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Highlights
Decentralized cooperative perception for autonomous vehicles: Learning to value the unknown
Maxime Chaveroche,Franck Davoine,Véronique Cherfaoui

• Provides a way to learn an efficient decentralized communication policy between autonomous vehicles
• Proposes a new generative model that learns to build state representations for RL through prediction and reconstruction
• Proposes a reward function with interpretable parameters to adjust the trade-off between information gain and volume
• With our experiment parameters, achieved 25% gain in relevant information, with only 5% of the total queryable volume
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ABSTRACT
Recently, we have been witnesses of accidents involving autonomous vehicles and their lack of
sufficient information. One way to tackle this issue is to benefit from the perception of different view
points, namely cooperative perception. We propose here a decentralized collaboration, i.e. peer-to-
peer, in which the agents are active in their quest for full perception by asking for specific areas
in their surroundings on which they would like to know more. Ultimately, we want to optimize a
trade-off between the maximization of knowledge about moving objects and the minimization of
the total volume of information received from others, to limit communication costs and message
processing time. For this, we propose a way to learn a communication policy that reverses the usual
communication paradigm by only requesting from other vehicles what is unknown to the ego-vehicle,
instead of filtering on the sender side. We tested three different generative models to be taken as base
for a Deep Reinforcement Learning (DRL) algorithm, and compared them to a broadcasting policy and
a policy randomly selecting areas. More precisely, we slightly modified a state-of-the-art generative
model named Temporal Difference VAE (TD-VAE) to make it sequential. We named this variant
Sequential TD-VAE (STD-VAE). We also proposed Locally Predictable VAE (LP-VAE), inspired by
STD-VAE, designed to enhance its prediction capabilities. We showed that LP-VAE produced better
belief states for prediction than STD-VAE, both as a standalone model and in the context of DRL.
The last model we tested was a simple state-less model (Convolutional VAE). Experiments were
conducted in the driving simulator CARLA, with vehicles exchanging parts of semantic grid maps.
Policies learned based on LP-VAE featured the best trade-off, as long as future rewards were taken into
account. Our best models reached on average a gain of 25% of the total complementary information,
while only requesting about 5% of the ego-vehicle’s perceptual field. We also provided interpretable
hyperparameters controlling the reward function, which makes this trade-off adjustable (e.g. allowing
greater communication costs).

1. Introduction
Recently, we have been witnesses of accidents involving

autonomous vehicles and their lack of sufficient information
at the right time. One way to tackle this issue is to benefit
from the perception of different viewpoints, namely collab-
orative perception. While setting a multitude of sensors in
the road infrastructure could be imagined, this would require
a lot of investments and limit its usage to some areas in
the world. Instead, we focus on the exchange of information
between vehicles about their common environment, where
they are the only sources available.

These communications can simply be centralized by a
server that would gather all information from all vehicles
to process it and re-distribute it to all, as suggested in
[1]. However, this still consists of Vehicle-to-Infrastructure
(V2I) communications, which implies (1) an infrastructure
cost and the impossibility to share information with other
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agents when there is no server available nearby. It also
features the disadvantage of (2) making the agents broadcast
their entire perception, which can be heavy on the means of
communication and computation and give rise to delays.

In contrast, the decentralized Vehicle-to-Vehicle (V2V)
approach [2, 3, 4, 5, 6] does not require any extra infrastruc-
ture to work, i.e. does not implies (1). In this setting, agents
directly exchange pieces of information between them. It
also comes with new problems such as data incest and
lower computation capabilities. We will ignore them here
as we already tackled the issue of avoiding data incest
using Dempster-Shafer Theory (DST) [7] in spite of low
computation capabilities with two conference papers [8, 9]
and a journal paper [10]. But V2V communications bring
a potentially heavier communication burden as well, due to
redundancies. In fact, (2) is worse in this setting than in the
centralized one if agents are passive, meaning if they simply
broadcast their perception for the others to know, without
filtering it beforehand. Nevertheless, this decentralized ap-
proach offers the possibility to make the agents active in
their quest for full perception, i.e. making the agents ask for
specific areas in their surroundings on which they would like
to know more, instead of always broadcasting everything.
This is impossible in the centralized setting, as the server
decides and thus needs to gather all perceptions beforehand.

Here, we propose such a system, where each agent builds
its own local top-down semantic grid and sends specific
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requests to others in the form of bounding boxes described
in the global reference frame. We choose local grid maps for
their ability to map an agent’s knowledge and to deduce its
uncertainties in space.

2. Related Works
Since not all uncertain areas are relevant, Active Ex-

ploration [11, 12] is not enough; a truly efficient collabo-
ration policy requires some understanding of the scenery
[13], extracted from the spatial arrangement of grid cells
and their classes. What could lie in the shadows and how
to best discover it? If a pedestrian is heading towards an
occluded area, we expect the agent to request for this area,
as a tracking system. If the agent has no idea of what
could be in the unknown, maybe it could ask for some
key points to understand the layout of the environment. If
an area on the road is near a crowd of people or in the
continuity of a pedestrian crossing, ask for it as some unseen-
before pedestrians could be crossing, etc. More generally,
we would like the agent to know as much as possible about
moving objects in its vicinity, while avoiding to request too
much information from others. This represents a complex
bounding box selection policy to be learned from pixels.

Given the long-lasting successes of Deep Learning in
such ordeals, it seems natural to consider neural networks
for our problem. But, while it is theoretically possible (but
practically challenging) to learn our policy in an end-to-
end fashion with Model-free Deep Reinforcement Learning
(DRL), we choose to first learn a deep generative model
to pre-process our inputs. Indeed, training deep neural net-
works is easier, faster and more stable when the loss on the
output is in the form of a well-justified derivable function,
which is hard to achieve with reward signals from a RL
environment. Building this generative model also allows for
more control and insights on what is learned, and reduces
the size of the neural networks that are supposed to be
trained through model-free DRL. As demonstrated in World
Models [14], learning a policy on top of a model can even be
achieved with simple heuristics such as Evolution Strategies
(ES), with performances equivalent to RL algorithms.

Our model needs to be generative, for inference in un-
known areas. In addition, we want it to be predictive, in order
to make it understand latent dynamics, anticipating disap-
pearances or inferring hidden road users from the behavior of
visible ones. Doing so, it could even eventually compensate
for communication latencies. Such a model would be useful
in itself for other tasks as well, e.g. autonomous driving.

Several existing works [15, 16, 17, 18, 19] employed
generative models with convolutional networks in a U-Net
architecture in order to augment instantaneous individual
grid maps. Some used deterministic networks such as Gen-
erative Adversarial Networks (GAN). Others tried to incor-
porate stochasticity with Monte Carlo Dropout or simply
using a Variational Auto-Encoder (VAE). Most used occu-
pancy grids as input, but some chose semantic grid maps
or DOGMa (occupancy grid with velocities). These inputs

were either expressed in a static global reference frame or
given to a system that had no prediction capability. Doing
so, it appears that none of these approaches really modeled
the long-term dynamics of the environment that would be
necessary to learn our desired policy. On the other hand,
a kind of recurrent generative model inspired by the VAE,
namely Temporal Difference VAE (TD-VAE) [20], was de-
signed with the specific intent of being taken as base for
a reinforcement learning algorithm. It puts an emphasis on
the learning of belief states for long-term predictions, which
are important for the development of complex strategies.
It has been proven in [21] that explicitly predicting future
states enhances data-efficiency in a number of RL tasks,
though they train their model jointly with the policy and
do not use the loss defined in [20]. Appealed by the the-
oretical justifications of TD-VAE, its decoupling regarding
specific RL tasks (which simplifies the search for good
RL hyperparameters) and its demonstrated ability to predict
plausible sequences of images in a 3Dworld at different time
horizons and from a variable number of observations, we
have implemented and adapted this TD-VAE to our problem.
However, correcting some of its weaknesses regarding its
actual prediction capability, we finally proposed our own
model, called Locally Predictable VAE (LP-VAE). To learn
our communication policy based on this model, we chose the
widely used Proximal Policy Optimization (PPO) algorithm
[22], which is a fairly stable and simple policy-gradient
based DRL algorithm with few hyperparameters.

Closely related to our goal, other works try to address the
problem of efficiently communicating between autonomous
vehicles. In [23], they used a joint Perception and Prediction
(P&P) model that transforms sensor data into learned fea-
tures to broadcast to other vehicles. This model also fuses
received features with local ones and tries to predict the
trajectory of nearby communicating vehicles. This informa-
tion compression is also present in our work in the form
of a Convolutional VAE preprocessing each observation
grid. We go one step further in communication efficiency
as our system does not broadcast every piece of informa-
tion, but chooses instead which one it wishes to receive.
Sending learned features also forces them to make another
neural network learn to spatially and temporally transform
all pieces of information received from the vehicular net-
work. Even the fusion operation is done by making a neural
network learn how to fuse two learned features, without any
guarantee on the result. Instead, here we rely on top-down
semantic grids, which are simple discretizations of the space
around the ego-vehicle. Doing so, we can transform the
content of our transmissions using linear transformations.
Furthermore, our system keeps its integrity by only fusing
probability distributions.

In [24], they usedDeepReinforcement Learning to select
only a portion of the perceptive field of an autonomous
vehicle to send to others. However, this information filtering
is done on the sender side, contrary to our approach that
filters on the receiver side. Doing so, their approach still

Chaveroche et al.: Preprint submitted to Elsevier Page 2 of 19



Decentralized cooperative perception for autonomous vehicles: Learning to value the unknown

Figure 1: Illustration of our application. CARLA provides a semantic segmentation corresponding to a camera attached to the
ego-vehicle hood, as well as its corresponding depth (images taken from [26]). This gives us enough information to create a
semantic 3D point cloud, i.e. to scatter all pixels in space according to their depth and image coordinates (and the camera
deformation). From it, we project these pixels back into a 2D plane (i.e. a grid), but from a top-down point of view (and without
camera deformations). In parallel, we get the ego-vehicle motion since the previous time step in order to update a perception
memory containing 2D points from previous time steps. We add the current semantic grid to this memory and give the resulting
augmented grid to our learned world model (STD-VAE or LP-VAE), along with the ego-motion and driving policy commands. In
turn, this model tries to guess what is hidden in occluded areas and provides a belief state about latent dynamics. These outputs
are then given to a DRL algorithm that chooses a grid area to request to the world. This area is extracted at the next time
step from a grid generated by a camera above the ego-vehicle. Finally, this information is fused at the next time step with the
ego-vehicle perception.

consists in broadcasting pieces of information, regardless of
the actual needs of others.

The same can be stated for [25], where they describe
a V2V cooperative perception system in which vehicles
exchange object detections. They try to reduce redundancies
by estimating the value of a piece of information for a
potential receiver. The value here is the novelty, i.e. the
probability that the potential receiver is not aware of some
object of interest.

Section 3 formally introduces our communication prob-
lem, justifying the use of a preprocessing generative model.
Section 4 formalizes the aforementioned generative model,
introducing TD-VAE and LP-VAE. Section 5 presents our
deep networks implementing these models. Then, section 6
evaluates and compares the performance of different ver-
sions of our models and policy learnings. Finally, we con-
clude this article with section 7.

3. Problem formulation
We formulate our communication problem as a Markov

Decision Process (MDP). Fig. 1 gives an overview of it,
working with the driving simulator CARLA [26] for our
experiments.

3.1. State space
We assume the existence of a driving policy from which

we only know the actions taken at each time step: ego-
vehicle controls (acceleration and steering angle, each rang-
ing in [−1, 1]) and global direction (average of the next
10 equally-spaced points the planner set to visit in meters
relative to the ego-vehicle’s reference). This driving policy
influences the road environment in which the ego-vehicle
is moving. This is not the case with the communication
environment that we consider in this MDP. Each observation
is a tuple (Gt, Ct, Vt), where Gt is an ego-centered semantic
grid, Ct represents the actions taken by the driving policy
at a given instant t (which influence Gt+1) and Vt is the
motion of the ego-vehicle between t−1 and t. Each semantic
gridGt is a top-down 6-channels pseudo-Bayesian mass grid
corresponding to the five classes of the frame of discernment
Ω = {pedestrian, car, road lines, road, other}. The class car
actually contains any type of vehicle, even bikes. The class
road lines contains any road marking: road lines, arrows,
painted stop signs, etc. The class other contains the rest of
the static objects perceivable by the agent, such as vegeta-
tion, sidewalks, buildings, etc. The last channel represents
ignorance, i.e. the mass put on Ω. This means that Gt ≥ 0
and, for any cell index i of Gt, we have ∑6

k=1Gt[i][k] = 1.
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Figure 2: Left: Illustration of an instance of top-down semantic
grid Gt corresponding to a partial observation xt in our model.
Red is for pedestrians, blue is for cars, yellow is for road
lines, purple is for road, white is for other and black is for
ignorance. The displayed class is the one with the greatest
mass. The intensity of its color depends on its mass: the
closer to 0, the darker. Notice all the occlusions due to walls
or other road users, in addition to the limited distance of
perception of the ego-vehicle. Right: Instance of top-down
semantic grid corresponding to a complete observation yt in
our model. Actually, this view is obtained with a facing ground
camera above the ego-vehicle. Doing so, it contains itself some
occlusions due to trees, poles, buildings, etc. Thus, it is rather
a hint about the true yt. This view can also be obtained by
the fusion of multiple view points, from autonomous vehicles
or infrastructure sensors.

These cells are distributed as a matrix (grid) of 80 rows and
120 columns, i.e. Gt is analog to a 80 × 120 × 6 image of
values in [0, 1]. See Fig. 2 for a visualization of this semantic
grid.

These observations constitute a very large and complex
space which would be hard to transform into exploitable
neural network features without a derivable loss function.
Thus, wewill first build a generativemodel of the driving en-
vironment (implicitly including the agent’s driving policy).
Besides, learning this model beforehand will give us more
control on the information flow that should be considered by
the communication policy. Therefore, the state space of our
MDP is made of learned features from this generative model.
Several versions of this generative model are proposed in
Section 4.
3.2. Action space

Our MDP has 4 continuous actions that each ranges in
[0, 1], defining a bounding box in the local grid Gt of theego-vehicle at time t: width, height, column and row. This
bounding box is supposed to represent an area in the ego-
vehicle’s future surroundings.
3.3. Transition function

Transitions from a state-action pair to a new state depend
also on the driving environment, i.e. CARLA. First, this
environment generates a new partial grid Gt+1 and other
observations already described. The bounding box described
by the action given at time t is then translated into an area of
Gt+1 filled with complete information. Fig. 3 illustrates this
process.

In addition, a visual memory mechanism, specific to
our MDP, makes perceptions persist for a few time steps,

Figure 3: Illustration of our decision process: 1) Based on
what is known at time t, select a bounding box where there
is high uncertainty and high probability to discover road users.
2) Send this request in global coordinates to the vehicular
network (which may consists of both infrastructure sensors
and other autonomous vehicles). 3) At time t + 1, we expect
some vehicles to transmit their perception of this area. In our
implementation, complete perceptions are simply obtained by a
camera above the ego-vehicle since we focus on the selection of
bounding boxes, i.e. 1). 4) The transmitted partial perception
is fused with the one of the ego-vehicle at time t + 1.

discounted a little more every time. This implements short-
term memory, so that we only consider as unknown what
has not been perceived in a long time (or never). This also
has the effect of giving consequences to past actions, since
bounding boxes in the same area will have close to no
potential information gain for a few time steps.
3.4. Rewards

Finally, let us define a reward function for our MDP. Let
rt be a reward density, defined for each cell i of Gt+1 as:

rt(i) = −�.rmin + S[i].
5
∑

k=1
robj[k]. max

(

0,

Gt+1[i][k] − G̃t+1[i][k]
)w (1)

wherew ∈ ℝ+∗, � ∈ [0, 1] and G̃t+1 is the grid before fusionwith the grid GMt+1 corresponding toMt+1. The quantity robjis a nonnegative reward per object pixel (only null for the
static class other, i.e. robj[5] = 0) such that robj[k] ≥ robj[k+
1]. Indeed, pedestrian are the smallest identifiable objects
among our classes and so must have the highest reward
per pixel. The quantity rmin is equal to the least positive
reward per pixel, i.e. rmin = robj[4]. It is used to discourage
the selection of uninteresting cells. The coefficient � that
multiplies it represents the minimum informational gain that
is needed to consider this cell worth to be requested. For
some value of �, this minimum gain applies to the class with
the least reward, while it becomes virtually more and more
forgiving as the class has a greater reward per cell. Moreover,
notice that max(0, Gt+1[i][k] − G̃t+1[i][k]) ∈ [0, 1], which
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Figure 4: Heatmap illustrating our spatial filter S for � = 0.5,
�F = 0.8, �L = 1 and � = 0.01. Deep blue is 0, while deep
red is 1, which means that the reward in a cell located in a
blue region will be 0, no matter what is inside. The center of
the ego-vehicle is in the middle of the first row starting from
bottom.

implies that max(0, Gt+1[i][k] − G̃t+1[i][k])w ∈ [0, 1].
This means that w only alters the significance of some gain
in mass: for w ∈ (0, 1), max(0, Gt+1[i][k] − G̃t+1[i][k])will be greater than for w = 1, while for w ∈ (1,+∞),
max(0, Gt+1[i][k]− G̃t+1[i][k]) will be less. In other words,ifw ∈ (1,+∞), then the gain will have to be more important
to have an impact on rt(i). Finally, S represents a spatial
filter to account for the fact that we are not equally interested
everywhere in discovering road users. For example, a road
user very far ahead is not as valuable an information as a
road user just around the corner. We defined a forward filter
SF and a lateral filter SL, such that S = SF .SL. We set

SF [i] = 1 −
[

�F
1 − �

.max
(

0,
F (i)

max(F )
− �

)]

where � ∈ [0, 1) and �F ∈ [0, 1]. The quantity F (i) is the
forward distance (number of rows from the row in which
the center of the ego-vehicle is) corresponding to cell i. The
greater the parameter �F , the less the farest cells are valued.The greater the parameter �, the farer from the ego-vehicle
the decrease in value starts.

The second filter is defined as

SL[i] = 1 −
�L
�
.max (0, � − |cos (arctan2 (L(i), F (i)))| )

where � ∈ (0, 1]. The quantity L(i) is the lateral distance
(number of columns from the column in which the center
of the ego-vehicle is) corresponding to cell i. This filter de-
scribes a cone in front of the ego-vehicle (and symmetrically
at the back of it) in which the cells are the most valued. The
greater the parameter � , the narrower this cone. The greater
the parameter �L is, the less the cells outside the cone (i.e.
on the sides of the ego-vehicle) are valued. Fig. 4 provides a
visualization of S.

The reward associated with some action at is defined as
Rt(at) = −K.(1 − �).rmin+

∑

i∈I(at)
rt(i), (2)

where K is the minimum number of interesting cells that
must be entirely discovered in order to make the request
worthwhile, I(a) = [v(a), v(a) + ℎ(a)] × [u(a), u(a) +w(a)]
and u(a), v(a),w(a), ℎ(a) are respectively the column index,
row index, width and height indicated by some action a.
3.4.1. Grid fusion

In order to produce Gt from G̃t and the grid GMt cor-
responding to Mt in Eq. (1), we need to define a fusion
procedure. As each cell i in both G̃t and GMt is a mass
function, we know that:

Gt[i][6] = G̃t[i][6] . GMt [i][6],

where 6 is the channel corresponding to the mass on Ω.
Furthermore, we can get the contour functions of these
pseudo-Bayesian mass functions simply by adding the mass
on Ω to the mass on each of our 5 classes. Then, a sim-
ple pointwise multiplication of these two contour functions
produces the contour function corresponding to Gt. Thisalso implies a mass on ∅, which is caused by conflicting
pieces of evidence between the two mass functions. Since
we are not interested in this level of conflict, we choose
to renormalize masses as in Dempster’s combination rule
[27]. UnlikeDempster’s rule however, we only distribute this
conflict on singletons Gt[i][1 ∶ 5] and keep the true value
Gt[i][6], as the distinction between ignorance and conflict
is crucial to our communication policy. Algorithm 1 details
this procedure.

Algorithm 1: Fusion procedure for two pseudo-
Bayesian mass functions m1 and m2.

Input: Two pseudo-Bayesian mass functions m1,
m2

Output: The fused mass function m12
N ← len(m1);
m12[N]← m1[N] . m2[N];
m12[1 ∶ N−1]← (m1[1 ∶ N−1]+m1[N]) . (m2[1 ∶
N − 1] + m2[N]) − m12[N];
s← sum(m12[1 ∶ N − 1]);
if s > 0 then

m12[1 ∶ N − 1] ← (1 − m12[N]) .
m12[1∶N−1]

s ;
Return m12;

4. Models
In this section, we will present several versions of the

generative model mentioned in section 3.1, namely STD-
VAE and LP-VAE. In the end, this generative model will
provide us with learned features describing the state of the
environment related to the MDP presented in section 3, in
order to reduce the size of the network optimized through
DRL and to control what is kept in the information flow. We
will start by formalizing in section 4.1 a draft of this model
that ignores the actions the agent takes at each time step.
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Then, we will briefly introduce in section 4.2 the original
TD-VAE [20]. Following that, we will propose in section 4.3
our sequential variant of TD-VAE, i.e. STD-VAE. Inspired
by this model, we will then propose LP-VAE in section
4.4. Finally, section 4.5 will demonstrate with LP-VAE how
to modify this generative model to incorporate the actions
chosen by the agent.
4.1. Action-independent modeling

As a vehicle clearly cannot access the complete state
of its surroundings through its sole perception, we can
model our problem as a Partially Observable Discrete-Time
Markov Chain (PO-DTMC), where Xt and Zt denote ran-
dom variables representing respectively a partial observation
and a latent state at time t. However, we consider that Ztand Xt are in different spaces, the latent space describing
the whole environment and containing information about
object dynamics and trajectories allowing for predictions.
More precisely,Xt corresponds to the sole perception of theego-vehicle at time t, without memory of the past. We also
introduce a third random variable Yt which represents the
spatially complete observation corresponding to Zt in the
space ofXt. In other words,Xt is a partial observation of Ytwhich is itself a partial observation of Zt.So, let � be a set containing the parameters of a genera-
tive model that projects a latent stateZt onto the observationspace as (Xt, Yt). We choose to implement this generative
model as a deep neural network and we set the following
Gaussian distributions as constraints, for numerical stability
and simplicity:

• Zi ∼ (0, Id)

• pZi+1|Zi (⋅|zt; �) = (�z(zt; �), �2z (zt; �).Id)

• pYi|Zi (⋅|zt; �) = (�y(zt; �), �y.I|Xt|)

• pXi|Yi,Zi (⋅|yt, zt; �) = (�x(yt, zt; �), �x.I|Xt|)

where �z, �z, �x and �y are all deep neural networks takingtheir parameters in �, where d is an arbitrary number of
dimensions for Zt, where zt is a realization of Zt for some
t ∈ [1, T ] and where �⋅ ∈

[ 1
2� ,+∞

). This last constraint
implies that the generative model recreates independently
each dimension of Xt from a latent state zt with the same
fixed precision. Moreover, the PO-DTMC formulation im-
plies that each pair of observations (Xt, Yt) is only dependenton Zt, i.e.

pX,Y |Z (x, y | z; �) =
T
∏

t=1
pXi,Yi|Zi (xt, yt | zt; �),

and that the Markovian property holds in latent space, i.e.

pZ (z; �) = pZi (z1).
T
∏

t=2
pZi+1|Zi (zt | zt−1; �).

Fig. 5 provides the Bayesian network corresponding to
our model.

N

� Y1 Y2 YT−1 YT

X1 X2 XT−1 XT

Z1 ZT−1...Z2 ZT

Figure 5: Bayesian network of our generative model of parame-
ters in �. We have N replications of this model, corresponding
to the N sequences of length T in our dataset. The parameter
set � influences the inference of all variables in the model for
the N sequences we have.

Thus, based on a dataset ofN independent sequences of
partial and complete observationsD = (x1∶T , y1∶T )1∶N , we
want to optimize the parameters � so that the probability that
the model generates the sequences ofD is maximal under its
constraints. In other words, we want to find the parameters �
that maximize p(X,Y )(1),…,(X,Y )(N) (D; �), which is the same as
finding �maximizing log p(X,Y )(1),…,(X,Y )(N) (D; �). We have:
log p(X,Y )(1),…,(X,Y )(N) (D; �) =

∑

(x,y)∈D
log pX,Y (x, y; �)

where
pX,Y (x, y; �)

= ∫ pX,Y |Z (x, y | z; �) . pZ (z; �) dz

= ∫ ⋯∫ pZi (z1).
T
∏

t=1
pXi,Yi|Zi (xt, yt | zt; �)

.
T
∏

t=2
pZi+1|Zi (zt | zt−1; �)

T
∏

t=1
dzt

which is intractable, due to the fact that �z, �z, �x and �yare multi-layers neural networks with nonlinearities. This
intractability is amplified by the fact that we work with
sequences of T non-independent continuous latent states,
which implies amultiple integral overℝT×d . Thismeans that
we cannot evaluate or differentiate the marginal likelihood
pX,Y (x, y; �). For the same reasons, the posterior distribution

pZ|X,Y (⋅| x, y; �) =
pX,Y |Z (x, y| ⋅ ; �).pZ (⋅ ; �)

pX,Y (x, y; �)
,

is intractable, which implies that methods based on the
posterior distribution such as the Expectation-Maximization
(EM) algorithm cannot be employed either. So, let us adopt
the Variational Bayesian (VB) approach by introducing a
variational distribution dependent on a parameter set � to
approximate pZ|X,Y (⋅| x, y; �). But, more than just a mathe-
matical trick, we want this variational distribution to actually
be a recognitionmodel such that it is able to infer latent states
only given past partial observations, in order to infer y and
to be able to generate plausible next observations.
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4.2. TD-VAE model
TD-VAE [20] is a variant of the original VAE [28]

for temporal sequences which features the particularity to
separate belief states from latent states. A belief state btis a statistics describing x1∶t such that pZt|X1∶t (⋅|x1∶t; �) ≈
pZt|Bt (⋅|bt; �). The end goal motivating this distinction, aside
theoretical accuracy, is to learn a model able to determin-
istically aggregate observations by updating a statistics btthat contains enough information to infer some latent state
zt, avoiding the accumulation of estimation errors on z1∶t−1.Since zt alone allows for predictions of next latent states,
bt constitutes a belief on plausible latent dynamics that is
simply updated with each new observation. This feature is
important for model-based RL.

In [20], they chose additionally to make their model
provide jumpy predictions, i.e. directly predicting a latent
state zt+� from some zt where � is not precisely known, in
order to abstract latent dynamics for the benefit of computa-
tional efficiency. Formally, they seek to optimize � so that it
maximizes the expression

E
�∼[�i,�s]

[

E
t∼[1,T−�]

[

log pXt+� |Bt
(

xt+�|bt; �
)

]

]

, (3)

where[a,b] is the uniform distribution on the interval [a, b]
and Bt = RNN(Xt, Bt−1;�). This cannot be optimized
directly, as showed in the previous section. However, we can
maximize a lower bound of this expression by introducing a
variational distribution.

Let Qt,�(�) = qZt,Zt+� |Bt,Bt+� (⋅|bt, bt+�;�) be this varia-tional distribution, dependent on a parameter set �, such that
qZt,Zt+� |Bt,Bt+�

(

⋅|bt, bt+�;�
)

≈ pZt,Zt+� |Bt,Xt+�
(

⋅|bt, xt+�; �
)

where it is important to notice that

pZt,Zt+� |Bt,Xt+�
(

⋅|bt, xt+�; �
)

=
pXt+� ,Zt,Zt+� |Bt

(

xt+� , ⋅|bt; �
)

pXt+� |Bt
(

xt+�|bt; �
)

=
Pt,�(�)

pXt+� |Bt
(

xt+�|bt; �
) .

To find the optimal parameters � that minimize its ap-
proximation error, we can optimize � so that it minimizes
through gradient descent the following average Kullback-
Leibler (KL) divergence:

E
�∼[�i,�s]

[

E
t∼[1,T−�]

[

DKL

(

Qt,�(�)
|

|

|

|

|

|

|

|

Pt,�(�)

pXi+� |Bi
(

xt+�|bt; �
)

)]]

,

This cannot be optimized directly either. Yet, it can be shown
that we can equivalently minimize this divergence, while
also maximizing a lower bound of (3), by minimizing the
following loss w.r.t. � and �:

TD-VAE(x; �, �)

= E
�∼[�i,�s]

[

E
t∼[1,T−�]

[

DKL
(

Qt,�(�) || Pt,�(�)
)]

]

where
DKL

(

Qt,�(�) || Pt,�(�)
)

= E
Zt,Zt+�∼Qt,�(�)

[

log qZi|Bi
(

zt+�|bt+�;�
)

+ log qZt|Bt,Bt+� ,Zt+�
(

zt|bt, bt+� , zt+�;�
)

− log pZi|Bi
(

Zt|bt; �
)

− log pZ+� |Z
(

Zt+�|Zt; �
)

− log pXi|Zi
(

xt+�|Zt+�; �
)

]

.

In complement, the authors of [20] had to make the strong
assumption that pZi|Bi

(

⋅|bt; �
)

= qZi|Bi
(

⋅|bt;�
) for any

�, �. They also set pZ+� |Z
(

⋅|zt; �
) as a multivariate normal

distribution with diagonal covariance matrix, corresponding
to the distribution of latent states at any instants in [t +
�i, t+ �s]. This is in contradiction with our sequential latentmodel pZi+1|Zi

(

⋅|zt; �
), which is itself a multivariate normal

distribution with diagonal covariance matrix. In this regard,
pZ+� |Z

(

⋅|zt; �
) can be seen as a rough approximation.

This abstraction of latent dynamics may be useful in
some cases where precision is not needed and the variability
of observations xt∶t+� gathered in a moment can be summa-
rized in latent space by smooth transitions between states
corresponding to dataset samples. However, we argue that
models of complex environments, in which the observation
space is combinatorially extremely large and in which mul-
tiple agents interact with each other, require precise learning
signals to understand latent dynamics and so to generalize
well outside the training set. More importantly, TD-VAE
cannot consider the actions taken by the observing agent
between t and t + �. Yet, learning the link between actions
and observations is central in RL.
4.3. Our Sequential variant STD-VAE of the

TD-VAE model
The authors of [20] also proposed a sequential version

of their model. Its corresponding Bayesian network is given
in Fig. 6. They chose to train its parameters as a particular
case of the jumpy one, simply taking � = 1. Yet, this
would only maximize a lower bound of the probability to ob-
serve xt+1 after bt, i.e. E

t∼[1,T−1]

[

log pXt+1|Bt
(

xt+1|bt; �
)

]

,
instead of the whole future sequence xt+1∶T after bt, i.e.

E
t∼[1,T−1]

[

log pXt+1∶T |Bt
(

xt+1∶T |bt; �
)

]

.
From a practical point of view, this would prove to be

computationally heavy if done multiple times per sequence
and would not learn from the accumulation of prediction
errors: particularly in a stochastic network such as TD-VAE
and with a time step small enough, the network will tend
to optimize weights such that the predicted next state looks
almost identical to the initial state. It is only by chaining
these predictions that their errors become significant. Thus,
we choose a slightly different variational distribution. Let
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N

B1 B2 ... BT−1 BT

X1 X2 XT−1 XT

Z1 ZT−1...Z2 ZT

Figure 6: Bayesian networks corresponding to STD-VAE. Solid
lines represent the Bayesian network of our generative model
(without Yt) of parameters in �. Dashed lines represent the
Bayesian network of the recognition model of parameters in
� proposed by TD-VAE. Parameter dependencies are not
represented for the sake of clarity. Only Bt is not directly
influenced by �, while only variables at the end of a dashed
arrow are influenced by �. We have N replications of this
model, corresponding to the N sequences of length T in our
dataset.

Qt(�) = qZt∶T |Bt∶T
(

⋅|bt∶T ;�
) be this variational distribu-

tion, dependent on a parameter set �, such that
qZt∶T |Bt∶T

(

⋅|bt∶T ;�
)

≈ pZt∶T |Bt,Xt+1∶T
(

⋅|bt, xt+1∶T ; �
)

where it is important to notice that
pZt∶T |Bt,Xt+1∶T

(

⋅|bt, xt+1∶T ; �
)

=
pXt+1∶T ,Zt∶T |Bt

(

xt+1∶T , ⋅|bt; �
)

pXt+1∶T |Bt
(

xt+1∶T |bt; �
)

=
Pt(�)

pXt+1∶T |Bt
(

xt+1∶T |bt; �
) .

To find the optimal parameters � that minimize its ap-
proximation error, we can optimize � so that it minimizes
through gradient descent the following average Kullback-
Leibler (KL) divergence:

E
t∼[1,T−1]

[

DKL

(

Qt(�)
|

|

|

|

|

|

|

|

Pt(�)
pXt+1∶T |Bt

(

xt+1∶T |bt; �
)

)]

,

It can be shown that we can equivalently minimize this
divergence, while also maximizing a lower bound of

E
t∼[1,T−1]

[

log pXt+1∶T |Bt
(

xt+1∶T |bt; �
)

]

,

by minimizing the following loss w.r.t. � and �:
STD-VAE(x; �, �) = E

t∼[1,T−1]

[

DKL
(

Qt(�) || Pt(�)
)]

where
DKL

(

Qt(�) || Pt(�)
)

= E
Zt∶T∼Qt(�)

[

log qZi|Bi
(

ZT |bT ;�
)

+
T−1
∑

k=t
log qZi|Bi,Zi+1

(

Zk|bk, Zk+1;�
)

− log pZi|Bi
(

Zt|bt; �
)

−
T
∑

k=t+1
log pZi+1|Zi

(

Zk|Zk−1; �
)

−
T
∑

k=t
log pXi|Zi

(

xk|Zk; �
)

]

(4)

Fig. 7 visually explains the process of evaluating (4),
which is very similar to the original TD-VAE. The belief
network aggregates observations such that each belief bt isassumed to be a sufficient statistics for x1∶t. The smoothing
network, knowing what the final latent state zT is, given
observations x1∶T , infers what should have been latent states
zt∶T−1. This gives us two different distributions for the
inference of zt: one given only observations x1∶t, and the
other given all observations x1∶T . In the learning phase, we
measure the divergence between these two distributions as a
loss to prompt correct dynamics recognition and consistency
in the belief network. Then, the Markovian transition model
infers the next state from the current one. We infer the
Gaussian parameters of the next state for each latent state
inferred by the smoothing network and measure as loss the
divergence between the distribution inferred by the smooth-
ing network and the one inferred by the transition model.
Finally, for each latent state zk sampled from the smoothing
network, we infer the Gaussian parameters describing the
observation xk with the decoding network and compute the
negative log-likelihood of xk given these parameters as loss.

However, our preliminary experiments on this model
with a dataset acquired in CARLA [26] revealed very poor
prediction quality when zt is sampled from qZt|Bt (⋅|bt;�),while providing very good predictions when zt is sampled
from qZt|B(⋅|bt∶T ;�), i.e. from the smoothing network. In
fact, this seems obvious considering that the prediction
part of this model is trained with the latent states sampled
from the variational distribution qZt∶T |Bt∶T

(

⋅|bt∶T ;�
) and

not qZt∶T |Bt
(

⋅|bt;�
). This is what motivates the introduction

in the next section of a local predictability constraint, allow-
ing us to train our model on samples from qZt∶T |Bt

(

⋅|bt;�
).

This will also allow us to keep the idea of predicting distant
latent states from current observations while avoiding the
strong assumption that pZ|B

(

⋅|bt; �
)

= qZ|B
(

⋅|bt;�
).

4.4. Our Locally Predictable VAE (LP-VAE)
model

First, we put a local predictability constraint for the
model to be able to predict multiple time steps into the
future:

pZ|X1∶t (⋅| x1∶t; �) ≈ pZ|X,Y (⋅| x, y; �) (5)
for any instant t ≥ tmin. This means that there must be some
instant tmin such that the partial observations x1∶tmin are suffi-
cient to recognize the latent dynamics of thewhole sequence,
i.e. such that all observations y1∶T and all subsequent partial
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bt bt+1 ... bT−1 bT

xt xt+1 xT−1 xT

zt zTzT−1...zt+1

Zt ZTZT−1...Zt+1

Xt+1 XT−1 XT...

bt−1

Figure 7: Illustration of the forward computations allowing for
the evaluation of the STD-VAE loss (4). A diamond indicates
a deterministically inferred variable. A rectangle indicates the
deterministic inference of distribution parameters. A circle
indicates the deterministic inference of distribution parameters
and a sample from this distribution. The blue network is the
belief network. The red network is the smoothing network. The
black network is the Markovian transition model. The brown
network is the decoding network.

observations xtmin+1∶T bring negligible additional informa-
tion in the recognition of these latent dynamics. Notice that

pZ|X,Y (⋅| x, y; �) =
pX,Y ,Z (x, y, ⋅ ; �)
pX,Y (x, y; �)

=
P (�)

pX,Y (x, y; �)
,

and let us note Pt(�) = pZ|X1∶t (⋅| x1∶t; �). To enforce Eq. (5),we want to minimize the average KL divergence

E
t∼ [tmin , T−1]

[

DKL

(

Pt(�)
|

|

|

|

|

|

|

|

P (�)
pX,Y (x, y; �)

)]

= log pX,Y (x, y; �) + E
t∼ [tmin , T−1]

[

DKL
(

Pt(�) || P (�)
)]

,

which we cannot minimize directly, due to the intractability
of pX,Y (x, y; �) and pZ|X1∶t (⋅| x1∶t; �). However, we have:

E
t∼ [tmin , T−1]

[

DKL
(

Pt(�) || P (�)
)]

= − log pX,Y (x, y; �)

+ E
t∼ [tmin , T−1]

[

DKL

(

Pt(�)
|

|

|

|

|

|

|

|

P (�)
pX,Y (x, y; �)

)]

≥ − log pX,Y (x, y; �), (6)
since the KL divergence is always nonnegative for two
probability distributions. So, by optimizing � to minimize

E
t∼ [tmin , T−1]

[

DKL
(

Pt(�) || P (�)
)], we maximize a lower

bound of pX,Y (x, y; �), which is our primary goal. Thus, we
can simply introduce a variational distribution to approxi-
mate pZ|X1∶t (⋅| x1∶t; �) as long as we simultaneously mini-
mize the aforementioned KL divergence. Such a variational
distribution corresponds to a recognition model that tries to
predict the next latent states in addition to recognizing the

current and past ones, which is more useful than one that
would directly approximate pZ|X,Y (⋅| x, y; �).Notice that:
pZ|X1∶t (z| x1∶t; �)

= pZ|X(zt| x1∶t; �) . pZ|Z,X(z1∶t−1|zt, x1∶t; �)
. pZ|Z,X(zt+1∶T |z1∶t, x1∶t; �)

= pZ|X(zt| x1∶t; �) .
t−1
∏

k=1
pZ|Z,X(zk|zk+1, x1∶k; �)

.
T
∏

k=t+1
pZ|Z (zk|zk−1; �), (7)

omitting variable indices in distribution indices for the sake
of clarity. Based on this decomposition, let us introduce
two variational distributionsQ1t (�) = qZt|X1∶t (⋅|x1∶t;�) and
Q2t (�) = qZt|X1∶t,Zt+1 (⋅|x1∶t, zt+1;�) taking their parameters
in the parameter set � such that:

qZt|X1∶t (⋅|x1∶t;�) ≈ pZt|X1∶t (⋅|x1∶t; �)

qZt|X1∶t,Zt+1 (⋅|x1∶t, zt+1;�) ≈ pZt|X1∶t,Zt+1 (⋅|x1∶t, zt+1; �).

We assume that both pZt|X1∶t (⋅|x1∶t; �) and
pZt|X1∶t,Zt+1 (⋅|x1∶t, zt+1; �) have an approximate Gaussian
form with an approximately diagonal covariance matrix, i.e.

Q1t (�) = (�b(x1∶t;�), �b(x1∶t;�).Id)

Q2t (�) = (�s(x1∶t, zt+1;�), �s(x1∶t, zt+1;�).Id),

where �b, �b, �s and �s are deep neural networks taking theirparameters in the parameter set �. Taking back Eq. (7), we
get:

pZ|X1∶t (z| x1∶t; �)

≈ qZ|X(zt| x1∶t;�) .
t−1
∏

k=1
qZ|Z,X(zk|zk+1, x1∶k;�)

.
T
∏

k=t+1
pZ|Z (zk|zk−1; �)

= qZ|X(z1∶t|x1∶t;�) . pZ|Z (zt+1∶T | zt; �)
= qZ|X1∶t (z| x1∶t; �, �) = Qt(�, �),

which means that posing our two variational distributions
Q1t (�) and Q2t (�) is equivalent to posing the variational
distribution Qt(�, �) ≈ pZ|X1∶t (⋅| x1∶t; �).Therefore, we want to optimize � and � to minimize

E
t∼ [tmin , T−1]

[

DKL

(

Qt(�, �)
|

|

|

|

|

|

|

|

P (�)
pX,Y (x, y; �)

)]

while optimizing � to minimize
E

t∼ [tmin , T−1]

[

DKL
(

Qt(�, �) || Pt(�)
)]

.
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Actually, to achieve both these objectives, we only need to
minimize
LP-VAE(x, y; �, �) = E

t∼ [tmin , T−1]

[

DKL
(

Qt(�, �) || P (�)
)]

(8)
w.r.t. both � and �. See Appendix A for more details. De-
veloping the KL divergence of Eq. (8) to make our recurrent
distributions appear, we finally obtain:

DKL
(

Qt(�, �) || P (�)
)

= E
Z∼Qt(�,�)

[

log qZ1∶t|B1∶t (Z1∶t|b1∶t;�)

+ log pZt+1∶T |Zt (Zt+1∶T | Zt; �)
]

− E
Z∼Qt(�,�)

[

log pZ1∶t (Z1∶t ; �)

+ log pZt+1∶T |Zt (Zt+1∶T |Zt ; �)

+ log pX,Y |Z (x, y|Z ; �)
]

= DKL

(

qZ1∶t|B1∶t (⋅|b1∶t;�) || pZ1∶t (⋅ ; �)
)

− E
Z∼Qt(�,�)

[

log pX,Y |Z (x, y|Z; �)
] (9)

which leads to
DKL

(

Qt(�, �) || P (�)
)

= E
Z∼Qt(�,�)

[

log qZi|Bi
(

Zt|bt;�
)

+
t−1
∑

k=1
log qZi|Bi,Zi+1

(

Zk|bk, Zk+1;�
)

− log pZi
(

Z1; �
)

−
t

∑

k=2
log pZi+1|Zi

(

Zk|Zk−1; �
)

−
T
∑

k=1
log pXi,Yi|Zi

(

xk, yk|Zk; �
)

]

(10)

Fig. 8 illustrates the process of evaluating (10). We can
easily give an interpretation to this loss: we can identify
two global objectives in Eq. (9) that are reminiscent of the
original VAE [28] in terms of interpretation: the DKL term
is an encoder loss for the recognition model of parameters
�, while the second term is a decoder loss for the generative
model of parameters �. It can be viewed as a precision loss
(second term) optimized against a regularization (first term)
to prevent from overfitting.

We can even go deeper in interpretation to highlight what
differs from the original VAE. Contrary to the original VAE,
our model generates a sequence of observations instead of
an isolated one. Doing so, we have a Markovian transition
model that predicts a latent state from the previous one with
its own set of parameters separated from the decoder ones.
Therefore, it seems natural to have a third loss term for
prediction. We can make it appear by splitting the second

term of Eq. (9), i.e.:
DKL

(

Qt(�, �) || P (�)
)

= DKL

(

qZ1∶t|B1∶t (⋅|b1∶t;�) || pZ1∶t (⋅ ; �)
)

− E
Z∼Qt(�,�)

[

log p(X,Y )1∶t|Z1∶t ((x, y)1∶t|Z1∶t; �)
]

− E
Z∼Qt(�,�)

[

log p(X,Y )t+1∶T |Zt+1∶T ((x, y)t+1∶T |Zt+1∶T ; �)
]

The first term is an encoder loss. The second term is a
decoder loss. The third term is a prediction loss. This pre-
diction loss can also be viewed as a loss optimized against
a regularization since the DKL term affects the inference of
Zt by the recognitionmodel fromwhich the next latent states
are predicted.
4.5. LP-VAE with actions

The models we described up to this point represents the
environment evolving around the observing agent. However,
our agent also acts on this environment and influences the
observations gathered to train our model. Thus, we need to
modify it in order to integrate this subtlety.

LetAt be the action applied at time t on perceptions. This
action describes a mask on the information contained in Yt.This partial information is then transmitted to the observing
agent, influencingXt. It has no influence on the environment
evolving around the agent, only on its perception of it. This
means that Yt and Zt are not affected by At. Moreover,
we will now consider that the random variable Xt is the
ego-vehicle perception at time t, eventually augmented with
information from Yt, in accordance with At, and combined
with the discounted memory of the previous partial obser-
vations X1∶t−1. Fig. 9 provides the corresponding Bayesian
network.

We set the following constraints:
• Zi ∼ (0, Id)

• pZi+1|Zi (⋅|zt; �) = (�z(zt; �), �2z (zt; �).Id)

• pYi|Zi (⋅|zt; �) = (�y(zt; �), �y.I|Xt|)

• pXi|Xi−1,Yt,Zt,At (⋅|xt−1, yt, zt, at; �)
= (�x(xt−1, yt, zt, at; �), �x.I|Xt|)

where all parameters �⋅ and �⋅ are deep neural networks
taking their parameters in �, and �⋅ ∈

[ 1
2� ,+∞

).
Our datasetD is composed ofN independent sequences

of partial and complete observations with a randomly chosen
bounding box At, i.e. D = (x1∶T , y1∶T , a2∶T )1∶N . Fortu-
nately, Eq. (7) still holds in this new model. Moreover, we
know that the environment does not depend on the actions
A2∶T taken on its perception of it and that the actions only
mask regions of Yt while not altering the remaining. Finally,
since Xt contains the information transmitted from Yt inaccordance with At, the actions A2∶t do not bring any infor-mation for the inference of the latent states Z1∶t. Given the
Bayesian network in Fig. 9, the actions A without knowing
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b1 b2 ... bt−1 bt

x1 x2 xt−1 xt

z1 zt−1...z2 zt zTzT−1...zt+1

Z2 Zt−1... Zt

XY1 XY2 XYt−1 XYt XYt+1 XYT−1 XYT......

Figure 8: Illustration of the forward computations allowing for the evaluation of the LP-VAE loss. A diamond indicates a
deterministically inferred variable. A rectangle indicates the deterministic inference of distribution parameters. A circle indicates
the deterministic inference of distribution parameters and a sample from this distribution. The blue network is the belief network.
The red network is the smoothing network. The black network is the Markovian transition model. The brown network is the
decoding network.

N

�
Y1 Y2 YT−1 YT

A2 AT−1 AT

X1 X2 ... XT−1 XT

Z1 ZT−1...Z2 ZT

Figure 9: Bayesian network of our generative model of parameters in �. We have N replications of this model, corresponding to
the N sequences of length T in our dataset. The parameter set � influences the inference of all variables in the model for the N
sequences we have.

Xt+1∶T do not bring any information for the inference of the
latent states Zt+1∶T either. We have:

pZ|X1∶t,A(⋅| x1∶t, a; �) = pZ|X1∶t (⋅| x1∶t; �)

Thus, we keep the LP-VAE variational distributions
Q1t (�) = qZt|X1∶t (⋅|x1∶t;�),

Q2t (�) = qZt|X1∶t,Zt+1 (⋅|x1∶t, zt+1;�),

Qt(�, �) ≈ pZ|X1∶t (⋅| x1∶t; �).

Then, for our local predictability constraint (See Eq. (5)), we
consider pZ|X,Y ,A(⋅| x, y, a; �) instead of pZ|X,Y (⋅| x, y; �).Notice that

pZ|X,Y ,A(⋅| x, y, a; �) =
pX,Y ,Z|A(x, y, ⋅ |a; �)
pX,Y |A(x, y |a; �)

=
P (�)

pX,Y |A(x, y |a; �)

We take as loss function LP-VAE(x, y |a; �, �) instead of
LP-VAE(x, y; �, �), where

LP-VAE(x, y |a; �, �)
= E
t∼ [tmin , T−1]

[

DKL
(

Qt(�, �) || P (�)
)] (11)

This loss maximizes a lower bound of
pX,Y |A(x, y |a; �).

Developing the KL divergence of Eq. (11) in accordance
with our new model, we get:
DKL

(

Qt(�, �) || P (�)
)

= E
Z∼Qt(�,�)

[

log qZ1∶t|B1∶t
(

Z1∶t|b1∶t;�
)

+ log pZt+1∶T |Zt
(

Zt+1∶T |zt; �
)

− log pZ1∶t
(

Z1∶t; �
)

− log pZt+1∶T |Zt
(

Zt+1∶T |zt; �
)

− log pY |Z (y |Z; �)
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− log pX|Y ,Z,A (x |y,Z, a; �)
]

= E
Z∼Qt(�,�)

[

log qZ1∶t|B1∶t
(

Z1∶t|b1∶t;�
)

− log pZ1∶t
(

Z1∶t; �
)

− log pY |Z (y |Z; �)

− log pX|Y ,Z,A (x |y,Z, a; �)
]

which leads to
DKL

(

Qt(�, �) || P (�)
)

= E
Z∼Qt(�,�)

[

log qZi|Bi
(

Zt|bt;�
)

− log pZi
(

Z1; �
)

+
t−1
∑

k=1
log qZi|Bi,Zi+1

(

Zk|bk, Zk+1;�
)

−
t

∑

k=2
log pZi+1|Zi

(

Zk|Zk−1; �
)

−
T
∑

k=1
log pYi|Zi

(

yk|Zk; �
)

−
T
∑

k=2
log pXi|Xi−1,Yi,Zi,Ai

(

xk|xk−1, yk, Zk, ak; �
)

− log pX1|Y1,Z1
(

x1|y1, Z1; �
)

]

(12)

In practice however, we will neglect the term
− log pX1|Y1,Z1

(

x1|y1, Z1; �
) for several reasons. First, it

avoids to optimize parameters that would only be used in
the learning phase, while not corresponding to an important
component (the complete observation y1 being already con-sidered and containing x1). But maybe more importantly,
since Xt keeps a memory of past observations in this for-
mulation of the LP-VAE, x1 may also contain information
on actions preceding a2∶T that should be given as well if
x1 is actually not the start of an episode of interactions
in the environment. Not generating x1 allows us to start
the inference of latent states at any point of the episode,
independently from the previous actions and observations
that produced x1. This means that we can re-use different
subsequences of the same training sequence in the learning
phase, without having to make sure that x1 do not contain
information related to past observations and actions.

5. Implementation as neural networks
5.1. Belief state computation

The grids Gt introduced in section 3.1 are not directly
taken as input of our LP-VAE. Beforehand, we train a Con-
volutional VAE (CVAE) to learn a compressed, essentialized
representation of these observations in which spatial features
have been extracted. This CVAE is itself separated into 4
independent parts in order to preserve the semantics of these
features: a CVAE for the pedestrian channel, another for the
car channel, another for static elements (road lines, road,
other) and a last one for the ignorance. The projection of
Gt into the latent space of this Convolutional VAE is the
Xt taken by our LP-VAE. Then, we feed Xt, Xt−1 and the
ego-motion Vt to a Multilayer perceptron (MLP) in order to

extract features about the motion of road users around the
ego-vehicle. The output of this MLP serves as input to a
Recurrent Neural Network (RNN) composed of Long Short-
TermMemory (LSTM) cells to form and update a belief over
the dynamics of other road users. The concatenation of the
hidden state of this RNNwithXt and the driving controls Ctrepresents the belief state Bt at time t. Fig. 10 visually sums
up this procedure.
5.2. Inference of Gaussian parameters

In [20], they proposed to use what they calledDmaps1 to
infer the Gaussian parameters of any of the distributions over
the latent state zt. It is a part of a LSTM cell (new features
multiplied by the input gate), as indicated in Fig. 11, where
the output is passed to two fully connected (FC) layers in
parallel without activation function, one to determine�zt andthe other to determine log(�zt ). Yet, in our sequential setting,this D map becomes a truly recurrent unit, chaining itself
multiple times from t1 to 1 in the smoothing network and
from t1 to t2 in the prediction network. As for any recurrent
network, this poses the issue of vanishing gradients. Fur-
thermore, it lacks the semantics of a transition model: some
components could disappear from the frame (forget gate) and
some other could become visible or simply move from their
initial state (input gate, followed by an addition to the initial
components). These are exactly the transformations applied
to the cell state of a LSTM cell. Thus, using the cell state
of a LSTM cell as latent state mean �zt as in Fig. 11, where
ℎ = zt+1 and input = bt, solves both the vanishing gradient
issue and the lack of model semantics. Giving ℎ as both
hidden and cell states also has the effect of implementing
peephole connections [29], giving the cell state some control
over the input, forget and output gates (the three sigmoïd
layers), which better captures sporadic events. In addition,
uncertainty should be encoded within the latent state to be
self-sufficient for a transition model. This encourages the
computation of the standard deviation �zt from �zt with
some filtering gate (output gate), which is exactly what a
LSTM cell does to output a quantity based on its cell state.
Similarly, we use this LSTM cell in the prediction network
for pZi+1|Zi (⋅|zt; �), where ℎ = zt and input = ∅. For the
belief network, we keep this Dmap as there is no propagation
in time.
5.3. Decoding

So far, we determined the networks outputting distribu-
tion parameters describing the latent states Z used in the
evaluation of LP-VAE, both for the generative model and
the recognition model. It remains to propose the decoding
network that is part of the generative model and produces
X and Y . Given the conditional distributions appearing in
LP-VAE, we need a decoder inferring Yt fromZt and anotherone inferring Xt from Xt−1, Yt, At and Zt.

1In [20], they used a 16-layer model where the information transits
from layer to layer through the states of a LSTM, possibly in place of this D
map, in their DeepMind Lab experiment. Note however that it is recurrent
through layers, not time. This is different from what is proposed here.
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CNN

CNN

CNN

CNN

[pedestrian, car, road line, road, other, Ω]
6-channels mass grid at t

[pedestrian]

[car]

[roal line, road, other]

[Ω]

xt

xt−1

xt

vt

MLP

ℎt−1

LSTM

ℎt

ct

bt

ℎt

Belief state computation

Figure 10: Illustration of the process of computing the observation Xt and the belief state Bt from Gt, Xt−1, Vt and Ct. Four
independent Convolutional VAEs are trained to learn a sufficient representation of pedestrian, car, {road lines, road, other} and
ignorance. These encodings form Xt. A Multilayer perceptron (MLP) tries to learn features about the motion of road users around
the ego-vehicle. The output of this MLP serves as input to a Recurrent Neural Network (RNN) composed of Long Short-Term
Memory (LSTM) cells to form and update a belief over the dynamics of other road users. The concatenation of the hidden state
of this RNN with Xt and the driving controls Ct represents the belief state Bt at time t.

LSTM cell

D map

ℎ

input

× +

�

FC

�

FC

×

tanh

tanh

×

FC

�

FC

FC

�zt

log(�zt )

Figure 11: Proposed replacement for D maps. The FC rectan-
gles indicate a single Fully Connected layer. Circles indicate
point-wise operations, where � is the sigmoïd activation
function.

However, since Xt and Yt are not given in the original
space but in a learned compressed one, extracting features
from Yt according to the bounding box At is not directly
possible. One has to decode Yt, extract features accordingto At, decode Xt and then fuse it with the leaked features
from Yt. For the sake of efficiency, we will learn to directly
extract these features that we denote by the random variable
Mt in the learned compressed space and to fuse them with
Xt. Thus, in parallel to LP-VAE, we minimize an extra loss
term

−
T
∑

k=2
log pMi|Ai,Yi

(

mk|ak, yk; �
)

,

zt xt−1

� ×

+tanh

�

×tanh

�

×

yt

at

�×

+ tanh

�

×

mt

� ×

+tanh

�

×

xt

Decoder

Figure 12: Illustration of our decoding architecture. The
decoder block infers xt the partial observation, yt the spatially
complete observation and mt the masked yt (as dictated by
the bounding box at). It takes as inputs a latent state zt, a
previous partial observation xt−1 and a bounding box at. A
rectangle indicates a fully connected layer, while the symbol at
its center indicates the activation function applied to its output
(� for sigmoid, tanh for hyperbolic tangent and nothing for
the identity function). Each updating network is composed of
a forget gate (first �) and a D map, i.e. input features (tanh),
an input gate (last �) and a fully connected layer.

where mt corresponds to yt masked in accordance with atand compressed by the same CVAE as for yt. Note that ourdataset becomes D = (x1∶T , y1∶T , m2∶T , a2∶T )1∶N .
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Figure 13: Illustration of the decoding of Xt or Yt orMt by the decoder of the CVAE that gave Xt to get back into the observation
space. The CNN blocks are Transposed CNNs.

We choose to infer Yt fromZt through a D map as intro-
duced in section 5.2. All other inferences are done through an
updating module that is inspired by the updating of a LSTM
cell state. The masking of Yt is orchestrated byAt, producing
Mt by filtering. Finally, Xt−1 is updated in two steps. The
first update is assumed to change its reference frame and to
determine which parts of Yt are visible to the ego-vehicle.
This implicitly produces the Xt corresponding to the null
action, i.e. the action that consists in doing nothing. We
consider this transformation deterministic, given yt and zt.The second update transmits the excerptMt from Yt to this
prior perception, producing the actual Xt influenced by At.Fig. 12 depicts these networks. In addition, Fig. 13 illustrates
the decoding ofXt by the decoder of the Convolutional VAE.

6. Experiments
6.1. Data acquisition & RL Environment

To conduct our experiments, we chose to work with the
open-source driving simulator CARLA [26]. Our semantic
grids Gt are computed online from a frontal 320 × 480
depth camera with FOV of 135◦ and its corresponding pixel-
wise semantic classification. These simulated sensors are
attached to a simulated vehicle autonomously wandering in
a city with other vehicles, bikes and pedestrians (see Fig. 2).
More precisely, Gt is obtained by counting the number of
occurrences of each class in each possible configuration of
4 × 4 consecutive pixels. All classes corresponding to static
objects are merged into the class other. Then, in each cell of
the resulting 80 × 120 × 5 grid, these numbers are divided
by 16 and we add a channel representing ignorance (i.e. Ω)
to store the quantity needed to make the sum on all channels
equal to 1.We also discount the resultingmass functions by a
factor of 0.01 to simulate noise, i.e. all masses are multiplied
by 0.99 and 0.01 is added to the mass on ignorance. Finally,
thanks to the depth and information about the camera, we

create a 3D point cloud of this frontal perception. Thus, to
get the 2D grid Gt, we ignore points higher than 2.5 meters
and we take the highest of the remaining ones (if more than
one point at the same ground coordinates). For this reason,
it sometimes happens that the ground under a vehicle is
perceived, but not its top, leading to road cells surrounded
by car cells, as can be observed in Fig. 2 Left. An important
road elevation may also conflict with the threshold of 2.5
meters. This view can be obtained by a LIDAR and a 3D
semantic classifier [30] as well.

Our top-down semantic grids corresponding to complete
observations yt in our model are obtained with a facing
ground camera above the ego-vehicle. Doing so, it contains
itself some occlusions due to trees, poles, buildings, etc.
Thus, it is rather a hint about the true yt. This grid can also beobtained by the fusion of multiple view points, from a fleet
of autonomous vehicles or infrastructure sensors, which can
be acquired in the real world. A drone may be able to acquire
this information as well. In any case, this ground truth grid
is in fact itself uncertain and so is computed as Gt with an
ignorance channel.

We created a dataset composed of 1560 sequences of
50 timesteps (5 seconds) each, where each perception is
80×120×6. There are 30 runs in each of four cities available
in CARLA, including small towns, big towns and fast lanes.
Each run is 35 seconds long and a sequence is recorded every
2.5 seconds, leading to 13 sequences per run, hence the size
of our dataset. This dataset provides the grids corresponding
to Xt and Yt in the action-independent model of section 4.1.

To provide the grids corresponding to Xt as defined in
the full model of section 4.5, we created a second dataset
from the first one by choosing random regions of Yt to be
given to Xt. We also added a visual memory that keeps a
buffer of grid cells, transforms their coordinates according
to the given motion of the ego-vehicle, discounts their mass
functions to account for information ageing and fuses them
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Binary classification per class Mass
P C RL R O Ω score

LP-VAE 20.5% 68.5% 28.7% 84.3% 77.8% 49.5% 68.3%
STD-VAE 33.7% 72.7% 30.7% 85.9% 80.6% 46.2% 68.8%

Table 1
Mass score and binary classification accurracy per class. P indicates the pedestrian channel, C the car channel, RL the road lines
channel, R the road channel, O the other channel and Ω the complete out-of-sight channel. It is clear that STD-VAE outperforms
LP-VAE for simple grid completion, though the total mass score is not so different.

with the current perception grid, resulting in this Xt. Infact, the first dataset combined with our visual memory
and our fusion procedure of Algorithm 1 for G̃t and GMtconstitutes the environment in which our agent will learn a
communication policy.
6.2. Models

During training, we give between 8 and 10 timesteps of
observations (i.e. between 0.8 and 1 second) and it is asked
to predict between 5 and 10 timesteps ahead, i.e. between 0.5
and 1 second. We use the Mean Squared Error (MSE) loss
function to compute the Gaussian negative log likelihoods of
observing the grids corresponding to xt and mt given latent
states. Indeed, this is analog to taking � = 1

2 and ignoring the
constant term log

(
√

2��
)

. For the negative log likelihoods
on the grid corresponding to yt, we binarize it by taking theclass with maximum mass and use a cross-entropy loss. To
account for the fact that the instances of Yt in our dataset arenot perfect, we simply do a pointwise multiplication between
this loss and the complement to 1 of its ignorance channel
(last channel). That way, if yt does not have any information
about a cell, no loss on yt is actually back-propagated.
Furthermore, we weight this cross-entropy loss differently
from one channel to another to account for class imbalance.
We used the weight vector [100, 10, 1, 0.2, 0.1, 1]. Indeed, on
average, there are far less cells containing pedestrians than
cells containing the road or any other static class. Doing so,
without weights, the network would consider pedestrian as
noise and neglect them.

In the following, we compare STD-VAE and LP-VAE for
complete grid inference and prediction.
6.2.1. Grid completion

In this experiment, we use the decoder network de-
scribed in Fig. 12 on the current latent state Zt inferredfrom Bt to retrieve Yt. Then, we use the network described
in Fig. 13 to transform Yt into the complete mass grid
GY . To compare STD-VAE and LP-VAE, we employed two
metrics: binary classification accuracy per class and a mass
score. Our Mass score metric is computed as the mean of
GYt . ĜY t over all cells in the grid, where GYt is the true
binary complete grid classification and ĜY t is a mass grid
inferred by some model. Since GYt is binary, it acts as an
indicator function for the correct class and the mass score

represents the mean mass given to the right class by the
model generating ĜY t. Results are showed in Table 1.
6.2.2. Prediction

In this experiment, we compare prediction accuracy
between LP-VAE and STD-VAE. For this, we study mass
variations on the super-class {road, road line}, i.e. the sum
of the road and road line grid channels. Indeed, this super-
class represents the road layout. Its absence in a cell indicates
either road users or the other class. Thus, its mass variations
accounts for the dynamics of the whole scene, independently
of classification accuracy.

In practice, for each model, we infer a prediction se-
quence of 10 complete grids ŷ1∶10 (i.e. 1 second in the
future), based on 10 observations (i.e. the past second).
From it, we compute the corresponding sequence of 9 grid
variations ŷ′t = ŷt+1 − ŷt. We execute the same process
with the true complete grids, which produces grids y′1∶9 ofvalues ranging in {−1, 0, 1}. We test separately the accu-
racy on positive and negative changes. For the former, we
do a pointwise multiplication between the true complete
positive grids max(0, y′1∶9) and the inferred positive ones
max(0, ŷ′1∶9). For the latter, we do a pointwise multiplication
between the true complete negative gridsmax(0,−y′1∶9) andthe inferred negative ones max(0,−ŷ′1∶9). We then sum all
cells of each grid in the sequence, over 4992 sequences, i.e.
49 920 inferred grids and compare it to the separate sums of
positive and negative true changes. Results are displayed in
the first two columns of Table 2.

However, note that this binary mask can be quite hard to
match, as both the exact location of these changes and their
amplitude must be correct. To alleviate this constraint, we
repeat this test with blurring filters applied to each grid of
y′1∶9. The resulting grids, noted ỹ′1∶9, are then renormalized
so that ∑max(0, y′1∶9).max(0, ỹ

′
1∶9) =

∑

max(0, y′1∶9) and
∑

max(0,−y′1∶9).max(0,−ỹ
′
1∶9) =

∑

max(0,−y′1∶9). Thisallows for slight misplacements of cells in predicted grids.
We repeated this test twice with Gaussian filters, with ker-
nels 5x5 and 11x11. These experiments correspond to the
last 4 columns of Table 2. Our LP-VAE outperforms STD-
VAE in every of these tests, nomatter how hard the constraint
on change location is. This means that the predicted changes
of LP-VAE are not just better located, but also better shaped
than the ones of STD-VAE, as expected by design. Fig. 14
illustrates this experiment.
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True y′ No blur Gaussian blur 5x5 Gaussian blur 11x11
+ - + - + -

LP-VAE ŷ′ 6.81% 6.94% 14.41% 14.61% 23.81% 24.36%
STD-VAE ŷ′ 2.10% 2.37% 4.89% 5.41% 8.66% 9.52%

Table 2
Prediction accurracies between STD-VAE and LP-VAE. As expected, LP-VAE significantly outperforms STD-VAE on predictions.

(a)

(b)
Figure 14: (a) Left column: partial grid Gt corresponding to
Xt. Right column: complete grid GY

t corresponding to Yt. Top
row: true classification grids. Bottom row: classification grids
predicted by LP-VAE from X alone, 4 time steps in the future.
(b) Prediction dynamics. Black represents the absence of
variation, white some mass change in the cells of the road and
road line channels of the grid in (a). Left column corresponds
to the true variations, blurred by a 11x11 Gaussian filter. The
central column corresponds to the prediction dynamics of STD-
VAE, multiplied by the ones of the first column. Same for the
right column but for LP-VAE. The first row represents positive
changes, while the second row represents negative ones.

6.3. Policy learning
Here, we finally compare different policies learned with

PPO, with and without model to test the benefits of using
belief states in our case. Each policy is the best found among
iterations of training with 3000 transitions amounting to 500
000 time steps in total. We used a batch size of 60, with

10 epochs on each transition dataset, with a learning rate of
0.0003 and an entropy coefficient of 0.01. We also made the
time horizon vary, i.e. we made the hyperparameter  vary
from 0 to 0.7, in order to see if a medium/long term strategy
performs better.

The network learned with PPO has two parts: one for
inferring the Value of a state, representing the mean of all
potential future rewards, and one for inferring the best action
from this same state, representing the policy. Each of these
networks is composed of two fully connected hidden layers
of 128 and 64 neurons.

Different communication behaviors can be obtained by
adjusting reward parameters. In particular, increasing K in
Eq. 2 will make requests bigger, increasing w in Eq. 1 will
make requests more focused on completely unknown areas,
increasing � will make requests more focused on pedestrians
and cars, less rewarding in general and so less frequent. We
chose the following values: � = 0.3, K = 36 and w = 2.
We also added a penalty of -15 for no cooperation at all (i.e.
choice of a bounding box with no pixel in it, which means
no transmission cost either) to force the agent to play the
game.Moreover, approximating the top-down dimensions of
cars and pedestrians, we took the following reward densities
per squared meter: rmobj = [540∕(0.7 ∗ 1.6), 540∕(3 ∗
1.8), 20, 20, 0]. Then, we converted them into rewards per
squared cell by multiplying them by our grid resolution.
More precisely, we set our cameras in CARLA so that the
height corresponds to 40 meters. Thus, our reward densities
per squared cell are robj = ( 4080 )

2.rmobj. Our final rewards areobtained by normalizing robj to [0, 1] by dividing it by its
maximum. For the spatial filter, we used the parameters of
Fig. 4, i.e. � = 0.5, �F = 0.8, �L = 1 and � = 0.01.In order to evaluate and compare the performance of
different policy learning schemes, we take as metrics the
mean request size and the mean informational gain over all
time steps of a test set with same size and characteristics
as the training set described Section 6.1. We applied these
metrics to 3 class groups: pedestrians (P), cars (C) and
{road lines, road} (R). In these conditions, we compared 3
schemes: PPO on top of the LP-VAE belief state Bt, PPOon top of the STD-VAE belief state Bt and PPO on top of
Xt alone (i.e. only the features extracted from the current
mass grid Gt by a Convolutional VAE). Each of them has
been trained with  = 0 (i.e. only immediate rewards
matter),  = 0.35 and  = 0.7, to see if we could benefit
from medium/long term strategies. We also compare these
policies with a simple random policy that has a 50% chance
of making a request and chooses uniformly random size and
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Information gain Request
P C R size

Random 26.2% 22% 22.9% 13%
LP-VAE Bt 22% 27.6% 26.5% 6%

 = 0 STD-VAE Bt 19.9% 26.5% 24.4% 5%
Xt alone 21.7% 29.2% 27.6% 6%
LP-VAE Bt 20.6% 25.7% 24.8% 6%

 = 0.35 STD-VAE Bt 18.2% 22.8% 23.3% 5%
Xt alone 17.8% 23.4% 22.3% 5%
LP-VAE Bt 15.7% 18.2% 19.5% 5%

 = 0.7 STD-VAE Bt 13.6% 16.3% 17.2% 4%
Xt alone 14.3% 17.8% 18.6% 4%

Table 3
Learned communication policy performances relatively to a broadcasting policy. The information gain is a mean percentage
representing the mass actually gained after request, over the total mass that can be gained, at each time step.

position of bounding box when it does. Table 3 presents our
results, in percentage relatively to the maximal information
gain and request size possible inherent to a broadcasting
policy.

All of our learned policies only ask for about 5% of the
space around the ego-vehicle, while receiving about 25% of
the relevant information the agent lacks. Requiring about
2.5 times more information from the vehicular network
for about the same relevant information gain or lower, the
random policy is vastly less efficient. It only outperforms the
others for pedestrians, which is consistent with the highly
random behavior of pedestrians in CARLA. However, PPO
+ Xt alone and  = 0 (i.e. greedy policy) is the policy
that performs best overall. Surprisingly enough, taking into
account future rewards actually harms performance in our
case. A lower discounting factor in the memory module (i.e.
observations that are kept longer in memory) would proba-
bly make policies perform best with  > 0. Furthermore,
note that LP-VAE always performs better than the other
learned policies when  > 0. This is consistent with the
fact that LP-VAE has better prediction capabilities and thus
provides useful information in its belief state for predicting
future rewards.

7. Conclusions
In this paper, we tried to elaborate an efficient peer-to-

peer communication policy for collaborative perception. For
this, we made agents learn what could be hidden in their
blind spots through a generative sequence model that we
proposed, named Locally Predictable VAE (LP-VAE). We
compared its performance with another generative sequence
model for RL applications called TD-VAE that we slightly
adapted to our problem by making it both jumpy and se-
quential, referring to it as STD-VAE. We demonstrated that
LP-VAE produces better predictions than STD-VAE, which
translated into better performance for policies learned on
top of its belief state. However, we discovered in the end
that our best communication policy was a greedy one, i.e.
one that does not need prediction capabilities. Combined

with the fact that we augmented each observation with
the discounted memories of past observations, it followed
that only a state-less Convolutional VAE was needed for
this greedy policy. Overall, our best learned policies only
require about 5% of the space around the ego-vehicle, while
gaining about 25% of the relevant information the agent
lacks. Thus, we proved that learning to value the unknown is
much more efficient than employing a broadcasting policy.
It is also more efficient than blindly asking for random
areas around the ego-vehicle since it requires about 13% of
the total information, while gaining less than 25% of the
relevant information the agent lacks. In addition, we defined
interpretable hyperparameters shaping the reward function
corresponding to our problem. This makes it possible to
obtain various communication policies, with different trade-
offs between request size and information gain, as well as
different class valuations, spatial priorities and valuation of
ignorance (i.e. more or less emphasis on total ignorance). For
future works, it would be interesting to compare LP-VAE
and STD-VAE in RL tasks where future rewards are more
important. Also, we would like to test our communication
policies in a truly multi-agent context, where the agent
would need to take into account the availability of nearby
communicating vehicles, and with real sensor data.

A. LP-VAE loss
A.1. Minimization of DKL

(

Qt(�, �) || Pt(�)
)

Proof. Indeed, we have, for some instant t:
DKL

(

Qt(�, �) || P (�)
)

= E
Z∼Qt(�,�)

[

log qZ1∶t|X1∶t (⋅|x1∶t;�) + log pZt+1∶T |Zt (⋅| ⋅ ; �)

− log pZ1∶t (Z1∶t; �) − log pZt+1∶T |Zt (Zt+1∶T |Zt; �)

− log pX,Y |Z (x, y|Z; �)
]

= E
Z∼Qt(�,�)

[

log qZ1∶t|X1∶t (⋅|x1∶t;�)

− log pZ1∶t (Z1∶t; �)

− log pX|Z (x|Z; �) − log pY |X,Z (y|x,Z; �)
]
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= E
Z∼Qt(�,�)

[

log qZ1∶t|X1∶t (⋅|x1∶t;�)

− log pZ1∶t (Z1∶t; �) − log pX1∶t|Z1∶t (x1∶t|Z1∶t; �)

− log pXt+1∶T |Zt+1∶T (xt+1∶T |Zt+1∶T ; �)

− log pY |X,Z (y|x,Z; �)
]

= E
Z∼Qt(�,�)

[

log qZ1∶t|X1∶t (⋅|x1∶t;�)

− log pX1∶t,Z1∶t (X1∶t, Z1∶t; �)

− log pXt+1∶T |Zt+1∶T (xt+1∶T |Zt+1∶T ; �)

− log pY |X,Z (y|x,Z; �)
]

Suppose that both pXt+1∶T |Zt+1∶T (xt+1∶T |Zt+1∶T ; �) and
pY |X,Z (y|x,Z; �) range in [0, 1]. This can be easily verifiedif they can be written as a factorization of probability
density functions that each ranges in [0, 1], e.g. Gaus-
sian distributions with diagonal covariance matrices where
each term of the diagonal is in [ 1

2� ,+∞
). Then, both

− log pXt+1∶T |Zt+1∶T (xt+1∶T |Zt+1∶T ; �) and
− log pY |X,Z (y|x,Z; �) are nonnegative, i.e.
DKL

(

Qt(�, �) || P (�)
)

≥ DKL

(

qZ1∶t|X1∶t (⋅|x1∶t;�) || pX1∶t,Z1∶t (x1∶t, ⋅ ; �)
)

.

Thus, by minimizing DKL
(

Qt(�, �) || P (�)
), we minimize

an upper bound of
DKL

(

qZ1∶t|X1∶t (⋅|x1∶t;�) || pX1∶t,Z1∶t (x1∶t, ⋅ ; �)
)

.
Furthermore, since we have
DKL

(

qZ1∶t|X1∶t (⋅|x1∶t;�) || pX1∶t,Z1∶t (x1∶t, ⋅ ; �)
)

= DKL

(

qZ1∶t|X1∶t (⋅| x1∶t;�) || pZ1∶t|X1∶t (⋅| x1∶t; �)
)

− log pX1∶t (x1∶t; �)

= DKL
(

Qt(�, �) || Pt(�)
)

− log pX1∶t (x1∶t; �),

we know that by optimizing � to minimize
DKL

(

qZ1∶t|X1∶t (⋅|x1∶t;�) || pX1∶t,Z1∶t (x1∶t, ⋅ ; �)
)

, we mini-
mize DKL

(

Qt(�, �) || Pt(�)
). To sum up, minimizing

DKL
(

Qt(�, �) || P (�)
) w.r.t. � minimizes an upper bound

of DKL
(

Qt(�, �) || Pt(�)
). ■

A.2. Maximization of pX,Y (x, y; �)
Proof. Replacing Pt(�) by Qt(�, �) in Eq. (6), we get:

E
t∼ [tmin , T−1]

[

DKL
(

Qt(�, �) || P (�)
)]

= − log pX,Y (x, y; �)

+ E
t∼ [tmin , T−1]

[

DKL

(

Qt(�, �)
|

|

|

|

|

|

|

|

P (�)
pX,Y (x, y; �)

)]

≥ − log pX,Y (x, y; �)

Therefore, by optimizing � to minimize
E

t∼ [tmin , T−1]

[

DKL
(

Qt(�, �) || P (�)
)], we minimize

E
t∼ [tmin , T−1]

[

DKL

(

Qt(�, �)
|

|

|

|

|

|

|

|

P (�)
pX,Y (x,y;�)

)]

, and by opti-
mizing � tominimize E

t∼ [tmin , T−1]

[

DKL
(

Qt(�, �) || P (�)
)],

we maximize a lower bound of pX,Y (x, y; �). ■
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