# Kolmogorov Derandomization 

Samuel Epstein

## To cite this version:

Samuel Epstein. Kolmogorov Derandomization. 2024. hal-04292439v2

## HAL Id: hal-04292439 https://hal.science/hal-04292439v2

Preprint submitted on 25 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Kolmogorov Derandomization 

Samuel Epstein<br>samepst@jptheorygroup.org

May 25, 2024


#### Abstract

Using Kolmogorov derandomization, we provide an upper bound on the compression size of numerous solutions. In general, if solutions to a combinatorial problem exist with high probability and the probability is simple, then there exists a simple solution to the problem. Otherwise the problem instance has high mutual information with the halting problem. As a consequence to this, if the probabilistic method can be used to prove the existence of an object, then bounds on its Kolmogorov complexity can be proved as well. This manuscript also introduces game derandomization, where winning probabilistic players imply the existence of winning deterministic players. Multiple applications are included.


## Contents

1 Introduction ..... 3
1.1 Three Eggs from the Chicken ..... 3
2 Conventions ..... 5
315 Instances of Kolmogorov Derandomization ..... 7
3.1 K-SAT ..... 7
3.2 Hypergraph-Coloring ..... 8
3.3 Vertex-Disjoint-Cycles ..... 9
3.4 Weakly-Frugal-Graph-Coloring ..... 10
3.5 Graph-Coloring ..... 11
3.6 Max-Cut ..... 12
3.7 Max-3Sat ..... 13
3.8 Balancing-Vectors ..... 13
3.9 Parallel-Routing ..... 15
3.10 Independent-Set ..... 16
3.11 Dominating-Set ..... 17
3.12 Set-Membership ..... 18
3.13 Latin-Transversal ..... 19
3.14 Function-Minimization ..... 21
3.15 Super-Set ..... 22
4 Classical Channels ..... 23
4.0.1 Jointly Typical Sequences ..... 24
4.0.2 Naive Sender Paradigm ..... 24
5 Resource Bounded Derandomization ..... 27
5.1 Resource Bounded EL Theorem ..... 27
5.2 Resource Bounded Derandomization ..... 28
5.2.1 Vertex-Disjoint-Cycles ..... 29
5.2.2 Balancing-Vectors ..... 30
5.2.3 K-SAT ..... 30
6 Game Derandomization ..... 32
6.1 The Minatour and the Labyrinth ..... 32
6.2 Win/No-Halt Game ..... 32
6.3 Penalty Games ..... 33
6.4 Probabilistic Games ..... 33
6.5 Computability of Environments ..... 35
6.6 Revisiting Crete ..... 36
6.7 EvEn-ODDS ..... 36
6.8 Resource Bounded Even-ODDS ..... 37
6.9 Zero-Sum Repeated Games ..... 37
6.10 New Bounds ..... 39
6.11 Partial Derandomization ..... 41
6.12 Lose/No-Halt Games ..... 42
6.13 Agent Spaces ..... 43
7 Game Derandomization Examples ..... 45
7.1 GRAPH-NAVIGATION ..... 45
7.2 Interactive-K-Sat ..... 45
7.3 Penalty-Tests ..... 47
7.4 Set-Subset ..... 48
7.5 Interactive-Hypergraph ..... 49
7.6 Grid-WaLK ..... 50
7.7 Min-Cut ..... 51
7.8 Cover-Time ..... 52
7.9 Vertex-Transitive-Graph ..... 52

## Chapter 1

## Introduction

In mathematics, the probabilistic method is a constructive method of proving the existence of a certain type of mathematical object. This method, pioneered by Paul Erdös, involves choosing objects from a certain class randomly, and showing objects of a certain type occur with non-zero probability. Thus objects of a certain type are guaranteed to exist. For more information about the probabilistic method, we refer readers to [AS04]. Recent results have shown that there is a strong connection between probabilistic method and the compression sizes of encodings of mathematical objects, i.e. their Kolmogorov complexity, K:

If the probabilistic method can be used to prove the existence of an object, then bounds on its Kolmogorov complexity can be proven as well.

If there is a simple probability such that objects of a certain mathematical type occur with large probability, then there exists an object of that type that is simple, i.e. has low Kolmogorov complexity. More formally, if object $x$ has $P$-probability of at least $p$ of randomally occuring, then

$$
\mathbf{K}(x)<{ }^{\log } \mathbf{K}(P)-\log p+\epsilon .
$$

The $\epsilon$ term is the amount of information that an encoding of the entire mathematical construct has with the halting sequence, which can obviously considered to be a negligible amount, except for exotic cases.

This inequality occurs through the application of the EL Theorem [Lev16, Eps19]. Producing bounds of the Kolmogorov complexity of an object through probabilistic means is called Kolmogorov derandomization.

I'd recommend derandomization as an area of research for masters students or researchers who are interested in moving into algorithmic information theory. This is because the majority of the technical effort resides in the domain to which derandomization is applied.

### 1.1 Three Eggs from the Chicken

Future work involves finding instances of the probabilistic method and applying derandomization to them. In particular, the Lovász Local Lemma, [EL], has been particularly compatible with derandomization. We present the first proved consequence of LLL and show how it is compatible with three versions of derandomization, one that involves Kolmogorov complexity, one that involves resource bounded Kolmogorov complexity, and one involving games.

A hypergraph is a pair $J=(V, E)$ of vertices $V$ and edges $E \subseteq \mathcal{P}(V)$. Thus each edge can connect $\geq 2$ vertices. A hypergraph is $k$-regular of the size $|e|=k$ for all edges $e \in E$. A 2regular hypergraph is just a simple graph. A valid $C$-coloring of a hypergraph $(V, E)$ is a mapping
$f: V \rightarrow\{1, \ldots, C\}$ where every edge $e \in E$ is not monochromatic $|\{f(v): v \in e\}|>1$. The following classic result is proven using LLL.

Theorem. (Probabilistic Method) Let $G=(V, E)$ be a $k$-regular hypergraph. If for each edge $f$, there are at most $2^{k-1} / e-1$ edges $h \in E$ such that $h \cap f \neq \emptyset$, then there exists a valid 2-coloring of $G$.

We can now use derandomization, to produce bounds on the Kolmogorov complexity of the simpliest such 2-coloring of $G$.

Theorem A. (Kolmogorov Derandomization) Let $J=(V, E)$ be a $k$-regular hypergraph with $|E|=m$. If, for each edge $f$, there are at most $2^{k-1} / e-1$ edges $h \in E$ such that $h \cap f \neq \emptyset$, then there exists a valid 2-coloring $x$ of $J$ with

$$
\mathbf{K}(x)<^{\log } \mathbf{K}(n)+4 m e / 2^{k}+\mathbf{I}(J ; \mathcal{H})
$$

The term $\mathbf{I}(J ; \mathcal{H})=\mathbf{K}(J)-\mathbf{K}(J \mid \mathcal{H})$ is the amount of mutual information that $J$ has with the halting sequence $\mathcal{H}$. We can now use resource derandomization to achieve bounds for the smallest time-bounded Kolmogorov complexity $\mathbf{K}^{t}(x)=\min \{p: U(p)=x$ in $t(\|x\|)$ steps $\}$ of a 2-coloring of $J$.

Assumption. Crypto is the assumption that there exists a language in DTIME $\left(2^{O(n)}\right)$ that does not have size $2^{o(n)}$ circuits with $\Sigma_{2}^{p}$ gates.

Theorem B. (Resource Bounded Derandomization) Assume Crypto. Let $J_{n}=(V, E)$ be a $k(n)$-regular hypergraph where $|V|=n$ and $|E|=m(n)$, uniformly polynomial time computable in $n$. Furthermore, for each edge $f$ in $J_{n}$ there are at most $2^{k(n)-1} / e-1$ edges $h \in E$ such that $h \cap f \neq \emptyset$. Then there is a polynomial $p$, and a valid 2-coloring $x$ of $J_{n}$ with

$$
\mathbf{K}^{p}(x)<4 m(n) e / 2^{k(n)}+O(\log n)
$$

We define the following game involving hypergraphs. The player has access to a list of vertices and the goal of the player is to produce a valid 2 -coloring of the hypergraph. We assume that for each edge $f$ of the graph, there are at most $2^{k-1} / e-1$ edges $h$ such that $f \cap h \neq \emptyset$.

The game proceeds as follows. For the first round, environment gives the number of vertices to the player. The player has $n$ vertices, each with starting color 1. At each subsequent turn, the environment sends to the player the edges which are monochromatic. The player can change the color of up to $k$ vertices and sends these changes to the environment. The game ends when the player has a valid 2-coloring of the graph.

Theorem C. (Game Derandomization) For $k \geq 6$, there exists a player $\mathbf{p}$ that can beat the environment $\mathbf{q}$ in $(1+\epsilon) n / k$ turns, with Kolmogorov complextiy $\mathbf{K}(\mathbf{p})<{ }^{\log } \mathbf{I}(\mathbf{q} ; \mathcal{H})-\log \epsilon$, where $\epsilon \in(0,1)$.

## Chapter 2

## Conventions

$O_{a_{1}, \ldots, a_{n}}(1)$ is a constant dependent on parameters $a_{1}, \ldots, a_{n}$. For $n \in \mathbb{N},\langle n\rangle=01^{n} 0 .(x 0)^{-}=$ $(x 1)^{-}=x$. We say $x \sqsubseteq y$ if $x z=y$ for some $z \in\{0,1\}^{*}$. We say $[A]=1$ if mathematical statement $A$ is true, and $[A]=0$, otherwise.

As noted in the introduction, $\mathbf{K}(x \mid y)$ is the conditional prefix free Kolmogorov complexity. $\mathbf{m}(x)$ is the algorithmic probability. The function $\mathbf{m}$ is universal, in that for any computable probability $P$ over $\{0,1\}^{*}, O(1) \mathbf{m}(x)>2^{-\mathbf{K}(P)} P(x)$. Thus for set $D \subseteq\{0,1\}^{*}$, computable probability $P$, $O(1) \mathbf{m}(D)>2^{-\mathbf{K}(P)} P(D) . \quad \mathbf{I}(x ; \mathcal{H})=\mathbf{K}(x)-\mathbf{K}(x \mid \mathcal{H})$ is the amount of information that the halting sequence $\mathcal{H} \in\{0,1\}^{\infty}$ has about $x$. For some function $t: \mathbb{N} \rightarrow \mathbb{N}$, the $t$-time bounded Kolmogorov complexity is $\mathbf{K}^{t}(x)=\min \{\|p\|: U(p)=x$ in time $t\}$. A probability is elementary, if it has finite support and rational values. Elementary probabilities can be encoded into finite strings or natural numbers. The deficiency of randomness of $x$ relative to a elementary probability measure $Q$ is $\mathbf{d}(x \mid Q)=-\log Q(x)-\mathbf{K}(x \mid Q)$. We recall for a set $D \subseteq\{0,1\}^{*}, \mathbf{m}(D)=\sum_{x \in D} \mathbf{m}(x)$. For the nonnegative real function $f$, we use $<^{+} f,>^{+} f$, and $=^{+} f$ to denote $<f+O(1),>f-O(1)$, and $=f \pm O(1)$. We also use $<^{\log } f$ and $>^{\log } f$ to denote $<f+O(\log (f+1))$ and $>f-O(\log (f+1))$, respectively. The following lemma is conservation of mutual information information with the halting sequence over deterministic processing.

A continuous semi-measure is a function $\omega:\{0,1\}^{*} \rightarrow[0,1]$ such that $\omega(\emptyset)=1$ and $\omega(x) \geq$ $\omega(x 0)+\omega(x 1)$. For prefix free set $G, \omega(G)=\sum_{x \in G} \omega(x)$. Note that it could be that $\omega(x)>$ $\omega(\{x 0, x 1\})$. $\mathbf{M}$ is a universal lower-computable continuous semi-measure. Thus for prefix free set $G \subset\{0,1\}^{*}$, lower computable continuous semi-measure $\omega, \mathbf{M}(G) \stackrel{*}{>} \mathbf{m}(\omega) \omega(G)$. Monotone Kolmogorov complexity is $\operatorname{Km}(x)=\min \{\|p\|: U(p) \sqsupseteq x\}$. This is a slightly different convention than the literature, in that the universal Turing machine $U$ must halt. Mutual information between strings is $\mathbf{I}(x: y)=\mathbf{K}(x)+\mathbf{K}(y)-\mathbf{K}(x, y)$. For strings, $x, y, \mathbf{I}(x ; y)=\mathbf{K}(x)-\mathbf{K}(x \mid y)$.

Lemma 1 ([Eps22]) For partial computable $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}, \mathbf{I}(f(a) ; \mathcal{H})<^{+} \mathbf{I}(a ; \mathcal{H})+\mathbf{K}(f)$.
The following result is the EL Theorem [Lev16, Eps19]. It was originally formulated as a statement about learning. However since that time, there has been several unexpected applications. In this paper, the EL Theorem is used for derandomization.

Theorem 1 (EL Theorem [Lev16, Eps23a]) For finite $D \subset\{0,1\}^{*},-\log \max _{x \in D} \mathbf{m}(x)<{ }^{\log }$ $-\log \mathbf{m}(D)+\mathbf{I}(D ; \mathcal{H})$.

Theorem 2 (Monotone EL Theorem, [Eps24]) For finite prefix-free set $G \subset\{0,1\}^{*}$, we have $\mathbf{K m}(G) \ll^{\log }-\log \mathbf{M}(G)+\mathbf{I}(G ; \mathcal{H})$.

Definition 1 (Stochasticity) The stochasticity of $x \in \mathbb{N}$ with respect to $y \in \mathbb{N}$ is $\mathbf{K s}(x \mid y)=$ $\min \{\mathbf{K}(P \mid y)+3 \log \max \{\mathbf{d}(x \mid P, y), 1\}: P$ is elementary $\}$.

Lemma $2([E p s 23 b, L e v 16]) \mathbf{K s}(x \mid y)<{ }^{\log } \mathbf{I}(x ; \mathcal{H} \mid y)$.
Lemma 3 (Symmetric Lovász Local Lemma) Let $E_{1}, \ldots, E_{n}$ be a collection of events such that $\forall i: \operatorname{Pr}\left[E_{i}\right] \leq p$. Suppose further that each event is dependent on at most $d$ other events, and that $e p(d+1) \leq 1$. Then, $\operatorname{Pr}\left[\bigcap_{i} \bar{E}_{i}\right]>\left(1-\frac{1}{d+1}\right)^{n}$.

## Chapter 3

## 15 Instances of Kolmogorov Derandomization

In this section 22 examples of derandomization are given. Some use the Lovász Local Lemma, which is particularly suited for derandomization. There are 4 instances of games.

### 3.1 K-SAT

For a set of $n$ Boolean variables $x_{1}, \ldots, x_{n}$, a $C N F$ formula $\phi$ is a conjunction $C_{1} \cap \cdots \cap C_{m}$ of clauses. Each clause $C_{j}$ is a disjunction of $k$ literals, where each literal is a variable $x_{i}$ or its negation $\overline{x_{i}}$. Clauses $C_{j}$ and $C_{l}$ are said to intersect if there is some $x_{i}$ such that both clauses contain either $x_{i}$ or $\overline{x_{i}}$. A satisfying assignment is a setting of each $x_{i}$ to true or false that makes $\phi$ evaluate to true. An example of K-SAT can be seen in Figure 7.2.

Theorem 3 Let $\phi$ be $a$ K-SAT instance of $n$ variables and $m$ clauses, with $k \geq 3$. If each clause intersects at most $\left(2^{k} / e\right)-1$ other clauses, then there exists a satisfying assignment $\psi$ of $\phi$ of complexity $\mathbf{K}(\psi)<{ }^{\log } \mathbf{K}(n)+2 e m / 2^{k}+\mathbf{I}(\phi ; \mathcal{H})$.

Proof. The sample space is the set of all $2^{n}$ assigments, and for each clause $C_{J}, E_{j}$ is the bad event " $C_{j}$ is not satisfied". Let $p=2^{-k}$ and $d=\left(2^{k} / e\right)-1$. Thus $\forall j, \operatorname{Pr}\left[E_{j}\right] \leq p$ as each clause has size $k$ and each $E_{j}$ is dependent on at most $d$ other events by the intersection property. Thus since $e p(d+1)$, by the Lovász Local Lemma 5, we have that,

$$
\begin{equation*}
\operatorname{Pr}\left[\bigcap_{j} \overline{E_{j}}\right]>\left(1-\frac{1}{d+1}\right)^{m}=\left(1-\frac{e}{2^{k}}\right)^{m} \tag{3.1}
\end{equation*}
$$

Let $D \subset\{0,1\}^{n}$ be the set of all assignments that satisfy $\phi . \mathbf{K}(D \mid \phi)=O(1)$. Let $P$ be the uniform measure over sequences of size $n$. By Equation 5.2, assuming $k \geq 3$,

$$
-\log P(D)<-m \log \left(1-e / 2^{k}\right)<2 e m / 2^{k}
$$

$$
\left(x_{1} \vee x_{3} \vee \bar{x}_{5}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{4} \vee \bar{x}_{5}\right)
$$

Figure 3.1: An example 3-SAT instance. Each clause contains 3 literals consisting of variables $x_{i}$ or their negations $\bar{x}_{i}$. An example satisfying assignment is $x_{1}=\operatorname{True}, x_{2}=$ True, $x_{3}=$ False, $x_{4}=$ False, $x_{5}=$ True.

Thus by Theorem 41 and Lemma 5, for $k \geq 3$, there exists an assignment $\psi \in D$ that satisfies $\phi$ with complexity

$$
\mathbf{K}(\psi) \ll^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n)+2 e m / 2^{k}+\mathbf{I}(\phi ; \mathcal{H})
$$

### 3.2 Hypergraph-Coloring

In this section we show how to compress colorings of $k$-uniform hypergraph. A hypergraph is a pair $J=(V, E)$ of vertices $V$ and edges $E \subseteq \mathcal{P}(V)$. Thus each edge can connect $\geq 2$ vertices. A hypergraph is $k$-uniform of the size $|e|=k$ for all edges $e \in E$. A 2-uniform hypergraph is just a simple graph. A valid $C$-coloring of a hypergraph $(V, E)$ is a mapping $f: V \rightarrow\{1, \ldots, C\}$ where every edge $e \in E$ is not monochromatic $|\{f(v): v \in e\}|>1$. The goal of Hypergraph-Coloring with parameter $k$, is given a $k$ uniform hypergraph, produce a coloring using the smallest amount of colors. Theorem 4 uses the union bound whereas Theorem 5 uses the Lovász Local Lemma.

Theorem 4 Every $k$-uniform hypergraph $J=(V, E),|E|=n,|V|=m$ has $a\lceil\sqrt[k-1]{2 m}\rceil$ coloring $g$ where $\mathbf{K}(g)<{ }^{\log } \mathbf{K}(k, n, m)+\mathbf{I}(J ; \mathcal{H})$.

Proof. We randomly color every vertex $v \in V$ using $C=\lceil\sqrt[k-1]{2 m}\rceil$ colors. Let $A_{e}$ be the bad event that edge $e$ is monochromatic. This event has probability:

$$
\operatorname{Pr}\left[A_{e}\right]=C \cdot(1 / C)^{k}=(1 / C)^{k-1}<1 / 2 m,
$$

because there are $C$ possible colors and each vertex has a $1 / C$ chance of getting a particular color. We can get a union-bound over all $m$ edges to find the bad probability.

$$
\begin{equation*}
\operatorname{Pr}\left[\bigcup_{e \in E} A_{e}\right]<\sum_{e \in E} \operatorname{Pr}\left[A_{e}\right]<m \cdot(1 / 2 m)=1 / 2 \tag{3.2}
\end{equation*}
$$

We let $D \subset\{0,1\}^{n\lceil\log C\rceil}$ be the set of all encodings of $C$ colorings (so no edge in monochromatic. $\mathbf{K}(D \mid J)=O(1)$. Let $P:\{0,1\}^{*} \rightarrow \mathbb{R}_{\geq 0}$ be a probability measure over $\{0,1\}^{*}$, uniformly distributed over all $x \in\{0,1\}^{n\lceil\log C\rceil}$ that encode a $C$ color assignment. $P(D)>.5$. By Theorem 41 and Lemma 1 , there is a graph coloring $g \in D$ where

$$
\mathbf{K}(g)<^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(k, m, n)+\mathbf{I}(J ; \mathcal{H}) .
$$

The second result on $k$-hypergraph coloring uses Lovász Local Lemma.
Theorem 5 Let $J=(V, E),|V|=n,|E|=m$ be a hypergraph and $k=\min _{f \in E}|f|$, with $k \geq 3$. Assume for each edge $f$, there are at most $2^{k-1} / e$ edges $h \in E$ such that $h \cap f \neq \emptyset$. Then for $k \geq 4$, there is a 2-coloring $g$ of $G$ such that $\mathbf{K}(g)<{ }^{\log } \mathbf{K}(n) 4 m e / 2^{k}+\mathbf{I}(J ; \mathcal{H})$.


Figure 3.2: An example graph partitioned into 3 groups such that each group contains a cycle.

Proof. The case is degenerate for $k=1$. Assume $k \geq 3$. We will use the Lovász Local Lemma to get a lower bound on the probability that a random assignment of colors is a 2 coloring. We assume each vertex is colored black or white with equal probability. For each edge $f \in E$, we define $E_{f}$ to be the bad event " $f$ is monochromatic". A valid 2-coloring exists iff $\operatorname{Pr}\left[\bigcap_{f} \bar{E}_{f}\right]>0$.

Let $p=1 / 2^{k-1}$ and $d=\left(2^{k-1} / e\right)-1$. For each $f, \operatorname{Pr}\left[E_{f}\right] \leq p$ by the fact that $f$ contains at least $k$ vertices. Furthermore since $f$ intersects at most $d$ edges besides itself, $E_{f}$ is dependent on at most $d$ of the other events. Therefore since $e p(d+1)=1$ we can apply the Lovász Local Lemma 5 ,

$$
\begin{equation*}
\operatorname{Pr}\left[\bigcap_{f} \bar{E}_{f}\right]>\left(1-\frac{1}{1+d}\right)^{m}=\left(1-\frac{e}{2^{k-1}}\right)^{m} . \tag{3.3}
\end{equation*}
$$

Let $D=\{0,1\}^{n}$ be the set of all encoded 2 colorings of $J . \mathbf{K}(D \mid J)=O(1)$. Let $P(x)=[\|x\|=$ $n] 2^{-n}$ is the uniform distribution over sequences of length $n$. By Equation 3.3, assuming $k \geq 4$

$$
-\log P(D)<-m \log \left(1-2 e / 2^{k}\right)<4 m e / 2^{k} .
$$

By Theorem 41 and Lemma 5, there exist a 2 -coloring $g$ of $J$ such that for $k \geq 4$,

$$
\mathbf{K}(g) \ll^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n)+4 m e / 2^{k}+\mathbf{I}(J ; \mathcal{H}) .
$$

### 3.3 Vertex-Disjoint-Cycles

Proposition 1 (Mutual Independence Principle) Suppose that $Z_{1}, \ldots Z_{m}$ is an underlying sequence of independent events and suppose that each event $A_{i}$ is completely determined by some subset $S_{i} \subset\left\{Z_{1}, \ldots, Z_{m}\right\}$. If $S_{i} \cap S_{j}=\emptyset$ for $j=j_{1}, \ldots, j_{k}$ then $A_{i}$ is mutually independent of $\left\{A_{j_{1}}, \ldots, A_{j_{k}}\right\}$.
This section deals with partitioning graphs into subgraphs such that each subgraph contains an independent cycle. An example partition can be seen in Figure 3.2.

Theorem 6 There is a partition $\ell$ of vertices of a $k$-regular graph $G=(V, E)$, with vertices $|V|=n$, into $c=\left\lfloor\frac{k}{3 \ln k}\right\rfloor$ components each containing a cycle that is vertex disjoint from the other cycles with complexity $\mathbf{K}(\ell)<{ }^{\log } \mathbf{K}(n, k)+2 n / k^{2}+\mathbf{I}(G ; \mathcal{H})$.

Proof. We partition the vertices of $G$ into $c=\lfloor k / 3 \ln k\rfloor$ components by assigning each vertex to a component chosen independently and uniformly at random. With positive probability, we show that every component contains a cycle. It is sufficient to prove that every vertex has an edge leading to another vertex in the same component. This implies that starting at any vertex there exists a path of arbitrary length that does not leave the component of the vertex, so a sufficiently long path must include a cycle. A bad event $A_{v}=\{$ vertex $v$ has no neighbor in the same component $\}$. Thus

$$
\begin{aligned}
\operatorname{Pr}\left[A_{v}\right] & =\prod_{(u, v) \in E} \operatorname{Pr}[u \text { and } v \text { are in different components }] \\
& =\left(1-\frac{1}{c}\right)^{k}<e^{-k / c} \leq e^{-3 \ln k}=k^{-3}
\end{aligned}
$$

$\mathrm{x} A_{v}$ is determined by the component choices of itself and of its out neighbors $N^{\text {out }}(v)$ and these choices are independent. Thus by the Mutual Independence Principle, (Proposition 2) the dependency set of $A_{v}$ consist of those $u$ that share a neighor with $v$, i.e., those $u$ for which $(\{v\} \cup N(v)) \cap(\{u\} \cup N(u)) \neq 0$. Thus the size of this dependency is at most $d=(k+1)^{2}$.

Take $d=(k+1)^{2}$ and $p=k^{-3}$, so $e p(d+1)=e\left(1+(k+1)^{2}\right) / k^{3} \leq 1$, holds for $k \geq 5$. One can trivially find a partition of a $k$-regular graph when $k<5$ because $c=1$. Thus, noting that $k \geq 5$,

$$
\begin{align*}
\operatorname{Pr}\left[\bigcap_{v \in G} \bar{A}_{v}\right]> & \left(1-\frac{1}{d+1}\right)^{n}=\left(1-\frac{1}{(k+1)^{2}+1}\right)^{n}>\left(1-\frac{1}{k^{2}}\right)^{n}  \tag{3.4}\\
& -\log P(D)<-n \log \left(1-1 / k^{2}\right)<2 n / k^{2}
\end{align*}
$$

By Theorem 41 and Lemma 1, for large enough $k$, there exist a partitioning $\ell \in D$ of vertices into $c=\lfloor k / 3 \ln k\rfloor$ components each containing a cycle that is vertex disjoint from the other cycles with complexity

$$
\mathbf{K}(\ell)<^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n, k)+2 n / k^{2}+\mathbf{I}(G ; \mathcal{H})
$$

### 3.4 Weakly-Frugal-Graph-Coloring

For an undirected graph $G=(V, E)$, a $k$-coloring assignment $f: V \rightarrow\{1, \ldots, k\}$ is a $\beta$-weakly frugal if for all neighbors of vertices $v \in V$ contain at most $\beta$ vertices with the same assignment. Note that a weakly frugal coloring assignment differs from a frugal coloring assignment, introduced in [HMR97], by the fact that the former can have two adjacent vertices with the same color.

Theorem 7 For graph $G=(V, E)$, with $|V|=n$, with max degree $\Delta>2 e$ there is a $\beta$-weakly frugal coloring assignment $f$, with $\beta<\Delta$, using $Q \geq \Delta^{1+4 / \beta} / 2$ colors with complexity $\mathbf{K}(f)<\log$ $\mathbf{K}(n, Q)+2 n / \beta+\mathbf{I}((G, \beta, Q) ; \mathcal{H})$.

Proof. This proof is a modification of the proof in [HMR97], except the restriction is relaxed to weakly-frugal coloring. Let us say each vertex is assigned one of $Q$ colors with uniform randomness. For vertices $\left\{u_{1}, \ldots, u_{\beta+1}\right\}$ that are in the neighborhood of a vertex $v \in V$, let $B_{u_{1}, \ldots, u_{\beta+1}}$ be the bad event that the vertices are the same color. $\operatorname{Pr}\left[B_{u_{1}, \ldots, u_{\beta+1}}\right]=p=1 / Q^{\beta}$. Each such bad event is
dependent on at most $d=(\beta+1) \Delta\binom{\Delta}{\beta}$ other events. There are at most $m=n\binom{\Delta}{\beta+1}$ such events. The requirement that $e p(d+1) \leq 1$ of the Lovász Local Lemma is fulfilled, because

$$
\begin{aligned}
& e p(d+1) \\
= & e \frac{1}{Q^{\beta}}\left(1+(\beta+1) \Delta\binom{\Delta}{\beta}\right) \\
\leq & e \frac{1}{Q^{\beta}}\left(1+(\beta+1)\left(\Delta^{\beta+2} / \beta!\right)\right) \\
\leq & e \frac{1}{Q^{\beta}}\left(1+\left(\Delta^{\beta+3} / \beta!\right)\right) \\
\leq & \left.\frac{1}{Q^{\beta}}\left(\Delta^{\beta+4} / \beta!\right)\right) \\
\leq & \frac{1}{Q^{\beta}} \Delta^{\beta+4} 2^{-\beta} \\
\leq & 1 .
\end{aligned}
$$

By Lovász Local Lemma 5,

$$
\begin{aligned}
&-\log \operatorname{Pr}\left(\bigcap_{u_{1}, \ldots, u_{\beta+1}} \bar{B}_{u_{1}, \ldots, u_{\beta+1}}\right) \\
&<-m \log \left(1-\frac{1}{d+1}\right) \\
&<2 m\left(1-\frac{1}{d+1}\right) \\
&<2 n\binom{\Delta}{\beta+1} /\left(1+(\beta+1) \Delta\binom{\Delta}{\beta}\right) \\
&< 2 n\binom{\Delta}{\beta+1} /\left((\beta+1) \Delta\binom{\Delta}{\beta}\right) \\
&<2 n /(\beta+1) . \\
&<2 n / \beta .
\end{aligned}
$$

Let $D \subset\{0,1\}^{n\lceil\log Q\rceil}$ be encodings of all $\beta$-weakly frugal coloring of $G$ using $Q$ colors. $\mathbf{K}(D \mid G, Q, \beta)=$ $O(1)$. Let $P$ be uniform distribution over all $Q$-color assignments to $n$ vertices. $-\log P(D)<^{+}$ $2 n / \beta$. By Theorem 41 and Lemma 5, we have a $\beta$-weakly frugal color assignment $f \in D$ of $G$ using $Q$ colors such that

$$
\mathbf{K}(f)<^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n, Q)+2 n / \beta+\mathbf{I}((G, Q, \beta) ; \mathcal{H}) .
$$

### 3.5 Graph-Coloring

For graph $G=(V, E)$, with undirected edges, a $k$-coloring is a function $f: V \rightarrow\{1, \ldots, k\}$ such that if $(v, u) \in E$, then $f(v) \neq f(u)$. An example graph coloring can be seen in Figure 3.3

Theorem 8 For graph $G=(V, E),|V|=n$ with max degree $d$, there is a $k$ coloring $f$ with $2 d \leq k$, and $\mathbf{K}(f)<{ }^{\log } \mathbf{K}(n, k)+2 n d / k+\mathbf{I}((G, k) ; \mathcal{H})$.


Figure 3.3: An example graph coloring. Nodes that share an edge are assigned different colors.

Proof. Let us say we randomly assign a color to each vertex. The probability that the color of the $i$ th vertex does not conflict with the previous coloring is at least $(k-d) / k$. Thus the probability of a proper coloring is $\geq((k-d) / k)^{n}$. Let $D \subseteq\{0,1\}^{n\lceil\log k\rceil}$ be all encoded proper $k$ colorings of $G$. $\mathbf{K}(D \mid G, k)=O(1)$. Let $P:\{0,1\}^{*} \rightarrow \mathbb{R}_{\geq 0}$ be a probability measure that is the uniform distribution over all possible color assignments. Thus, assuming $d / k \leq .5$,

$$
-\log P(D) \leq-n \log (1-d / k) \leq 2 n d / k .
$$

Thus by Theorem 41 and Lemma 1 , there is a coloring $f \in D$ with

$$
\begin{aligned}
\mathbf{K}(f) & <^{\log }-\log \mathbf{m}(D)+\mathbf{I}(D ; \mathcal{H}) \\
& <^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H}) \\
& <^{\log } \mathbf{K}(n, k)+2 n d / k+\mathbf{I}((G, k) ; \mathcal{H}) .
\end{aligned}
$$

### 3.6 Max-Cut

Imagine a graph $G=(E, V),|V|=n$, consisting of vertices $V$ and undirected edges $E$, and a weight $\omega_{e}$ for each edge $e \in \mathbf{E}$. Let $\omega=\sum_{e \in E} \omega_{e}$ be the combined weight of all edges. The goal is to find a partition $(A, B)$ of the vertices into two groups that maximizes the total weight of the edges between them.

Theorem 9 There is a cut $f$ of $G$ that is $1 / 3$ th optimal and $\mathbf{K}(f)<^{\log } \mathbf{K}(n)+\mathbf{I}(G ; \mathcal{H})$.
Proof. Imagine the algorithm that on receipt of a vertex, randomly places it into $A$ or $B$ with equal probability. Then the expected weight of the cut is

$$
\mathbf{E}\left[\sum_{e \in E(A, B)} \omega_{e}\right]=\sum_{e \in E} \omega_{e} \operatorname{Pr}(e \in E(A, B))=\frac{1}{2} \omega .
$$

This means the expected weight of the cut is at least half the weight of the maximum cut. Some simple math results in the fact that $\operatorname{Pr}\left[\sum_{e \in E(A, B)} \omega_{e}\right]>\omega / 3 \geq 1 / 4$. We can encode a cut into
a binary string of $x$ length $n$, where $x[i]=1$, if the $i$ th vertex is in $A$. Let $P$ be the uniform distribution over strings of size $n$. Let $D \subset\{0,1\}^{n}$ consist of all encoded cuts that are at least $1 / 3$ optimal. $\mathbf{K}(D \mid G)=O(1)$ and $P(D) \geq .25$. By Theorem 41 and Lemma 1,

$$
\min _{f \in D} \mathbf{K}(f)<^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n)+\mathbf{I}(G ; \mathcal{H})
$$

### 3.7 MAX-3Sat

This problem consists of a boolean formula $f$ in conjunctive normal form, comprised of $m$ clauses, each consisting of a disjunction of 3 literals. Each literal is either a variable or the negation of a variable. We assume that no literal (including its negation) appears more than once in the same clause. There are $n$ variables. The goal is to find an assignment of variables that satisfies as many clauses as possible.

Theorem 10 There is an assignment $x$ that is $6 / 7$ th optimal and has complexity $\mathbf{K}(x)<{ }^{\log } \mathbf{K}(m)+$ $\mathbf{I}(f ; \mathcal{H})$.

Proof. The randomized approximation algorithm is as follows. The variables are assigned true or false with equal probability. Let $Y_{i}$ be the random variable that clause $i$ is satisfied. Thus the probability that clause $Y_{i}$ is satisfied is $7 / 8$. So the total expected number of satisfied clauses is $7 \mathrm{~m} / 8$, which is $7 / 8$ of optimal. Some simple math shows the probability that number of satified clauses is $>6 \mathrm{~m} / 7$ is at least $1 / 8$.

Let $x \in\{0,1\}^{n}$ encode an assignment of $n$ variables, where $x[i]=1$ if variable $i$ is true. Let $D \subset\{0,1\}^{n}$ encode all assignments that are $6 / 7$ th optimal. Let $P$ be the uniform distribution over strings of length $n . \mathbf{K}(D \mid f)=O(1)$ and $P(D) \geq 1 / 8$. By Theorem 41 and Lemma 1,

$$
\min _{x \in D} \mathbf{K}(x)<^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n)+\mathbf{I}(f ; \mathcal{H}) .
$$

### 3.8 Balancing-Vectors

For a vector $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n},\|v\|_{\infty}=\max _{i}\left|V_{i}\right|$. Binary matrix $M$ is a matrix whose values are either 0 or 1 . The goal of Binary Matrix, is given $M$, to find a vector $b \in\{-1,+1\}^{n}$ that minimizes $\|M b\|_{\infty}$.

Theorem 11 Given $n \times n$ binary matrix $M$, there is a vector $b=\{-1,+1\}^{n}$ such that $\|M b\|_{\infty} \leq$ $4 \sqrt{n \ln n}$ and $\mathbf{K}(b)<{ }^{\log } \mathbf{K}(n)+\mathbf{I}(M ; \mathcal{H})$.

Proof. Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be a row of $M$. Choose a random $b=\left(b_{1}, \ldots, b_{n}\right) \in\{-1,+1\}^{n}$. Let $i_{1}, \ldots, i_{m}$ be the indices such that $v_{i_{j}}=1$. Thus

$$
Y=\langle v, b\rangle=\sum_{i=1}^{n} v_{i} b_{i}=\sum_{j=1}^{m} v_{i_{j}} b_{i_{j}}=\sum_{j=1}^{m} b_{i_{j}} .
$$

$$
\mathbf{E}[Y]=\mathbf{E}[\langle v, b\rangle]=\mathbf{E}\left[\sum_{i} v_{i} b_{i}\right]=\sum_{i} \mathbf{E}\left[v_{i} b_{i}\right]=\sum v_{i} \mathbf{E}\left[b_{i}\right]=0 .
$$

By the Chernoff inequality and the symmetry $Y$, for $\tau=4 \sqrt{n \ln n}$,

$$
\operatorname{Pr}[|Y| \geq \tau]=2 \operatorname{Pr}[v \cdot b \geq \tau]=2 \operatorname{Pr}\left[\sum_{j=1}^{m} b_{i_{j}} \geq \tau\right] \leq 2 \exp \left(-\frac{\tau^{2}}{2 m}\right)=2 \exp \left(-8 \frac{n \ln n}{m}\right) \leq 2 n^{-8}
$$

Thus, the probability that any entry in $M b$ exceeds $4 \sqrt{n \ln n}$ is smaller than $2 n^{-7}$. Thus, with probability $1-2 n^{-7}$, all the entries of $M b$ have value smaller than $4 \sqrt{n \ln n}$.

Let $P:\{0,1\}^{*} \rightarrow \mathbb{R}_{\geq 0}$, be the uniform measure over string of length $n$, with $P(x)=[\|x\|=$ $n] 2^{-n}$. Let $D$ consist of all strings that encode vectors $b_{x} \in\{-1,+1\}^{n}$ in the natural way such that $\left\|M b_{x}\right\|_{\infty} \leq 4 \sqrt{n \ln n} . \mathbf{K}(D \mid M)=O(1)$. Thus by the above reasoning $P(D) \geq 1-2 n^{-7}>0.5$. By Theorem 41 and Lemma 1, there exists an $x \in D$, such that

$$
\mathbf{K}(x)<^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n)+\mathbf{I}(M ; \mathcal{H}) .
$$

Thus there exists a $b_{x} \in\{-1,+1\}^{n}$ that satisfies the theorem statement.
We provide another derandomization example using balancing vectors.
Theorem 12 Let $v=v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, all $\left|v_{i}\right|=1$, Then there exist $\epsilon=\epsilon_{1}, \ldots, \epsilon_{n}= \pm 1$ such that $\left|\epsilon_{1} v_{1}+\cdots+\epsilon_{n} v_{n}\right| \leq \sqrt{2 n}$ and $\mathbf{K}(\{\epsilon\})<{ }^{\log } \mathbf{K}(n)+\mathbf{I}(v ; \mathcal{H})$.

Proof. Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be selected uniformly and independently from $\{-1,+1\}$. Set

$$
X=\left|\epsilon v_{1}+\cdots+\epsilon_{n} v_{n}\right|^{2} .
$$

Then

$$
X=\sum_{i=1} \sum_{j=1}^{n} \epsilon_{i} \epsilon_{j} v_{i} \cdot v_{j}
$$

So

$$
\mathbf{E}[X]=\sum_{i=1}^{n} \sum_{j=1}^{n} v_{i} \cdot v_{j} \mathbf{E}\left[\epsilon_{i} \epsilon_{j}\right]
$$

When $i \neq j, \mathbf{E}\left[\epsilon_{i} \epsilon_{j}\right]=\mathbf{E}\left[\epsilon_{i}\right] \mathbf{E}\left[\epsilon_{j}\right]=0$. When $i=j, \mathbf{E}\left[\epsilon_{i}^{2}\right]=1$, so

$$
\mathbf{E}[X]=\sum_{i=1}^{n} v_{i} \cdot v_{i}=n
$$

So $\operatorname{Pr}[X \leq 2 n] \geq 0.5$. Let $D \subseteq\{0,1\}^{n}$ consist of sequences of length $n$, each encoding an assignment of $\epsilon_{1}$ to $\epsilon_{n}$ in the natural way, such that the assignment of $\epsilon$ results in an $X_{\epsilon} \leq 2 n . \mathbf{K}(D \mid v)=O(1)$. Let $P$ be the uniform measure over sequences of length $n$. By the above reasoning $P(D) \geq 0.5$. By Theorem 41 and Lemma 1, there is an assignment $\epsilon \in D$, such that $\mathbf{K}(\epsilon)<\log \mathbf{K}(P)-\log P(D)+$ $\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n)+\mathbf{I}(v ; \mathcal{H})$. This assignment has $X_{\epsilon} \leq 2 n$. Thus $\left|\epsilon_{1} v_{1}+\ldots \epsilon_{n} v_{n}\right| \leq \sqrt{2 n}$, satisfying the theorem.


Figure 3.4: A Boolean Hypercube network, for $n=3$.

### 3.9 Parallel-Routing

The Parallel-Routing problem consists of $(G, d)$, a directed graph $G=(N, V)$ and a set of destinations $d: N \rightarrow N$. Each node represents a processor $i$ in a network containing a packet $v_{i}$ destined for another processor $d(i)$ in the network. The packet moves along a route represented by a path in $G$. During its transmission, a packet may have to wait at an intermediate node because the node is busy transmitting another packet. Each node contains a separate queue for each of its links and follows a FIFO queuing disciple to route packets, with ties handled arbitrarily. The goal of Parallel-Routing is to provide $N$ routes from $i \in N$ to $d(i)$ that minimize lag time.

We restrict graphs to Boolean Hypercube networks, which is popular for parallel processing. The cube network contains $N=2^{n}$ processing elements/nodes and is connected in the following manner. if $\left(i_{0}, \ldots, i_{n-1}\right)$ and $\left(j_{0}, \ldots, j_{n-1}\right)$ are binary representation of node $i$ and node $j$, then there exist directed edges $(i, j)$ and $(j, i)$ between the nodes if and only if the binary representation differ in exactly one position. An example Boolean Hypercube can be found in Figure 3.4.

One set of solutions, called oblivious algrithms satisfies the following property: a route followed by $v_{i}$ depends on $d(i)$ alone, and not on $d(j)$ for any $j \neq i$. We focus our attention on a 2 phase oblivious routing algorithm, Two-Phase. Under this scheme, packet $v_{i}$ executes the following two phases independently of all the other packets.

1. Pick a intermediate destination $\sigma(i)$. Packet $v_{i}$ travels to node $\sigma(i)$.
2. Packet $v_{i}$ travels from $\sigma(i)$ to destination $d(i)$.

The method that the routes use for each phase is the bit-fixing routing strategy. Its description is as follows. To go from $i$ to $\sigma(i)$ : one scans the bits of $\sigma(i)$ from left to right, and compares them with $i$. One sends $v_{i}$ out of the current node along the edge corresponding to the left-most bit in which the current position and $\sigma(i)$ differ. Thus going from (1011) to (0000), the packet would pass through (0011) and then (0001).

Theorem 13 Given a Parallel-Routing instance ( $G, d$ ), there is a set of intermediate destinations $\sigma: \mathbb{N} \rightarrow\{0,1\}^{n}$ for each $i$ such that every packet $i$ using $\sigma(i)$ and the Two-Phase algorithm reaches its destination in at most $14 n$ steps and $\mathbf{K}(\sigma)<{ }^{\log } \mathbf{I}(G, d ; \mathcal{H})$.


Figure 3.5: A graphical depiction of an independent set, represented by the green vertices. They do not share any edges.

Proof. By Theorem 47 in [MR95], if the intermediate destinations are chosen randomly, with probability least $1-(1 / N)$, every packet reaches its destination in $14 n$ or fewer steps. Let $D \subset$ $\{0,1\}^{n N}$ be the set of all intermediate destinations $\sigma \in D$ such that the lag time of instance ( $G, d$ ) using $\sigma$ is $\leq 14 n$. Let $\mu:\{0,1\}^{*} \rightarrow \mathbb{R}_{\geq 0}$ be the uniform continuous semi-measure, with $\mu(\emptyset)=1$, $\mu(x)=2^{-\|x\|}$. Thus $\mu(D) \geq 0.5 \cdot \mathbf{K}(D \mid(G, d))=O(1)$. Theorem 2 and Lemma 1 results in

$$
\mathbf{K m}(D)<^{\log }-\log \mathbf{M}(D)+\mathbf{I}(D ; \mathcal{H})<^{\log }-\log \mu(D)+\mathbf{I}((G, d) ; \mathcal{H})<^{\log } \mathbf{I}((G, d) ; \mathcal{H})
$$

Thus using $y \sqsupseteq x \in D$ that realizes $\mathbf{K m}(D)$, one can construct a function $\sigma: \mathbb{N} \rightarrow\{0,1\}^{n}$ which produces the desired intermediate destinations, and $\mathbf{K}(\sigma)<^{+} \mathbf{K}(y)<{ }^{\log } \mathbf{I}((G, d) ; \mathcal{H})$.

### 3.10 Independent-Set

An independent set in a graph $G$ is a set of vertices with no edges between then, as shown in Figure 3.5. The Independent-Set problem consists of an undirected graph $G$ and the goal is to find the largest independent set of that $G$.

Theorem 14 For a graph $G$ on $n$ vertices with $m$ edges, there exists an independent set $S$ of size $0.75 \sqrt{n}-2 m / n$ and complexity $<{ }^{\log } \mathbf{K}(n, m)+4(\log n)(m / n)+\mathbf{I}(G ; \mathcal{H})$.

Proof. We use a modification of the algorithm in the proof of Theorem 6.5 in [MU05]. The randomized algorithm $A$ is as follows.

1. Delete each vertex (along with its incident edges) independently with probability $1-p$.
2. For each remaining edge, remove it and one of its adjacent vertices.

For $X$, the number of vertices that survive the first round $\mathbf{E}[X]=n p$. Let $Y$ be the number of edges that survive the first step, $\mathbf{E}[Y]=m p^{2}$. The second steps removes at most $Y$ vertices. The output is an independent set of size at least $\mathbf{E}[X-Y]=n p-m p^{2}$. Let $p=1 / \sqrt{n}$. Thus $\mathbf{E}[X]=\sqrt{n}$, $\mathbf{E}[Y]=m / n$, and $\mathbf{E}[X-Y]=\sqrt{n}-m / n$. By the Markov inequality, $\operatorname{Pr}[Y<2 m / n]>1 / 2$. By the Hoeffding's inequality,

$$
\operatorname{Pr}[X \leq 0.75 \sqrt{n}] \leq e^{-2 *(0.75)^{2}(n p)^{2} / n} \leq e^{-2\left(.75^{2}\right)\left(n * n^{-.5}\right)^{2} / n} \leq e^{-2 * 0.5}=e^{-1} .
$$



Figure 3.6: A graphical depiction of a dominating set. The two highlighted vertices are adjacent to all other vertices in the graph.

For a sequence $x \in\{0,1\}^{*}, x_{[1]}=|\{i: x[i]=1\}|$ and $x_{[0]}=\|x\|-x_{1}$. Let $P:\{0,1\}^{*} \rightarrow \mathbb{R}_{\geq 0}$ be a computable probability, where for a string $x \in\{0,1\}^{n}, P(x)=(1 / \sqrt{n})^{x_{[1]}}(1-1 / \sqrt{n})^{x_{[0]}}$. Thus each $x$ represents a selection of vertices selected according to the randomized algorithm $A$. Let $D \subseteq\{0,1\}^{n}$ be the set consists of all sequences $x$ such that the $X$ variable resultant from $x$ is $\left|X_{x}\right|>0.75 \sqrt{n}$ and the $Y$ variable resultant from algorithm $A$ is $\left|Y_{x}\right| \leq 2 m / n$. Thus $P(D) \geq$ $\left(1-e^{-1}\right)+1 / 2-1>1 / 10$. Furthermore $D$ can be constructed from $G$, with $\mathbf{K}(D \mid G)=O(1)$. By Theorem 41 and Lemma 1, there exists an $x \in D$, with

$$
\begin{aligned}
\mathbf{K}(x) & <{ }^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H}) \\
& <^{\log } \mathbf{K}(n)+\mathbf{I}(G ; \mathcal{H}) .
\end{aligned}
$$

In order for $x$ to represent an independent set, the second step of algorithm $A$ needs to be applied. In this case there are $<2 m / n$ vertices that needs to be removed. Thus a modification $x^{\prime}$ that has these vertices deleted represents an independent set.

$$
\begin{aligned}
\mathbf{K}\left(x^{\prime}\right) & <{ }^{\log } \mathbf{K}(x, n, m)+(2 \log n)(2 m / n) \\
& <{ }^{\log } \mathbf{K}(n, m)+(4 \log n)(m / n)+\mathbf{I}(D ; \mathcal{H}) \\
& <{ }^{\log } \mathbf{K}(n, m)+(4 \log n)(m / n)+\mathbf{I}(G ; \mathcal{H}) .
\end{aligned}
$$

This independent set has $X_{x}>0.75 \sqrt{n}$ and $Y_{x}<2 m / n$, it size is $\geq 0.75 \sqrt{n}-2 m / n$.

### 3.11 Dominating-Set

A dominating-set of an undirected graph $G=(E, V)$ on $n$ vertices is a set $U \subseteq V$ such that every vertex $v \in V-U$ has at least one neighbor in $U$. An example of a dominating set can be seen in Figure 3.6.

Theorem 15 Every graph $G=(V, E),|V|=n$ with min degree $\delta>1$ has a dominating set $U$ of size $\leq 3 n \frac{1+\ln (\delta+1)}{\delta+1}$ and complexity $\mathbf{K}(U)<^{\log } \mathbf{K}(n, \delta)+6(n \log n) /(\delta+1)+\mathbf{I}(G ; \mathcal{H})$.

Proof. Let $p \in[0,1]$. Let the vertices of $V$ be picked randomly and independently, each with probability $p$. Let $X$ be the random set of all vertices picked. $\mathbf{E}[|X|]=n p$. Let $Y=Y_{X}$ be the random set of all vertices $V-X$ that do not have a neighbor in $X$. $\operatorname{Pr}\left(v \in Y_{X}\right) \leq(1-p)^{\delta+1}$. Thus $\mathbf{E}\left[\left|Y_{X}\right| \leq n(1-p)^{\delta+1} \leq n e^{-p(\delta+1)}\right.$. We set $p=\ln (\delta+1) /(\delta+1) . \operatorname{Pr}[X \leq 3 n \ln (\delta+1) /(\delta+1)] \geq 2 / 3$. $\operatorname{Pr}\left[Y_{X} \leq 3 n /(\delta+1)\right] \geq 2 / 3$. Thus the probability of the previous two events is $\geq 1 / 3$.

Let $D \subseteq\{0,1\}^{n}$ be the set consisting of all sequences $x \in\{0,1\}^{n}$ where $x[i]=1$ indicates vertex $i$ was selected, such that the $X$ variable resultant from $x$ is $\left|X_{x}\right| \leq 3 n \ln (\delta+1) /(\delta+1)$ ] and the $Y_{x}$ resultant variable is $\left|Y_{x}\right| \leq 3 n /(\delta+1)$. Furthermore $D$ can be constructed from $G$, with $\mathbf{K}(D \mid G)=O(1)$. Let $P:\{0,1\}^{*} \rightarrow \mathbb{R}_{\geq 0}$ be a probability measure over $x \in\{0,1\}^{n}$, where $P(x)=\prod_{i=1}^{n}(p x[i]+(1-p)(1-x[i]))$. By definition of $D, P(D) \geq 1 / 3$. Furthermore by Theorem 41 and Lemma 1, there is a subset of vertices $x \in D, x \subseteq V$, with

$$
\mathbf{K}(x) \ll^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<{ }^{\log } \mathbf{K}(n, \delta)+\mathbf{I}(G ; \mathcal{H}) .
$$

The sequence $x$ represent the first step, however the set $Y_{x}$ needs to be added to make $x$ a dominating steps. Thus $3 n /(\delta+1)$ vertices needs to be added, each can be encoded by $(2 \log n)$ bits. Thus a dominating set $x^{\prime}$ of $G$ exists of size $\leq 3 n \frac{1+\ln (\delta+1)}{\delta+1}$ such that

$$
\mathbf{K}\left(x^{\prime}\right) \ll^{\log } \mathbf{K}(n, \delta)+6(n \log n) /(\delta+1)+\mathbf{I}(G ; \mathcal{H})
$$

### 3.12 Set-Membership

For a set $G \subseteq\{0,1\}^{\ell}$, a function $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is a partial checker for $G$, if $f(x)=1$ if $x \in G$. We use $\mathcal{U}$ to denote the uniform distribution over $\{0,1\}^{\ell}$. $\operatorname{Error}(G, f)=\operatorname{Pr}_{x \sim \mathcal{U}}[f(x)=1, x \notin G]$. The goal of Set-Membership, is given a set $G \subseteq\{0,1\}^{\ell}$, what is the simplest partial checker $f$ for $G$ that reduces $\operatorname{Error}(G, f)$.

Theorem 16 For large enough $n$, given $G \subseteq\{0,1\}^{\ell},|G|=m$, there is a partial checker $f$ such that $\operatorname{Error}(f, G) \leq 0.878^{n / m}$ and $\mathbf{K}(f)<{ }^{\log } \mathbf{K}(n, k, \ell)+n+\mathbf{I}((G, n, k) ; \mathcal{H})$.

Proof. We derandomize the Bloom filter algorithm [Blo70]. Let there be $k$ random functions $h_{i}:\{0,1\}^{\ell} \rightarrow\{1, \ldots, n\}$, where each $h_{i}$ maps each input $x \in\{0,1\}^{\ell}$ to its range with uniform probability. We start with a string $v=0^{n}$. For each member $x \in G$, and $i \in\{1, \ldots, k\}, v\left[h_{i}(x)\right]$ is set to 1 . Thus the functions $h_{i}$ serve as a way to test membership of $G$. An example of the Bloom filter can be seen in Figure 3.7. If $x \in G$, then all the indicator functions $h_{i}$ would be one. The probability that a specific bit is 0 is

$$
p^{\prime}=\left(1-\frac{1}{n}\right)^{k m}
$$

Let $X$ be the number of bins that are 0 . Due to [MU05],

$$
\operatorname{Pr}\left(\left|X-n p^{\prime}\right| \geq \epsilon n\right) \leq 2 e \sqrt{n} e^{-n \epsilon^{2} / 3 p^{\prime}}
$$

For $\epsilon=p^{\prime} / 10$, we get

$$
\begin{equation*}
\operatorname{Pr}\left(X / n \geq p^{\prime} 9 / 10\right) \leq 2 e \sqrt{n} e^{-n p^{\prime} / 300} \tag{3.5}
\end{equation*}
$$

Thus for proper choice of $k$ determined later, for large enough $n$, the right hand side of the above inequality is less than 0.5 . Thus with probability $>.5$, the expected false positive rate, $r$, that is


Figure 3.7: A graphical depiction of Bloom filter with $k=3$ hash functions. The first element $x$ is in $G$ and is thus mapped to ones in the Bloom filter. Thus the Bloom filter would indicate that $x \in G$. The second element $y$ is not in $G$ and has some of the hash functions map to 0 . Thus the Bloom filter would indicate that $y \notin G$.
$x \in\{0,1\}^{\ell}, x \notin G, h_{i}(x)=1$, for all $i \in\{1, \ldots, k\}$ is less than

$$
\begin{aligned}
r & \leq\left(1-.9 p^{\prime}\right)^{k} \\
& =\left(1-.9\left(1-\frac{1}{n}\right)^{k m}\right)^{k} \\
& \leq\left(1-.9 e^{-k m / n}\right)^{k}
\end{aligned}
$$

Setting $k=\lceil n / m\rceil$, with probability $\geq 1 / 2, r \leq\left(1-.5 e^{-2}\right)^{m / n} \leq 0.878^{m / n}$. Furthermore, for large enough $n, p^{\prime}>.5 e^{-\lceil n / m\rceil(m / n)} \geq .5 e^{-2}$, which can be plugged back into Equation 3.5.

Let $F^{\prime} \subset\{0,1\}^{*}$ consist of all encodings of $k$ hash functions $h_{i}:\{0,1\}^{\ell} \rightarrow\{1, \ldots, n\}$. Let $F \subseteq F^{\prime}$ consist of all hash functions such that the false positive rate $r$ is $\leq 0.878^{m / n}$. Let $P$ be the uniform distribution over $F^{\prime}$. By the above reasoning, for large enough $n, P(F)>1 / 2$. $\mathbf{K}(F \mid G, k, n)=O(1)$. By Theorem 41 and Lemma 1 , there is an $h \in F$ such that

$$
\mathbf{K}(h)<^{\log } \mathbf{K}(P)-\log P(F)+\mathbf{I}(F ; \mathcal{H})<^{\log } \mathbf{K}(n, k, \ell)+\mathbf{I}((G, n, k) ; \mathcal{H})
$$

Thus $h$ represents a set of $k$ deterministic hash functions. Let $x$ be the Bloom filter using $h$ on $G$. Using $x$ and $h$, one can define a partial checker $f$ that is a Bloom filter such that $\operatorname{Error}(f, G) \leq 0.878^{n / m}$. Furthermore,

$$
\mathbf{K}(f)<^{\log } \mathbf{K}(x, h)<^{\log } \mathbf{K}(n, k, \ell)+n+\mathbf{I}((G, n, k) ; \mathcal{H})
$$

### 3.13 Latin-Transversal

Let $A=\left(a_{i}\right)$ be an $n \times n$ matrix with integer entries. A permutation $\pi$ is called a Latin Transversal if the entries $a_{i \pi(i)}(1 \leq i \leq n)$ are all distinct. An example Latin Transversal, where each integer occurs exactly 4 times, can be seen in Figure 3.8

| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 1 | 0 |
| 2 | 3 | 0 | 1 |
| 1 | 0 | 3 | 2 |

Figure 3.8: A graphical depiction of a Latin Transversal. Each number appears exactly 4 times in the matrix. The transversal is a permutation of the matrix such that all its entries have different values.

Lemma 4 (Lopsided Lovász Local Lemma[ES91]) Let $E_{1}, \ldots, E_{n}$ be a collection of events with dependency graph $G=(V, E)$. Suppose $\operatorname{Pr}\left(E_{i} \mid \bigcap_{j \in S} \overline{E_{j}}\right) \leq \operatorname{Pr}\left(E_{i}\right)$, for all $i, S \subset V$ with no $j \in S$ adjacent to $i$. Suppose all events have probability at most $p, G$ has degree at most $d$, and $4 d p \leq 1$. Then $\operatorname{Pr}\left(\bigcap_{i} \overline{E_{i}}\right) \geq(1-2 p)^{n}$.

Theorem 17 Suppose $k \leq(n-1) / 16$ and suppose integers appears in exactly $k$ entries of $n \times n$ matrix A. Then for $n \geq 3$, A has a Latin Traversal $\tau$ of complexity $\mathbf{K}(\tau)<^{\log } \mathbf{K}(n)+4(k-1)+$ $\mathbf{I}(A ; \mathcal{H})$.

Proof. Let $\pi$ be a random permutation $\{1,2, \ldots, n\}$, chosen according to a uniform distribution $P$ among all possible $n$ ! permutations. Define $T$ by the set of all ordered fourtuples ( $i, j, i^{\prime}, j^{\prime}$ ) with $i<i^{\prime}, j \neq j^{\prime}$, and $a_{i j}=a_{i^{\prime} j^{\prime}}$. For each $\left(i, j, i^{\prime}, j^{\prime}\right) \in T$, let $A_{i j i^{\prime} j^{\prime}}$ denote the bad event that $\pi(i)=j$ and $\pi\left(i^{\prime}\right)=\left(j^{\prime}\right)$. Thus $A_{i j i^{\prime} j^{\prime}}$ is the bad event that the random permutation has a conflict at $(i, j)$ and $\left(i^{\prime}, j^{\prime}\right)$.

Clearly $P\left(A_{i j i^{\prime} j^{\prime}}\right)=1 / n(n-1)$. The existence of a Latin Transversal is equivalent to the statement that with positive probability, none of these events hold. We define a symmetric digraph $G$ on the vertex set $T$ by making $\left(i, j, i^{\prime}, j^{\prime}\right)$ adjacent to ( $p, q, p^{\prime}, q^{\prime}$ ) if $\left\{i, i^{\prime}\right\} \cap\left\{p, p^{\prime}\right\} \neq \emptyset$ or $\left\{j, j^{\prime}\right\} \cap$ $\left\{q, q^{\prime}\right\} \neq \emptyset$. Thus these two fourtuples are not adjacent iff the four cells $(i, j),\left(i^{\prime}, j^{\prime}\right),(p, q)$ and ( $p^{\prime}, q^{\prime}$ ) occupy four distinct rows and columns of $A$.

The maximum degree of $G$ is less than $4 n k \leq d$ because for a given $\left(i, j, i^{\prime}, j^{\prime}\right) \in T$ there are at most $4 n$ choices of $(s, t)$ with either $s \in\left\{i, i^{\prime}\right\}$ or $t \in\left\{j, j^{\prime}\right\}$ and for each of these choices of $(s, t)$ there are less than $k$ choices for $\left(s^{\prime}, t^{\prime}\right) \neq(s, t)$ with $a_{s t}=a_{s^{\prime} t^{\prime}}$. Each fourtuple $\left(s, t, s^{\prime}, t^{\prime}\right)$ can be uniquely represented as $\left(p, q, p^{\prime}, q^{\prime}\right)$ with $p<p^{\prime}$. Since $4 d p \leq 16 n k /(n(n-1) \leq 1$, by the Lopsided Lovász Local Lemma, 4, the desired bounds can be achieved if we can show that

$$
\operatorname{Pr}\left(A_{i j i^{\prime} j^{\prime}} \mid \bigcap_{S} A_{p q p^{\prime} q^{\prime}}\right) \leq 1 / n(n-1),
$$

for any $\left(i, j, i^{\prime}, j^{\prime}\right) \in T$ and any subset $S$ of $T$ which are not-adjacent in $G$ to $\left(i, j, i^{\prime}, j^{\prime}\right)$. By symmetry we can assume $i=j=1, i^{\prime}=j^{\prime}=2$. A permutation $\pi$ is good if it satisfies $\bigcap_{S} \bar{A}_{p q p^{\prime} q^{\prime}}$ and let $S_{i j}$ denote the set of all good permutations $\pi$ satisfying $\pi(1)=i$ and $\pi(2)=j$. $\left|S_{12}\right| \leq\left|S_{i j}\right|$ for all $i \leq j$.

Indeed suppose first that $i, j>2$. For each good $\pi \in S_{12}$ define a permutation $\pi^{*}$ as follows. Suppose $\pi(x)=i$ and $\pi(y)=j$. Then define $\pi^{*}(1)=i, \pi^{*}(2)=j, \pi^{*}(x)=1, \pi^{*}(y)=2$
and $\pi^{*}(t)=\pi(t)$ for all $t \neq 1,2, x, y$. One can easily check that $\pi^{*}$ is good, since the cells $(1, i),(2, j),(x, 1),(y, 2)$ are not part of any $\left(p, q, p^{\prime}, q^{\prime}\right) \in S$. Thus $\pi^{*} \in S_{i j}$ and since the mapping $\pi \rightarrow \pi^{*}$ is injective $\left|S_{12}\right| \leq\left|S_{i j}\right|$. One can define an injection mappings showing that $\left|S_{12}\right| \leq\left|S_{i j}\right|$ even when $\{i, j\} \cap\{1,2\} \neq \emptyset$. If follows that $\operatorname{Pr}\left(A_{1122} \cap \bigcap_{S} \bar{A}_{p q p^{\prime} q^{\prime}}\right) \leq \operatorname{Pr}\left(A_{1 i 2 j} \cap \bigcap_{S} \bar{A}_{p q p^{\prime} q^{\prime}}\right)$ and hence $\operatorname{Pr}\left(A_{1122} \mid \cap_{S} \bar{A}_{p q p^{\prime} q^{\prime}}\right) \leq 1 / n(n-1)$.

The number of bad events $A_{i j i^{\prime} j^{\prime}}$ is $\left(\frac{n^{2}}{k}\right)\binom{k}{2}$, as there are $n^{2} / k$ distinct numbers, and each number appears $k$ times. Thus by the Lopsided Lovász Local Lemma 4 , for $n \geq 3$,

$$
\begin{align*}
\operatorname{Pr}\left(\bigcap_{i} \bar{A}_{i j i^{\prime} j^{\prime}}\right) & \geq(1-2 / n(n-1))\binom{\left(\frac{n^{2}}{k}\right)\binom{k}{2}}{-\log \operatorname{Pr}\left(\bigcap_{i} \bar{A}_{i j i^{\prime} j^{\prime}}\right)}<\left(\frac{n^{2}}{k}\right)\binom{k}{2} \log (1-2 / n(n-1)) \\
& <2\left(\frac{2 n^{2}}{k n(n-1)}\right)\binom{k}{2} \\
& <\left(\frac{8}{k}\right)\binom{k}{2} \\
& \leq 4(k-1) .
\end{align*}
$$

Let $D \subset\{0,1\}^{*}$ be all encodings of permutations of $A$ that are Latin Transversals. $\mathbf{K}(D \mid A)=O(1)$. We recall that $P$ is the uniform distribution over all permutation of $A$. By the Equation 3.6, $-\log P(D)<4(k-1)$. Thus by Theorem 41 and Lemma 1, for $n \geq 3$, there exists a permutation $\tau \in D$ that is a Latin Transversal and has complexity

$$
\mathbf{K}(\tau)<^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n)+4(k-1)+\mathbf{I}(A ; \mathcal{H}) .
$$

### 3.14 Function-Minimization

Given computable functions $\left\{f_{i}\right\}_{i=1}^{n}$, where each $f_{i}: \mathbb{N} \rightarrow \mathbb{N} \cup \infty$, the goal of Function-Minimization is to find numbers $\left\{x_{i}\right\}_{i=1}^{n}$, that minimizes $\sum_{i=1}^{n} f_{i}\left(x_{i}\right)$. Let $p: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ be a computable probability measure where $\mathbf{E}_{p}\left[f_{i}\right] \in \mathbb{R}$ for all $i=1, \ldots, n$. We define a computable probability $P:\{0,1\}^{*} \rightarrow \mathbb{R}_{\geq 0}$ where $P\left(\left\langle a_{1}\right\rangle\left\langle a_{2}\right\rangle \ldots\left\langle a_{n}\right\rangle\right)=\prod_{i=1}^{n} p\left(a_{i}\right) . \quad \mathbf{K}(P)<^{+} \mathbf{K}(p, n)$. Let $D^{\prime}$ be a (potentially infinite) set of strings where $x \in D$ iff $x=\left\langle a_{1}\right\rangle\left\langle a_{2}\right\rangle \ldots\left\langle a_{n}\right\rangle$ and

$$
\sum_{i=1}^{n} f_{i}\left(a_{i}\right) \leq\left\lceil 2 \sum_{\left\{b_{i}\right\}}\left(\prod_{i=1}^{n} p\left(b_{i}\right)\right) \sum_{i=1}^{n} f_{i}\left(b_{i}\right)\right\rceil=\left\lceil 2 \sum_{i=1}^{n} \mathbf{E}_{p}\left[f_{i}\right]\right\rceil .
$$

Let $\tau=\left\lceil 2 \sum_{i=1}^{n} \mathbf{E}_{p}\left[f_{i}\right]\right\rceil$. By the Markov inequality, let the finite set $D \subseteq D^{\prime}$ be constructed from $\left(p,\left\{f_{i}\right\}, \tau\right)$, such that $P(D)>1 / 2$ and $\mathbf{K}\left(D \mid\left(p,\left\{f_{i}\right\}, \tau\right)\right)=O(1)$. By Theorem 41 and Lemma 1, there a string $x \in D$ such that

$$
\begin{aligned}
\mathbf{K}(x) & <^{\log }-\log \mathbf{m}(D)+\mathbf{I}(D ; \mathcal{H}) \\
& <^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}\left(\left(p,\left\{f_{i}\right\}, \tau\right) ; \mathcal{H}\right) \\
& <^{\log } \mathbf{K}(p, n)+\mathbf{I}\left(\left(p,\left\{f_{i}\right\}, \tau\right) ; \mathcal{H}\right) .
\end{aligned}
$$

Thus given any computable probability $p$ and functions $\left\{f_{i}\right\}_{i=1}^{n}$, there are numbers $\left\{x_{i}\right\}_{i=1}^{n}$ such that $\sum_{i=1}^{n} f\left(x_{i}\right) \leq\left\lceil 2 \sum_{i=1}^{n} \mathbf{E}_{p}\left[f_{i}\right]\right\rceil=\tau$ and $\mathbf{K}\left(\left\{x_{i}\right\}_{i=1}^{n}\right)<{ }^{\log } \mathbf{K}(n, P)+\mathbf{I}\left(\left(p,\left\{f_{i}\right\}, \tau\right) ; \mathcal{H}\right)$. Note that there is a version of these results when the functions are uncomputable, but this is out of the scope of the paper.

An instance of this formulation is as follows. Let $n=1$ and $f_{1}(a)=\left[a>2^{m}\right] \infty+[a \leq$ $\left.2^{m}\right] 2^{m-\mathbf{K}(a \mid m)}$. Let $p(a)=\left[a \leq 2^{m}\right] 2^{-m}$. Thus this example proves there exists a number $x$ such that $f_{1}(x) \leq\left\lceil 2 \mathbf{E}_{p}\left[f_{1}\right]\right\rceil \leq 2$. Furthermore

$$
\mathbf{K}(x)<^{\log } \mathbf{K}(p)+\mathbf{I}\left(\left(p, f_{1}\right) ; \mathcal{H}\right)<^{\log } \mathbf{K}(m)+\mathbf{I}\left(\left(m, f_{1}\right) ; \mathcal{H}\right) .
$$

But if $f_{1}(x) \leq 2$, by the definition of $f_{1}$, this means $\mathbf{K}(x) \geq m-1$. This means $m<^{\log }$ $\mathbf{I}\left(\left(m, f_{1}\right) ; \mathcal{H}\right)<{ }^{\log } \mathbf{I}\left(f_{1} ; \mathcal{H}\right)$. This makes sense because $f_{1}$ is a deficiency of randomness function and therefore $m<{ }^{\log } \mathbf{K}\left(f_{1}\right)$ and $\mathbf{K}\left(f_{1} \mid \mathcal{H}\right)<{ }^{+} \mathbf{K}(m)$.

### 3.15 SUPER-SET

Given a finite set $S \subseteq\{0,1\}^{n}$, the goal of Super-Set is to find a set $T \supseteq S, T \subseteq\{0,1\}^{n}$ that minimizes $|T|$.

Theorem 18 Given $m \leq n, S \subseteq\{0,1\}^{n},|S|<2^{n-m-1}$ there exists a $T \supseteq S, T \subseteq\{0,1\}^{n}$ $|T|=2^{n-m}, \mathbf{K}(T)<{ }^{\log } \mathbf{K}(n, m)+(m+1)|S|+\mathbf{I}((S, m) ; \mathcal{H})$.

Proof. Let $P:\{0,1\}^{*} \rightarrow \mathbb{R}_{\geq 0}$ be the the uniform distribution over all sequences of size $2^{n}$ that have exactly $2^{n-m} 1 \mathrm{~s}$. Let $D \subset\{0,1\}^{2^{n}}$ consist of all sequences $x_{R} \in\{0,1\}^{2^{n}}$ that encode sets $R \subseteq\{0,1\}^{n}$ in the natural way such that $R \supseteq S$ and $|R|=2^{m-n}$. Thus if $x \in D$ then $x$ has $2^{n-m}$ 1s. $P(D)=$

$$
\left(\frac{2^{n-m}}{2^{n}}\right)\left(\frac{2^{n-m-1}}{2^{n}-1}\right) \ldots\left(\frac{2^{n-m}-|S|}{2^{n}-|S|}\right) \geq\left(\frac{2^{n-m}-|S|}{2^{n}-|S|}\right)^{|S|} \geq\left(\frac{2^{n-m-1}}{2^{n}}\right)^{|S|}=2^{-(m+1)|S|}
$$

$\mathbf{K}(D \mid(S, m))=O(1)$. Thus by Theorem 41 and Lemma 1, there exists a $t \in D$, such that $\mathbf{K}(t)<\log$ $\mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H})<^{\log } \mathbf{K}(n, m)+(m+1)|S|+\mathbf{I}((S, m) ; \mathcal{H})$. This $t$ encodes a set $T \supseteq S$, $T \subseteq\{0,1\}^{n}$ such that $|T|=2^{n-m}$.

## Chapter 4

## Classical Channels

There are deep connections between classical information theory and algorithmic information theory, with many theorems of the former appearing in an algorithmic form in the latter. In this section we revisit this connection. In particular we prove properties about the compression size of shared codebooks using Kolmogorov derandomization. A standard setup in information theory is two parties Alice and Bob who want to communicate over a noisy channel and share a codebook over a noiseless channel. However one might ask is how many bits did it take to communicate the codebook? By using derandomization, the tradeoff between codebook complexity and communication capacity can be proven.

Definition 2 (Discrete Memoryless Channel) The input and output alphabets $\mathcal{X}$ and $\mathcal{Y}$ are finite. The channel $(\mathcal{X}, p(y \mid x), \mathcal{Y})$ is represented by a conditional probability distribution $p(y \mid x)$. To send multiple symbols, we have $p\left(y^{n} \mid x^{n}\right)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)$. The capacity of channel with respect to a distribution $Q$ over $\mathcal{X}$ is
$C_{Q}=I(X: Y)$ where random variables $(X, Y)$ are distributed according to $Q(x) p(y \mid x)$.
The term $I$ is the mutual information between random variables.
Definition 3 (Codebook) $A(M, n)$ codebook for channel $(\mathcal{X}, p(y \mid x), \mathcal{Y})$ contains the following:

1. An encoder $\mathrm{Enc}_{n}:\{1, \ldots, M\} \rightarrow \mathcal{X}^{n}$.
2. $A$ decoder $\operatorname{Dec}_{n}: \mathcal{Y}^{n} \rightarrow\{1, \ldots, M\}$.

The rate of the codebook is $R=\frac{\log M}{n}$. The conditional probability of error is $\lambda_{i}=\sum_{y_{n}} p\left(y^{n} \mid x^{n}=\right.$ $\operatorname{Enc}(i))\left[\operatorname{Dec}\left(y^{n}\right) \neq i\right]$, where $[\cdot]$ is the indicator function. The average error rate of the codebook with respect to a fixed channel $p$ is $P_{e}^{(n)}=\frac{1}{M} \sum_{i=1}^{M} \lambda_{i}$. It is the probability that, given the uniform distribution over $\{1, \ldots, M\}$ for the sending symbols, the receiver decodes a symbol different from the encoded one.

This section shows the following high level description of a communication scheme is possible: there is a sender Alice and a receiver Bob that communicate through a noisy memoryless discrete channel and Alice can send a codebook to Bob once on a side noiseless channel. Bob has oracle acess to the channel function $p(y \mid x)$ but Alice does not. Given a computable distribution $Q$ over the input alphabet, and assuming the channel is non-exotic, Alice can hypothetically send $\sim \mathbf{K}(Q)$ bits plus some encoded parameters describing a codebook to Bob on the side channel. Then Alice and Bob can communicate with any rate $R$ less than the capacity $C_{Q}$ over the noisy channel. This setup is formalized with Theorem 20. To prove this theorem, some results are needed from classical information theory.

### 4.0.1 Jointly Typical Sequences

We need the following definition and theorem, which can be found in [CT91], in the proof of Theorem 20. $H(X)$ is the entropy of random variable $X$, and $I(X: Y)$ is the mutual information between random variables $X$ and $Y$.
Definition 4 The set $A_{\epsilon}^{(n)}$ of jointly typical sequences $\left\{\left(x^{n}, y^{n}\right)\right\}$ with respect to the distribution $p(x, y)$ is the set of $n$-sequences with empirical entropies $\epsilon$-close to the true entropies. $\mathcal{X}$ and $\mathcal{Y}$ are the finite discrete alphabet of random variables $X$ and $Y$. Let $p\left(x^{n}, y^{n}\right)=\prod_{i=1}^{n} p\left(x_{i}, y_{i}\right)$.

$$
\begin{aligned}
A_{\epsilon}^{(n)}= & \left\{\left(x^{n}, y^{n}\right) \in \mathcal{X}^{n} \times \mathcal{Y}^{n}:\right. \\
& \left|-\frac{1}{n} \log p\left(x^{n}\right)-H(X)\right|<\epsilon, \\
& \left|-\frac{1}{n} \log p\left(y^{n}\right)-H(Y)\right|<\epsilon, \\
& \left.\left|-\frac{1}{n} \log p\left(x^{n}, y^{n}\right)-H(X, Y)\right|<\epsilon\right\} .
\end{aligned}
$$

The following theorem details properties about the set $A_{\epsilon}^{(n)}$. A proof for it can be found in [CT91].
Theorem 19 (Joint AEP) Let $\left(X^{n}, Y^{n}\right)$ be sequences of length $n$ drawn i.i.d. according to $p\left(x^{n}, y^{n}\right)=\prod_{i=1}^{n} p\left(x_{i}, y_{i}\right)$. Then

1. $\operatorname{Pr}\left(\left(X^{n}, Y^{n}\right) \in A_{\epsilon}^{(n)}\right) \rightarrow 1-o(1)$.
2. If $\left(\tilde{X}^{n}, \tilde{Y}^{n}\right) \sim p\left(x^{n}\right) p\left(y^{n}\right)\left(\tilde{X}^{n}\right.$ and $\tilde{Y}^{n}$ are independent with the same marginals as $\left.p\left(x^{n}, y^{n}\right)\right)$, then $\operatorname{Pr}\left(\left(\tilde{X}^{n}, \tilde{Y}^{n}\right) \in A_{\epsilon}^{(n)}\right) \leq 2^{-n I(X: Y)-3 \epsilon}$.

### 4.0.2 Naive Sender Paradigm

Theorem 20 For channel $\mathfrak{C}=(\mathcal{X}, p(y \mid x), \mathcal{Y})$ and every computable distribution $Q$ over $\mathcal{X}$, for every rate $R<C_{Q}$, there is a $\left(2^{n R}, n\right)$ codebook $\left(\mathrm{Enc}_{n}, \mathrm{Dec}_{n}\right)$ with rate $R$ and average error rate $o(1)$ such that there is a program $p$ with $\|p\|<^{\log } \mathbf{K}(n, R, Q)+\mathbf{I}((n, R, Q, \mathfrak{C}) ; \mathcal{H})$ and

$$
\begin{aligned}
U(p, x) & =\operatorname{Enc}_{n}(x), \\
U(p, \mathfrak{C}, x) & =\operatorname{Dec}_{n}(x) .
\end{aligned}
$$

Proof. We start by generating a $\left(2^{n R}, n\right)$ code randomly according to distribution $Q$. We generate $2^{n R}$ codewords $x \in \mathcal{X}$ independently according to the distribution

$$
Q\left(x^{n}\right)=\prod_{i=1}^{n} p\left(x_{i}\right) .
$$

The codewords can be represented as rows of a matrix

$$
\mathcal{C}=\left[\begin{array}{cccc}
x_{1}(1) & x_{2}(1) & \ldots & x_{n}(1) \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}\left(2^{n R}\right) & x_{2}\left(2^{n R}\right) & \ldots & x_{n}\left(2^{n R}\right)
\end{array}\right]
$$

Each entry is generated i.i.d according to $Q(x)$, with

$$
\operatorname{Pr}(\mathcal{C})=\prod_{w=1}^{2^{n R}} \prod_{i=1}^{n} p\left(x_{i}(w)\right)
$$

Consider the following algorithm for encoding and decoding a message.

1. A random code $\mathcal{C}$ is generated according to $Q(x)$.
2. The code $\mathcal{C}$ is sent to both the sender and the receiver. Only the receiver is assumed to know the channel transition matrix $p(y \mid x)$ for the channel. This differs from the standard literature, which assumes knowledge of $p$ by the sender.
3. A message $W$ is chosen according to the uniform distribution.

$$
\operatorname{Pr}(W=w)=2^{-n R}, \quad w=1,2, \ldots, 2^{n R} .
$$

4. The $w$ th codeword $X^{n}(w)$ corresponding to the $w$ th row of $\mathcal{C}$ is sent over the channel.
5. The receiver receives a sequence $Y^{n}$ according to the distribution

$$
P\left(y^{n} \mid x^{n}(w)\right)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}(w)\right)
$$

6. The receiver decares that the index $\hat{W}$ was sent if the following conditions are satisfied:

- $\left(X^{n}(\hat{W}), Y^{n}\right)$ is jointly typical, i.e. $\left(X^{n}(\hat{W}), Y^{n}\right) \in A_{\epsilon}^{(n)}$.
- There is no other index $W^{\prime} \neq \hat{W}$ such that $\left(X^{n}\left(W^{\prime}\right), Y^{n}\right) \in A_{\epsilon}^{(n)}$.

If no such $\hat{W}$ exists or if there are more than one, an error is declared, and the decoder outputs 0 .
7. There is a decoding error if $\hat{W} \neq W$. Let $\mathcal{E}$ be this event.

We now analyze the probability of the error with respect to the random codebook $\mathcal{C}$.

$$
\begin{align*}
\operatorname{Pr}(\mathcal{E}) & =\sum_{\mathcal{C}} \operatorname{Pr}(\mathcal{C}) P_{e}^{(n)}(\mathcal{C}) \\
& =\sum_{\mathcal{C}} \operatorname{Pr}(\mathcal{C}) \frac{1}{2^{n R}} \sum_{w=1}^{2^{n R}} \lambda_{w}(\mathcal{C}) \\
& =\frac{1}{2^{n R}} \sum_{w=1}^{2^{n R}} \sum_{\mathcal{C}} \operatorname{Pr}(\mathcal{C}) \lambda_{w}(\mathcal{C}) \\
& =\sum_{\mathcal{C}} \operatorname{Pr}(\mathcal{C}) \lambda_{1}(\mathcal{C})  \tag{4.1}\\
& =\operatorname{Pr}(\mathcal{E} \mid W=1),
\end{align*}
$$

where Equation 4.1 is due to symmetry of the code construction. We define

$$
E_{i}=\left\{\left(X^{n}(i), Y^{n}\right) \in A_{\epsilon}^{(n)}\right\}, \quad i \in\left\{1,2, \ldots, 2^{n R}\right\} .
$$

So $E_{i}$ is the event that the $i$ th code and $Y^{n}$ are jointly typical, noting that $Y^{n}$ is the result of sending the first codeword $X^{n}(1)$ over the channel. So

$$
\operatorname{Pr}(\mathcal{E} \mid W=1)=P\left(E_{1}^{c} \cup E_{2} \cup E_{3} \ldots E_{2^{n R}} \mid W=1\right) \leq P\left(E_{1}^{c} \mid W=1\right)+\sum_{i=2}^{2^{n R}} P\left(E_{i} \mid W=1\right)
$$

Due to the code generation procedure, $X^{n}(1)$ and $X^{n}(i)$ are independent for $i \neq 1$, and therefore, so are $Y^{n}$ and $X^{n}(i)$. Due to Theorem 19 (2), the probability that $X^{n}(i)$ and $Y^{n}$ are jointly typical is $\leq 2^{-n(I(X ; Y)-3 \epsilon)}$, where random variables $X$ and $Y$ are distributed acording to $Q(x) p(y \mid x)$. So by Theorem 19 (1), for sufficiently large $n$,

$$
\begin{aligned}
\operatorname{Pr}(\mathcal{E}) & =\operatorname{Pr}(\mathcal{E} \mid W=1) \leq P\left(E_{1}^{c} \mid W=1\right)+\sum_{i=2}^{2^{n R}} P\left(E_{i} \mid W=1\right) \\
& \leq \epsilon+\sum_{i=2}^{2^{n R}} 2^{-n(I(X: Y)-3 \epsilon)} \\
& =\epsilon+\left(2^{n R-1}\right) 2^{-n(I(X: Y)-3 \epsilon)} \\
& \leq \epsilon+2^{3 n \epsilon} 2^{-n(I(X: Y)-R)} \\
& \leq 2 \epsilon
\end{aligned}
$$

under the condition $R<I(X: Y)-3 \epsilon=C_{Q}-3 \epsilon$. Hence if $R<C_{Q}$ we can choose an $\epsilon$ and $n$ so the average probability of error, averaged over codebooks is less than $2 \epsilon$. We now remove the average over codebooks. Since the average error rate $P_{e}(\mathcal{C})$ is small, there exists at least one codebook $\mathcal{C}^{*}$ with a small average probability of error, with

$$
\operatorname{Pr}(\mathcal{E} \mid \mathcal{C} *)=\frac{1}{2^{n R}} \sum_{i=1}^{2^{R n}} \lambda_{i}\left(\mathcal{C}^{*}\right) \leq 2 \epsilon
$$

Connection with Algorithmic Information Theory. We now derive the statements of the theorem. Define $P$ to be the probability over codebooks used in earlier in this proof that uses the distribution $Q$ to generate the codewords. Thus $\mathbf{K}(P)<^{+} \mathbf{K}(Q, n, R)$. Let $D$ be the set of encoded codebooks that achieve an error rate less than or equal to $2 \epsilon$. By the arguments above, $P(D) \geq 0.5$. This set $D$ is computable from $Q, n, R$, and $\mathfrak{C}$, with $\mathbf{K}(D \mid(Q, n, R, \mathfrak{C}))=O(1)$. Thus by Theorem 41 and Lemma 1, there is a codebook $\mathcal{C}^{*} \in D$ that has an error rate $\leq 2 \epsilon$, with

$$
\begin{align*}
\mathbf{K}\left(\mathcal{C}^{*}\right) & <{ }^{\log } \mathbf{K}(P)-\log P(D)+\mathbf{I}(D ; \mathcal{H}) \\
& <{ }^{\log } \mathbf{K}(Q, n, R)+\mathbf{I}((Q, r, n, \mathfrak{C}) ; \mathcal{H}) . \tag{4.2}
\end{align*}
$$

Thus the sender can use solely $\mathcal{C}^{*}$ to send messages to the receiver. The receiver needs to determine if sequences are jointly typical, and thus uses $\left(\mathcal{C}^{*}, Q, \mathfrak{C}\right)$ to decode the messages. Note that with careful analysis of the proof of Theorem 41 for computable probabilities, one can construct a short program for $\mathcal{C}^{*}$ (with size less than that of Equation 4.2) that can also compute $Q$. Thus, we can construct a program $p$ with the properties described in the theorem statement.

## Chapter 5

## Resource Bounded Derandomization

### 5.1 Resource Bounded EL Theorem

In this section we derive the resource bounded EL theorem. We also derive an interesting corollary to Theorem 4.1 in [AF09] which states to invert a hash function $f^{-1}(x)$, one can find a secret key $\pi$ of size approximiately equal to $x$ that will efficiently decompress to a pre-image of $x$ with respect to $f$. The results in this section are not unconditional, they require the existence of the pseudorandom generator, introduced in [Nis94].

Assumption 1 Crypto is the assumption that there exists a language in DTIME $\left(2^{O(n)}\right)$ that does not have size $2^{o(n)}$ circuits with $\Sigma_{2}^{p}$ gates. This asssumption is need in the proof of Theorem 21 in [AF09] to assume the existence of a pseudorandom generator $g:\{0,1\}^{k \log n} \rightarrow\{0,1\}^{n}$, computable in time polynomial in $n$.

Definition $5 \mathbf{F P}^{\prime}=\{f: f \in \mathbf{F P}$ and $\|x\|=\|f(x)\|\}$.
Definition 6 For $A \in \mathbf{F P}^{\prime}$ we say that $A$ samples $D \subset\{0,1\}^{n}$ with probability $\gamma$, if $\mid\{0,1\}^{n} \cap$ $A^{-1}(D) \mid / 2^{n}>\gamma$.

Theorem 21 ([AF09]) Assume Crypto. Let $F \in \mathbf{F P}$. Let $m, n \in \mathbb{N}$ where $\{0,1\}^{n} \supseteq f\left(\{0,1\}^{m}\right)$. Let $T_{y}=\left\{w \in\{0,1\}^{m}: F(w)=y\right\}$ and $V_{k}=\left\{y:\|y\|=n\right.$ and $\left.\left|T_{y}\right| \geq 2^{k}\right\}$. There exists a function

$$
G: \Sigma^{m-k+O(\log m)} \rightarrow \Sigma^{m}
$$

computable in polynomial time such that for all $y \in V_{k}$, range $(G) \cap T_{y} \neq \emptyset$.
Remark 1 In the previous theorem, the running time of $G$ is a polynomial function of the running time of $F$. This was noted in [LOZ22]. In addition, in subsequent theorems and corollaries of this section, the polynomial time function $p$ in the resource bounded complexity $\mathbf{K}^{p}$ is a polynomial function of the running times of the algorithms of the theorem/corollary statements. Furthermore, due to [AF09], $G$ can be encoded in $O(1)$ bits.

The following corollary implies that to invert $x$ with a hash function $f$, one can find a secret key $\pi$ of size approximately equal to $x$ that efficiently expands to an element in $f^{-1}(x)$.
Corollary 1 Assume Crypto. Let $f \in \mathbf{F P}$, where $f\left(\{0,1\}^{n}\right) \subseteq\{0,1\}^{n-k}$. Then for some polynomial $p$ where for $\{0,1\}^{n} \supseteq D=f^{-1}(x)$,

$$
\min _{y \in D} \mathbf{K}^{p}(y)=n-\log |D|+O(\log n)
$$

Proof. Follows directly from Theorem 21.
Corollary 2 (Resource EL) Assume Crypto. Let $L \in \mathbf{P}, A \in \mathbf{F P}^{\prime}$, and assume $A$ samples $L_{n}$ with probability $\delta_{n}$. Then for some polynomial $p$,

$$
\min _{x \in L_{n}} \mathbf{K}^{p\|x\|}(x)<-\log \delta_{n}+O(\log n) .
$$

Proof. Let $F \in \mathbf{F P}^{\prime}$ where $F\left(\{0,1\}^{n}\right) \subseteq\{0,1\}^{n}$ and for $x \in\{0,1\}^{n}, F(x)=1^{n}$ if $A(x) \in L_{n}$ and $F(x)=0^{n}$ otherwise. Let $k \in \mathbb{N}$ be maximal such that $\delta_{n} \geq 2^{k-n}$. Let $\ell=n-k+O(c \log n)$. By Theorem 21, there exists a function $G:\{0,1\}^{\ell} \rightarrow\{0,1\}^{n}$ running in polynomial time such that there exists $x \in \ell$, with $G(x)=1^{n}$. This is because $1^{n} \in T_{k}$, using the definition in Theorem 21, because $A$ produces a member of $L_{n}$ with probability at least $\delta_{n}$ and all of $L_{n}$ is mapped to $1^{n}$. We define a program $P$ that uses $G$ to map $x$ to a string $y$, then use $A$ to map $y$ to a string $z \in L_{n}$. This program $P$ is of size $\ell$ and runs in polynomial time.

A verifier $V:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}$ is a function computable in polynomial time with respect to the first argument. For a given $x, \operatorname{Proofs}(x)=\{y: V(x, y)=1\}$.

Corollary 3 Assume Crypto. Let $\left\{x_{n}\right\}$ be uniformly computable in polynomial time. For a verifier $V(x, y)$, let $A \in \mathbf{F P}^{\prime}$ sample $\operatorname{Proofs}\left(x_{n}\right)$ with probability $\gamma_{n}$. Thus there is a polynomial $p$ and $y \in \operatorname{Proofs}\left(x_{n}\right)$ with

$$
\mathbf{K}^{p\|y\|}(y)<-\log \gamma_{n}+O(\log n) .
$$

### 5.2 Resource Bounded Derandomization

In this section, we use Corollary 3 to produce three examples of resource bounded derandomization.
Lemma 5 (Lovasz Local Lemma) Let $E_{1}, \ldots, E_{n}$ be a collection of events such that $\forall i: \operatorname{Pr}\left[E_{i}\right] \leq$ p. Suppose further that each event is dependent on at most $d$ other events, and that ep $(d+1) \leq 1$. Then, $\operatorname{Pr}\left[\bigcap_{i} \bar{E}_{i}\right]>\left(1-\frac{1}{d+1}\right)^{n}$.

Proposition 2 (Mutual Independence Principle) Suppose that $Z_{1}, \ldots Z_{m}$ is an underlying sequence of independent events and suppose that each event $A_{i}$ is completely determined by some subset $S_{i} \subset\left\{Z_{1}, \ldots, Z_{m}\right\}$. If $S_{i} \cap S_{j}=\emptyset$ for $j=j_{1}, \ldots, j_{k}$ then $A_{i}$ is mutually independent of $\left\{A_{j_{1}}, \ldots, A_{j_{k}}\right\}$.

### 5.2.1 Vertex-Disjoint-Cycles

Theorem 22 Assume Crypto. Let $\left\{G_{n}\right\}$ be a uniformly computable in polynomial time sequence of $k$-regular graphs, with $k \geq 5$. There is a polynomial $p$ where for each $G_{n}$, there is a partition $x$ of $\left\lfloor\frac{k}{3 \ln k}\right\rfloor$ components each containing a cycle with

$$
\mathbf{K}^{p}(x)<2 n / k^{2}+O(\log n)
$$

Proof. We partition the vertices of $G$ into $c=\lfloor k / 3 \ln k\rfloor$ components by assigning each vertex to a component chosen independently and uniformly at random. With positive probability, we show that every component contains a cycle. It is sufficient to prove that every vertex has an edge leading to another vertex in the same component. This implies that starting at any vertex there exists a path of arbitrary length that does not leave the component of the vertex, so a sufficiently long path must include a cycle. A bad event $A_{v}=\{$ vertex $v$ has no neighbor in the same component $\}$. Thus

$$
\begin{aligned}
\operatorname{Pr}\left[A_{v}\right] & =\prod_{(u, v) \in E} \operatorname{Pr}[u \text { and } v \text { are in different components }] \\
& =\left(1-\frac{1}{c}\right)^{k}<e^{-k / c} \leq e^{-3 \ln k}=k^{-3}
\end{aligned}
$$

$A_{v}$ is determined by the component choices of itself and of its out neighbors $N^{\text {out }}(v)$ and these choices are independent. Thus by the Mutual Independence Principle, (Proposition 2) the dependency set of $A_{v}$ consist of those $u$ that share a neighor with $v$, i.e., those $u$ for which $(\{v\} \cup N(v)) \cap$ $(\{u\} \cup N(u)) \neq 0$. Thus the size of this dependency is at most $d=(k+1)^{2}$.

Take $d=(k+1)^{2}$ and $p=k^{-3}$, so $e p(d+1)=e\left(1+(k+1)^{2}\right) / k^{3} \leq 1$, holds for $k \geq 5$. Thus, noting that $k \geq 5$, by Lovasz Local Lemma, (Lemma 5),

$$
\begin{equation*}
\operatorname{Pr}\left[\bigcap_{v \in G} \bar{A}_{v}\right]>\left(1-\frac{1}{d+1}\right)^{n}=\left(1-\frac{1}{(k+1)^{2}+1}\right)^{n}>\left(1-\frac{1}{k^{2}}\right)^{n} \tag{5.1}
\end{equation*}
$$

Graphs $G_{n}$ of size $n$ are encoded in strings of size $k n\lceil\log n\rceil$ and partitions are the proofs, encoded in strings of size $n\lceil\log k\rceil$. The verify $V$ returns 1 if each partition contains a cycle. The verifier runs in time $O(n \log n)$. We define a sampling function $A \in \mathbf{F P}^{\prime}$ over the partition/proofs that is the same as the probability used in the Lovasz Local Lemma, i.e. the uniform distribution. Thus $A(x)=x$. $A$ samples $\operatorname{Proofs}\left(G_{n}\right)$ with probability $\gamma_{n}$, where by Equation 5.1,

$$
-\log \gamma_{n}<-n \log \left(1-1 / k^{2}\right)<2 n / k^{2}
$$

Thus by Corolloray 3, there is a polynomial $p$, where for each graph $G_{n} \in Q$ of $n$ vertices, there is a partition $x \in \operatorname{Proofs}\left(G_{n}\right)$ with

$$
\mathbf{K}^{p}(x)<2 n / k^{2}+O(\log n)
$$

### 5.2.2 Balancing-Vectors

Corollary 4 Assume Crypto. For vector $v,\|v\|_{\infty}=\max _{i}\left|v_{i}\right|$. A binary matrix $M$ has entries of Os or 1 s. Let $\left\{M_{n}\right\}$ be a uniformly polynomial time computable sequence of $n \times n$ binary matrices. There is a polynomial $p$ where for each $M_{n}$ there is a vector $b \in\{-1,1\}^{n}$ such that $\left\|M_{n} b\right\|_{\infty} \leq$ $4 \sqrt{n \ln n}$ and

$$
\mathbf{K}^{p}(b)=O(\log n) .
$$

Proof. Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be a row of $M$. Choose a random $b=\left(b_{1}, \ldots, b_{n}\right) \in\{-1,+1\}^{n}$. Let $i_{1}, \ldots, i_{m}$ be the indices such that $v_{i_{j}}=1$. Thus

$$
\begin{gathered}
Y=\langle v, b\rangle=\sum_{i=1}^{n} v_{i} b_{i}=\sum_{j=1}^{m} v_{i_{j}} b_{i_{j}}=\sum_{j=1}^{m} b_{i_{j}} . \\
\mathbf{E}[Y]=\mathbf{E}[\langle v, b\rangle]=\mathbf{E}\left[\sum_{i} v_{i} b_{i}\right]=\sum_{i} \mathbf{E}\left[v_{i} b_{i}\right]=\sum v_{i} \mathbf{E}\left[b_{i}\right]=0 .
\end{gathered}
$$

By the Chernoff inequality and the symmetry $Y$, for $\tau=4 \sqrt{n \ln n}$,

$$
\operatorname{Pr}[|Y| \geq \tau]=2 \operatorname{Pr}[v \cdot b \geq \tau]=2 \operatorname{Pr}\left[\sum_{j=1}^{m} b_{i_{j}} \geq \tau\right] \leq 2 \exp \left(-\frac{\tau^{2}}{2 m}\right)=2 \exp \left(-8 \frac{n \ln n}{m}\right) \leq 2 n^{-8} .
$$

Thus, the probability that any entry in $M b$ exceeds $4 \sqrt{n \ln n}$ is smaller than $2 n^{-8}$. Thus, with probability $1-2 n^{-7}$, all the entries of $M b$ have value smaller than $4 \sqrt{n \ln n}$.

Let $A(x)=x$ be the uniform sampling function. The verifier $V$ takes in a matrix $M$ and a vector $b$ and returns 1 iff $\|M b\|_{\infty} \leq 4 \sqrt{n \ln n}$. Let $D \subset\{0,1\}^{n}$ consist of all strings that encode vectors $b_{x} \in\{-1,+1\}^{n}$ in the natural way such that $\left\|M b_{x}\right\|_{\infty} \leq 4 \sqrt{n \ln n}$. By the above reasoning, $A$ samples $D$ with probability $\geq 1-2 n^{-7}>0.5$. So by Corollary 3 , there is a polynomial $p$, where for each $n \times n$ matrix $M_{n}$ there is a binary vector $b \in\{-1,1\}^{n}$ with $\|M b\|_{\infty} \leq 4 \sqrt{n \ln n}$ and

$$
\mathbf{K}^{p}(b)=O(\log n) .
$$

### 5.2.3 K-SAT

Corollary 5 Assume Crypto. Let $\Phi_{n}$ be a $k(n)$-SAT formula, using $n$ variables, $m(n)$ clauses, uniformly polynomial time computable in $n$. Furthermore, each variable occurs in at most $2^{k(n)} / k(n) e-$ 1 clauses. There is a polynomial $p$ and a satisfying assignment $x$ of $\Phi_{n}$ where

$$
\mathbf{K}^{p}(x)<2 m(n) e 2^{-k(n)}+O(\log n) .
$$

Proof. The sample space is the set of all $2^{n}$ assigments. We choose a random assignment, where each variable is independently equally likely to have a true or false assignment. For each clause $C_{J}$, $E_{j}$ is the bad event " $C_{j}$ is not satisfied". Let $p=2^{-k(n)}$ and $d=\left(2^{k(n)} / e\right)-1$. Thus $\forall j, \operatorname{Pr}\left[E_{j}\right] \leq p$ as each clause has size $k(n)$ and each $E_{j}$ is dependent on at most $d$ other events since each variable
appears in at most $2^{k(n)} / k(n) e-1$ other clauses, and each clause has $k(n)$ variables. Thus since $e p(d+1) \leq 1$, by the Lovasz Local Lemma 5, we have that,

$$
\begin{equation*}
\operatorname{Pr}\left[\bigcap_{j} \overline{E_{j}}\right]>\left(1-\frac{1}{d+1}\right)^{m(n)}=\left(1-\frac{e}{2^{k(n)}}\right)^{m(n)} \tag{5.2}
\end{equation*}
$$

Let $D_{n} \subset\{0,1\}^{n}$ be the set of all assignments that satisfy $\phi_{n}$. We use a uniform sampler, with $A(x)=x$. By the above reasoning, $A$ samples $D_{n}$ with probability $\gamma_{n}>\left(1-\frac{e}{2^{k(n)}}\right)^{m(n)}$. Thus

$$
-\log \gamma_{n}<-m(n) \log \left(1-e / 2^{k(n)}\right)<2 e m(n) 2^{-k(n)}
$$

By Corollary 3, there is a polynomial $p$, where for all $n$, there is a satisfying assignment $x \in D_{n}$ of $\Phi(n)$ with

$$
\mathbf{K}^{p}(x)<2 m(n) e 2^{-k(n)}+O(\log n)
$$

## Chapter 6

## Game Derandomization

### 6.1 The Minatour and the Labyrinth

A hero is trapped in a labyrinth, which consists of long corridors connecting to small rooms. The intent of the the hero is to reach the goal room, which has a ladder in its center reaching the outside. The downside is the hero is blindfolded. The upside is there is a minotaur present to guide the hero.

At every room, the minotaur tells the hero the number of corridors $n$ leading out (including the one which the hero just came from). The hero states a number between 1 and $n$ and the minotaur takes the hero to corresponding door. However the hero faces another obstacle, in that the minotaur is trying to trick him. This means the mapping the minotaur uses is a function of all the hero's past actions. Thus if a hero returns to the same room, he may be facing a different mapping than before. This process continues for a very large number of turns. The question is how much information is needed by the hero to find the exit? Using Kolmogorov Game Derandomization, we get the following surprising good news for the hero. Let $c$ be the number of corridors and $d$ be the number of doors in the goal room.

The hero can find the exit using $\log (c / d)+\epsilon$ bits.
The error term $\epsilon$ is logarithmic and also is dependent on the information the halting sequence has about the entire construct, which is negligible except in exotic cases. Assuming the Independence Postulate [Lev84, Lev13], one cannot find such exotic constructs in the physical world.

### 6.2 Win/No-Halt Game

The Win/No-Halt game is defined to be betseen an agent $\mathbf{p}$ and an environment $\mathbf{q}$ are defined as follows. The agent is a function $\mathbf{p}:(\mathbb{N} \times \mathbb{N})^{*} \rightarrow \mathbb{N}$, where if $\mathbf{p}(w)=a, w \in(\mathbb{N} \times \mathbb{N})^{*}$ is a list of the previous actions of the agent and the environment, and $a \in \mathbb{N}$ is the action to be performed. The environment is of the form $\mathbf{q}:(\mathbb{N} \times \mathbb{N})^{*} \times \mathbb{N} \rightarrow \mathbb{N} \cup\{\mathbf{W}\}$, where if $\mathbf{q}(w, a)=b \in \mathbb{N}$, then $b$ is q's response to the agent's action $a$, given history $w$, and the game continues. If $\mathbf{q}$ responds $\mathbf{W}$ then the agents wins and the game halts. The agent can be randomized. The game can continue forever, given certain agents and environments.

Theorem 23 If probabilistic agent $\mathbf{p}$ wins against environment $\mathbf{q}$ with at least probability $p$, then there is a deterministic agent of Kolmogorov complexity $<^{\log } \mathbf{K}(\mathbf{p})-\log p+\mathbf{I}(\langle\mathbf{p}, \mathbf{q}\rangle ; \mathcal{H})$ that wins against $\mathbf{q}$.

Proof. On can associate $(\mathbb{N} \times \mathbb{N})^{*}$ to $\mathbb{N}$ in the natural way. Thus $\mathbf{p}$ can be seen as a stochastic process over a set of random variables $\left\{X_{i}\right\}_{i=1}^{\infty}$. So for each $X_{i}$, the index $i$ encodes a history of interactions with $\mathbf{q}$. So an interaction with $\mathbf{q}$ is a set $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{n}$, where each $a_{i} \in \mathbb{N}$ encodes the history of the interaction and $b_{i}$ is the agent's action. By encoding each number $n \in \mathbb{N}$ into a string $\langle n\rangle, \mathbf{p}$ can be seen as a computable measure over $\{0,1\}^{\infty}$. With this encoding, an interaction is an open set in the Cantor space. Let $s=\lceil-\log p\rceil+1$. Let $G \subset\{0,1\}^{\infty}$ be a clopen set, computable from $\mathbf{q}, \mathbf{p}$ and $s$ where each of its elements encode a winning interaction and $\mathbf{p}(G)>2^{-s}$. Thus $\mathbf{K}(G \mid \mathbf{p}, \mathbf{q}, s)=O(1)$. Using the Monotone EL Theorem 2, There exists $y$ such that $y \sqsupseteq x \in G$ and

$$
\begin{align*}
\mathbf{K}(y) & <\log -\log \mathbf{M}(G)+\mathbf{I}(G ; \mathcal{H}) \\
& <{ }^{\log } \mathbf{K}(\mathbf{p})+s+\mathbf{I}(\langle\mathbf{p}, s, \mathbf{q}\rangle ; \mathcal{H})  \tag{6.1}\\
& <{ }^{\log } \mathbf{K}(\mathbf{p})-\log p+\mathbf{I}(\langle\mathbf{p}, \mathbf{q}\rangle ; \mathcal{H})
\end{align*}
$$

Equation 6.1 is due to Lemma 1. This $y \in\{0,1\}^{*}$ encodes a finite series of numbers, which in turn encodes a series of actions $a \in \mathbb{N}$ at a number of histories $h \in(\mathbb{N} \times \mathbb{N})^{*}$. Thus $y$ encodes a deterministic player $\mathbf{p}^{\prime}$. When paired with $\mathbf{q}$, the deterministic agent $\mathbf{p}^{\prime}$ will result in a winning interaction.

### 6.3 Penalty Games

The second game derandomization theorem is modified such that the environment gives a nonnegative rational penalty term to the agent at each round. Furthermore the environment specifies an end to the game without specifying a winner or loser. This is called a penalty game.

Corollary 6 If given probabilistic agent $\mathbf{p}$, environment $\mathbf{q}$ halts with probability 1 , and $\mathbf{p}$ has expected penalty less than $n \in \mathbb{N}$, then there is a deterministic agent of complexity ${ }^{\log } \mathbf{K}(\mathbf{p})+$ $\mathbf{I}(\langle\mathbf{p}, n, \mathbf{q}\rangle ; \mathcal{H})$ that receives penalty $<2 n$ against $\mathbf{q}$.

Proof. We create a Win/No-Halt game from $\mathbf{q}$ where an agent wins if it gets a penalty less than $2 n$. Thus $\mathbf{p}$ is a probabilistic agent that wins this new game with probability $>.5$. Theorem 23 then can be used to prove the corollary.

### 6.4 Probabilistic Games

In this section we prove Kolmogorov Game Derandomization over probabilistic environments. This is an extension to Theorem 24, enabling the characterization of all computable and probabilistic environments.

The main proof uses the notion of a game fragment. A game fragment $\mathcal{F}$ is a finite tree, where each edge has a number $n \in \mathbb{N}$ representing an action. On the even levels, the edges are coupled with rational weights in $[0,1]$ and the summation of weights on edges with the same parent node is not more than 1 . Such fragments $\mathcal{F}$ can be coupled with an probabilistic agent $\mathbf{p}$, who fills in the weights of each odd level edges with its probabilistic action. In such a coupling, the weight of each path is the product of the probabilities along each edge of the path. Weight $(\mathbf{p}, \mathcal{F})$ is the sum of the weights of each path.
Claim 1 If there is a fragment $\mathcal{F}$ where each path from the root to a leaf represents a winning interaction with an environment $\mathbf{q}$ and the weights of $\mathcal{F}$ are not more than $\mathbf{q}$ 's probabilities of those particular actions, then $\operatorname{Weight}(\mathbf{p}, \mathcal{F})$ is not more than the probability that $\mathbf{p}$ wins against $\mathbf{q}$.

Theorem 24 (Probabilistic Environments) Let $\mathbf{p}$ be a probabilistic agent and $\mathbf{q}$ be a probabilistic environment. If $\mathbf{p}$ wins in the Win/No-Halt game against $\mathbf{q}$ with probability $>2^{-s}, s \in \mathbb{N}$, then there is a deterministic agent of complexity $<^{\log } \mathbf{K}(\mathbf{p})+2 s+\mathbf{I}(\langle\mathbf{p}, \mathbf{q}\rangle ; \mathcal{H})$ that wins with probability $>2^{-s-1}$.

Proof. We relativize the universal Turing machine to $\langle\mathbf{p}, s\rangle$. Thus this information is on an auxiliary tape and implicitly in the conditional of all complexity terms. Let $\mathcal{F}$ be a game fragment corresponding the environment $\mathbf{q}$ such that each path is a winning interaction and $\operatorname{Weight}(\mathbf{p}, \mathcal{F})>$ $2^{-s}$ and also $\mathbf{K}(\mathcal{F} \mid \mathbf{q})=O(1)$. Note that the actions of $\mathcal{F}$ are rationals which lower bound $\mathbf{q}$ 's computable action probabilities. Let $Q$ be an elementary probability measure that realizes $\operatorname{Ks}(\mathcal{F})$ and $d=\max \{\mathbf{d}(\mathcal{F} \mid Q), 1\}$. Without loss of generality, one can limit the support of $Q$ to encodings of game fragments $\mathcal{G}$ such that $\operatorname{Weight}(\mathcal{G}, \mathbf{p})>2^{-s}$. This can be done by defining a new probability $Q^{\prime}$ that is $Q$ conditioned on the above property, which is straightforward but tedious. Let $m$ be the longest path and $\ell$ be the largest action number of any game fragment in the support of $Q$. We define a probability $P$ over deterministic agents $\mathbf{g}$ defined up to $m$ steps and up to $\ell$ actions. Each action of the deterministic agent is determined by the corresponding probability of actions in that turn by $\mathbf{p}$. Using backwards induction, for each math fragment $\mathcal{G}$ in the support of $Q$,

$$
\mathbf{E}_{\mathbf{g} \sim P}[\operatorname{Weight}(\mathbf{g}, \mathcal{G})]>2^{-s} .
$$

Let $N$ be a number to be specified later. Assume we randomly define $N$ determinstic agents $\left\{\mathbf{g}_{i}\right\}_{i=1}^{N}$, each drawn i.i.d. from $P$. For math fragment $\mathcal{G}$ in the support of $Q, X_{\mathcal{G}}=\frac{1}{N} \sum_{i=1}^{N} \operatorname{Weight}\left(\mathbf{g}_{\mathbf{i}}, \mathcal{G}\right)$. Each such $X_{\mathcal{G}}$ is a random variable. By the Hoeffding's inequality,

$$
\operatorname{Pr}\left(X_{\mathcal{G}} \leq 2^{-s-1}\right)<2 \exp \left(-N 2^{-2 s-2}\right)
$$

Let $N=d 2^{2 s+3}$. Then it is possible to find a set of $N$ deterministic agents such that

$$
Q\left(\left\{\mathcal{G}: X_{\mathcal{G}} \leq 2^{-s-1}\right\}\right)<e^{-d} .
$$

In the above formula, each $X_{\mathcal{G}}$ is a fixed value and no longer a random variable. It must be that $X_{\mathcal{F}}>2^{-s-1}$. Otherwise using $Q$-test $t(\mathcal{G})=\left[X_{\mathcal{G}} \leq 2^{-s-1}\right] e^{d}$,

$$
1.44 d<\log t(\mathcal{F})<^{+} \mathbf{d}(\mathcal{F})=^{+} d
$$

This is a contradiction for large enough $d$ which we can assume without loss of generality. Thus since $X_{\mathcal{F}}>2^{-s-1}$ there exists deterministic agent $\mathbf{g}_{i}$ such that $\operatorname{Weight}\left(\mathbf{g}_{i}, \mathcal{F}\right)>2^{-s-1}$. Thus, by Claim $1, \mathbf{g}_{i}$ wins against $\mathbf{q}$ with probability more than $2^{-s-1}$. So,

$$
\begin{align*}
\mathbf{K}\left(\mathbf{g}_{i} \mid s, \mathbf{p}\right) & <^{+} \log N+\mathbf{K}\left(\left\{\mathbf{g}_{i}\right\} \mid s, \mathbf{p}\right) \\
\mathbf{K}\left(\mathbf{g}_{i}\right) & <{ }^{+} \mathbf{K}(s, \mathbf{p})+2 s+\log d+\mathbf{K}(d, Q \mid s, \mathbf{p}) \\
& <^{\log } \mathbf{K}(\mathbf{p})+2 s+3 \log d+\mathbf{K}(Q \mid s, \mathbf{p}) \\
& <^{\log } \mathbf{K}(\mathbf{p})+2 s+\mathbf{K s}(\mathcal{F} \mid s, \mathbf{p})  \tag{6.2}\\
& <^{\log } \mathbf{K}(\mathbf{p})+2 s+\mathbf{K s}(\mathcal{F})+O(\log \mathbf{K}(s, \mathbf{p}))  \tag{6.3}\\
& <^{\log } \mathbf{K}(\mathbf{p})+2 s+\mathbf{I}(\mathcal{F} ; \mathcal{H})  \tag{6.4}\\
& <{ }^{\log } \mathbf{K}(\mathbf{p})+2 s+\mathbf{I}(\langle\mathbf{p}, s, \mathbf{q}\rangle ; \mathcal{H})  \tag{6.5}\\
& <{ }^{\log } \mathbf{K}(\mathbf{p})+2 s+\mathbf{I}(\langle\mathbf{p}, \mathbf{q}\rangle ; \mathcal{H}) . \tag{6.6}
\end{align*}
$$

Equations 6.2 and 6.3 follow from the definition of stochasticity, Ks. Equation 6.4 follows from Lemma 2. Equation 6.5 follows from Lemma 6.5 and the fact that $\mathcal{F}$ is computable from $\mathbf{p}, \mathbf{q}$, and $s$. Equation 6.6 is due to the logarithmic precision of the inequality and $\mathbf{K}(s)=O(\log s)$

Corollary $\mathbf{7}$ Let $\epsilon \in(0,1)$ be computable. Let $\mathbf{p}$ be a probabilistic agent and $\mathbf{q}$ be a probabilistic environment. If $\mathbf{p}$ wins in the Win/No-Halt game against $\mathbf{q}$ with probability $>2^{-s}, s \in \mathbb{N}$, then there is a deterministic agent of complexity $<^{\log } \mathbf{K}(\mathbf{p})+2 s+\mathbf{I}(\langle\mathbf{p}, \mathbf{q}\rangle ; \mathcal{H})+O_{\epsilon}(1)$ that wins with probability $>\epsilon 2^{-s}$.

Corollary 8 Let $\epsilon \in(0,1)$ and $p \in(0,1)$ both be computable. Let $\mathbf{p}$ be a probabilistic agent and $\mathbf{q}$ be a probabilistic environment. If $\mathbf{p}$ wins in the Win/No-Halt game against $\mathbf{q}$ with probability $>p$, then there is a deterministic agent of complexity $<{ }^{\log } \mathbf{K}(\mathbf{p})+\mathbf{I}(\langle\mathbf{p}, \mathbf{q}\rangle ; \mathcal{H})+O_{p, \epsilon}(1)$ that wins with probability $>\epsilon$ p.

### 6.5 Computability of Environments

Claim 2 Theorem 24 and Corollaries 7 and 8 also apply to probabilistic environments $\mathbf{q}$ with lower computable probabilities since $\mathbf{K}(\mathcal{F} \mid \mathbf{p}, s, \mathbf{q})=O(1)$, where $\langle\mathbf{p}, s, \mathbf{q}\rangle$ consists of a program to compute $\mathbf{p}$, the number $s$, and a program to lower compute $\mathbf{q}$. This is because one lower enumerates the probabilities of $\mathbf{q}$ until one can find the corresponding game fragment $\mathcal{F}$ such that $\operatorname{Weight}(\mathbf{p}, \mathcal{F})>$ $2^{-s}$.

In this section, we derive the results of Theorems 23 and 24 with respect to uncomputable environments. We will use the following mutual information term between infinite sequences.

Definition 7 ([Lev74]) For $\alpha, \beta \in\{0,1\}^{\infty}$,
$\mathbf{I}(\alpha: \beta)=\log \sum_{x, y \in\{0,1\}^{*}} \mathbf{m}(x \mid \alpha) \mathbf{m}(y \mid \beta) 2^{\mathbf{I}(x: y)}$.
Proposition $3 \mathbf{I}(x ; \mathcal{H})<^{+} \mathbf{I}(\alpha: \mathcal{H})+\mathbf{K}(x \mid \alpha)$.
Now a probabilistic environment $\mathbf{q}$ is of the form $\mathbb{N} \times(\mathbb{N} \times \mathbb{N})^{*} \rightarrow[0,1]$. We fix a computable function $\ell$ such that for every environment $\mathbf{q}$ there is an infinite sequence $\alpha$ such that $\ell(\alpha, \cdot)$ computes $\mathbf{q}$. Let $\ell[\mathbf{q}]$ be the set of all such infinite sequences $\alpha$.

Definition 8 For probabilistic environment $\mathbf{q}, \mathbf{I}(\mathbf{q}: \mathcal{H})=\inf _{\alpha \in \ell[\mathbf{q}]} \mathbf{I}(\alpha: \mathcal{H})$.
Theorem 25 (Uncomputable Environments) Let $\mathbf{p}$ be a probabilistic agent and $\mathbf{q}$ be a (potentially uncomputable) probabilistic environment. If $\mathbf{p}$ Wins in the Win/No-Halt game against $\mathbf{q}$ with probability $>2^{-s}, s \in \mathbb{N}$, then there is a deterministic agent of complexity $<{ }^{\log } \mathbf{K}(\mathbf{p})+2 s+\mathbf{I}(\langle\mathbf{p}, \mathbf{q}\rangle$ : $\mathcal{H})$ that wins with probability $>2^{-s-1}$.

Proof. Using $\mathbf{p}, s$, any encoding $\alpha \in \ell[\mathbf{q}]$, and $\ell$, one can construct the math fragment $\mathcal{F}$ described in the proof of Theorem 24. Let $\alpha \in \ell[\mathbf{q}]$ and $\mathbf{I}(\alpha: \mathcal{H})<\mathbf{I}(\mathbf{q}: \mathcal{H})+1$. Thus $\mathbf{K}(\mathcal{F} \mid \mathbf{p}, s, \alpha)=O(1)$. Using Proposition 3, the definition of $\mathbf{I}(\mathbf{q}: \mathcal{H})$, and the reasoning of the proof of Theorem 24, this theorem follows.

The follow Theorem extends Theorem 23 to uncomputable environments.
Theorem 26 If probabilistic agent $\mathbf{p}$ wins against deterministic, and potentially uncomputable, environment $\mathbf{q}$ with at least probability $p$, then there is a deterministic agent of complexity $<^{\log }$ $\mathbf{K}(\mathbf{p})-\log p+\mathbf{I}(\langle\mathbf{p}, \mathbf{q}\rangle: \mathcal{H})$ that wins against $\mathbf{q}$.

Proof. This follows from using the same reasoning as the proof for Theorem 25 and the proof of Theorem 23.

### 6.6 Revisiting Crete

Suppose the minatour has gotten fed up with the hero, who can find the exit using a very small amount of information. The minatour decides to use chance to his advantage. At every room the minatour computes a probability over all possible mappings of numbers to doors and selects a mapping at random. This probability is a functions of all the hero's previous actions. However due to derandomization of probabilistic games, the hero can achieve the following results. Let $c$ be the number of corridors and $d$ be the number of doors in the goal room.

Theorem 27 Given any labyrinth and probabilistic minatour $(L, M)$, there is a deterministic hero $\mathbf{p}$ of complexity $\mathbf{K}(\mathbf{p}) \ll^{\log } 2 \log (c / d)+\mathbf{I}(\langle L, M\rangle ; \mathcal{H})$ that can find the goal room with probability greater than $d / 4.03 c$.

Proof. We assume the number of turns $N$ is long enough such that given a random walk of $N$ steps, the probability of being a the goal room is $>d / 2.01 c$. Let $s \in \mathbb{N}$ be the largest number such that $2^{-s}<d / 2.01 c$. Applying Corollary 7 , where $\epsilon=4.02 / 4.03$ and where the probabilistic agent $\mathbf{p}$ chooses each door with uniform probability, on gets a deterministic agent of complexity $<^{\log } \mathbf{K}(\mathbf{p})+2 s+\mathbf{I}(\langle\mathbf{p}, s,(L, M)\rangle ; \mathcal{H})+O_{\epsilon}(1)<^{\log } 2 \log (c / d)+\mathbf{I}(\langle L, M\rangle ; \mathcal{H})$. This agent wins with probability $>\epsilon 2^{-s} \geq \epsilon d / 4.02 c \geq d / 4.03 c$.

### 6.7 EvEN-ODDS

We define the following game, entitled Even-Odds. There are $N$ rounds. The player starts out with a score of 0 . At the start of each round, the environment $\mathbf{q}$ secretly records a bit $e_{i} \in\{0,1\}$. The player sends $\mathbf{q}$ a bit $b_{i}$ and the environment responds with $e_{i}$. The agent gets a point if $e_{i} \oplus b_{i}=1$. Otherwise the agent loses a point.

Theorem 28 For large enough number of rounds, $N$, given any determinisitic environment $\mathbf{q}$ there is a deterministic agent $\mathbf{p}$ of complexity $\mathbf{K}(\mathbf{p})<^{\log } \mathbf{I}(\mathbf{q} ; \mathcal{H})$ that can achieve a score of $\sqrt{N}$.

Proof. We describe a probabilistic agent $\mathbf{p}^{\prime}$. At round $i, \mathbf{p}^{\prime}$ submits 0 with probability $1 / 2$. Otherwise it submits 1. By the central limit theorem, for large enough $N$, the score of the probabilistic agent divided by $\sqrt{N}$ is $S \sim \mathcal{N}(0,1)$. Thus the probability that $\mathbf{p}^{\prime}$ gets a score greater than $\sqrt{N}$ is at least $1 / 6.4$. Create a Win/No-Halt game where $\mathbf{p}^{\prime}$ wins if achieves a score greater than $\sqrt{N}$. Thus by Theorem 23, there is a deterministic agent $\mathbf{p}$ with $\mathbf{K}(\mathbf{p})<\log -\log 1 / 6.4+\mathbf{I}(\mathbf{q} ; \mathcal{H})$ that achieves a score of $\sqrt{N}$.

Theorem 29 For large enough number of rounds, $N$, given any probabilistic environment $\mathbf{q}$ there is a deterministic agent $\mathbf{p}$ of complexity $\mathbf{K}(\mathbf{p})<{ }^{\log } \mathbf{I}(\mathbf{q} ; \mathcal{H})$ that can achieve a score of $\sqrt{N}$ with probability $>1 / 6.5$.

Proof. We describe a probabilistic agent $\mathbf{p}^{\prime}$. At round $i, \mathbf{p}^{\prime}$ submits 0 with probability $1 / 2$. Otherwise it submits 1 . By the central limit theorem, for large enough $N$, the score of the probabilistic agent divided by $\sqrt{N}$ is $S \sim \mathcal{N}(0,1)$. So the probability that a probabilistic agent gets a score of at least $\sqrt{N}$ is greater than $1 / 6.4$. One can construct a Win/No-Halt game where the player $\mathbf{p}^{\prime}$ wins if it has a score of at least $\sqrt{N}$. Thus $\mathbf{p}^{\prime}$ wins with probability greater than $p=1 / 6.4$. Thus by Corollary 8 , with $\epsilon=6.4 / 6.5$, there exists a deterministic agent $\mathbf{p}$ that can beat $\mathbf{q}$ with complexity

$$
\mathbf{K}(\mathbf{p})<^{\log } \mathbf{K}\left(\mathbf{p}^{\prime}\right)+\mathbf{I}\left(\left\langle\mathbf{p}^{\prime}, \mathbf{q}\right\rangle ; \mathcal{H}\right)<^{\log } \mathbf{I}(\mathbf{q} ; \mathcal{H}) .
$$

Furthermore $\mathbf{p}$ wins with probability $>1 / 6.5$.

### 6.8 Resource Bounded Even-Odds

So far the results have been on resource-free Kolmogorov complexity; the time to construct the players is not taken into account. However the results of this paper can be reinterpreted in terms of resource-bounded Kolmogorov complexity. Thus an environment playing Even-Odds in polynomial time implies the existence of a player that can be constructed in polynomial time that achieves a certain score. I could not find results in the literature with regard to resource bounded Kolmogorv complexity of players of games.

Theorem 30 Assume Crypto. Let $\mathbf{q}$ be a deterministic polynomial time computable environment that plays EvEn-Odds continuously. There is a polynomial function $p$ where for large enough $N \in \mathbb{N}$, there exists a deterministic agent $\mathbf{p}$ that can achieve a score of $\sqrt{N}$ after $N$ turns, with $\mathbf{K}^{p(N)}(\mathbf{p})=O(\log N)+O_{\mathbf{q}}(1)$.

Proof. We associate each $x \in\{0,1\}^{2 N}$ with an interaction of $N$ turns of Even-OdDs. The odd bits are the agent's actions and the even bits are q's deterministic actions. Let $L \subset\{0,1\}^{*}$ be all the interactions $x \in\{0,1\}^{2 N}$ with $\mathbf{q}$ that results in a score greater than $\sqrt{N}$. Since $\mathbf{q}$ is polynomial time computable, $L \in P$. For large enough $N$, by the central limit theorem, $\left|L_{N}\right| 2^{-N}>1 / 6.4$. We define a function $\zeta \in \mathbf{F} \mathbf{P}^{\prime}$, such that every odd bit is preserved and every outputted even bit is $\mathbf{q}$ 's response to the previous even bits (agent's actions). So for large enough $N, \zeta$ samples $L_{N}$ with probability $>1 / 6.4$. So by Corollary 2, there exists a deterministic player $\mathbf{p}$ that can achieve a score greater than $\sqrt{N}$ and a polynomial function $p$ independent of $N$, for large enough turns $N$, with

$$
\mathbf{K}^{p(N)}(\mathbf{p})<-\log 1 / 6 \cdot 4+O(\log N)+O_{\mathbf{q}}(1)<O(\log N)+O_{\mathbf{q}}(1) .
$$

### 6.9 Zero-Sum Repeated Games

In this section we generalize from the Even-Odds game of Section 6.7 to all zero-sum repeated games. A simultaneous game between two players $A$ and $B$ are defined as follows. At each turn, both players simultaneously play an action $a, b \in \mathbb{N}$. Each action is a function of the previous turns. Thus both $A$ and $B$ are of the form $(\mathbb{N} \times \mathbb{N})^{*} \rightarrow \mathbb{N}$. This process continues of $N$ turns. The determination of the outcome after $N$ turns is dependent on each such game.

A Zero-Sum Repeated Game is when the simultaneous game is a series of identical zero-sum stage games $\mathcal{G}$. The payoffs of the stage game $\mathcal{G}$ are assumed to be rationals. Each player starts with a score of 0 . A zero sum stage game is when the actions of $A$ and $B$ are chosen from $\{1, \ldots, n\}$. After the actions occur, each player is given a penalty or a prize. The total prizes and penalties for each player sum to 0 .

This section characterizes uncomputable, (lower)computable, and also polynomial-time computable players that are either deterministic or probabilistic.

Definition 9 The $\mathcal{K}(\mathcal{G})$ constant of a zero-sum stage game $\mathcal{G}$ is equal to $c \in \mathbb{R}_{\geq 0}$ where the total probabilistic mass of $\mathcal{N}\left(0, \sigma^{2}\right)$ after $c$ is $=1 / 3$ and where $\sigma^{2}$ is the variance of the payoffs of player $A$ when playing uniforming randomly.

Thus, as the prizes and penalties of the stage game $\mathcal{G}$ increases, the corresponding constant $\mathcal{K}(\mathcal{G})$ also increases.

Theorem 31 For repetition of zero-sum stage game $\mathcal{G}$ that has $n$ actions, over large enough turns $N$, for all computable deterministic players $B$, there is a computable deterministic player $A$ that can achieve a score greater than $\mathcal{K}(\mathcal{G}) \sqrt{N}$ with complexity $\mathbf{K}(A)<\log \mathbf{K}(n)+\mathbf{I}(\langle B, N, \mathcal{G}\rangle ; \mathcal{H})$.

Proof. Let player $A^{\prime}$ play each action with uniform probability at every turn. So $\mathbf{K}\left(A^{\prime}\right)=n$. At every turn, its payoff will be a random variable $X_{i}$ with 0 mean and $\sigma^{2}$ variance. By large enough $N$, by the central limit theorem, the score of $A^{\prime}$ divided by $\sqrt{N}$ is distributed according to $\mathcal{N}\left(0, \sigma^{2}\right)$. Thus with probability $1 / 3, A^{\prime}$ will have a score greater than $\mathcal{K}(\mathcal{N}) \sqrt{N}$. One can turn $N$ rounds of play into a Win/No-Halt game where the environment has complexity $\mathbf{K}(B, N, \mathcal{G})$ and $A^{\prime}$ wins if it has a score greater than $\mathcal{K}(\mathcal{G}) \sqrt{N}$. Thus by Theorem 23 , there is a deterministic player $\mathcal{A}$ that achieves a score greater than $\mathcal{K}(\mathcal{N}) \sqrt{N}$ and $\mathbf{K}(A)<^{\log } \mathbf{K}(n)+\mathbf{I}(\langle B, N, \mathcal{G}\rangle ; \mathcal{H})$.

Theorem 32 For repetition of zero-sum stage game $\mathcal{G}$ that has $n$ actions, over large enough turns $N$, for all computable probabilistic players $B$, there is a computable deterministic player $A$ with complexity $\mathbf{K}(A)<{ }^{\log } \mathbf{K}(n)+\mathbf{I}(\langle B, N, \mathcal{G}\rangle ; \mathcal{H})$ that can achieve a score greater than $\mathcal{K}(\mathcal{N}) \sqrt{N}$ with probability $>1 / 4$.

Proof. Let player $A^{\prime}$ play each action with uniform probability at every turn. $\mathrm{So} \mathbf{K}\left(A^{\prime}\right)=n$. At every turn, its payoff will be a random variable $X_{i}$ with 0 mean and $\sigma^{2}$ variance. By large enough $N$, by the central limit theorem, the score of $A^{\prime}$ divided by $\sqrt{N}$ is distributed according to $\mathcal{N}\left(0, \sigma^{2}\right)$. Thus with probability $>1 / 3.5, A^{\prime}$ will have a score greater than $\mathcal{K}(\mathcal{N}) \sqrt{N}$. One can turn $N$ rounds of play into a Win/No-Halt game where the environment has complexity $\mathbf{K}(B, N, \mathcal{G})$ and $A^{\prime}$ wins if it has a score greater than $\mathcal{K}(\mathcal{G}) \sqrt{N}$. Thus by Corollary 11 , with $p=1 / 3.5$ and $\epsilon=3.5 / 4$ we get deterministic player $A$ of complexity $\mathbf{K}(A)<{ }^{\log } \mathbf{K}(n)+\mathbf{I}(\langle B, N, \mathcal{G}\rangle ; \mathcal{H})$ that wins probability $>1 / 4$. The following theorem covers uncomputable opponents of zero-sum repeated games. The information term $\mathbf{I}(\cdot: \mathcal{H})$ is from Definition 8.

Theorem 33 For repetition of zero-sum stage game $\mathcal{G}$ that has $n$ actions, over large enough turns $N$, for all uncomputable deterministic players $B$, there is a computable deterministic player $A$ that can achieve a score greater than $\mathcal{K}(\mathcal{G}) \sqrt{N}$ with complexity $\mathbf{K}(A)<^{\log } \mathbf{K}(n)+\mathbf{I}(\langle B, N, \mathcal{G}\rangle: \mathcal{H})$.

Proof. This follows from the same reasoning as the proof of Theorem 25.
Theorem 34 Assume Crypto. Let $B$ be deterministic polynomial time computable agent that plays zero-sum stage game $\mathcal{G}$ continuously. Assume $\mathcal{G}$ has $2^{n}$ actions. There is a polynomial function $p$ where for large enough $N \in \mathbb{N}$, there exists a deterministic agent $A$ that can achieve $a$ score of $\mathcal{K}(\mathcal{G}) \sqrt{N}$ after $N$ turns, with $\mathbf{K}^{p(N)}(A)=O(\log N)+O_{B}(1)$.

Proof. We associate each $x \in\{0,1\}^{2 n N}$ with an interaction of $N$ turns of Even-Odds. Each odd segment of $n$ bits are the agent's actions and the even segments of $n$ bits are $\mathbf{q}$ 's deterministic actions. Let $L \subset\{0,1\}^{*}$ be all the interactions $x \in\{0,1\}^{2 n N}$ with $B$ that results in a score greater than $\mathcal{K}(\mathcal{G}) \sqrt{N}$. Since $B$ is polynomial time computable, $L \in P$. For large enough $N$, by the central limit theorem and the definition of $\mathcal{K}(\mathcal{G})$, for large enough $N,\left|L_{N}\right| 2^{-N}>1 / 4$. We define a function $\zeta \in \mathbf{F P}^{\prime}$, such that every odd segment of $n$ is preserved and every outputted even segment of $n$ bits is $B$ 's response to the previous even digits (agent's actions). So for large enough $N, \zeta$ samples $L_{N}$
with probability $>1 / 4$. So by Theorem 2 , there exists a deterministic player $A$ that can achieve a score greater than $\mathcal{K}(\mathcal{G}) \sqrt{N}$ in large enough $N$ turns and a polynomial $p$ independent of $N$ with

$$
\mathbf{K}^{p(N)}(A)<-\log 1 / 4+O(\log N)+O_{B}(1)<O(\log N)+O_{B}(1) .
$$

Remark 2 Though this paper provides a resource bounded derandomization of zero-sum repeated games, what's noticeably absent is general resource bounded derandomization of arbitrary Win/NoHalt games. This absence is because the Resource EL Corollary 2 is a statement about infinite set of strings $\left\{D_{n}\right\}_{n=1}^{\infty}$, where $D_{n} \subseteq\{0,1\}^{n}$. This form is compatible with zero-sum repeated games for any of the $n$ rounds but not so much for games like the one in Section 6.6, which would require an infinite set of graphs and door mappings. Furthermore, the number of possible actions is different for each turn, which is in conflict with the requirement of the Resource EL Theorem for sets of strings of the same length.

### 6.10 New Bounds

In fact, as shown in this section, the bounds of Theorems 23 and 24 can be improved. These new bounds use a summation of all probabilistic agent's winning probabilities, weighted by their algorithmic probabilities. A semi-agent is a probabilistic player whose action probabilities don't necessarily sum to 1 at each turn. The leftover probability represents the chance that the semiagent freezes and does not win. A semi-agent $\mathbf{p}$ is modelled by the function $(\mathbb{N} \times \mathbb{N})^{*} \times \mathbb{N} \rightarrow$ $[0,1]$. A semi-agent $\mathbf{p}$ is lower computable if the probability of $\mathbf{p}$ performing a finite set of actions given the environment's action is lower computable. More formally, for every action $a \in \mathbb{N}$ of the player and response $e \in \mathbb{N}$ of the environment and history $h \in(\mathbb{N} \times \mathbb{N})^{*}, \mathbf{p}(a, h) \in[0,1]$, $p(a, h)$ is lower computable, and $\sum_{b \in \mathbb{N}} \mathbf{p}(b,(h,(a, e)) \leq \mathbf{p}(a, h)$. Also note that, in general, a lower computable semi-agent will not have (even lower) computable probabilities of an action given its history. Let $\operatorname{Win}(\mathbf{p}, \mathbf{q})$ is the winning probability of semi-agent $\mathbf{p}$ against environment $\mathbf{q}$. If $\mathbf{p}$ is lower computable, then $\operatorname{Win}(\mathbf{p}, \mathbf{q})$ is lower computable. The algorithmic probability of a semi-agent is $\mathbf{m}(\mathbf{p})=\sum\left\{2^{-\|\ell\|}: U_{\ell}(\cdot)\right.$ lower computes $\left.\mathbf{p}\right\}$. Thus if $\mathbf{p}$ is not lower computable, then $\mathbf{m}(\mathbf{p})=0$. Let $\mathcal{A}$ be the set of all lower computable semi-agents. The set $\mathcal{A}$ can be enumerated in the standard way of algorithmic information theory.

Definition 10 For (deterministic or probabilistic) environment $\mathbf{q}$, let $\xi(\mathbf{q})=\left\lceil-\log \sum_{\mathbf{p} \in \mathcal{A}} \mathbf{m}(\mathbf{p}) \operatorname{Win}(\mathbf{p}, \mathbf{q})\right\rceil$ is a score of how hard it is for each semi-agent to win against $\mathbf{q}$, weighted by its algorithmic probability.

Remark 3 Let $\Omega=\sum\left\{2^{-\|p\|}: U(p)\right.$ halts $\}$ be Chaitin's Omega and $\Omega^{t}=\sum\left\{2^{-\|p\|}: U(p)\right.$ halts in time $\left.t\right\}$. For a string $x$, let $B B(x)=\min \left\{t: \Omega^{t}>0 . x+2^{-\|x\|}\right\}$. Note that $B B(x)$ is undefined if $0 . x+2^{-\|x\|}>$ $\Omega$. For $n \in \mathbb{N}$, let $\mathbf{b b}(n)=\max \{B B(x):\|x\| \leq n\}$. $\mathbf{b b}^{-1}(m)=\arg \min _{n}\{\mathbf{b b}(n-1)<m \leq$ $\mathbf{b b}(n)\}$. Let $b b(n)=\arg \max _{x}\{B B(x):\|x\| \leq n\}$.

Lemma 6 For $n=\mathbf{b b}^{-1}(m), \mathbf{K}(b b(n) \mid m, n)=O(1)$.

Proof. Enumerate strings of length $n$, starting with $0^{n}$, and return the first string $y$ such that $B B(y) \geq m$. This string $y$ is equal to $b b(n)$, otherwise $B B\left(y^{-}\right)$is defined and $B B\left(y^{-}\right) \geq B B(y) \geq$ $m$. Thus $\mathbf{b b}(n-1) \geq m$, causing a contradiction.

## Proposition 4

1. $\mathbf{K}(b b(n))>^{+} n$.
2. $\mathbf{K}(b b(n) \mid \mathcal{H})<^{+} \mathbf{K}(n)$.

Theorem 35 (Derandomization, Improved Bounds) Let $\mathbf{q}$ be a computable deterministic environment. There is a deterministic agent of complexity
$<^{\log } \xi(\mathbf{q})+\mathbf{I}(\mathbf{q} ; \mathcal{H})$ that wins against $\mathbf{q}$.
Proof. Let $\mathbf{p}$ be the universal lower-computable semi-agent, where

$$
\mathbf{p}=\sum_{\mathbf{p}^{\prime} \in \mathcal{A}} \mathbf{m}\left(\mathbf{p}^{\prime}\right) \mathbf{p}^{\prime}
$$

Let $s=\lceil-\log \operatorname{Win}(\mathbf{p}, \mathbf{q})\rceil+1=\xi(\mathbf{q})+1$.
Let $\mathbf{p}^{c}$ be $\mathbf{p}$ after enumerating $c$ steps. Let $m$ be the smallest number such that $\operatorname{Win}\left(\mathbf{p}^{m}, \mathbf{q}\right)>$ $2^{-s-1}$.

Let $n=\mathbf{b} \mathbf{b}^{-1}(m), k=\mathbf{b b}(n)$. Let $\mathbf{p}^{k}$ be $\mathbf{p}$ after enumerating $k$ steps, and completed to an agent (from a semi-agent). Thus $\operatorname{Win}\left(\mathbf{p}^{k}, \mathbf{q}\right)>2^{-s-1}$.

Let $b=b b(n)$. Theorem 23, conditioned on $b$ gives a deterministic agent $\mathbf{r}$ such that

$$
\begin{align*}
\mathbf{K}(\mathbf{r} \mid b) & <{ }^{\log } \mathbf{K}\left(\mathbf{p}^{k} \mid b\right)+s+\mathbf{I}\left(\left\langle\mathbf{p}^{k}, \mathbf{q}\right\rangle ; \mathcal{H} \mid b\right) \\
& \ll^{\log } s+\mathbf{I}(\mathbf{q} ; \mathcal{H} \mid b) \\
\mathbf{K}(\mathbf{r}) & \ll^{\log } s+\mathbf{K}(b)+\mathbf{K}(\mathbf{q} \mid b)-\mathbf{K}(\mathbf{q} \mid b, \mathcal{H}) \\
& \ll^{\log } s+\mathbf{K}(b, \mathbf{q})+\mathbf{K}(\mathbf{K}(b))-\mathbf{K}(\mathbf{q} \mid b, \mathcal{H})  \tag{6.7}\\
& <{ }^{\log } s+\mathbf{K}(\mathbf{q})+\mathbf{K}(b \mid \mathbf{q}, s)-\mathbf{K}(\mathbf{q} \mid \mathcal{H}) \\
& <{ }^{\log } s+\mathbf{K}(\mathbf{q})+\mathbf{K}(b \mid \mathbf{q}, s, n)+\mathbf{K}(n)-\mathbf{K}(\mathbf{q} \mid \mathcal{H}) \\
& <{ }^{\log } s+\mathbf{K}(\mathbf{q})-\mathbf{K}(\mathbf{q} \mid \mathcal{H}) . \tag{6.8}
\end{align*}
$$

The equations follow from Proposition 4. Equation 6.7 follows from the chain rule. Equation 6.8 follows from Lemma 6. The following corollary is an update to Theorem 4 in [EB11] which is derived from Theorem 6 in [VV05]. Another form of this theorem can be found in Lemma 6 in [VV04]. It also follows from [Lev16, Eps23a]. In fact, theorems of this general form are ubiquitous in algorithmic information theory. It says that if an environment has a a lot of deterministic players of bounded complexity who win against it, then there exists a simple deterministic player that wins.

Corollary 9 (Many Deterministic Winners) If $2^{m}$ deterministic players $\mathbf{r}$ of Kolmogorov complexity $\mathbf{K}(\mathbf{r}) \leq n$ win against an environment $\mathbf{q}$, then there exists a deterministic player $\mathbf{p}$ with $\mathbf{K}(\mathbf{p})<^{\log } n-m+\mathbf{I}(\mathbf{q} ; \mathcal{H})$ that wins against $\mathbf{q}$.

Corollary 10 (Many Probabilistic Winners) If $2^{m}$ probabilistic players $\mathbf{r}$ of Kolmogorov complexity $\mathbf{K}(\mathbf{r}) \leq n$ win against an environment $\mathbf{q}$ with probability $p$, then there exists a deterministic player $\mathbf{p}$ with $\mathbf{K}(\mathbf{p})<{ }^{\log } n-m-\log p+\mathbf{I}(\mathbf{q} ; \mathcal{H})$ that wins against $\mathbf{q}$.

The following theorem provides bounds using information with the environment. It is a followup to Theorem 2 in [EB11] which is a rearranging of Theorem 2 in [VV04].
Theorem 36 (Environment Information) For deterministic environment $\mathbf{q}$, there exists a deterministic agent $\mathbf{p}$ with $\mathbf{K}(\mathbf{p})<{ }^{\log } \min _{\mathbf{r} \in \mathcal{A}} \mathbf{I}(\mathbf{r} ; \mathbf{q})-\log \operatorname{Win}(\mathbf{r}, \mathbf{q})+\mathbf{I}(\mathbf{q} ; \mathcal{H})$ that wins against $\mathbf{q}$.

Proof. For $n \in \mathbb{N}$, let $\mathcal{A}(\mathbf{q}, n)=\left\{\mathbf{r}: \mathbf{r} \in \mathcal{A}, \operatorname{Win}(\mathbf{r}, \mathbf{q})>2^{-n}\right\}$. Let $s=\left\lfloor-\log \sum_{\mathbf{r} \in \mathcal{A}(\mathbf{q}, n)} \mathbf{m}(\mathbf{r})\right\rfloor$. So we have that

$$
\begin{equation*}
\xi(\mathbf{q})<^{+} s+n \tag{6.9}
\end{equation*}
$$

Since $\mathcal{A}(\mathbf{q}, n)$ is lower computable given $s, n$, and $\mathbf{q}$, we have that $m(\mathbf{r})=[\mathbf{r} \in \mathcal{A}(\mathbf{q}, n)] 2^{s} \mathbf{m}(\mathbf{r})$ is a lower computable semimeasure. So if $\mathbf{r} \in \mathcal{A}(\mathbf{q}, n)$, then

$$
\begin{align*}
\mathbf{m}(\mathbf{r} \mid \mathbf{q}, n, s) & \stackrel{*}{ } m(\mathbf{r}) \stackrel{*}{2} 2^{s} \mathbf{m}(\mathbf{r}) \\
s & <^{+} \mathbf{K}(\mathbf{r})-\mathbf{K}(\mathbf{r} \mid \mathbf{q}, n, s) \\
s & <^{\log } \mathbf{K}(\mathbf{r})-\mathbf{K}(\mathbf{r} \mid \mathbf{q})+\mathbf{K}(n) \\
s & <^{\log } \min _{\mathbf{r} \in \mathcal{A}(\mathbf{q}, n)} \mathbf{K}(\mathbf{r})-\mathbf{K}(\mathbf{r} \mid \mathbf{q})+\mathbf{K}(n) . \tag{6.10}
\end{align*}
$$

Combining Equations 6.9 and 6.10 and Theorem 35, there is a deterministic agent p that wins against $\mathbf{q}$, where for all $n$,

$$
\begin{aligned}
\mathbf{K}(\mathbf{p}) & <\log \min _{\mathbf{r} \in \mathcal{A}(\mathbf{q}, n)} \mathbf{I}(\mathbf{r} ; \mathbf{q})+n+\mathbf{I}(\mathbf{q} ; \mathcal{H}) \\
& <\operatorname{<og}_{\mathbf{r} \in \mathcal{A}}^{\log } \mathbf{I}(\mathbf{r} ; \mathbf{q})-\log \operatorname{Win}(\mathbf{r}, \mathbf{q})+\mathbf{I}(\mathbf{q} ; \mathcal{H}) .
\end{aligned}
$$

Theorem 37 Let $\mathbf{q}$ be a computable probabilistic environment. Let $2^{-s}<\xi(\mathbf{q}), s \in \mathbb{N}$. There is a deterministic agent of complexity $<^{\log } 2 s+\mathbf{I}(\mathbf{q} ; \mathcal{H})$ that wins with probability $>2^{-s-1}$.

Proof. The proof analogously to that of Theorem 35.
Corollary 11 Let $\mathbf{q}$ be a computable probabilistic environment. Let $2^{-s}<\xi(\mathbf{q})$, $s \in \mathbb{N}$. Let $\epsilon \in(0,1)$ be computable. There is a deterministic agent of complexity $<\log 2 s+\mathbf{I}(\mathbf{q} ; \mathcal{H})+O_{\epsilon}(1)$ that wins with probability $>\epsilon 2^{-s}$.

How does one interpret these new bounds? Let $\mathcal{B}$ be the set of all total computable probabilistic agents and $\mathbf{q}$ be a deterministic environment. Using some reasoning, one can prove the following inequality

$$
\min _{\mathbf{p} \in \mathcal{B}} K(\mathbf{p})-\log \operatorname{Win}(\mathbf{p}, \mathbf{q})<^{\log } \xi(\mathbf{q})+\mathbf{I}(\mathbf{q} ; \mathcal{H})
$$

Thus only exotic environments will have an average win rate that is better than the weighted max win rate. However, the bounds proved in this section are more amenable to manipulation, as shown with Corollaries 9 and 10 and Theorem 36. This also turned out to be the case with Gács entropy and Vitányi entropy, where their difference is only over exotic quantum states but Gács entropy has many applications in algorithmic physics.

### 6.11 Partial Derandomization

With game derandomization, a probabilistic player that wins with probability $p$ can be transformed into a deterministic one, with a complexity term of $-\log p$ in the inequality. In this section we show a general tradeoff of bits versus winning probabilities. A probabilistic agent can be transformed into a more successful probabilistic agent, at the cost of its complexity. The theorem of this section puts bounds on this tradeoff. The proof requires using Corollary 7 from [Eps24]:

Theorem 38 (Monotone EL Theorem for Sets) For prefix free set $G, m=\lceil-\log \mathbf{M}(G)\rceil$, $n<m, n \in \mathbb{N}$, there exists a set $F$ of size $2^{n}$ where there exists $y \in F$ and $x \in G$ such that $y \sqsupseteq x$ and

$$
\mathbf{K}(F)<^{\log } m-n+\mathbf{I}(G ; \mathcal{H})+\mathbf{K}(n) .
$$

Theorem 39 (Partial Derandomization) Let $\mathbf{q}$ be a deterministic environment and $\mathbf{p}$ be $a$ probabilistic player that wins with probability $p$. For $s=\lceil-\log p\rceil+1, r<s, r \in \mathbb{N}$, there is a probabilistic agent of complexity $<\log s-r+\mathbf{I}(\langle\mathbf{p}, s, \mathbf{q}\rangle ; \mathcal{H})+\mathbf{K}(r)$ that wins with probability $>2^{-r}$.

Proof. Let $s=\lceil-\log p\rceil+1$. Using the same reasoning as the proof of Theorem 23, there exists a clopen set $G \subset\{0,1\}^{\infty}$ where each element encodes a winning interaction with the environment $\mathbf{q}, \mathbf{p}$ can be interpreted as a measure over the Cantor space, $\mathbf{p}(G)>2^{-s}$, and $\mathbf{K}(G \mid \mathbf{p}, s, \mathbf{q})=O(1)$. Using Theorem 38 , one gets a prefix free set $F$, such that there exists $y \in F$ and $x \in G$ such that $y \sqsupseteq x, m=\lceil-\log \mathbf{M}(F)\rceil$, where

$$
\begin{align*}
& \mathbf{K}(F)<^{\log } m-r+\mathbf{I}(F ; \mathcal{H})+\mathbf{K}(r) \\
& \mathbf{K}(F)<^{\log } \mathbf{K}(\mathbf{p})+s-r+\mathbf{I}(F ; \mathcal{H})+\mathbf{K}(r) \\
& \mathbf{K}(F)<^{\log } \mathbf{K}(\mathbf{p})+s-r+\mathbf{I}(\langle\mathbf{p}, s, \mathbf{q}\rangle ; \mathcal{H})+\mathbf{K}(r) \tag{6.11}
\end{align*}
$$

Equation 6.11 is due to Lemma 1. Each such string in $F$ represents a deterministic player. At least one such deterministic player has a winning interaction with $\mathbf{q}$. It is not hard to construct a probabilistic player $\mathbf{p}^{\prime}$ from $F$ that wins with probability $|F|^{-1}$. Indeed, at every given history $h \in(\mathbb{N} \times \mathbb{N})^{*}$ the player $\mathbf{p}^{\prime}$ chooses action $a \in \mathbb{N}$ with probability $n_{a} / m_{a}$, where $m_{a}$ is the number of deterministic players that are consistent with $h$, and $n_{a}$ are the number of such agents that choose $n_{a}$ as their action. If $m_{a}$ is 0 , then $\mathbf{p}^{\prime}$ can choose any action.

Corollary 12 (Improved Bounds) Let $\mathbf{q}$ be a deterministic environment. For $r<\xi(\mathbf{q}), r \in \mathbb{N}$, there is a probabilistic agent $\mathbf{p}$, with $\mathbf{K}(\mathbf{p})<^{\log } \xi(\mathbf{q})-r+\mathbf{I}(\mathbf{q} ; \mathcal{H} \mid r)+\mathbf{K}(r)$ that wins with probability $>2^{-r}$.

Proof. From Theorem 39 and the reasoning of proof of Theorem 35, we have

$$
\begin{align*}
\mathbf{K}(\mathbf{p}) & <^{\log g(\mathbf{q})-r}+\mathbf{I}(\langle\xi(\mathbf{q}), \mathbf{q}\rangle ; \mathcal{H})+\mathbf{K}(r) \\
\mathbf{K}(\mathbf{p} \mid r) & <^{\log \xi(\mathbf{q})-r}+\mathbf{I}(\langle\xi(\mathbf{q}), \mathbf{q}\rangle ; \mathcal{H} \mid r) \\
\mathbf{K}(\mathbf{p}) & <^{\log } \xi(\mathbf{q})-r+\mathbf{I}(\langle(\xi(\mathbf{q})-r), \mathbf{q}\rangle ; \mathcal{H} \mid r)+\mathbf{K}(r)  \tag{6.12}\\
& <^{\log } \xi(\mathbf{q})-r+\mathbf{I}(\mathbf{q} ; \mathcal{H} \mid r)+\mathbf{K}(r) .
\end{align*}
$$

Equation 6.12 is due to Lemma 1, where $\mathbf{K}((\xi(\mathbf{q}) \mid r, \xi(\mathbf{q})-r)=O(1)$.

### 6.12 Lose/No-Halt Games

A Lose/No-Halt game is a series of interactions where the player and environment exchange natural numbers. At any given time, the environment can choose to declare that the player has lost. Otherwise, if the game continues forever, the player has won. However Lose/No-Halt games present several barriers in their characterization which the Win/No-Halt games do not have. One such obstacle to derandomizing Lose/No-Halt games is as follows.

Theorem 40 There exists a Lose/No-Halt game consisting of a computable environment $\mathbf{q}$, a computable probabilistic player $\mathbf{p}$ that wins with positive probability, and no deterministic player that can beat $\mathbf{q}$.

Proof. The environment $\mathbf{q}$ gives a single action: 0. In addition, the player loses if she players a number other than 0 or 1 . We inductively define a computable environment q. At each of the environment turn at $n$, the interaction consists of a bit string $x$ of length $2 n-1$. Let $y$ be the odd bits of $x$, i.e. the player's actions. Let $\mathbf{K}_{t}(c)=\min \{\|p\|: U(p)=c$ in $\leq t$ steps $\}$. If $\|z\|-\mathbf{K}_{n}(z)>d$ for any $z \sqsubseteq y$, then environment $\mathbf{q}$ outputs a loss for the action and the game ends. Otherwise the game continues. This means $\mathbf{q}$ is computable. Thus a player who randomly chooses a bit will output with non zero probability a winning sequence that has less than $d$ randomness deficiency. In addition there is no deterministic player who can output an infinite sequence with bounded randomness deficiency.

### 6.13 Agent Spaces

In this section, we revisit agent spaces, introduced in my first paper on algorithmic information theory [EB11]. It also can be seen as a game theoretic variant of distortion families, introduced in [VV04].

An agent space is a finite or infinite set of (semi)agents. The reason for using agent spaces is that one might want to restrict the agents under consideration. This is an attempt to bridge the gap between results in algorithmic information theory of unrestricted constructs (such as agents in our case) and very restrictive computable models seen in areas such as the Minimum Description Length Principle [Gru07]. Frankly, it remains to be seen if such a middle ground exists. We will consider, finite, enumerable, and uncomputable agent spaces. We will leverage the EL Theorem.
Theorem 41 (EL Theorem, [Lev16, Eps23a]) For finite $D \subset\{0,1\}^{*}$, $\min _{x \in D} \mathbf{K}(x) \ll^{\log }-\log \mathbf{m}(D)+\mathbf{I}(D ; \mathcal{H})$.

Theorem 42 Let $\mathbf{q}$ be a deterministic environment and let $\mathcal{S}$ be an enumerable agent space consisting solely of deterministic agents. Let $D \subseteq \mathcal{S}$ be the set of deterministic agents in the agent space $\mathcal{S}$ that win against $\mathbf{q}$. Note that $D$ may be infinite.

$$
\min _{\mathbf{p} \in D} \mathbf{K}(\mathbf{p})<^{\log } \min _{\mathbf{p} \in D} \mathbf{I}(\mathbf{p} ;\langle\mathbf{q}, \mathcal{S}\rangle)+\mathbf{I}(\langle\mathbf{q}, \mathcal{S}\rangle ; \mathcal{H})
$$

Proof. Let $s=\lceil-\log \mathbf{m}(D)\rceil+1$. Given $\mathbf{q}$, $s$, and a program that enumerates $\mathcal{S}$ consisting of programs of deterministic players, one can create a set $F \subseteq D$ consisting of programs of deterministic agents that win against $\mathbf{q}$ and $\mathbf{m}(F)>2^{-s}$. So $\mathbf{K}(F \mid \mathbf{q}, \mathcal{S})$. By the EL Theorem 41, there exists a deterministic agent $\mathbf{p} \in F$ that wins against $\mathbf{q}$ with

$$
\begin{align*}
\mathbf{K}(\mathbf{p}) & <^{\log }-\log \mathbf{m}(F)+\mathbf{I}(F ; \mathcal{H}) \\
& <^{\log }-\log \mathbf{m}(F)+\mathbf{I}(\langle\mathbf{q}, \mathcal{S}\rangle ; \mathcal{H})  \tag{6.13}\\
& <^{\log }-\log \mathbf{m}(D)+\mathbf{I}(\langle\mathbf{q}, \mathcal{S}\rangle ; \mathcal{H}) .
\end{align*}
$$

Equation 6.13 is due to Lemma 1. By the definition of $D, m(\mathbf{r})=[\mathbf{r} \in D] \mathbf{m}(\mathbf{r}) 2^{s-2}$ is a lower computable semi measure with $\mathbf{m}(\mathbf{r} \mid \mathbf{q}, \mathcal{S}) \mathbf{m}(\mathbf{r}) \stackrel{*}{>} m(r)$. So if $\mathbf{r} \in D$,

$$
\begin{aligned}
\mathbf{m}(\mathbf{r} \mid \mathbf{q}, s, \mathcal{S}) & \stackrel{*}{>} \mathbf{m}(\mathbf{r}) 2^{s} \\
s & <^{\log } \mathbf{I}(\mathbf{r} ;\langle\mathbf{q}, \mathcal{S}\rangle) .
\end{aligned}
$$

So

$$
\mathbf{K}(\mathbf{p})<^{\log } \min _{\mathbf{r} \in D} \mathbf{I}(\mathbf{r} ; \mathbf{q}, \mathcal{S})+\mathbf{I}(\langle\mathbf{q}, \mathcal{S}\rangle ; \mathcal{H}) .
$$

Using the similar reasoning, one can prove the following corollary.
Corollary 13 Let $\mathbf{q}$ be a deterministic environment and let $\mathcal{S}$ be a deterministic agent space. If there are $2^{k}$ agents $\mathbf{r} \in \mathcal{S}$, with $\mathbf{K}(\mathbf{r})<r$ that win against $\mathbf{q}$, then there is a deterministic agent $\mathbf{p} \in \mathcal{S}$ that wins against $\mathbf{q}$ and

$$
\mathbf{K}(\mathbf{p})<^{\log } r-k+\mathbf{I}(\langle\mathbf{q}, \mathcal{S}\rangle ; \mathcal{H}) .
$$

The results of this section also apply to uncomputable agent spaces consisting of lower computable semi-agents. We won't repeat the theorems, but will define the information of an uncomputable agent space with the halting sequence. For an semi-agent space $\mathcal{S}$, let $\ell[[\mathcal{S}]$ be the set of all infinite sequences $\alpha \in\{0,1\}^{\infty}$ consisting of encodings $\langle n\rangle$ of numbers $n \in \mathbb{N}$ representing programs to lower computable a semi agent. Furthermore, if there is a semi-agent $\mathbf{p}$ in $\mathcal{S}$ there exists a single encoded number in all such $\alpha$ that lower computes $\mathbf{p}$. The following definition uses Definition 7 .

Definition 11 (Information, Uncomputable Agent Spaces) For agent space $\mathcal{S}$, $\mathbf{I}(\mathcal{S}: \mathcal{H})=\inf _{\alpha \in \ell[\mathcal{S}]} \mathbf{I}(\alpha: \mathcal{H})$.

## Chapter 7

## Game Derandomization Examples

For a given win/no-halt game if there is a good simple randomized player but no simple winning deterministic player, then that game is exotic, in that it has high mutual information with the halting sequence.

This mirrors derandomization, where if a solution to a problem can be produced easily with a simple probability, but has no simple solutions, then it is exotic. A game instance that has a simple winning probabilistic agent but no simple winning deterministic agent can be found in Example 1.

### 7.1 Graph-Navigation

The win/no-halt game is as follows. The environment $\mathbf{q}$ consists of $(G, s, r) . G=(E, V)$ is a nonbipartite graph with undirected edges, $s \in V$ is the starting vertex, and $r \in V$ is the goal vertex. Let $t_{G}$ be the time it takes for any random walk starting anywhere to converge to the stationary distribution $\pi(v)$, for all $v \in V$, up to a factor of 2 .

There are $t_{G}$ rounds and the agent starts at $s \in V$. At round 1 , the environment gives the agent the degree $s \in V, \operatorname{Deg}(s)$. The agent picks an number between 1 and $\operatorname{Deg}(s)$ and sends it to q. The agent moves along the edge the number is mapped to and is given the degree of the next vertex it is on. Each round's mapping of numbers to edges to be a function of the agent's past actions. This process is repeated $t_{G}$ times. The agent wins if it is on $r \in V$ at the end of round $t_{G}$. A graphical depiction of this can be seen in Figure 7.1.

Theorem 43 There is a deterministic agent $\mathbf{p}$ that can win the Graph-Navigation game with complexity $\mathbf{K}(\mathbf{p})<{ }^{\log } \log |E|+\mathbf{I}((G, s, r) ; \mathcal{H})$.

Proof. It is well known if $G$ is non-bipartite, a random walk starting from any vertex will converge to a stationary distribution $\pi(v)=\operatorname{deg}(v) / 2|E|$, for each $v \in V$.

A probabilistic agent $\mathbf{p}^{\prime}$ is defined as selecting each edge with equal probability. After $t_{G}$ rounds, the probability that $\mathbf{p}^{\prime}$ is on the goal $r$ is close to the stationary distribution $\pi$. More specifically the probability is ${ }^{*}|E|^{-1}$. Thus by Theorem 23 , there is a deterministic agent $\mathbf{p}$ that can find $r$ in $t_{G}$ turns and has complexity $\mathbf{K}\left(\mathbf{p}^{\prime}\right)<{ }^{\log } \log |E|+\mathbf{I}((G, s, t) ; \mathcal{H})$.

### 7.2 Interactive-K-Sat

The penalty game Interactive-k-Sat is as follows. The environment $\mathbf{q}$ has access to a hidden k-Sat formula, with $n$ variables and some number of clauses, each containing $k$ literals, which


Figure 7.1: A graphical depiction of a winning deterministic player to the GraphNavigation game. The player starts at $s$ and chooses a path to reach the goal state $r$, (assuming $t_{G}=8$ ).
are a variable instance or its negation. Each variable appears in at most $2^{k} / k e$ clauses. The environment's first action is to send the number of variables to the agent. After this step, the agent, $\mathbf{p}$ has $n$ variables, each initially set to true. At each subsequent round, the environment gives to the agent the clauses which are not satisfied. The player can change up to $k$ variables, and sends these changes to the environment. If the K-Sat formula is satisfied, the game stops. Otherwise the game continues. When the game ends, the penalty is the number of terms. A graphical representation of this game can be seen in Figure 7.2. Obviously there is a deterministic player of complexity $O(1)$ that can try every possible assignment of variables. This is a winning strategy of at most $2^{n}$ turns. However, the following theorem shows that a much more successful player exists without much more complexity bounds.

Theorem 44 There exists a deterministic player $\mathbf{p}$ that can achieve a penalty of $(1+\epsilon)(n / 2 k+$ $\left.n /\left(2^{k} / e-k\right)\right)$ with complexity $\mathbf{K}(\mathbf{p})<{ }^{\log } \mathbf{I}(\mathbf{q} ; \mathcal{H})-\log \epsilon$, for $\epsilon \in(0,1)$.

Proof. We use the Algorithmic Lovász Local Lemma, from [MT10]. The randomized algorithm, when applied to K-SAT is as follows.

1. Given is a random assignment of $n$ variables.
2. While there exists an unsatisfied clause.
(a) Pick an unsatisfied clause at random.
(b) Reassign the variables of this clause randomly.
3. Return the variable assignment.

It was proved in [MT10] that this algorithm has $n / D$ expected steps, where $D$ is the size of the dependency between events. So $D=\left(2^{k} / e-k\right)$. Thus the goal of this proof is to construct a randomized player $\mathbf{p}^{\prime}$ that simulates the above randomized algorithm. The player $\mathbf{p}^{\prime}$ first starts out by randomizing its variables. Thus at each turn in this phase, it selects up to $k$ untouched variables and gives them random assignments. This takes at most $\lceil n / k\rceil$ steps. However, noting that player $\mathbf{p}^{\prime}$ only needs to update the variables that are set to true, this task takes $n / 2 k$ expected steps. Once this is complete, whenever the environment sends back unsatsified clauses, the randomized


Figure 7.2: A graphical depiction of a turn in the Interactive-k-Sat game. The player's current assignment of variables has resulted in two unsatisfied clauses, which the environment sends to the player. The environment has a complete picture of the variables and clauses, which are hidden to the player.
agent chooses one at random and randomly resamples its $k$ variables. Thus, by [MT10], this has $n /\left(2^{k} / e-k\right)$ expected steps before a satisfying assignment is found and the game halts. So the randomized player runs in $\left(n / 2 k+n /\left(2^{k} / e-k\right)\right)$ expected steps. Thus by Corollary 6 , there is a deterministic player that can find a satisfying assignment in less than $(1+\epsilon)\left(n / 2 k+n /\left(2^{k} / e-k\right)\right)$ turns with complexity

$$
\mathbf{K}(\mathbf{p})<^{\log } \mathbf{I}(\mathbf{q} ; \mathcal{H})-\log \epsilon .
$$

Note that as the game proceeds, the environment reveals more and more information about its hidden K-Sat formula to the player. This leaves open the possibility of a deterministic player of Kolmogorov complexity $O(1)$ that coerces the environment to reveal all the clauses and then manually set the corresponding satisfying assignment. Whether or not this will take less steps than that proved in the above theorem is unknown.

### 7.3 Penalty-Tests

An example penalty game is as follows. The environment $\mathbf{q}$ plays a game for $N$ rounds, for some very large $N \in \mathbb{N}$, with each round starting with an action by $\mathbf{q}$. At round $i$, the environment gives, to the agent, an encoding of a program to compute a probability $P_{i}$ over $\mathbb{N}$. The choice of $P_{i}$ can be a computable function of $i$ and the agent's previous turns. The agent responds with a number $a_{i} \in \mathbb{N}$. The environment gives the agent a penalty of size $T_{i}\left(a_{i}\right)$, where $T_{i}: \mathbb{N} \rightarrow \mathbb{Q}_{\geq 0}$ is a computable test, with $\sum_{a \in \mathbb{N}} P_{i}(a) T_{i}(a)<1$. After $N$ rounds, $\mathbf{q}$ halts. A graphical representation of this game can be found in Figure 7.3.

Theorem 45 There is a deterministic agent $\mathbf{p}$ that can receive a penalty $<(1+\epsilon) N$ and has


Figure 7.3: Three rounds of the Penalty-Test game. At each round $i$ the probability, $P_{i}$, that the environment gives to the player is a uniform measure over a unique interval. The environment has three tests $\left\{T_{1}, T_{2}, T_{3}\right\}$, which is not shared with the player, that represent the penalties. In this depiction, the player's moves are numbers in the interval (represented by the arrows) and result in low total penalty.
complexity $\mathbf{K}(\mathbf{p})<{ }^{\log } \mathbf{I}(\mathbf{q} ; \mathcal{H})-\log \epsilon$, for $\epsilon \in(0,1)$.
Proof. A very successful probabilistic agent $\mathbf{p}^{\prime}$ can be defined. Its algorithm is simple. On receipt of a program to compute $P_{i}$, the agent randomly samples a number $\mathbb{N}$ according to $P_{i}$. At each round the expected penalty is $\sum_{a} P_{i}(a) T_{i}(a)<1$, so the expected penalty of $\mathbf{p}$ for the entire game is $<N$. Thus by Corollary 6 , there is a deterministic agent $\mathbf{p}$ such that

1. The agent $\mathbf{p}$ receives a penalty of $<(1+\epsilon) N$,
2. $\mathbf{K}(\mathbf{p})<{ }^{\log } \mathbf{I}(\mathbf{q} ; \mathcal{H})-\log \epsilon$.

Example 1 Let $\mathbf{q}$ be defined so that $P_{i}(a)=\left[a \leq 2^{i}\right] 2^{-i}$ and $T_{i}=\left[a \leq 2^{i}\right] 2^{i-K}(a \mid i)$, where $[A]=1$ if $A$ is true, and 0 otherwwise. Thus each $T_{i}$ is a randomness deficiency function (to the power of 2). The probabilistic algorithm $\mathbf{p}^{\prime}$ will receive an expected penalty $<N$. However any deterministic agent $\mathbf{p}$ that receives a penalty $<2 N$ must be very complex, as it must select many numbers with low randomness deficiency. Thus, by the bounds above, $\mathbf{I}(\mathbf{q} ; \mathcal{H})$ must be very high. This makes sense because $\mathbf{q}$ encodes $N$ randomness deficiency functions.

### 7.4 Set-Subset

We define the following win/no-halt game, entitled Set-Subset. There are $k$ rounds. At round $i=\{1, \ldots, k\}$, the environment $\mathbf{q}$ gives $n$ numbers $A_{i} \subset \mathbb{N}$ to the agent $\mathbf{p}$. The environment


Figure 7.4: A graphical depiction of the Set-Subset game. Each line represents a round of the game. The boxes of the $i$ th line represent $A_{i}$, and the filled boxes represent the secret set $B_{i} \subset A_{i}$. A winning player is shown, by placing a circle in $B_{i}$ for each round $i$.
secretly selects $m \leq n$ numbers $B_{i} \subseteq A_{i}$. The player selects a number $a_{i} \in A_{i}$. Each $A_{i}$ and $B_{i}$ are a function of the player's previous actions. The player wins if for every round, his selection $a_{i}$ is in the secret set $B_{i}$. So for all $i \in\{1, \ldots, k\}, a_{i} \in B_{i}$. A graphical depiction of this game can be seen in Figure 7.4.

Theorem 46 There is a deterministic agent $\mathbf{p}$ that win against Set-Subset environment $\mathbf{q}$, where $\mathbf{K}(\mathbf{p})<{ }^{\log } k \log (n / m)+\mathbf{I}(\mathbf{q} ; \mathcal{H})$.

Proof. Let $\mathbf{p}^{\prime}$ be the randomized the player that selects a member of the given set with $A_{i}$ with uniform probability. The probability that $\mathbf{p}^{\prime}$ picks a member of $B_{i}$ is $\left|B_{i}\right| /\left|A_{i}\right|=m / n$. The probability that $\mathbf{p}^{\prime}$ picks a member of $B_{i}$ for all $i \in\{1, \ldots, k\}$ is $(m / n)^{k}$, which is the probability that $\mathbf{p}^{\prime}$ wins. $\mathbf{K}\left(\mathbf{p}^{\prime}\right)=O(1)$. Thus by Theorem 23 , there exists a deterministic player $\mathbf{p}$ that wins against $\mathbf{q}$ with complexity bounded by the theorem statement.

### 7.5 Interactive-Hypergraph

We define the following penalty game, entitled Interactive-Hypergraph. The environment has access to a hidden $k$-regular -hypergraph. A hypergraph is a pair $J=(V, E)$ of vertices $V$ and edges $E \subseteq \mathcal{P}(V)$. Thus each edge can connect $\geq 2$ vertices. A hypergraph is $k$-regular of the size $|e|=k$ for all edges $e \in E$. A 2-regular hypergraph is just a simple graph. The player has access to a list of vertices and the goal of the player is to produce a valid 2-coloring of the hypergraph. A valid 2-coloring of a hypergraph $(V, E)$ is a mapping $f: V \rightarrow\{1,2\}$ where every edge $e \in E$ is not monochromatic $|\{f(v): v \in e\}|=2$. We assume that for each edge $f$ of the graph, there are at most $2^{k-1} / e-1$ edges $h$ such that $f \cap h \neq \emptyset$.

The game proceeds as follows. For the first round, environment gives the number of vertices to the player. The player has $n$ vertices, each with starting color 1. At each subsequent turn, the environment sends to the player the edges which are monochromatic. The player can change the color of up to $k$ vertices and sends these changes to the environment. The game ends when the player has a valid 2 -coloring of the graph.

Theorem 47 There exists a deterministic player $\mathbf{p}$ that can beat the environment $\mathbf{q}$ in $(1+$ $\epsilon)\left(n / 2 k+n /\left(2^{k-1} / e-1\right)\right)$ turns of complextiy $\mathbf{K}(\mathbf{p})<\log \mathbf{I}(\mathbf{q} ; \mathcal{H})-\log \epsilon$.

Proof. We use the Algorithmic Lovász Local Lemma, from [MT10]. The randomized algorithm, when applied to hypergraphs is as follows.

1. Given is a random 2-color assignment of $n$ vertices.
2. While there exists a monochromatic edge.
(a) Pick a monochromatic edge random.
(b) Reassign the colors of the vertices of this edge randomly.
3. Return the valid 2-coloring.

It was proved in [MT10] that this algorithm has $n / D$ expected steps, where $D$ is the size of dependency between the events. So $D=2^{k-1} / e-1$. Thus the goal of this proof is to construct a randomized player $\mathbf{p}^{\prime}$ that simulates the above randomized algorithm. The player $\mathbf{p}^{\prime}$ first starts out by randomizing the color assignments of each vertex. Thus at each turn in this phase, it selects up to $k$ untouched vertices and gives them random assignments. This takes at most $\lceil n / k\rceil$ steps. However, noting that player $\mathbf{p}^{\prime}$ only needs to update the colors that are set to 2 , this task takes $n / 2 k$ expected steps. Once this is complete, whenever the environment sends back unsatsified edges, the randomized agent chooses one edge at random and randomly recolors its $k$ vertices. Thus, by [MT10], this has $n / D=n /\left(2^{k-1} / e-1\right)$ expected steps before a valid two-coloring is found and the game halts. So the randomized player runs in $\left(n / 2 k+n /\left(2^{k-1} / e-1\right)\right)$ expected steps. Thus by Corollary 6, there is a deterministic player that can find a valid 2-coloring in less than $(1+\epsilon)\left(n / 2 k+n /\left(2^{k-1} / e-1\right)\right)$ turns with complexity

$$
\mathbf{K}(\mathbf{p})<^{\log } \mathbf{I}(\mathbf{q} ; \mathcal{H})-\log \epsilon
$$

### 7.6 Grid-Walk

We define the following win/no-halt game, entitled Grid-WaLK. The player starts at the origin of a two dimension grid with integer coordinates. At the start of the turn, the player chooses a number from $\{1, \ldots, 4\}$ and the the environment maps this number to a direction (North, South, East, West) based on a function of the player's previous actions. The enviroment moves the player in the choseen direction and the next round begins. No messages are sent from the environment to the player. The radius of the player is its Euclidean distance to the origin. The player wins if after $N$ rounds, it has a radius at least $\sqrt{N}$. An example random walk can be seen in figure 7.5 .

Theorem 48 For large enough $N$, there is a deterministic agent $\mathbf{p}$ that can win against GridWALK environment $\mathbf{q}$ such that $\mathbf{K}(\mathbf{p})<{ }^{\log } \mathbf{I}((\mathbf{q}, N) ; \mathcal{H})$.

Proof. We define a probabilistic player $\mathbf{p}^{\prime}$ that randomly chooses a number from $\{1,2,3,4\}$ with uniform probability. Thus $\mathbf{p}^{\prime}$ performs a random walk on the two dimensional grid. For large enough $N$, the probability density function for the radius $r$ of random walker $\mathbf{p}^{\prime}$ is the Rayleigh density function $P(r)=\frac{2 r}{N} e^{-r^{2} / N}$. The culmulative distribution function is $F(r)=1-e^{-r^{2} / N}$.


Figure 7.5: A graphical depiction of a random two dimensional walk. The radius $r$ is the length of the line between the starting and ending points.

Thus $c=1-F(\sqrt{N})=1-e^{-1}$. Thus with at least constant probability $c$ the radius of $\mathbf{p}^{\prime}$ is at least $\sqrt{N}$, and $\mathbf{p}^{\prime}$ wins. So by Theorem 23 , there exists a deterministic player $\mathbf{p}$ that wins against q where

$$
\mathbf{K}(\mathbf{p})<^{\log } \mathbf{K}\left(\mathbf{p}^{\prime}\right)-\log c+\mathbf{I}\left(\left(\mathbf{p}^{\prime}, N, \mathbf{q}\right) ; \mathcal{H}\right)<^{\log } \mathbf{I}((N, \mathbf{q}) ; \mathcal{H})
$$

### 7.7 Min-Cut

We define the following win/no-halt game, entitled Min-Cut. The game is defined by an undirected graph $G$ and a mapping $\ell$ from numbers to edges. At round $i$, the environment $\mathbf{q}$ sends the number of edges of $G$. The player responds with a number. The environment maps the number to an edge, and this mapping can be dependent on the player's previous actions. The environment then contracts the graph $G$ along the edge. The game halts when the graph $G$ has contracted into two vertices. The player wins if the cut represented by the contractions is a min cut. A minimum cut of a graph is the minimum number of edges, that when removed from the graph, produces two components. A graphical depiction of a min cut can be seen in Figure 7.6.

Theorem 49 There is a deterministic agent $\mathbf{p}$ that can win against Min-Cut instance ( $G, S, \ell$ ), $|G|=n$, such that $\mathbf{K}(\mathbf{p}) \ll^{\log } 2 \log n+\mathbf{I}((G, \ell) ; \mathcal{H})$.

Proof. We define the following randomized agent $\mathbf{p}^{\prime}$. At each round, $\mathbf{p}^{\prime}$ chooses an edge at random. Thus the interactions of $\mathbf{p}^{\prime}$ and $\mathbf{q}$ represent an implementation of Karger's algorithm. Karger's algorithm has an $\Omega\left(1 / n^{2}\right)$ probability of returning a min-cut. Thus $\mathbf{p}^{\prime}$ has an $\Omega\left(1 / n^{2}\right)$ chance of winning. By Theorem 23, there exist a deterministic agent $\mathbf{p}$ and $c$ where $\mathbf{p}$ can beat $\mathbf{q}$ and has complexity $\mathbf{K}(\mathbf{p})<{ }^{\log } \mathbf{K}\left(p^{\prime}\right)-\log c / n^{2}+\mathbf{I}(\mathbf{q} ; \mathcal{H})<\log 2 \log n+\mathbf{I}((G, \ell) ; \mathcal{H})$.


Figure 7.6: A graphical depiction of a minimum cut. By removing the edges along the dotted line, two components are created.

### 7.8 Cover-Time

We define the following interactive penalty game. Let $G=(E, V)$ be a graph consisting of $n$ vertices $V$ and undirected edges $E$. The environment $\mathbf{q}$ consists of $(G, s, \ell) . G=(E, V)$ is a non-bipartite graph with undirected edges, $s \in V$ is the starting vertex. $\ell$ is a mapping from numbers to edges to be described later.

The agent starts at $s \in V$. At round 1 , the environment gives the agent the degree $s \in V$, $\operatorname{Deg}(s)$. The agent picks a number between 1 and $\operatorname{Deg}(s)$ and sends it to $\mathbf{q}$. The agent moves along the edge the number is mapped to and is given the degree of the next vertex it is on. Each round's mapping of numbers to edges, $\ell$, is a computable function of the agent's past actions. The game stops if the agent has visited all vertices and the penalty is the number of turns the agents takes.

Theorem 50 There is a deterministic agent $\mathbf{p}$ that can play against Cover-Time instance ( $G, S, \ell$ ), $|G|=n$, and achieve penalty $\frac{8}{27} n^{3}+o\left(n^{3}\right)$ and $\mathbf{K}(\mathbf{p})<{ }^{\log } \mathbf{I}((G, s, \ell) ; \mathcal{H})$.

Proof. A probabilistic agent $\mathbf{p}^{\prime}$ is defined as selecting each edge with equal probability. Thus the agent performs a random walk. The game halts with probability 1. Due to [Fei95], the expected time (i.e. expected penalty) it takes to reach all vertices is $\frac{4}{27} n^{3}+o\left(n^{3}\right)$. Thus by Corollary 6 there is a deterministic agent $\mathbf{p}$ that can reach each vertex with a penalty of $\frac{8}{27} n^{3}+o\left(n^{3}\right)$ and has complexity

$$
\mathbf{K}(\mathbf{p})<^{\log } \mathbf{K}\left(\mathbf{p}^{\prime}\right)+\mathbf{I}((G, s, \ell) ; \mathcal{H})<^{\log } \mathbf{I}((G, s, \ell) ; \mathcal{H}) .
$$

### 7.9 Vertex-Transitive-Graph

We describe the following graph based game. The environment $\mathbf{q}=(G, \ell, u, 2 k)$ consists of an undirected vertex-transitive graph $G=(V, E)$, a start vertex $u \in V$, the number of rounds $2 k$, and a mapping $\ell$ from numbers to vertices. A vertex-transitive graph $G=(V, E)$ has the property that for any vertices $u, v \in V$, there is an automorphism of $G$ that maps $u$ into $v$. An example of a vertex transitive graph can be seen in Figure 7.7. At round 1, the agent starts at vertex $u \in V$ and the environment send to the agent the degree of $u$. The agent picks a number from 1 to $\operatorname{Deg}(u)$ and the environment moves the agent along the edge specified by the mapping $\ell$ from numbers to


Figure 7.7: An example vertex-transitive graph.
edges. The mapping $\ell$ can be a function of the agents previous actions. The agent wins if after $2 k$ rounds, the agent is back at $u$.

Theorem 51 There is a deterministic agent $\mathbf{p}$ that can win at the Vertex-Transitive-Graph game $(G=(V, E), \ell, u, k),|V|=n$ with complexity $\mathbf{K}(\mathbf{p})<{ }^{\log } \log n+\mathbf{I}((G, \ell, u, k) ; \mathcal{H})$.

Proof. We define the following randomized agent $\mathbf{p}^{\prime}$. At each round, after being given the degree $d$ of the current vertex, $\mathbf{p}^{\prime}$ chooses a number randomly from 1 to $d . \mathbf{K}\left(\mathbf{p}^{\prime}\right)=O(1)$. This is equivalent to a random walk on $G$. Let $P^{l}(u, v)$ denote the probability that a random walk of length $l$ starting at $u$ ends at $v$. Then due to [AS04], for vertex-transitive graph $G$,

$$
P^{2 k}(u, u) \geq P^{2 k}(u, v) .
$$

So after $2 k$ rounds the randomized agent is back at $u$ with probability $P^{2 k}(u, u) \geq 1 / n$, which lower bounds the winning probability of $\mathbf{p}^{\prime}$ against $\mathbf{q}$. By Theorem 23 , there exists a deterministic agent $\mathbf{p}$ that can beat $\mathbf{q}$ with complexity

$$
\mathbf{K}(\mathbf{p})<^{\log } \mathbf{K}\left(\mathbf{p}^{\prime}\right)+n+\mathbf{I}\left(\left(n, \mathbf{p}^{\prime}, \mathbf{q}\right) ; \mathcal{H}\right)<^{\log } n+\mathbf{I}((G, \ell, u, k) ; \mathcal{H}) .
$$

## Bibliography

[AF09] L. Antunes and L. Fortnow. Worst-Case Running Times for Average-Case Algorithms. In 2009 24th Annual IEEE Conference on Computational Complexity, pages 298-303, 2009.
[AS04] N. Alon and J. Spencer. The Probabilistic Method. Wiley, New York, 2004.
[Blo70] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, page 422-426, 1970.
[CT91] T. Cover and J. Thomas. Elements of Information Theory. Wiley-Interscience, New York, NY, USA, 1991.
[EB11] S. Epstein and M. Betke. An Information Theoretic Representation of Agent Dynamics as Set Intersections. In Proceedings of the Fourth Conference on Artificial General Intelligence, volume 6830 of Lecture Notes in Artificial Intelligence, pages 72-81. Springer, 2011.
[EL] P. Erdos and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and finite sets, 10:609-627.
[Eps19] S. Epstein. On the algorithmic probability of sets. CoRR, abs/1907.04776, 2019.
[Eps22] S. Epstein. The outlier theorem revisited. CoRR, abs/2203.08733, 2022.
[Eps23a] S. Epstein. The EL Theorem, 2023.
[Eps23b] Samuel Epstein. On Outliers. 2023. HAL Archive, hal-04285958, https://hal.science/ hal-04285958.
[Eps24] S. Epstein. On Exotic Sequences. http://www.jptheorygroup.org/doc/ OnExoticSequences.pdf, 2024.
[ES91] P. Erdös and J. Spencer. Lopsided lovász local lemma and latin transversals. Discret. Appl. Math., 30:151-154, 1991.
[Fei95] U Feige. A tight upper bound on the cover time for random walks on graphs. Random Struct. Algorithms, 6(1):51-54, 1995.
[Gru07] P. Grunwald. The Minimum Description Length Principle. The MIT Press, 2007.
[HMR97] H. Hind, M. Molloy, and B. Reed. Colouring a graph frugally. Combinatorica, 17(4):469482, 1997.
[Lev74] L. A. Levin. Laws of Information Conservation (Non-growth) and Aspects of the Foundations of Probability Theory. Problemy Peredachi Informatsii, 10(3):206-210, 1974.
[Lev84] L. A. Levin. Randomness conservation inequalities; information and independence in mathematical theories. Information and Control, 61(1):15-37, 1984.
[Lev13] L. A. Levin. Forbidden information. J. ACM, 60(2), 2013.
[Lev16] L. A. Levin. Occam bound on lowest complexity of elements. Annals of Pure and Applied Logic, 167(10):897-900, 2016.
[LOZ22] Z. Lu, I. Oliveira, and M. Zimand. Optimal coding theorems in time-bounded kolmogorov complexity. CoRR, abs/2204.08312, 2022.
[MR95] R Motwani and P Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge; NY, 1995.
[MT10] R. Moser and G. Tardos. A Constructive Proof of the General LováSz Local Lemma. J. ACM, 57(2), 2010.
[MU05] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
[Nis94] Hardness vs randomness. Journal of Computer and System Sciences, 49(2):149-167, 1994.
[VV04] N. Vereshchagin and P. Vitányi. Algorithmic Rate Distortion Theory, 2004. http://arxiv.org/abs/cs.IT/0411014.
[VV05] N. Vereshchagin and P. Vitanyi. Algorithmic rate-distortion theory. CoRR, abs/0411014v3, 2005.

