the synaptic weights. 
In presence of stimulation the synaptic weights should be modified quite fast to retain the information contained 
in the stimuli. However, in the absence of further stimuli, a fast adaptation may allow for a rapid relaxation of 
the weights towards their equilibrium values leading to a loss of the learned input-driven memories. This prob-
lem is common to most learning neural network models. The solution typically adopted consists in freezing the 
weights once the stimuli have been delivered. There are indications that two learning processes may occur simul-
taneously or sequentially in the brain. An example is represented by the complementary mechanisms involved 
in short-term or long-term depression and potentiation of the synapses64–67. There are also evidences of different 
learning schemes on proximal and distal dendrites of pyramidal neurons68 or in the retina69. Finally, it is also 
worth to mention that long-term potentiation may be modulated by homeostatic plasticity70,71. Two learning 
processes also occur when acquiring new skills: a fast learning in a cortical structure is simultaneously slowly 
learned in a subcortical structure (habit learning for instance)72–75. Thus, according to previous experiences and 
the nature of inputs, the rate of learning may need to evolve so that neurons adapt more or less quickly to sensory 
inputs69,72,76,77. More precisely, adaptation in the brain is the result of multiple learning processes acting at dis-
tinct time scales allowing more or less rapid learning or relearning of new information without forgetting older 
memories39,72. To somehow mimic this phenomenon, we introduce two complementary learning time scales:

•	 a fast time-scale that activates in the presence of an external stimulus presented to the pre-synaptic neuron;
•	 a slow steady time-scale that has a minimal short-term effect.

The fast and slow time scales have been introduced in this phase model, where adaptation depends on the phase 
differences and not on the spiking times, to reproduce a fast learning period induced by the higher firing rate of 
the stimulated neurons and a slower consolidation phase, where the neuronal firing becomes sparse.

Given the plasticity function in Eq. (4) and the constraints just mentioned, we define the evolution of the 
coupling weights |κij| ≤ 1 from pre-synaptic neuron j to post-synaptic neuron i to be governed by the following 
equation:

where Ij(t) is an external input to neuron j, H(x) is the Heaviside function such that H(x) = 1 if x > 0 and 
H(x) = 0 otherwise, and ε1 ≪ ε2 ≪ 1 are the learning rates for the slow and the fast adaptations, respectively. 
The Heaviside function has a thresholding effect allowing fast adaptation only if a sufficiently strong stimulus 
|Ij(t)| > 0.1 is presented.

Excitatory and inhibitory neurons.  In order to account for the excitatory and inhibitory nature of the neurons, 
we disentangle Eq. (5) into two different cases, where the synaptic weights are bounded between [0, 1] ( [−1, 0] ) 
provided the pre-synaptic neuron is excitatory (inhibitory). The dynamics of the weights are thus governed by 
the following equations.

If both neurons i and j are excitatory, then:

if the pre- and/or post-synaptic neuron is inhibitory the weight evolution is given by:

where 0 ≤ κij ≤ 1 (−1 ≤ κij ≤ 0) if the pre-synaptic neuron is excitatory (inhibitory). The non-linear dependence 
on κij introduced in Eqs. (6) and (7) is intended to mimic the soft bounds often employed in the implementation 
of the STDP in spiking neural networks78 and to maintain |κij| smaller than one.

(4)�1(�θ) =

{

e
�θ
0.1 − e

−�θ+π
0.5 , if − π ≤ �θ < 0 ,

e
−�θ

0.1 − e
�θ−π
0.5 , if 0 ≤ �θ < π ;

(5)
dκij

dt
=

[

ε1 + ε2H
(

|Ij(t)| − 0.1
)

][

− κij +�(�θ)

]

,

(6)
dκij

dt
=

[

ε1 + ε2H(|Ij(t)| − 0.1)
]

κij (1− κij)�(�θ),

(7)
dκij

dt
= ε1|κij|

(

1− |κij|
)

�(�θ),
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Notice that the fast adaptation is only present for synapses connecting excitatory neurons since external inputs 
are only applied to this type of neurons79–82. Indeed, sensory inputs must be rapidly assimilated in the short-term 
while being volatile in order to learn new information36,72,83. Therefore, synaptic weights involving inhibitory 
neurons will always only evolve on the long time scale. By default, we consider a ratio of 80% of excitatory neu-
rons and 20% of inhibitory neurons as is commonly accepted in the human cortex7,10,36.

Lastly, we expect that for synapses connecting two excitatory or inhibitory neurons i and j, the weights κij and 
κji will become equal in the long run, due to the symmetry of Eq. (6) in the absence of stimulation and of Eq. (7). 
However, this should not be the case if one of the neurons is inhibitory and the other excitatory.

Stimulation protocols.  Main experiments.  We now summarise the principal protocol followed in the 
paper. The networks are initialised with random weights uniformly distributed in the range κij ∈ [0, 1] when the 
neuron j is excitatory and in the range κij ∈ [−1, 0] when the neuron j is inhibitory. We consider heterogeneous 
neurons with excitabilities ηi randomly distributed according to a normal distribution N(1.5, 0.01) . The initial 
phases of the neurons are randomly selected in the interval [−π ,π ] . All network parameters are summarized 
in Table 1.

The stimulation protocol is illustrated in Fig. 2. Initially, a period of spontaneous activity is considered 
in order to allow the system to relax to its rest state. Afterwards, a learning phase follows during which two 
external positive currents are applied randomly and intermittently for constant periods of 20 time units. One 
current stimulates the first half of the excitatory neurons (i = 1, 2, . . . , 40) , and the other one the second half 
(i = 41, 42, . . . , 80) . Inhibitory neurons are never directly stimulated. Finally, after the learning phase the network 
is left to evolve spontaneously for a long time. During this post-learning phase no neurons are stimulated and 
therefore only the slow adaptation rate ε1 remains active, affecting the stabilization of the connectivity patterns 
formed during the stimulation phase.

This principal experiment was repeated for different variations. In one case, we ignored inhibition and con-
sidered networks of only excitatory neurons. In a second case, in order to show the relevance of Dale’s principle 
for pattern consolidation, i.e. the need to preserve the nature of the excitatory and inhibitory neurons during 
the simulation, we considered unlabelled neurons. In this case neurons were allowed to display both excitatory 
and inhibitory synapses. Specifically, for the experiment with unlabelled neurons the synaptic adaptation was 
ruled by Eq. (5) with the Hebbian function �0(�θ) in Eq. (3).

Additional experiments.  Thereafter variations of the principal protocol are considered, as follows: 

1.	 three external stimuli during the learning phase instead of two;

Table 1.   Parameters for the network of θ-neurons. .

Parameters Values

N 100

NE 80

NI 20

η N(1.5, 0.01)

g 1

I(t) {0, 3}

ξ(t) N(0.0, 0.1)

ε1 0.00001

ε2 0.1

dt 0.01

Figure 2.   Diagram representing the stimulation protocol divided in three phases: a first short phase of 
spontaneous activity, a learning phase during which two different groups of excitatory neurons are stimulated 
alternatively over time (the red areas represent the duration and the neurons that received external stimulation), 
and a final long period of resting-state activity in which the plasticity remains active.
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2.	 an overlap of 8 neurons among two groups of excitatory neurons stimulated by two external stimuli;
3.	 a recall experiment of previously stored items, where the trace of the memory storage is maintained only in 

the connections involving inhibitory neurons.

Other variations of the main protocol are described in section “ Alternative stimulation protocols” of the Sup-
plementary Information.

To understand the generality of the results obtained in the additional experiments (1) and (2), we analyse 
the stability of different configurations. In particular, we perform a stability analysis where the objective is to 
determine the conditions under which the network connectivity during the resting state remains stable (i.e. the 
learned modular structure is preserved) or unstable (i.e. at least one structural cluster is not maintained) over 
the long term. This stability analysis corresponds in experiment (1) to the maintenance of all the stored clusters 
and in experiment (2) to the maintenance of the two stored clusters despite their increasing overlap.

In order to perform this analysis, we start from already trained networks satisfying the desired constraints 
(i.e. the number of structural clusters or the number of overlapping neurons between clusters versus the number 
of inhibitory neurons), thus facilitating the replication of experiments under different conditions. Moreover, this 
pre-training facilitates the analysis of extreme cases where for instance a single inhibitory neuron is associated 
with each cluster whose emergence is not necessary guaranteed via a random learning. Then we leave the network 
in a state of spontaneous activity for a long time and compare the final structural state to which it converges with 
the initially stored one to assess the stability or instability of this latter configuration.

Results
The goal of this paper is to study the emergence and consolidation of modular architectures induced via a learn-
ing process promoted by localised inputs which target distinct subsets of neurons. We will first present results 
concerning the emergence and consolidation of clustered architecture induced by learning of two external 
stimuli. This experiment is repeated for networks composed of different types of neurons: namely, purely excita-
tory neurons, excitatory and inhibitory neurons, and unlabelled neurons. Then, we will study variations of the 
initial protocol and in particular the learning process promoted (i) by multiple stimuli and (ii) by overlapping 
stimuli, where neurons can encode for multiple items. Lastly, we investigate the ability of the neural networks 
to recall the stored memories.

Learning and consolidation of modular assemblies.  We start by investigating the emergence of two 
modules due to stimulations of non-overlapping neural populations. We first study this phenomenon in net-
works containing excitatory and inhibitory neurons and then we explore cases with only excitatory neurons or 
with unlabelled neurons whose connections can be either excitatory or inhibitory.

Networks of excitatory and inhibitory neurons.  We consider a network of N = 100 θ-neurons subdivided in 
NE = 80 excitatory and NI = 20 inhibitory ones, initially connected via a random weighted matrix (uniform 
distribution between [0, 1] or [−1, 0] for pre-synaptic excitatory or inhibitory neurons, respectively), see “Meth-
ods”. The network is entrained using two independent stimuli applied to separate subsets of neurons following 
the protocol shown in Fig. 3a. The phases of the neurons are randomly initialised (uniform distribution between 
[−π ,π ] ). The results of this experiment are reported in Fig. 3b. During the initial rest phase the network is left 
to evolve spontaneously and it converges into a state close to synchrony despite the fact that the weight matrices 
at time T0 are randomly distributed, see raster plot (1). Both excitatory and inhibitory neurons tend to synchro-
nize, as shown in the raster plot (2) at T0. This is due to the value of the chosen coupling strength g, which is 
sufficiently large to favour a synchronized phase.

After the period of spontaneous activity the learning phase starts. The resulting connectivity matrix and 
the network dynamics are shown at two intervals: during the learning phase—time T1—and at the end of this 
phase—time T2. As we see, the presence of the two stimuli leads to the emergence of two modular structures 
[weight matrices (1’) and (1”)] among the excitatory neurons while the weights involving inhibitory neurons 
do not evolve much due to the separation of fast and slow learning rates. The presence of an input leads to an 
increase in the firing rate of the stimulated neurons, see raster plot (2’). At the end of the learning phase, two 
disconnected clusters of excitatory neurons firing in anti-phase emerge in the network, while the inhibitory 
neurons remains uncorrelated [see raster plot (2”)].

Following the learning period the network is left to evolve driven by its spontaneous activity. In this stage 
the adaptation is governed by the slow adaptation rate. The long-term results are shown in the time column T3. 
As seen, the learned structure is consolidated. The two excitatory clusters are maintained, see weight matrix 
(1”’), and besides this the input/output inhibitory weights continue adapting such that the modular structure is 
reinforced. Finally, also the inhibitory neurons split in two structural clusters. The final consolidated connectiv-
ity structure is reported in Fig. 4a. From this figure it emerges that the neurons are organised in two clusters, 
each one involving a group of excitatory neurons that projects in a feedforward manner on a group of inhibitory 
neurons. Therefore the inhibitory neurons within the first cluster synchronise with the excitatory neurons driving 
them, as shown in panel (2”’). Furthermore, the inhibitory neurons of one cluster projects on the excitatory and 
inhibitory neurons of the other cluster. This induces a repulsion of the dynamics of the two clusters that adjust 
in anti-phase one with respect to the other, both clusters displaying exactly the same period of oscillation, see 
raster plot in panel (2”’) in Fig. 3b.

In order to validate the robustness of the results, the experiment was repeated several times (as all the follow-
ing experiments) by randomly varying the presentation order of the stimuli to the two populations. At the same 
time, the initial values of the phases of the neurons and of the connection weights were also randomly assigned 
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Figure 3.   Entrainment of networks of θ-neurons defined by different combinations of excitatory and inhibitory connections. (a) 
Experimental protocol consisting of the stimulation of two non-overlapping neuronal populations of θ-neurons with plastic synapses. 
Stimuli are presented in temporal alternation. (b) Results for a network with 80% excitatory and 20% inhibitory neurons. (c) Results 
for a network of only excitatory neurons and (d) for unlabelled neurons projecting both excitatory and inhibitory postsynaptic 
connections. The results are reported at different moments of the stimulation. The time T0 corresponds to the beginning of the 
simulation before the learning phase, after a transient period tt = 190 has been discarded. The time T1 corresponds to an early 
moment during the learning phase. Time T2 corresponds to the end of the learning phase and the beginning of the resting-state. 
The time T3 corresponds to the end of a long period of spontaneous activity during which synaptic weights are consolidated. 
Panels labelled (1), (1’), (1”) and (1”’) represent the weight matrices at times T0, T1, T2 and T3: the color denotes if the connection 
is excitatory (red) or inhibitory (blue) or absent (white). Panels (2), (2’), (2”) and (2”’) are raster plots at times T0, T1, T2 and T3, 
displaying the firing times of excitatory (red dots) and inhibitory (blue dots) neurons. Note that the inhibitory neurons are sorted by 
phases at time T3 in the weight matrices and raster plots reported in (b,c); while the neurons are sorted by phase in the weight matrices 
and raster plots within each cluster at times T1, T2 and T3 of the row (d). The cyan and magenta brackets represent clusters 1 and 2 
respectively when they are visible in weight matrices and raster plots.
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in each realization. From these data we have estimated the evolution in time of the modulus of the 1st and 2nd 
Kuramoto-Daido order parameters (as defined in Eq. 2). These indicators are useful to analyse the level of syn-
chronization in the network and to test for the emergence of clusters at different stages during the experiment. 
The temporal evolution of the average order parameters and their standard deviations are shown in Fig. 4b for 
the previous experiment displayed in Fig. 3b.

At time T0, we observe with a negligible variation that the network is almost totally synchronized, as testified 
by the fact that R1 ≃ 1 and R2 ≃ 1 . During the learning phase (i.e. at time T1), the value of the two parameters 
drop and their standard deviations increase, thus testifying for a larger variability and a desynchronization of 
the network. After the learning at time T2, R2 ( R1 ) increases (decreases) tending toward a large (small) value. 
These results indicate the emergence of two main synchronized clusters in the network corresponding to the 
two learned modules. Finally, after the long term consolidation (i.e. at time T3), the network converges towards 
two clusters in anti-phase where R2 ≃ 1 ( R1 ≃ 0 ) and the corresponding standard deviations are negligible, thus 
confirming the stability of this final state, despite the different stimulation sequences employed in the performed 
experiments. These observations put in evidence that the formation and consolidation of input-driven modules 
are a robust outcome of the model, which depends mainly on the characteristics of the stimulated populations 
and on the number of inhibitory neurons in the network, and is not significantly affected by the variability of 
the initial conditions nor of the particular sequence of the presented stimuli.

Networks of excitatory neurons.  Now we consider the case in which all neurons are excitatory and no inhibition 
is present. As before, the neurons synchronise during the initial stage of spontaneous activity and the training 
phase leads to the formation of two structural clusters (see, Fig. 3c). However, from the dynamical perspective 
the neurons in the two clusters are no longer firing in anti-phase, as in the previous case. Instead, at the end of the 
learning phase they present a small phase-shift and they indeed tend to synchronize as evidenced from the raster 
plot at time T2 (2”). As a consequence, during the stabilization phase, all the synapses are reinforced leading to 
an all-to-all connectivity matrix (see matrix (1”’) at time T3). Therefore the two structural modules that emerged 
during the learning are now completely forgotten.

Networks of unlabelled neurons.  As a last case, we consider the typical scenario of artificial neural networks, 
where neurons are unlabelled, meaning that each neuron can display both excitatory and inhibitory post-syn-
aptic connections violating Dale’s principle. The results of this experiment are reported in Fig. 3d. This time the 
initial stage of spontaneous activity leads to an asynchronous neuronal state (raster plot (2)) since every neuron 
randomly attracts and repulses its neighbours via excitatory and inhibitory links. After the learning phase (time 
T2), two symmetric structural clusters emerge in the weight matrix (1”). More precisely, the Hebbian rule in 
Eq. (3) leads to the creation within each structural module of two phase clusters in anti-phase, depending on the 
initial phases as explained in Aoki et al.11,12.

In contrast with the previous cases, the structural modules are now not well defined. Weak connections among 
the two clusters are still present as shown in (1”), allowing the possibility for the two clusters to synchronize, see 
the spike trains in (2”). During the consolidation phase these weak cross-modular connections increase, lead-
ing to a fully coupled matrix with no structural modules, see (1”’). However, even in the absence of structural 

Figure 4.   (a) Schematic diagram representing the connectivity matrix emerging after the consolidation 
phase for the stimulation of two non overlapping populations reported in Fig. 3. Red (blue) circles represent 
excitatory (inhibitory) populations, dashed circles identify clusters of synchronized neurons. (b) Evolution of 
the modulus of the 1st (in blue) and 2nd (in orange) Kuramoto–Daido order parameters, Eq. (2), averaged over 
10 realizations with randomised initial conditions and stimulation sequences. The mean and the corresponding 
standard deviation are shown versus time during the realization of the experiment in Fig. 3. The time labels have 
the same meaning as in Fig. 3.
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modules one can observe clustered phases in the temporal evolution of the neurons as also reported in13. The 
neurons connected through excitatory (inhibitory) pre-synaptic links tend to fire in phase (anti-phase). Never-
theless, these phase clusters do not reflect the two structural modules previously stored in the network.

In summary, we have shown that the presence of both excitatory and inhibitory neurons is needed for the 
formation and the consolidation of structural modules driven by learning of independent stimuli. In the follow-
ing, we generalize these results to cases in which the number of stimuli—and therefore of expected modules—is 
arbitrary and to the case where the stimuli act on overlapping neuronal populations.

Learning multiple clusters.  In this experiment, the previous learning protocol is repeated for networks 
with excitatory and inhibitory neurons but considering now three inputs as illustrated in Fig. 5a. The results are 
analogous to the previous ones, except that in this case three clusters emerge. As before, during the final consoli-
dation stage each inhibitory neuron ends associated to one of these clusters, connectivity matrix (1”’) in Fig. 5b. 
From the dynamical point of view, the neurons of the different clusters no longer fire in anti-phase, but at regular 
intervals corresponding to one-third of the firing period of the single cluster, see the raster plot (2”’) in Fig. 5b.

These results generalize by increasing the number of independent inputs. When there are too many inputs, 
we observe that it is more difficult for the network to sustain separate dynamics for each cluster and therefore 
the long-term consolidation is compromised. The reason is that, as the number of inputs increases, the clusters 
are made of fewer neurons and it becomes less likely that a sufficient number of inhibitory neurons will associate 
with each cluster allowing for its consolidation. This opens up the question about how many inhibitory neurons 
are necessary in the network in order to maintain clusters that fire at distinct times.

To answer this question, we perform the following experiment: we artificially prepare weight matrices made 
of M modules of excitatory neurons similar to those found at the post-learning time T2. Then, we associate each 
available inhibitory neuron to a single structural module such that it receives excitatory inputs from this cluster 
and inhibits the excitatory neurons of all the other clusters. Thus generalizing the architecture reported in Fig. 4a 
to many clusters, each containing a single inhibitory neuron. Starting from these weight matrices, we let the 
network spontaneously evolve for a long period, similarly to what was previously done during the post-training 
phase, and at the end of the simulation we count the number of structural modules that survive. We consider 
N = 100 neurons in the network and repeat the experiment for an increasing number M of modules (namely, 
from M = 2 to M = 100 ) controlled by varying the number of inhibitory neurons.

The results are shown in Fig. 6a. We find that in order to maintain M independent modules the network needs 
to contain at least M − 1 inhibitory neurons. An example of the effect of this limitation is shown in Supplemen-
tary Fig. 4, where the experiment of Fig. 5 is repeated for a network containing a single inhibitory neuron. In 
this case even if the original weight matrices contained three structural clusters only two independent clusters 
could be maintained in the end.

In the same way as in Fig. 4b, these experiments have been reproduced several times with randomised initial 
conditions and stimulation sequences. Again thanks to the Kuramoto-Daido order parameters, we were able 

Figure 5.   Entrainment of a network of excitatory and inhibitory θ-neurons with three stimuli. (a) Stimulation 
protocol of the excitatory neurons by three different and non-overlapping stimuli. (b) Entrainment results at 
different instances of the simulation. The time labels and the graphs have the same significance and content as 
in Fig. 3. Inhibitory neurons are sorted by phases at time T3 for visualization purposes. The cyan, green and 
magenta brackets represent clusters 1, 2 and 3 respectively when they are visible in weight matrices and raster 
plots.
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to quantify over different realizations the number of clusters in the network during each phase of the protocol 
according to the number of inputs learned and inhibitory neurons. As before, these analyses gave negligible 
variations confirming the robustness of the results.

In practice, when the networks are randomly initialized, it is rather difficult to reach the optimal configura-
tion representing the upper limit in which each inhibitory neuron controls for one of the M clusters. However, 
we show that by preparing the weight matrices as explained before and by considering a network with 50% of 
excitatory and inhibitory neurons it is possible even to obtain a “splay state”84, characterized by N/2 clusters, each 
formed by a pair of excitatory and inhibitory neurons, spiking one after the other (see Supplementary Fig. 1).

Another important aspect to consider is that the time interval (the phase shift) between the population bursts 
associated to each single cluster reduces with the number of clusters present in the network. Therefore, since 
the time (phase) potentiation window of the plasticity function �(�θ) , shown in Fig. 1, has a finite duration 
(width) this can induce correlations among clusters characterized by time (phase) shifts smaller than the dura-
tion (width) of such a window. These correlations then lead to a merging of initially independent clusters into a 
single one on the long run. This phenomenon is clearly visible in Supplementary Fig. 1, where the “splay state” 
merges into few clusters over the long term. Therefore, the time (phase) potentiation window should be carefully 
selected to be sufficiently narrow to reinforce neurons in phase, but also sufficiently broad to allow for some 
tolerance to the exact phase matching due to noise and variability. To summarize, we can safely affirm that there 
is a time difference (phase-shift) limit below which nearby clusters cannot remain dynamically independent. At 
the same time, we should keep in mind that the tolerance of the adaptation process is also a parameter affecting 
the stabilization of the clusters in the long term.

Neurons encoding for multiple stimuli.  So far we have only considered cases in which external inputs 
were spatially segregated, meaning that each input targets a separate group of neurons. We now consider the 
possibility that a sub-group of neurons can encode two stimuli at the same time, thus exhibiting a simple form 
of “mixed selectivity” often observed in neurons in the prefrontal cortex of primates during the performance 
of memory related tasks85,86. In particular, we study the case in which a sub-group of neurons responds to two 
distinct stimuli. For illustration we start by considering two stimuli presenting an overlap over eight neurons, see 
protocol in Fig. 7a. To facilitate the formation of the connections we now strictly alternate the areas stimulated 
and keep a short resting period between each stimulation.

The results depicted in Fig. 7b are similar to the observations reported before with the formation of two 
clusters due to the adaptation to the stimuli (see matrix (1”)). The only difference is that in this case a few 

Figure 6.   (a) Regions of stability (orange) and instability (purple) of the structural modules versus the number 
of clusters initially present in the weight matrix and the number of inhibitory neurons in the network. The line 
separating the two regions represents the upper limit to observe M independent clusters versus the number of 
inhibitory neurons. This limit corresponds to M − 1 inhibitory neurons. (b) Regions of stability (orange) and 
instability (purple) of the two clusters versus the number of excitatory neurons encoding for the two stimuli 
(hub neurons) and the number of inhibitory neurons in the network. The lines separating the two regions 
represent the minimal number of inhibitory neurons NI required to observe two clusters with NH hubs. For 
NI ≤ 2

5
N the line is given by NI = 2NH + 1 . For larger number of inhibitory neurons the limit is given by 

NI = N − 3NH . Note that both graphs have been realized for a network made of N = NE + NI = 100 neurons 
in total, of which NE are excitatory and NI inhibitory, this constraint is at the origin of the non-accessible areas 
(white regions).



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6949  | https://doi.org/10.1038/s41598-023-34165-0

www.nature.com/scientificreports/

neurons—those who receive overlapping inputs—become structural hubs. During the consolidation stage, these 
putative hub neurons associate with one of the two clusters decoupling from the other one but tend to remain 
connected with the other hubs as shown in matrix (1”’). Regarding the spiking dynamics, at the end of the train-
ing period, the hubs behave as a third independent cluster, by firing at an intermediate time between the two 
clusters, see raster plot (2”). Although at the end of the consolidation stage they finally become synchronized 
with one of the two clusters, see raster plot (2”’). Therefore, this may question on the possibility of exhibiting 
persistent mixed selectivity with such a model even if the hubs still present structural connections among them. 
However when increasing the size of the overlap, the two clusters are more likely to become synchronized with 
each other. This consequently raises the question of what is the largest size of the overlap that allows the two 
clusters to remain distinct at the end.

To address this question, we generalize the protocol by increasing the number of hubs NH (neurons that 
receive both inputs) and the number of inhibitory neurons NI in the network. For each combination of overlap 
and number of inhibitory neurons, we observe whether the final network still exhibits two spatially segregated 
clusters, or if they merge into an all-to-all connected network. The results of this analysis are reported in Fig. 6b: 
the orange (purple) region refers to the stability (instability) region of the two clusters. As a first constraint 
observed, the number of excitatory neurons in each cluster cannot be smaller than the number of hubs, i.e. of 
the number of excitatory neurons shared with the other cluster. Otherwise the hubs would become the dominant 
cluster leading to synchrony between all excitatory neurons. Furthermore, the number of inhibitory neurons 
required to maintain the two clusters segregated should be at least twice the number of hubs ( NI ≥ 2NH ). The 
reason is that to avoid global synchrony, each module needs to compensate for the excitatory links shared with 
the other cluster via a similar amount of inhibitory links. Therefore the minimal number of inhibitory neurons 
required to stabilize the two clusters with NH overlapping neurons is NI = 2NH + 1 , where an extra inhibitory 
neuron is needed to maintain the repulsion between the two excitatory modules as previously observed in 
Fig. 6a. This argument can be generalized to M clusters, giving rise to the following rule NI = (NH + 1) ∗M − 1 , 
where the NH hubs encode for all the M stimuli. However, for sufficiently large NI , namely NI >

2
5N , due to the 

first constraint discussed above, the minimal number of inhibitory neurons needed to observe the two clusters 
becomes NI = N − 3NH . For an arbitrary number of clusters M, this rule generalizes as NI = N − (M + 1) ∗ NH . 
This limit is further confirmed by the analysis reported in Supplementary Fig. 5, where we repeat the experi-
ment shown Fig. 7 by reducing the number of inhibitory neurons from NI = 20 to NI = 16 . In this case, since 
the minimal number of required inhibitory neurons should be 17, to maintain 2 clusters with 8 hubs, the two 
clusters indeed merge into a unique one.

Similarly to Fig. 4b these experiments have been reproduced several times with randomised initial conditions. 
Here the Kuramoto-Daido order parameters allow to quantify over different realizations if the two clusters remain 
stable in the network during and after the learning depending on the number of hubs and inhibitory neurons. 
Again, these analyses gave negligible variations confirming the robustness of the results.

Figure 7.   Entrainment of a network of excitatory and inhibitory θ-neurons with two overlapping stimuli. (a) 
Schema of the experiment protocol showing that the two presented stimuli involve 8 shared neurons. (b) The 
results are given at different instants of the simulation. The time labels and the graphs have the same significance 
and content as in Fig. 3. Note that the inhibitory neurons and the putative hub neurons are sorted by phases at 
time T3 for visualization purposes. The cyan, magenta and green brackets represent clusters 1, 2 and the hubs 
respectively when they are visible in weight matrices and raster plots.
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Memory storage and recall are controlled by the inhibitory neurons.  In this last experiment, 
we start from previous results showing that the connections between excitatory neurons are quite volatile in 
the absence of learning and that inhibitory connections control for the long-term storage of memories in the 
cortex36. We consider the scenario in which the excitatory clusters formed in the first experiment of Fig. 3 have 
disappeared due to the volatility of the excitatory connections (e.g. due to new stimulation patterns), while 
the connections involving inhibitory neurons are maintained since they are more stable. Specifically, we select 
random connections between the excitatory neurons, while the connectivity involving the inhibitory neurons 
conserves the values induced by the original learning process. Then we examine the response of the network 
with this altered connectivity matrix to a brief recall of the stored memory patterns. The schema summarizing 
the stimulation protocol and the results of this experiment are shown in Fig. 8.

First of all we observe that when no stimulation is applied to the system, the network is in a relatively syn-
chronized state as shown by the raster plot (2) at time T0. Therefore, the information stored in the network, 
corresponding to two segregated memory patterns, is not evident from the temporal evolution of the neurons. 
When one of two patterns is shortly presented (e.g., at times T1 and T2) this induces an initial increase of the 
spiking rate of the stimulated neurons, followed by the desynchronization of the inhibitory neurons associated 
to the stimulus from the rest of the population for a brief time interval (see raster plots (2’) and (2”)). This leads 
to a transient re-emergence of the stored memory pattern, reflecting an activity that is almost in anti-phase with 
the activity of the excitatory neurons associated to other patterns. These results show that for a specific pattern to 
be recognized it is sufficient that memories are stored in the connections associated with the inhibitory neurons.

Summary and discussion
The neural networks of animals, from the simple nervous system of the worm Caenorhabditis elegans to the 
mammalian brain, display modular architectures at different scales of organization23–28,87–90. In this paper we 
have investigated the formation and the consolidation of neural assemblies as driven by the entrainment to dif-
ferent inputs in networks of oscillatory θ-neurons. Previous analyses have shown that learning and adaptation 
could generate modular networks16,29,91,92, but as it is common practice in artificial neural networks, those studies 
overlooked some fundamental biological constraints. Here, we have shown that satisfying Dale’s principle—i.e. 
the distinction between excitatory and inhibitory neurons—is crucial for the consolidation of stimulus-driven 
neural assemblies. Furthermore, at variance with other popular models of learning where the synaptic weights 
and the neural activity are frozen once the training phase is finalized, we allowed for a spontaneous activity of the 
adaptive network even after the training was finished, thus mimicking a more biologically realistic scenario. We 
have found that during this post-training phase the learned memories are consolidated, provided the network is 
made of both excitatory and inhibitory neurons. Indeed, if the network contains only excitatory neurons, then 

Figure 8.   Memory recall experiment for a network of excitatory and inhibitory θ-neurons. (a) Schema of 
the pattern recall experiment. (b) The results are given at different instants of the simulation. The time T0 
corresponds to the beginning of the simulation before the stimulations, after a transient period tt = 100 has 
been discarded. Time T1 corresponds to a short stimulation of the first pattern (from time t = 200 to time 
t = 205 ) followed by a recall response. Time T2 corresponds to a short stimulation of the second pattern (from 
time t = 400 to time t = 405 ) followed by a recall of this one. The graphs have the same signification as in Fig. 3. 
The cyan and magenta brackets represent clusters 1 and 2 respectively when they are visible in weight matrices 
and raster plots.
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the learned memories are lost during to the post-learning phase. Moreover, if the network contains excitatory 
and inhibitory synapses, but Dale’s principle is violated, the network ends in a state in which the emerged syn-
aptic connectivity does not correspond to the encoded stimuli. Furthermore, we have shown that the number 
of inhibitory neurons controls for the memory capacity of the network.

Create, maintain and consolidate memories.  We have seen that the creation of modular structures 
is driven by an adaptation mechanism in which excitatory neurons receiving the same input reinforce their 
connections while the connections between uncorrelated neurons are essentially pruned. The learning process 
allows these connected neurons to maintain a certain degree of synchrony among them while still exhibiting 
some variability in their dynamics due to the external noise and the heterogeneity in their parameters. The struc-
ture emerging in the network due to the learning phase resembles the modular and hierarchical organisation of 
the brain where each modules represent a sensory modality23,24,26,87,93.

Regarding the maintenance of the generated structural modules, we observed that the inhibitory neurons 
play a fundamental role in preventing a global resynchronization of the whole network after the learning phase. 
Each inhibitory neuron becomes associated with a particular group of excitatory neurons: it receives excitation 
from this group while it inhibits the rest of the excitatory neurons as illustrated in Fig. 4a. Therefore, each cluster 
exhibits an independent dynamics, preventing a long-term forgetting of the structural neural assemblies, each 
coding for a different memory item (stimulus). At variance to what has been reported in previous studies on 
excitatory-inhibitory networks with chemical synapses where sufficiently strong inhibitory connections and 
strong excitatory-inhibitory coupling favour the synchronization in the network94,95, in our system the inhibi-
tory neurons are also synchronized by the excitatory ones, but their activity tends to maintain the excitatory 
clusters desynchronized. This difference can be understood by noticing that in our case the couplings among 
the neurons are essentially electrical gap junctions, which for moderate strength and in absence of delay are 
known to promote in-phase (anti-phase) dynamics among excitatory (inhibitory) neurons96 similarly to what 
is observable for phase oscillators.

We have carried out several additional experiments to validate the robustness of the results and to better 
understand the mechanisms at the basis of memory storage and consolidation. On the one hand, we have shown 
that stored memories can be retrieved with a brief stimulation recall even if the excitatory assemblies associated 
to the presented stimuli are no longer present in the connectivity, but are preserved only in the connections 
involving the inhibitory neurons, as shown in Fig. 8b. In the light of these results, one could speculate that the 
main purpose of the connections between excitatory neurons is to store short-term memories while the links 
associated with the inhibitory neurons—which have been reinforced during the consolidation post-training 
phase—correspond to long-term memory storage. As long as inhibitory neurons preserve their connections, 
short-term memories could be erased to process and learn new information. This result resembles the one found 
in41 for excitatory-inhibitory networks with inhibitory plasticity.

On the other hand, we have shown the possibility of consolidating structures despite the learning did not 
involve all excitatory neurons. In particular, we have studied the case in which partially trained areas were 
not completely formed due to partial random stimulations and we have analyzed the case where a sub-group 
of neurons remains untrained (unstimulated), see Supplementary Figs. 2 and 3. From these analyses, we can 
conclude that even if the system partially learns (but at a sufficient degree) the given stimulation patterns, then 
the connections will be anyway reinforced during the post-learning phase. Here, an analogy could be drawn 
with memory consolidation during sleep83,97, when the memories of the daytime experiences are recalled for 
their reinforcement. Finally, we have shown that the reported results are general by replicating the experiments 
with two other oscillator models (i.e. Kuramoto and Stuart-Landau model) as shown in Supplementary Fig. 6.

Memory capacity of the network.  In Fig. 6a it is shown that the number of inhibitory neurons is linked 
to the number of different neural assemblies that may keep an independent (not synchronised) dynamics and 
consequently be consolidated. If we consider each cluster as a stored memory item, we can easily link the number 
of inhibitory neurons to the capacity of a network to learn and store information. Therefore, we can safely affirm 
that the number of inhibitory neurons is related to the memory capacity of the network37. In particular we have 
shown that for non-overlapping memories the maximal capacity is proportional to the number of inhibitory 
neurons, thus we expect that the maximal storage capacity will grow as ≃ 0.20N by assuming that 20 % of the 
neurons are inhibitory as observed in the cortex. This capacity is definitely larger than that of the Hopfield model 
in which the nature of excitatory and inhibitory neurons is not preserved and whose memory capacity can grow 
at most as ≃ 0.14N19. Furthermore, we have shown in Fig. 6b that the number of inhibitory neurons controls also 
the maximal number of neurons which can code different items at the same time, i.e. neurons exhibiting a simple 
form of “mixed selectivity”85. These neurons could be seen also as hub neurons allowing for connections between 
the stored clusters and facilitating the ability to potentially transmit and integrate information26,93,98,99. Once 
again we have shown that the amount of inhibition can be related with the cognitive capability of the network.

Limitations and outlook.  Despite the efforts performed in the present work to fulfill several biologically 
plausible constrains, some aspects of the model could be further improved. For example, a more realistic sce-
nario could replace the θ-neuron model here employed by spiking neurons with STDP plasticity. The learning 
rule considered here corresponds to the basic paradigm of an Hebbian rule implying that “cells that fire together, 
wire together”100 and depends on the difference of the phases associated to each neuron in a continuous manner. 
By employing this rule, since synaptic potentiation occurs only when two phases match within a quite narrow 
window, we have shown that a lack of precision in the measurements of the phase difference can have a real 
impact. In particular, we have shown how this lack of precision can limit the number of memory items that 
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can be effectively stored in the long term, in Supplementary Fig. 1. Another crucial element of the model is the 
presence of two time scales associated to the evolution of the synaptic weights, a faster adaptation during the 
learning phase and a slower plasticity evolution during rest. While this choice is justified by several indications 
that learning and consolidation processes may occur simultaneously or sequentially in the brain characterized 
by different time-scales64–67,72–75, it is still unclear how the brain itself solves this problem and avoids the loss of 
learned memories given the fact that synapses are permanently susceptible to adaptation. Better understanding 
of the biological mechanisms will allow to define more realistic adaptation rules in the models. Similarly, multi-
scale mechanisms are present and necessary in real brain activity, since the sensory information transmitted to 
the brain are not all learned instantaneously and some reach it passively while others need more time and repeti-
tion to be assimilated. In this way, it would be interesting to detect the novelty or the relevance of the inputs in 
order to adapt the weights at different time-scales, thus opening the door to the development of more flexible 
systems that are capable of learning more efficiently. Additionally, we foresee that some of the computational 
experiments here performed could be carried out in vitro, for example, by considering neuronal cultures with or 
without inhibitory neurons and by applying different patterns of localised electrical or opto-genetical stimula-
tions to sub-groups of neurons.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
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