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Abstract

Using Kolmogorov derandomization, we provide an upper bound on the compression size of nu-
merous solutions. In general, if solutions to a combinatorial problem exist with high probability
and the probability is simple, then there exists a simple solution to the problem. Otherwise the
problem instance has high mutual information with the halting problem.
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Chapter 1

Introduction

In mathematics, the probabilistic method is a constructive method of proving the existence of a
certain type of mathematical object. This method, pioneered by Paul Erdös, involves choosing
objects from a certain class randomly, and showing objects of a certain type occur with non-zero
probability. Thus objects of a certain type are guaranteed to exist. For more information about the
probabilistic method, we refer readers to [AS04]. Recent results have shown that there is a strong
connection between probabilistic method and the compression sizes of encodings of mathematical
objects, i.e. their Kolmogorov complexity, K:

If the probabilistic method can be used to prove the existence of an object, then bounds
on its Kolmogorov complexity can be proven as well.

If there is a simple probability such that objects of a certain mathematical type occur with large
probability, then there exists an object of that type that is simple, i.e. has low Kolmogorov
complexity. More formally, if object x has P -probability of at least p of randomally occuring, then

K(x) <log K(P )− log p+ ε.

The ε term is the amount of information that an encoding of the entire mathematical construct
has with the halting sequence, which can obviously considered to be a negligible amount, except
for exotic cases.

This inequality occurs through the application of the EL Theorem [Lev16, Eps19]. Producing
bounds of the Kolmogorov complexity of an object through probabilistic means is called Kolmogorov
derandomization.

I’d recommend derandomization as an area of research for masters students or researchers who
are interested in moving into algorithmic information theory. This is because the majority of the
technical effort resides in the domain to which derandomization is applied.

1.1 Three Eggs from the Chicken

Future work involves finding instances of the probabilistic method and applying derandomization
to them. In particular, the Lovász Local Lemma, [EL], has been particularly compatible with
derandomization. We present the first proved consequence of LLL and show how it is compatible
with three versions of derandomization, one that involves Kolmogorov complexity, one that involves
resource bounded Kolmogorov complexity, and one involving games.

A hypergraph is a pair J = (V,E) of vertices V and edges E ⊆ P(V ). Thus each edge can
connect ≥ 2 vertices. A hypergraph is k-regular of the size |e| = k for all edges e ∈ E. A 2-
regular hypergraph is just a simple graph. A valid C-coloring of a hypergraph (V,E) is a mapping
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f : V → {1, . . . , C} where every edge e ∈ E is not monochromatic |{f(v) : v ∈ e}| > 1. The
following classic result is proven using LLL.

Theorem. (Probabilistic Method) Let G = (V,E) be a k-regular hypergraph. If for each edge f ,
there are at most 2k−1/e−1 edges h ∈ E such that h∩f 6= ∅, then there exists a valid 2-coloring of G.

We can now use derandomization, to produce bounds on the Kolmogorov complexity of the
simpliest such 2-coloring of G.

Theorem A. (Kolmogorov Derandomization) Let J = (V,E) be a k-regular hypergraph with
|E| = m. If, for each edge f , there are at most 2k−1/e − 1 edges h ∈ E such that h ∩ f 6= ∅, then
there exists a valid 2-coloring x of J with

K(x) <log K(n) + 4me/2k + I(J ;H).

The term I(J ;H) = K(J)−K(J |H) is the amount of mutual information that J has with the
halting sequence H. We can now use resource derandomization to achieve bounds for the smallest
time-bounded Kolmogorov complexity Kt(x) = min{p : U(p) = x in t(‖x‖) steps} of a 2-coloring
of J .

Assumption. Crypto is the assumption that there exists a language in DTIME(2O(n)) that does
not have size 2o(n) circuits with Σp

2 gates.

Theorem B. (Resource Bounded Derandomization) Assume Crypto. Let Jn = (V,E) be
a k(n)-regular hypergraph where |V | = n and |E| = m(n), uniformly polynomial time computable
in n. Furthermore, for each edge f in Jn there are at most 2k(n)−1/e − 1 edges h ∈ E such that
h ∩ f 6= ∅. Then there is a polynomial p, and a valid 2-coloring x of Jn with

Kp(x) < 4m(n)e/2k(n) +O(log n).

We define the following game involving hypergraphs. The player has access to a list of vertices
and the goal of the player is to produce a valid 2-coloring of the hypergraph. We assume that for
each edge f of the graph, there are at most 2k−1/e− 1 edges h such that f ∩ h 6= ∅.

The game proceeds as follows. For the first round, environment gives the number of vertices
to the player. The player has n vertices, each with starting color 1. At each subsequent turn, the
environment sends to the player the edges which are monochromatic. The player can change the
color of up to k vertices and sends these changes to the environment. The game ends when the
player has a valid 2-coloring of the graph.

Theorem C. (Game Derandomization) For k ≥ 6, there exists a player p that can beat the
environment q in (1 + ε)n/k turns, with Kolmogorov complextiy K(p) <log I(q;H) − log ε, where
ε ∈ (0, 1).
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Chapter 2

Conventions

As noted in the introduction, K(x|y) is the conditional prefix free Kolmogorov complexity. m(x)
is the algorithmic probability. The function m is universal, in that for any computable probability
P over {0, 1}∗, O(1)m(x) > 2−K(P )P (x). Thus for set D ⊆ {0, 1}∗, computable probability P ,
O(1)m(D) > 2−K(P )P (D). I(x;H) = K(x)−K(x|H) is the amount of information that the halting
sequence H ∈ {0, 1}∞ has about x. For some function t : N→ N, the t-time bounded Kolmogorov
complexity is Kt(x) = min{‖p‖ : U(p) = x in time t(‖x‖)}. A probability is elementary, if it has
finite support and rational values. The deficiency of randomness of x relative to a elementary
probability measure Q is d(x|Q) = − logQ(x)−K(x|Q). We recall for a set D ⊆ {0, 1}∗, m(D) =∑

x∈D m(x). For the nonnegative real function f , we use <+ f , >+ f , and =+ f to denote
< f+O(1), > f−O(1), and = f±O(1). We also use <log f and >log f to denote < f+O(log(f+1))
and > f −O(log(f + 1)), respectively. The following lemma is conservation of mutual information
information with the halting sequence over deterministic processing.

Lemma 1 ([Eps22]) For partial computable f : {0, 1}∗ → {0, 1}∗, I(f(a);H) <+ I(a;H) + K(f).

The following result is the EL Theorem [Lev16, Eps19]. It was originally formulated as a
statement about learning. However since that time, there has been several unexpected applications.
In this paper, the EL Theorem is used for derandomization.

Theorem 1 (EL Theorem [Lev16, Eps19]) For finite D ⊂ {0, 1}∗, − log maxx∈D m(x) <log

− log m(D) + I(D;H).

Lemma 2 (Symmetric Lovász Local Lemma) Let E1, . . . , En be a collection of events such
that ∀i : Pr[Ei] ≤ p. Suppose further that each event is dependent on at most d other events, and

that ep(d+ 1) ≤ 1. Then, Pr
[⋂

iEi
]
>
(

1− 1
d+1

)n
.
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Chapter 3

15 Instances of Kolmogorov
Derandomization

3.1 Continuous Measures

A continuous semi-measure Q is a function Q : {0, 1}∗ → R≥0, such that Q(∅) = 1 and for all
x ∈ {0, 1}∗, Q(x) ≥ Q(x0)+Q(x1). For prefix free set D, Q(D) =

∑
x∈DQ(x). Let M be a largest,

up to a multiplicative factor, lower semi-computable continuous semi-measure. That is, for all
lower computable continuous semi-measures Q there is a constant c ∈ N where for all x ∈ {0, 1}∗,
cM(x) > Q(x). Thus for any lower computable continuous semi-measure W and prefix-free set
S ⊂ {0, 1}∗, − log M(S) <+ K(W ) − logW (S), where K(W ) is the size of the smallest program
that lower computes W . The monotone complexity of a finite prefix-free set G of finite strings is
Km(G)

def
= min{‖p‖ : U(p) ∈ x w y ∈ G}. Note that this differs from the usual definition of Km,

in that our definition requires U to halt.

Theorem 2 ([Eps22]) For finite prefix-free set G ⊂ {0, 1}∗, we have Km(G) <log − log M(G) +
I(G;H).

3.2 Examples

In this section 22 examples of derandomization are given. Some use the Lovász Local Lemma,
which is particularly suited for derandomization. There are 4 instances of games.

3.2.1 k-Sat

For a set of n Boolean variables x1, . . . , xn, a CNF formula φ is a conjunction C1 ∩ · · · ∩ Cm of
clauses. Each clause Cj is a disjunction of k literals, where each literal is a variable xi or its negation
xi. Clauses Cj and Cl are said to intersect if there is some xi such that both clauses contain either

(x1 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5)

Figure 3.1: An example 3-Sat instance. Each clause contains 3 literals consisting of
variables xi or their negations xi. An example satisfying assignment is x1 = True, x2 =
True, x3 = False, x4 = False, x5 = True.
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xi or xi. A satisfying assignment is a setting of each xi to true or false that makes φ evaluate to
true. An example of k-Sat can be seen in Figure 6.2.

Theorem 3 Let φ be a k-Sat instance of n variables and m clauses, with k ≥ 3. If each clause
intersects at most (2k/e) − 1 other clauses, then there exists a satisfying assignment ψ of φ of
complexity K(ψ) <log K(n) + 2em/2k + I(φ;H).

Proof. The sample space is the set of all 2n assigments, and for each clause CJ , Ej is the bad
event “Cj is not satisfied”. Let p = 2−k and d = (2k/e) − 1. Thus ∀j, Pr[Ej ] ≤ p as each clause
has size k and each Ej is dependent on at most d other events by the intersection property. Thus
since ep(d+ 1), by the Lovász Local Lemma 6, we have that,

Pr

⋂
j

Ej

 > (1− 1

d+ 1

)m
=
(

1− e

2k

)m
. (3.1)

Let D ⊂ {0, 1}n be the set of all assignments that satisfy φ. K(D|φ) = O(1). Let P be the uniform
measure over sequences of size n. By Equation 7.2, assuming k ≥ 3,

− logP (D) < −m log(1− e/2k) < 2em/2k.

Thus by Theorem 1 and Lemma 6, for k ≥ 3, there exists an assignment ψ ∈ D that satisfies φ
with complexity

K(ψ) <log K(P )− logP (D) + I(D;H) <log K(n) + 2em/2k + I(φ;H).

�

3.2.2 Hypergraph-Coloring

In this section we show how to compress colorings of k-uniform hypergraph. A hypergraph is a
pair J = (V,E) of vertices V and edges E ⊆ P(V ). Thus each edge can connect ≥ 2 vertices. A
hypergraph is k-uniform of the size |e| = k for all edges e ∈ E. A 2-uniform hypergraph is just a
simple graph. A valid C-coloring of a hypergraph (V,E) is a mapping f : V → {1, . . . , C} where
every edge e ∈ E is not monochromatic |{f(v) : v ∈ e}| > 1. The goal of Hypergraph-Coloring
with parameter k, is given a k uniform hypergraph, produce a coloring using the smallest amount
of colors. Theorem 4 uses the union bound whereas Theorem 5 uses the Lovász Local Lemma.

Theorem 4 Every k-uniform hypergraph J = (V,E), |E| = n, |V | = m has a d k−1√
2me coloring g

where K(g) <log K(k, n,m) + I(J ;H).

Proof. We randomly color every vertex v ∈ V using C = d k−1√
2me colors. Let Ae be the bad

event that edge e is monochromatic. This event has probability:

Pr[Ae] = C · (1/C)k = (1/C)k−1 < 1/2m,

because there are C possible colors and each vertex has a 1/C chance of getting a particular color.
We can get a union-bound over all m edges to find the bad probability.

Pr

[⋃
e∈E

Ae

]
<
∑
e∈E

Pr[Ae] < m · (1/2m) = 1/2. (3.2)
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We let D ⊂ {0, 1}ndlogCe be the set of all encodings of C colorings (so no edge in monochromatic.
K(D|J) = O(1). Let P : {0, 1}∗ → R≥0 be a probability measure over {0, 1}∗, uniformly distributed
over all x ∈ {0, 1}ndlogCe that encode a C color assignment. P (D) > .5. By Theorem 1 and Lemma
1, there is a graph coloring g ∈ D where

K(g) <log K(P )− logP (D) + I(D;H) <log K(k,m, n) + I(J ;H).

�
The second result on k-hypergraph coloring uses Lovász Local Lemma.

Theorem 5 Let J = (V,E), |V | = n, |E| = m be a hypergraph and k = minf∈E |f |, with k ≥ 3.
Assume for each edge f , there are at most 2k−1/e edges h ∈ E such that h∩f 6= ∅. Then for k ≥ 4,
there is a 2-coloring g of G such that K(g) <log K(n)4me/2k + I(J ;H).

Proof. The case is degenerate for k = 1. Assume k ≥ 3. We will use the Lovász Local Lemma
to get a lower bound on the probability that a random assignment of colors is a 2 coloring. We
assume each vertex is colored black or white with equal probability. For each edge f ∈ E, we define

Ef to be the bad event “f is monochromatic”. A valid 2-coloring exists iff Pr
[⋂

f Ef

]
> 0.

Let p = 1/2k−1 and d = (2k−1/e) − 1. For each f , Pr[Ef ] ≤ p by the fact that f contains at
least k vertices. Furthermore since f intersects at most d edges besides itself, Ef is dependent on
at most d of the other events. Therefore since ep(d+ 1) = 1 we can apply the Lovász Local Lemma
6,

Pr

⋂
f

Ef

 > (1− 1

1 + d

)m
=
(

1− e

2k−1

)m
. (3.3)

Let D = {0, 1}n be the set of all encoded 2 colorings of J . K(D|J) = O(1). Let P (x) = [‖x‖ =
n]2−n is the uniform distribution over sequences of length n. By Equation 3.3, assuming k ≥ 4

− logP (D) < −m log(1− 2e/2k) < 4me/2k.

By Theorem 1 and Lemma 6, there exist a 2-coloring g of J such that for k ≥ 4,

K(g) <log K(P )− logP (D) + I(D;H) <log K(n) + 4me/2k + I(J ;H).

�

3.2.3 Vertex-Disjoint-Cycles

Proposition 1 (Mutual Independence Principle) Suppose that Z1, . . . Zm is an underlying
sequence of independent events and suppose that each event Ai is completely determined by some
subset Si ⊂ {Z1, . . . , Zm}. If Si ∩ Sj = ∅ for j = j1, . . . , jk then Ai is mutually independent of
{Aj1 , . . . , Ajk}.

This section deals with partitioning graphs into subgraphs such that each subgraph contains an
independent cycle. An example partition can be seen in Figure 3.2.

Theorem 6 There is a partition ` of vertices of a k-regular graph G = (V,E), with vertices |V | = n,
into c = b k

3 ln kc components each containing a cycle that is vertex disjoint from the other cycles
with complexity K(`) <log K(n, k) + 2n/k2 + I(G;H).

8



Figure 3.2: An example graph partitioned into 3 groups such that each group contains
a cycle.

Proof. We partition the vertices of G into c = bk/3 ln kc components by assigning each vertex to
a component chosen independently and uniformly at random. With positive probability, we show
that every component contains a cycle. It is sufficient to prove that every vertex has an edge leading
to another vertex in the same component. This implies that starting at any vertex there exists a
path of arbitrary length that does not leave the component of the vertex, so a sufficiently long path
must include a cycle. A bad event Av = {vertex v has no neighbor in the same component}. Thus

Pr[Av] =
∏

(u,v)∈E

Pr[u and v are in different components]

=

(
1− 1

c

)k
< e−k/c ≤ e−3 ln k = k−3.

x Av is determined by the component choices of itself and of its out neighbors Nout(v) and
these choices are independent. Thus by the Mutual Independence Principle, (Proposition 3)
the dependency set of Av consist of those u that share a neighor with v, i.e., those u for which
({v} ∪N(v)) ∩ ({u} ∪N(u)) 6= 0. Thus the size of this dependency is at most d = (k + 1)2.

Take d = (k+ 1)2 and p = k−3, so ep(d+ 1) = e(1 + (k+ 1)2)/k3 ≤ 1, holds for k ≥ 5. One can
trivially find a partition of a k-regular graph when k < 5 because c = 1. Thus, noting that k ≥ 5,

Pr

[⋂
v∈G

Av

]
>

(
1− 1

d+ 1

)n
=

(
1− 1

(k + 1)2 + 1

)n
>

(
1− 1

k2

)n
. (3.4)

− logP (D) < −n log(1− 1/k2) < 2n/k2.

By Theorem 1 and Lemma 1, for large enough k, there exist a partitioning ` ∈ D of vertices
into c = bk/3 ln kc components each containing a cycle that is vertex disjoint from the other cycles
with complexity

K(`) <log K(P )− logP (D) + I(D;H) <log K(n, k) + 2n/k2 + I(G;H).

�
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3.2.4 Weakly-Frugal-Graph-Coloring

For an undirected graph G = (V,E), a k-coloring assignment f : V → {1, . . . , k} is a β−weakly
frugal if for all neighbors of vertices v ∈ V contain at most β vertices with the same assignment.
Note that a weakly frugal coloring assignment differs from a frugal coloring assignment, introduced
in [HMR97], by the fact that the former can have two adjacent vertices with the same color.

Theorem 7 For graph G = (V,E), with |V | = n, with max degree ∆ > 2e there is a β-weakly
frugal coloring assignment f , with β < ∆, using Q ≥ ∆1+4/β/2 colors with complexity K(f) <log

K(n,Q) + 2n/β + I((G, β,Q);H).

Proof. This proof is a modification of the proof in [HMR97], except the restriction is relaxed to
weakly-frugal coloring. Let us say each vertex is assigned one of Q colors with uniform randomness.
For vertices {u1, . . . , uβ+1} that are in the neighborhood of a vertex v ∈ V , let Bu1,...,uβ+1

be the

bad event that the vertices are the same color. Pr[Bu1,...,uβ+1
] = p = 1/Qβ. Each such bad event is

dependent on at most d = (β + 1)∆
(

∆
β

)
other events. There are at most m = n

(
∆
β+1

)
such events.

The requirement that ep(d+ 1) ≤ 1 of the Lovász Local Lemma is fulfilled, because

ep(d+ 1)

=e
1

Qβ

(
1 + (β + 1)∆

(
∆

β

))
≤e 1

Qβ

(
1 + (β + 1)(∆β+2/β!)

)
≤e 1

Qβ
(1 + (∆β+3/β!))

≤ 1

Qβ
(∆β+4/β!))

≤ 1

Qβ
∆β+42−β

≤1.

By Lovász Local Lemma 6,

− log Pr

 ⋂
u1,...,uβ+1

Bu1,...,uβ+1


<−m log

(
1− 1

d+ 1

)
<2m

(
1− 1

d+ 1

)
<2n

(
∆

β + 1

)
/

(
1 + (β + 1)∆

(
∆

β

))
<2n

(
∆

β + 1

)
/

(
(β + 1)∆

(
∆

β

))
<2n/(β + 1).

<2n/β.
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Figure 3.3: An example graph coloring. Nodes that share an edge are assigned different
colors.

LetD ⊂ {0, 1}ndlogQe be encodings of all β-weakly frugal coloring ofG usingQ colors. K(D|G,Q, β) =
O(1). Let P be uniform distribution over all Q-color assignments to n vertices. − logP (D) <+

2n/β. By Theorem 1 and Lemma 6, we have a β-weakly frugal color assignment f ∈ D of G using
Q colors such that

K(f) <log K(P )− logP (D) + I(D;H) <log K(n,Q) + 2n/β + I((G,Q, β);H).

�

3.2.5 Graph-Coloring

For graph G = (V,E), with undirected edges, a k-coloring is a function f : V → {1, . . . , k} such
that if (v, u) ∈ E, then f(v) 6= f(u). An example graph coloring can be seen in Figure 3.3

Theorem 8 For graph G = (V,E), |V | = n with max degree d, there is a k coloring f with 2d ≤ k,
and K(f) <log K(n, k) + 2nd/k + I((G, k);H).

Proof. Let us say we randomly assign a color to each vertex. The probability that the color of
the ith vertex does not conflict with the previous coloring is at least (k−d)/k. Thus the probability
of a proper coloring is ≥ ((k − d)/k)n. Let D ⊆ {0, 1}ndlog ke be all encoded proper k colorings
of G. K(D|G, k) = O(1). Let P : {0, 1}∗ → R≥0 be a probability measure that is the uniform
distribution over all possible color assignments. Thus, assuming d/k ≤ .5,

− logP (D) ≤ −n log(1− d/k) ≤ 2nd/k.

Thus by Theorem 1 and Lemma 1, there is a coloring f ∈ D with

K(f) <log − log m(D) + I(D;H)

<log K(P )− logP (D) + I(D;H)

<log K(n, k) + 2nd/k + I((G, k);H).

�
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3.2.6 Max-Cut

Imagine a graph G = (E, V ), |V | = n, consisting of vertices V and undirected edges E, and a
weight ωe for each edge e ∈ E. Let ω =

∑
e∈E ωe be the combined weight of all edges. The goal

is to find a partition (A,B) of the vertices into two groups that maximizes the total weight of the
edges between them.

Theorem 9 There is a cut f of G that is 1/3th optimal and K(f) <log K(n) + I(G;H).

Proof. Imagine the algorithm that on receipt of a vertex, randomly places it into A or B with
equal probability. Then the expected weight of the cut is

E

 ∑
e∈E(A,B)

ωe

 =
∑
e∈E

ωe Pr(e ∈ E(A,B)) =
1

2
ω.

This means the expected weight of the cut is at least half the weight of the maximum cut. Some

simple math results in the fact that Pr
[∑

e∈E(A,B) ωe

]
> ω/3 ≥ 1/4. We can encode a cut into

a binary string of x length n, where x[i] = 1, if the ith vertex is in A. Let P be the uniform
distribution over strings of size n. Let D ⊂ {0, 1}n consist of all encoded cuts that are at least 1/3
optimal. K(D|G) = O(1) and P (D) ≥ .25. By Theorem 1 and Lemma 1,

min
f∈D

K(f) <log K(P )− logP (D) + I(D;H) <log K(n) + I(G;H).

�

3.2.7 Max-3Sat

This problem consists of a boolean formula f in conjunctive normal form, comprised of m clauses,
each consisting of a disjunction of 3 literals. Each literal is either a variable or the negation of a
variable. We assume that no literal (including its negation) appears more than once in the same
clause. There are n variables. The goal is to find an assignment of variables that satisfies as many
clauses as possible.

Theorem 10 There is an assignment x that is 6/7th optimal and has complexity K(x) <log K(m)+
I(f ;H).

Proof. The randomized approximation algorithm is as follows. The variables are assigned true
or false with equal probability. Let Yi be the random variable that clause i is satisfied. Thus the
probability that clause Yi is satisfied is 7/8. So the total expected number of satisfied clauses is
7m/8, which is 7/8 of optimal. Some simple math shows the probability that number of satified
clauses is > 6m/7 is at least 1/8.

Let x ∈ {0, 1}n encode an assignment of n variables, where x[i] = 1 if variable i is true. Let
D ⊂ {0, 1}n encode all assignments that are 6/7th optimal. Let P be the uniform distribution over
strings of length n. K(D|f) = O(1) and P (D) ≥ 1/8. By Theorem 1 and Lemma 1,

min
x∈D

K(x) <log K(P )− logP (D) + I(D;H) <log K(n) + I(f ;H).

�
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3.2.8 Balancing-Vectors

For a vector v = (v1, . . . , vn) ∈ Rn, ‖v‖∞ = maxi |Vi|. Binary matrix M is a matrix whose values
are either 0 or 1. The goal of Binary Matrix, is given M , to find a vector b ∈ {−1,+1}n that
minimizes ‖Mb‖∞.

Theorem 11 Given n× n binary matrix M , there is a vector b = {−1,+1}n such that ‖Mb‖∞ ≤
4
√
n lnn and K(b) <log K(n) + I(M ;H).

Proof. Let v = (v1, . . . , vn) be a row of M . Choose a random b = (b1, . . . , bn) ∈ {−1,+1}n. Let
i1, . . . , im be the indices such that vij = 1. Thus

Y = 〈v, b〉 =
n∑
i=1

vibi =
m∑
j=1

vijbij =
m∑
j=1

bij .

E[Y ] = E[〈v, b〉] = E

[∑
i

vibi

]
=
∑
i

E[vibi] =
∑

viE[bi] = 0.

By the Chernoff inequality and the symmetry Y , for τ = 4
√
n lnn,

Pr[|Y | ≥ τ ] = 2 Pr[v · b ≥ τ ] = 2 Pr

 m∑
j=1

bij ≥ τ

 ≤ 2 exp

(
− τ2

2m

)
= 2 exp

(
−8

n lnn

m

)
≤ 2n−8.

Thus, the probability that any entry in Mb exceeds 4
√
n lnn is smaller than 2n−7. Thus, with

probability 1− 2n−7, all the entries of Mb have value smaller than 4
√
n lnn.

Let P : {0, 1}∗ → R≥0, be the uniform measure over string of length n, with P (x) = [‖x‖ =
n]2−n. Let D consist of all strings that encode vectors bx ∈ {−1,+1}n in the natural way such that
‖Mbx‖∞ ≤ 4

√
n lnn. K(D|M) = O(1). Thus by the above reasoning P (D) ≥ 1− 2n−7 > 0.5. By

Theorem 1 and Lemma 1, there exists an x ∈ D, such that

K(x) <log K(P )− logP (D) + I(D;H) <log K(n) + I(M ;H).

Thus there exists a bx ∈ {−1,+1}n that satisfies the theorem statement. �
We provide another derandomization example using balancing vectors.

Theorem 12 Let v = v1, . . . , vn ∈ Rn, all |vi| = 1, Then there exist ε = ε1, . . . , εn = ±1 such that
|ε1v1 + · · ·+ εnvn| ≤

√
2n and K({ε}) <log K(n) + I(v;H).

Proof. Let ε1, . . . , εn be selected uniformly and independently from {−1,+1}. Set

X = |εv1 + · · ·+ εnvn|2.

Then

X =
∑
i=1

n∑
j=1

εiεjvi · vj .

So

E[X] =

n∑
i=1

n∑
j=1

vi · vjE[εiεj ]

13



Figure 3.4: A Boolean Hypercube network, for n = 3.

When i 6= j, E[εiεj ] = E[εi]E[εj ] = 0. When i = j, E[ε2i ] = 1, so

E[X] =
n∑
i=1

vi · vi = n

So Pr[X ≤ 2n] ≥ 0.5. Let D ⊆ {0, 1}n consist of sequences of length n, each encoding an assignment
of ε1 to εn in the natural way, such that the assignment of ε results in an Xε ≤ 2n. K(D|v) = O(1).
Let P be the uniform measure over sequences of length n. By the above reasoning P (D) ≥ 0.5. By
Theorem 1 and Lemma 1, there is an assignment ε ∈ D, such that K(ε) <log K(P ) − logP (D) +
I(D;H) <log K(n)+I(v;H). This assignment has Xε ≤ 2n. Thus |ε1v1+. . . εnvn| ≤

√
2n, satisfying

the theorem. �

3.2.9 Parallel-Routing

The Parallel-Routing problem consists of (G, d), a directed graph G = (N,V ) and a set of
destinations d : N → N . Each node represents a processor i in a network containing a packet vi
destined for another processor d(i) in the network. The packet moves along a route represented by
a path in G. During its transmission, a packet may have to wait at an intermediate node because
the node is busy transmitting another packet. Each node contains a separate queue for each of its
links and follows a FIFO queuing disciple to route packets, with ties handled arbitrarily. The goal
of Parallel-Routing is to provide N routes from i ∈ N to d(i) that minimize lag time.

We restrict graphs to Boolean Hypercube networks, which is popular for parallel processing.
The cube network contains N = 2n processing elements/nodes and is connected in the following
manner. if (i0, . . . , in−1) and (j0, . . . , jn−1) are binary representation of node i and node j, then
there exist directed edges (i, j) and (j, i) between the nodes if and only if the binary representation
differ in exactly one position. An example Boolean Hypercube can be found in Figure 3.4.

One set of solutions, called oblivious algrithms satisfies the following property: a route followed
by vi depends on d(i) alone, and not on d(j) for any j 6= i. We focus our attention on a 2 phase
oblivious routing algorithm, Two-Phase. Under this scheme, packet vi executes the following two
phases independently of all the other packets.

1. Pick a intermediate destination σ(i). Packet vi travels to node σ(i).

14



Figure 3.5: A graphical depiction of an independent set, represented by the green ver-
tices. They do not share any edges.

2. Packet vi travels from σ(i) to destination d(i).

The method that the routes use for each phase is the bit-fixing routing strategy. Its description is
as follows. To go from i to σ(i): one scans the bits of σ(i) from left to right, and compares them
with i. One sends vi out of the current node along the edge corresponding to the left-most bit in
which the current position and σ(i) differ. Thus going from (1011) to (0000), the packet would
pass through (0011) and then (0001).

Theorem 13 Given a Parallel-Routing instance (G, d), there is a set of intermediate destina-
tions σ : N→ {0, 1}n for each i such that every packet i using σ(i) and the Two-Phase algorithm
reaches its destination in at most 14n steps and K(σ) <log I(G, d;H).

Proof. By Theorem 47 in [MR95], if the intermediate destinations are chosen randomly, with
probability least 1 − (1/N), every packet reaches its destination in 14n or fewer steps. Let D ⊂
{0, 1}nN be the set of all intermediate destinations σ ∈ D such that the lag time of instance (G, d)
using σ is ≤ 14n. Let µ : {0, 1}∗ → R≥0 be the uniform continuous semi-measure, with µ(∅) = 1,
µ(x) = 2−‖x‖. Thus µ(D) ≥ 0.5. K(D|(G, d)) = O(1). Theorem 2 and Lemma 1 results in

Km(D) <log − log M(D) + I(D;H) <log − logµ(D) + I((G, d);H) <log I((G, d);H).

Thus using y w x ∈ D that realizes Km(D), one can construct a function σ : N → {0, 1}n which
produces the desired intermediate destinations, and K(σ) <+ K(y) <log I((G, d);H). �

3.2.10 Independent-Set

An independent set in a graph G is a set of vertices with no edges between then, as shown in Figure
3.5. The Independent-Set problem consists of an undirected graph G and the goal is to find the
largest independent set of that G.

Theorem 14 For a graph G on n vertices with m edges, there exists an independent set S of size
0.75
√
n− 2m/n and complexity <log K(n,m) + 4(log n)(m/n) + I(G;H).

Proof. We use a modification of the algorithm in the proof of Theorem 6.5 in [MU05]. The
randomized algorithm A is as follows.

15



1. Delete each vertex (along with its incident edges) independently with probability 1− p.

2. For each remaining edge, remove it and one of its adjacent vertices.

For X, the number of vertices that survive the first round E[X] = np. Let Y be the number of edges
that survive the first step, E[Y ] = mp2. The second steps removes at most Y vertices. The output
is an independent set of size at least E[X − Y ] = np −mp2. Let p = 1/

√
n. Thus E[X] =

√
n,

E[Y ] = m/n, and E[X − Y ] =
√
n −m/n. By the Markov inequality, Pr[Y < 2m/n] > 1/2. By

the Hoeffding’s inequality,

Pr[X ≤ 0.75
√
n] ≤ e−2∗(0.75)2(np)2/n ≤ e−2(.752)(n∗n−.5)2/n ≤ e−2∗0.5 = e−1.

For a sequence x ∈ {0, 1}∗, x[1] = |{i : x[i] = 1}| and x[0] = ‖x‖ − x1. Let P : {0, 1}∗ → R≥0 be
a computable probability, where for a string x ∈ {0, 1}n, P (x) = (1/

√
n)x[1](1 − 1/

√
n)x[0] . Thus

each x represents a selection of vertices selected according to the randomized algorithm A. Let
D ⊆ {0, 1}n be the set consists of all sequences x such that the X variable resultant from x is
|Xx| > 0.75

√
n and the Y variable resultant from algorithm A is |Yx| ≤ 2m/n. Thus P (D) ≥

(1− e−1) + 1/2− 1 > 1/10. Furthermore D can be constructed from G, with K(D|G) = O(1). By
Theorem 1 and Lemma 1, there exists an x ∈ D, with

K(x) <log K(P )− logP (D) + I(D;H)

<log K(n) + I(G;H).

In order for x to represent an independent set, the second step of algorithm A needs to be applied.
In this case there are < 2m/n vertices that needs to be removed. Thus a modification x′ that has
these vertices deleted represents an independent set.

K(x′) <logK(x, n,m) + (2 log n)(2m/n)

<logK(n,m) + (4 log n)(m/n) + I(D;H)

<logK(n,m) + (4 log n)(m/n) + I(G;H).

This independent set has Xx > 0.75
√
n and Yx < 2m/n, it size is ≥ 0.75

√
n− 2m/n. �

3.2.11 Dominating-Set

A dominating-set of an undirected graph G = (E, V ) on n vertices is a set U ⊆ V such that every
vertex v ∈ V − U has at least one neighbor in U . An example of a dominating set can be seen in
Figure 3.6.

Theorem 15 Every graph G = (V,E), |V | = n with min degree δ > 1 has a dominating set U of

size ≤ 3n1+ln(δ+1)
δ+1 and complexity K(U) <log K(n, δ) + 6(n log n)/(δ + 1) + I(G;H).

Proof. Let p ∈ [0, 1]. Let the vertices of V be picked randomly and independently, each with
probability p. Let X be the random set of all vertices picked. E[|X|] = np. Let Y = YX be the
random set of all vertices V −X that do not have a neighbor in X. Pr(v ∈ YX) ≤ (1− p)δ+1. Thus
E[|YX | ≤ n(1−p)δ+1 ≤ ne−p(δ+1). We set p = ln(δ+1)/(δ+1). Pr[X ≤ 3n ln(δ+1)/(δ+1)] ≥ 2/3.
Pr[YX ≤ 3n/(δ + 1)] ≥ 2/3. Thus the probability of the previous two events is ≥ 1/3.

Let D ⊆ {0, 1}n be the set consisting of all sequences x ∈ {0, 1}n where x[i] = 1 indicates
vertex i was selected, such that the X variable resultant from x is |Xx| ≤ 3n ln(δ + 1)/(δ + 1)]
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Figure 3.6: A graphical depiction of a dominating set. The two highlighted vertices are
adjacent to all other vertices in the graph.

and the Yx resultant variable is |Yx| ≤ 3n/(δ + 1). Furthermore D can be constructed from G,
with K(D|G) = O(1). Let P : {0, 1}∗ → R≥0 be a probability measure over x ∈ {0, 1}n, where
P (x) =

∏n
i=1 (px[i] + (1− p)(1− x[i])). By definition of D, P (D) ≥ 1/3. Furthermore by Theorem

1 and Lemma 1, there is a subset of vertices x ∈ D, x ⊆ V , with

K(x) <log K(P )− logP (D) + I(D;H) <log K(n, δ) + I(G;H).

The sequence x represent the first step, however the set Yx needs to be added to make x a dominating
steps. Thus 3n/(δ + 1) vertices needs to be added, each can be encoded by (2 log n) bits. Thus a

dominating set x′ of G exists of size ≤ 3n1+ln(δ+1)
δ+1 such that

K(x′) <log K(n, δ) + 6(n log n)/(δ + 1) + I(G;H).

�

3.2.12 Set-Membership

For a set G ⊆ {0, 1}`, a function f : {0, 1}∗ → {0, 1} is a partial checker for G, if f(x) = 1 if x ∈ G.
We use U to denote the uniform distribution over {0, 1}`. Error(G, f) = Prx∼U [f(x) = 1, x 6∈ G].
The goal of Set-Membership, is given a set G ⊆ {0, 1}`, what is the simplest partial checker f
for G that reduces Error(G, f).

Theorem 16 For large enough n, given G ⊆ {0, 1}`, |G| = m, there is a partial checker f such
that Error(f,G) ≤ 0.878n/m and K(f) <log K(n, k, `) + n+ I((G,n, k);H).

Proof. We derandomize the Bloom filter algorithm [Blo70]. Let there be k random functions
hi : {0, 1}` → {1, . . . , n}, where each hi maps each input x ∈ {0, 1}` to its range with uniform
probability. We start with a string v = 0n. For each member x ∈ G, and i ∈ {1, . . . , k}, v[hi(x)] is
set to 1. Thus the functions hi serve as a way to test membership of G. An example of the Bloom
filter can be seen in Figure 3.7. If x ∈ G, then all the indicator functions hi would be one. The
probability that a specific bit is 0 is

p′ =

(
1− 1

n

)km
.

Let X be the number of bins that are 0. Due to [MU05],

Pr(|X − np′| ≥ εn) ≤ 2e
√
ne−nε

2/3p′ .
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Figure 3.7: A graphical depiction of Bloom filter with k = 3 hash functions. The first
element x is in G and is thus mapped to ones in the Bloom filter. Thus the Bloom filter
would indicate that x ∈ G. The second element y is not in G and has some of the hash
functions map to 0. Thus the Bloom filter would indicate that y 6∈ G.

For ε = p′/10, we get

Pr(X/n ≥ p′9/10) ≤ 2e
√
ne−np

′/300. (3.5)

Thus for proper choice of k determined later, for large enough n, the right hand side of the above
inequality is less than 0.5. Thus with probability > .5, the expected false positive rate, r, that is
x ∈ {0, 1}`, x 6∈ G, hi(x) = 1, for all i ∈ {1, . . . , k} is less than

r ≤(1− .9p′)k

=

(
1− .9

(
1− 1

n

)km)k
≤
(

1− .9e−km/n
)k
.

Setting k = dn/me, with probability ≥ 1/2, r ≤ (1 − .5e−2)m/n ≤ 0.878m/n. Furthermore, for
large enough n, p′ > .5e−dn/me(m/n) ≥ .5e−2, which can be plugged back into Equation 3.5.

Let F ′ ⊂ {0, 1}∗ consist of all encodings of k hash functions hi : {0, 1}` → {1, . . . , n}. Let
F ⊆ F ′ consist of all hash functions such that the false positive rate r is ≤ 0.878m/n. Let P
be the uniform distribution over F ′. By the above reasoning, for large enough n, P (F ) > 1/2.
K(F |G, k, n) = O(1). By Theorem 1 and Lemma 1, there is an h ∈ F such that

K(h) <log K(P )− logP (F ) + I(F ;H) <log K(n, k, `) + I((G,n, k);H).

Thus h represents a set of k deterministic hash functions. Let x be the Bloom filter using
h on G. Using x and h, one can define a partial checker f that is a Bloom filter such that
Error(f,G) ≤ 0.878n/m. Furthermore,

K(f) <log K(x, h) <log K(n, k, `) + n+ I((G,n, k);H).

�
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Figure 3.8: A graphical depiction of a Latin Transversal. Each number appears exactly
4 times in the matrix. The transversal is a permutation of the matrix such that all its
entries have different values.

3.2.13 Latin-Transversal

Let A = (ai) be an n×n matrix with integer entries. A permutation π is called a Latin Transversal
if the entries aiπ(i)(1 ≤ i ≤ n) are all distinct. An example Latin Transversal, where each integer
occurs exactly 4 times, can be seen in Figure 3.8

Lemma 3 (Lopsided Lovász Local Lemma[ES91]) Let E1, . . . , En be a collection of events

with dependency graph G = (V,E). Suppose Pr
(
Ei
∣∣⋂

j∈S Ej

)
≤ Pr(Ei), for all i, S ⊂ V with no

j ∈ S adjacent to i. Suppose all events have probability at most p, G has degree at most d, and
4dp ≤ 1. Then Pr(

⋂
iEi) ≥ (1− 2p)n.

Theorem 17 Suppose k ≤ (n − 1)/16 and suppose integers appears in exactly k entries of n × n
matrix A. Then for n ≥ 3, A has a Latin Traversal τ of complexity K(τ) <log K(n) + 4(k − 1) +
I(A;H).

Proof. Let π be a random permutation {1, 2, . . . , n}, chosen according to a uniform distribution
P among all possible n! permutations. Define T by the set of all ordered fourtuples (i, j, i′, j′) with
i < i′, j 6= j′, and aij = ai′j′ . For each (i, j, i′, j′) ∈ T , let Aiji′j′ denote the bad event that π(i) = j
and π(i′) = (j′). Thus Aiji′j′ is the bad event that the random permutation has a conflict at (i, j)
and (i′, j′).

Clearly P (Aiji′j′) = 1/n(n − 1). The existence of a Latin Transversal is equivalent to the
statement that with positive probability, none of these events hold. We define a symmetric digraph
G on the vertex set T by making (i, j, i′, j′) adjacent to (p, q, p′, q′) if {i, i′}∩ {p, p′} 6= ∅ or {j, j′}∩
{q, q′} 6= ∅. Thus these two fourtuples are not adjacent iff the four cells (i, j), (i′, j′), (p, q) and
(p′, q′) occupy four distinct rows and columns of A.

The maximum degree of G is less than 4nk ≤ d because for a given (i, j, i′, j′) ∈ T there are at
most 4n choices of (s, t) with either s ∈ {i, i′} or t ∈ {j, j′} and for each of these choices of (s, t)
there are less than k choices for (s′, t′) 6= (s, t) with ast = as′t′ . Each fourtuple (s, t, s′, t′) can be
uniquely represented as (p, q, p′, q′) with p < p′. Since 4dp ≤ 16nk/(n(n− 1) ≤ 1, by the Lopsided
Lovász Local Lemma, 3, the desired bounds can be achieved if we can show that

Pr

(
Aiji′j′

∣∣⋂
S

Apqp′q′

)
≤ 1/n(n− 1),

for any (i, j, i′, j′) ∈ T and any subset S of T which are not-adjacent in G to (i, j, i′, j′). By
symmetry we can assume i = j = 1, i′ = j′ = 2. A permutation π is good if it satisfies

⋂
S Apqp′q′

19



and let Sij denote the set of all good permutations π satisfying π(1) = i and π(2) = j. |S12| ≤ |Sij |
for all i ≤ j.

Indeed suppose first that i, j > 2. For each good π ∈ S12 define a permutation π∗ as follows.
Suppose π(x) = i and π(y) = j. Then define π∗(1) = i, π∗(2) = j, π∗(x) = 1, π∗(y) = 2
and π∗(t) = π(t) for all t 6= 1, 2, x, y. One can easily check that π∗ is good, since the cells
(1, i), (2, j), (x, 1), (y, 2) are not part of any (p, q, p′, q′) ∈ S. Thus π∗ ∈ Sij and since the mapping
π → π∗ is injective |S12| ≤ |Sij |. One can define an injection mappings showing that |S12| ≤ |Sij |
even when {i, j} ∩ {1, 2} 6= ∅. If follows that Pr

(
A1122 ∩

⋂
S Apqp′q′

)
≤ Pr

(
A1i2j ∩

⋂
S Apqp′q′

)
and

hence Pr
(
A1122

∣∣⋂
S Apqp′q′

)
≤ 1/n(n− 1).

The number of bad events Aiji′j′ is
(
n2

k

) (
k
2

)
, as there are n2/k distinct numbers, and each

number appears k times. Thus by the Lopsided Lovász Local Lemma 3, for n ≥ 3,

Pr

(⋂
i

Aiji′j′

)
≥ (1− 2/n(n− 1))

(
n2

k

)
(k2)

− log Pr

(⋂
i

Aiji′j′

)
<

(
n2

k

)(
k

2

)
log(1− 2/n(n− 1))

< 2

(
2n2

kn(n− 1)

)(
k

2

)
<

(
8

k

)(
k

2

)
≤ 4(k − 1). (3.6)

Let D ⊂ {0, 1}∗ be all encodings of permutations of A that are Latin Transversals. K(D|A) = O(1).
We recall that P is the uniform distribution over all permutation of A. By the Equation 3.6,
− logP (D) < 4(k − 1). Thus by Theorem 1 and Lemma 1, for n ≥ 3, there exists a permutation
τ ∈ D that is a Latin Transversal and has complexity

K(τ) <log K(P )− logP (D) + I(D;H) <log K(n) + 4(k − 1) + I(A;H).

�

3.2.14 Function-Minimization

Given computable functions {fi}ni=1, where each fi : N→ N∪∞, the goal of Function-Minimization
is to find numbers {xi}ni=1, that minimizes

∑n
i=1 fi(xi). Let p : N → R≥0 be a computable

probability measure where Ep[fi] ∈ R for all i = 1, . . . , n. We define a computable probability
P : {0, 1}∗ → R≥0 where P (〈a1〉〈a2〉 . . . 〈an〉) =

∏n
i=1 p(ai). K(P ) <+ K(p, n). Let D′ be a

(potentially infinite) set of strings where x ∈ D iff x = 〈a1〉〈a2〉 . . . 〈an〉 and

n∑
i=1

fi(ai) ≤

2
∑
{bi}

(
n∏
i=1

p(bi)

)
n∑
i=1

fi(bi)

 =

⌈
2

n∑
i=1

Ep[fi]

⌉
.

Let τ = d2
∑n

i=1 Ep[fi]e. By the Markov inequality, let the finite set D ⊆ D′ be constructed from
(p, {fi}, τ), such that P (D) > 1/2 and K(D|(p, {fi}, τ)) = O(1). By Theorem 1 and Lemma 1,
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there a string x ∈ D such that

K(x) <log − log m(D) + I(D;H)

<log K(P )− logP (D) + I((p, {fi}, τ);H)

<log K(p, n) + I((p, {fi}, τ);H).

Thus given any computable probability p and functions {fi}ni=1, there are numbers {xi}ni=1 such
that

∑n
i=1 f(xi) ≤ d2

∑n
i=1 Ep[fi]e = τ and K({xi}ni=1) <log K(n, P ) + I((p, {fi}, τ);H). Note that

there is a version of these results when the functions are uncomputable, but this is out of the scope
of the paper.

An instance of this formulation is as follows. Let n = 1 and f1(a) = [a > 2m]∞ + [a ≤
2m]2m−K(a|m). Let p(a) = [a ≤ 2m]2−m. Thus this example proves there exists a number x such
that f1(x) ≤ d2Ep[f1]e ≤ 2. Furthermore

K(x) <log K(p) + I((p, f1);H) <log K(m) + I((m, f1);H).

But if f1(x) ≤ 2, by the definition of f1, this means K(x) ≥ m − 1. This means m <log

I((m, f1);H) <log I(f1;H). This makes sense because f1 is a deficiency of randomness function
and therefore m <log K(f1) and K(f1|H) <+ K(m).

3.2.15 Super-Set

Given a finite set S ⊆ {0, 1}n, the goal of Super-Set is to find a set T ⊇ S, T ⊆ {0, 1}n that
minimizes |T |.

Theorem 18 Given m ≤ n, S ⊆ {0, 1}n, |S| < 2n−m−1 there exists a T ⊇ S, T ⊆ {0, 1}n
|T | = 2n−m, K(T ) <log K(n,m) + (m+ 1)|S|+ I((S,m);H).

Proof. Let P : {0, 1}∗ → R≥0 be the the uniform distribution over all sequences of size 2n that
have exactly 2n−m 1s. Let D ⊂ {0, 1}2n consist of all sequences xR ∈ {0, 1}2

n
that encode sets

R ⊆ {0, 1}n in the natural way such that R ⊇ S and |R| = 2m−n. Thus if x ∈ D then x has 2n−m

1s. P (D) =(
2n−m

2n

)(
2n−m−1

2n − 1

)
. . .

(
2n−m − |S|

2n − |S|

)
≥
(

2n−m − |S|
2n − |S|

)|S|
≥
(

2n−m−1

2n

)|S|
= 2−(m+1)|S|.

K(D|(S,m)) = O(1). Thus by Theorem 1 and Lemma 1, there exists a t ∈ D, such that K(t) <log

K(P )− logP (D) + I(D;H) <log K(n,m) + (m+ 1)|S|+ I((S,m);H). This t encodes a set T ⊇ S,
T ⊆ {0, 1}n such that |T | = 2n−m.

�
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Chapter 4

Classical Channels

There are deep connections between classical information theory and algorithmic information the-
ory, with many theorems of the former appearing in an algorithmic form in the latter. In this
section we revisit this connection. In particular we prove properties about the compression size of
shared codebooks using Kolmogorov derandomization. A standard setup in information theory is
two parties Alice and Bob who want to communicate over a noisy channel and share a codebook over
a noiseless channel. However one might ask is how many bits did it take to communicate the code-
book? By using derandomization, the tradeoff between codebook complexity and communication
capacity can be proven.

Definition 1 (Discrete Memoryless Channel) The input and output alphabets X and Y are
finite. The channel (X , p(y|x),Y) is represented by a conditional probability distribution p(y|x). To
send multiple symbols, we have p(yn|xn) =

∏n
i=1 p(yi|xi). The capacity of channel with respect to a

distribution Q over X is

CQ = I(X : Y ) where random variables (X,Y ) are distributed according to Q(x)p(y|x).

The term I is the mutual information between random variables.

Definition 2 (Codebook) A (M,n) codebook for channel (X , p(y|x),Y) contains the following:

1. An encoder Encn : {1, . . . ,M} → X n.

2. A decoder Decn : Yn → {1, . . . ,M}.
The rate of the codebook is R = logM

n . The conditional probability of error is λi =
∑

yn
p(yn|xn =

Enc(i))[Dec(yn) 6= i], where [·] is the indicator function. The average error rate of the codebook

with respect to a fixed channel p is P
(n)
e = 1

M

∑M
i=1 λi. It is the probability that, given the uniform

distribution over {1, . . . ,M} for the sending symbols, the receiver decodes a symbol different from
the encoded one.

This section shows the following high level description of a communication scheme is possible:
there is a sender Alice and a receiver Bob that communicate through a noisy memoryless discrete
channel and Alice can send a codebook to Bob once on a side noiseless channel. Bob has oracle
acess to the channel function p(y|x) but Alice does not. Given a computable distribution Q over
the input alphabet, and assuming the channel is non-exotic, Alice can hypothetically send ∼K(Q)
bits plus some encoded parameters describing a codebook to Bob on the side channel. Then Alice
and Bob can communicate with any rate R less than the capacity CQ over the noisy channel. This
setup is formalized with Theorem 20. To prove this theorem, some results are needed from classical
information theory.
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4.0.1 Jointly Typical Sequences

We need the following definition and theorem, which can be found in [CT91], in the proof of
Theorem 20. H(X) is the entropy of random variable X, and I(X : Y ) is the mutual information
between random variables X and Y .

Definition 3 The set A
(n)
ε of jointly typical sequences {(xn, yn)} with respect to the distribution

p(x, y) is the set of n-sequences with empirical entropies ε-close to the true entropies. X and Y are
the finite discrete alphabet of random variables X and Y . Let p(xn, yn) =

∏n
i=1 p(xi, yi).

A(n)
ε ={(xn, yn) ∈ X n × Yn :∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ < ε,∣∣∣∣− 1

n
log p(xn, yn)−H(X,Y )

∣∣∣∣ < ε

}
.

The following theorem details properties about the set A
(n)
ε . A proof for it can be found in [CT91].

Theorem 19 (Joint AEP) Let (Xn, Y n) be sequences of length n drawn i.i.d. according to
p(xn, yn) =

∏n
i=1 p(xi, yi). Then

1. Pr
(

(Xn, Y n) ∈ A(n)
ε

)
→ 1− o(1).

2. If (X̃n, Ỹ n) ∼ p(xn)p(yn)(X̃n and Ỹ n are independent with the same marginals as p(xn, yn)),

then Pr
(

(X̃n, Ỹ n) ∈ A(n)
ε

)
≤ 2−nI(X:Y )−3ε.

4.0.2 Naive Sender Paradigm

Theorem 20 For channel C = (X , p(y|x),Y) and every computable distribution Q over X , for
every rate R < CQ, there is a (2nR, n) codebook (Encn,Decn) with rate R and average error rate
o(1) such that there is a program p with ‖p‖ <log K(n,R,Q) + I((n,R,Q,C);H) and

U(p, x) = Encn(x),

U(p,C, x) = Decn(x).

Proof. We start by generating a (2nR, n) code randomly according to distribution Q. We generate
2nR codewords x ∈ X independently according to the distribution

Q(xn) =

n∏
i=1

p(xi).

The codewords can be represented as rows of a matrix

C =

 x1(1) x2(1) . . . xn(1)
...

...
. . .

...
x1(2nR) x2(2nR) . . . xn(2nR)


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Each entry is generated i.i.d according to Q(x), with

Pr(C) =

2nR∏
w=1

n∏
i=1

p(xi(w)).

Consider the following algorithm for encoding and decoding a message.

1. A random code C is generated according to Q(x).

2. The code C is sent to both the sender and the receiver. Only the receiver is assumed to know
the channel transition matrix p(y|x) for the channel. This differs from the standard literature,
which assumes knowledge of p by the sender.

3. A message W is chosen according to the uniform distribution.

Pr(W = w) = 2−nR, w = 1, 2, . . . , 2nR.

4. The wth codeword Xn(w) corresponding to the wth row of C is sent over the channel.

5. The receiver receives a sequence Y n according to the distribution

P (yn|xn(w)) =
n∏
i=1

p(yi|xi(w)).

6. The receiver decares that the index Ŵ was sent if the following conditions are satisfied:

• (Xn(Ŵ ), Y n) is jointly typical, i.e. (Xn(Ŵ ), Y n) ∈ A(n)
ε .

• There is no other index W ′ 6= Ŵ such that (Xn(W ′), Y n) ∈ A(n)
ε .

If no such Ŵ exists or if there are more than one, an error is declared, and the decoder
outputs 0.

7. There is a decoding error if Ŵ 6= W . Let E be this event.

We now analyze the probability of the error with respect to the random codebook C.

Pr(E) =
∑
C

Pr(C)P (n)
e (C)

=
∑
C

Pr(C) 1

2nR

2nR∑
w=1

λw(C)

=
1

2nR

2nR∑
w=1

∑
C

Pr(C)λw(C)

=
∑
C

Pr(C)λ1(C) (4.1)

= Pr(E|W = 1),

where Equation 4.1 is due to symmetry of the code construction. We define

Ei = {(Xn(i), Y n) ∈ A(n)
ε }, i ∈ {1, 2, . . . , 2nR}.
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So Ei is the event that the ith code and Y n are jointly typical, noting that Y n is the result of
sending the first codeword Xn(1) over the channel. So

Pr(E|W = 1) = P (Ec1 ∪ E2 ∪ E3 . . . E2nR |W = 1) ≤ P (Ec1|W = 1) +

2nR∑
i=2

P (Ei|W = 1).

Due to the code generation procedure, Xn(1) and Xn(i) are independent for i 6= 1, and therefore,
so are Y n and Xn(i). Due to Theorem 19 (2), the probability that Xn(i) and Y n are jointly typical
is ≤ 2−n(I(X;Y )−3ε), where random variables X and Y are distributed acording to Q(x)p(y|x). So
by Theorem 19 (1), for sufficiently large n,

Pr(E) = Pr(E|W = 1) ≤ P (Ec1|W = 1) +
2nR∑
i=2

P (Ei|W = 1)

≤ ε+

2nR∑
i=2

2−n(I(X:Y )−3ε)

= ε+
(
2nR−1

)
2−n(I(X:Y )−3ε)

≤ ε+ 23nε2−n(I(X:Y )−R)

≤ 2ε,

under the condition R < I(X : Y )−3ε = CQ−3ε. Hence if R < CQ we can choose an ε and n so the
average probability of error, averaged over codebooks is less than 2ε. We now remove the average
over codebooks. Since the average error rate Pe(C) is small, there exists at least one codebook C∗
with a small average probability of error, with

Pr(E|C∗) =
1

2nR

2Rn∑
i=1

λi(C∗) ≤ 2ε.

Connection with Algorithmic Information Theory. We now derive the statements of the
theorem. Define P to be the probability over codebooks used in earlier in this proof that uses the
distribution Q to generate the codewords. Thus K(P ) <+ K(Q,n,R). Let D be the set of encoded
codebooks that achieve an error rate less than or equal to 2ε. By the arguments above, P (D) ≥ 0.5.
This set D is computable from Q, n, R, and C, with K(D|(Q,n,R,C)) = O(1). Thus by Theorem
1 and Lemma 1, there is a codebook C∗ ∈ D that has an error rate ≤ 2ε, with

K(C∗) <log K(P )− logP (D) + I(D;H)

<log K(Q,n,R) + I((Q, r, n,C);H). (4.2)

Thus the sender can use solely C∗ to send messages to the receiver. The receiver needs to determine
if sequences are jointly typical, and thus uses (C∗, Q,C) to decode the messages. Note that with
careful analysis of the proof of Theorem 1 for computable probabilities, one can construct a short
program for C∗ (with size less than that of Equation 4.2) that can also compute Q. Thus, we can
construct a program p with the properties described in the theorem statement. �
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Chapter 5

Deriving Game Derandomization

In this chapter, we prove the two Kolmogorov game derandomization theorems. It involves first
derandomizing functions N 7→ N between natural numbers. This chapter uses notions of stochas-
ticity in the field of algorithmic statistics [VS17]. A string x is stochastic, i.e. has a low Ks(x)
score, if it is typical of a simple probability distribution. The deficiency of randomness function
of a string x with respect to an elementary probability measure P conditional to y ∈ {0, 1}∗, is
d(x|P, y) = b− logP (x)c −K(x|〈P 〉, y).

Definition 4 (Stochasticity) For x, y ∈ {0, 1}∗,
Ks(x|y) = min{K(P |y)+3 log max{d(x|P, y), 1} : P is an elementary probability measure}. Ks(x) =
Ks(x|∅). Ks(a|b) < Ks(a) +O(log K(b)).

Lemma 4 ([Eps21]) Ks(x) <log I(x;H).

5.1 Function Derandomization

In this section we show how to construct deterministic functions from random ones. The main
results of this section are not (directly) implied by the main theorem in [Lev16, Eps19], because
Theorem 5 is a statement about probabilities over the Baire space, whereas the result in [Lev16,
Eps19] is a statement about lower computable semi measures over N.

We recall the definitions from the introduction. Random functions F over natural numbers are
modeled by discrete stochastic processes indexed by N, where each F (t), t ∈ N, is a random variable
over N. F is the set of all random functions. A random function F ∈ F is computable if there is a
program that on input (a1, . . . , an) lower computes Pr [F (1) = a1 ∩ F (2) = a2 ∩ · · · ∩ F (n) = (an)].
Put another way, a random function F ∈ F is computable if X = Pr[F (a1) = b1∩ · · ·∩F (an) = bn]
is uniformly computble in {(ai, bi)}ni=1. The complexity K(F ) of a random function F ∈ F , is the
smallest program that computes X. G is the set of all deterministic functions G : N→ N. A sample
S ∈ S is a finite set of pairs {(ai, bi)}ni=1. The encoding of a sample is 〈S〉 = 〈{(ai, bi}ni=1〉. S is
the set of all samples. We say G(S) if G is consistent with S, with G(ai) = bi, i = 1, . . . , n. For
random functions, F (S) is the event that F is consistent with S.

To prove function derandomization, we leverage properties about the Baire space NN. Individual
cylinders are Cn[v] = {(a1, a2, . . . ) ∈ NN : an = v}. Cylinders are generators for cylinder sets. The
cylinder sets C ∈ C consists of all intersections of a finite number of cylinders. If C =

⋂
i∈I Ci[vi],

then for all i ∈ I, we say i ∈ Dom(C). The set of all such cylinder sets provides a basis for the
product topology of NN. The encoding of a cylinder set C =

⋂
i∈I Ci[vi], is 〈C〉 = 〈{i, vi}i∈I〉. The
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set of all Borel probability measures over NN is P. A probability P ∈ P is computable if given an
encoding of a cylinder set C ∈ C, P (C) is computable.

We use the following helper proposition and lemma throughout the paper.

Proposition 2
For every c, n ∈ N, if x < y+ c for some x, y ∈ Nm then x+nK(x) < y+nK(y) +O(n log n) + 2c.

Proof. K(x) <+ K(y) + K(y− x) as x can be computed from y and (y− x). Therefore nK(x)−
nK(y) < nK(y − x) + dn, for some d ∈ N dependent on U . We assume that this equation is not
true; then, there exists x, y, c ∈ N where x < y + c, and g ≤ O(n log n) + 2c where y − x + g <
nK(x)−nK(y) < nK(y−x)+dn, which is a contradiction for g =+ dn+2c+maxa{2n log a−a} =+

dn+ 2c+ 2n log n. �

Theorem 21 For F ∈ F , S ∈ S, if s = d− log Pr[F (S)]e and h = I(〈S〉;H), then
minG∈G,G(S) K(G) < K(F ) + s+ h+O(K(s, h) + log K(F )).

Proof. Each sample S ∈ S where S = {(i, vi)}i∈I can be identified by a cylinder set CS ∈ C
where CS = ∩i∈ICi[vi]. For every α ∈ NN there is a deterministic function Gα : N → N, where
Gα(i) = α[i]. Furthermore if α ∈ CS , then for all (i, vi) ∈ S, Gα(i) = vi. For each random
function F ∈ F , we can identify a Borel probability PF ∈ P over NN such that for each sample
S = {(i, vi)}i∈I ∈ S, Pr[F (S)] = PF (CS). This is because random functions and Borel probability
measures over NN have the same form. Furthermore, if F is computable, then PF is computable,
with

K(PF |F ) = O(1) (5.1)

This is because given an encoding 〈F 〉 and an encoded cylinder set 〈C〉, one can compute Pr[F (C)],
which is equal to PF (C). Thus given a random function F ∈ F and sample S ∈ S, by Lemma 5
applied to PF ∈ P and CS ∈ C, we get the following result, with hC = I(〈CS〉;H), hS = I(〈S〉;H),
and s = d− logPF (CS)e,

min
α∈CS

K(a) <K(PF ) + s+ hC +O(K(s) + log K(PF )) +O(K(hC))

min
G∈G:G(S)

K(G) <K(PF ) + s+ hC +O(K(s) + log K(PF )) +O(K(hC)) (5.2)

min
G∈G:G(S)

K(G) <K(F ) + s+ hC +O(K(s) + log K(F )) +O(K(hC)) (5.3)

min
G∈G:G(S)

K(G) <K(F ) + s+ hS +O(K(s) + log K(F )) +O(K(hS)) (5.4)

min
G∈G,G(S)

K(G) <K(F )− log Pr [F (S)] + I(〈S〉;H) (5.5)

+O(K(d− log Pr [F (S)]e, I(〈S〉;H)) + log K(F )).

Equation 5.2 is because for the α ∈ NN that minimizes the leftmost term, Gα ∈ G, with Gα(S)
and K(Gα) <+ K(α). Equation 5.3 is because PF can be constructed from F , i.e. Equation 5.1.
Equation 5.4 is due to Proposition 2, Lemma 1 and the fact that K(〈CS〉|〈S〉) = O(1). Equation
5.5 is due to the definition of s, where s = d− logPF (CS)e = d− log Pr[F (S)]e. �

Lemma 5 For cylinder set C ∈ C, computable probability P ∈ P, if s = d− logP (C)e and h =
I(〈C〉;H), then minα∈C K(α) < K(P ) + s+ h+O(K(s, h) + log K(P )).
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Proof. We put (s, P ) on an auxiliary tape to the universal Turing machine U . Thus, all algorithms
have access to (s, P ), and all complexities implicitly have (s, P ) as conditional terms.

Let Q be an elementary probability measure that realizes Ks(〈C〉). Let d = max{d(〈C〉|Q), 1}
and c ∈ N be a constant to be chosen later. Let n = max{m : m ∈ Dom(W ),W ∈ C, 〈W 〉 ∈
Supp(Q)}. For a list L of a list of numbers and cylinder set W ∈ C, we say LoW is the set of all
x ∈ L with xNN ⊆W . We define a measure κ over cd2s lists of lists of n numbers L, where κ(L) =∏cd2s

i=1 P (L[i]NN). Given a list of lists of n numbers L, κ(L) is computable (as a program for P is
on an auxiliary tape). We use the indicator function i(L,W ) = [W ∈ C, P (W ) ≥ 2−s, LoW = ∅].
The function i is computable, because P (W ) and LoW are computable for all W ∈ C.

EL∼κEW∼Q[i(L,W )] ≤
∑
W

Q(W ) Pr
L∼κ

(W ∈ C, P (W ) ≥ 2−s, LoW = ∅)

≤
∑
W

Q(W )
cd2s∏
i=1

(1− 2−s)

≤
∑
W

Q(W )(1− 2−s)cd2s

< e−cd.

Thus there exists a list L′ of cd2s sequences of numbers of length n such that EW∼Q[i(W,L′)] = e−cd.
Thus t(W ) = i(W,L′)ecd is a Q-test, with t : {0, 1}∗ → R≥0 and

∑
W Q(W )t(W ) ≤ 1. It must be

that Lo C 6= ∅. Otherwise t(C) = ecd, and

K(C|c, d,Q) <+ − log t(C)Q(C)

<+ − logQ(C)− (lg e)cd

(lg e)cd <+ − logQ(C)−K(C|P ) + K(d, c)

(lg e)cd < d+ K(d, c) +O(1).

This is a contradiction for c large enough solely dependent on the universal Turing machine.
We roll c into the additive constants of the rest of the proof. Thus there exists x ∈ Lo C where

K(x) <+ log |L|+ K(L)

<+ log |L|+ K(d,Q)

<+ log d+ s+ K(d) + K(Q)

<+ s+ 3 log d+ K(Q)

<+ s+ Ks(C) (5.6)

min
α∈C

K(α) <+ K(x) <+ s+ Ks(C), (5.7)

where Equation 5.6 is due to the definition of stochasticity. Equation 5.7 is because xNN ⊆ C.
Thus making the relativization of (s, P ) explicit,

min
α∈C

K(α|〈s, P 〉) <+ s+ Ks(〈C〉|〈s, P 〉)

min
α∈C

K(α) < K(P ) + s+ Ks(〈C〉) +O(K(s) + log K(P ))

min
α∈C

K(α) < K(P ) + s+ I(〈C〉;H) +O(K(s, I(〈C〉;H)) + log K(P )). (5.8)
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Equation 5.8 follows from Lemma 4, which states Ks(x) < I(x;H) +O(K(I(x;H))). �

Theorem 34 can be readily extended to sets of samples S = {S1, . . . , Sn}, where for deterministic
function G : N→ N, G(S) if

⋃n
i=1G(Si). For random function F ∈ F , F (S) is the union of events

F (Si), i = 1, . . . , n. The proof of the following corollary follows almost identically to the proofs of
Theorem 34 and Lemma 5, noting that P (S) is computable given a computable probability P ∈ P
and a finite description of a set of samples S.

Corollary 1 For F ∈ F , if s = d− log Pr[F (S)]e and h = I(〈S〉;H), then minG∈G,G(S) K(G) <log

K(F ) + s+ h+O(K(s, h) + log K(F )).

5.2 Games

Function derandomization has applications to the cybernetic agent model. In this section, we
describe two simplified cybernetic agent models. For the first model, the agent p and environment
q are defined as follows. The agent is a function p : (N×N)∗ → N, where if p(w) = a, w ∈ (N×N)∗

is a list of the previous actions of the agent and the environment, and a ∈ N is the action to be
performed. The environment is of the form q : (N×N)∗×N→ N∪{W}, where if q(w, a) = b ∈ N,
then b is q’s response to the agent’s action a, given history w, and the game continues. If q responds
W then the agents wins and the game halts. The agent can be randomized. The game can continue
forever, given certain agents and environments. This is called a win/no-halt game.

The following theorem is a game-theoretic interpretation of Lemma 6 in [VV10].

Theorem 22 If 2r deterministic agents of complexity < k win against environment q, then there
is a deterministic agent p of complexity <log k − r + I(〈r, k,q〉;H) that wins against q.

Proof. Given 〈r, k,q〉, one can construct a finite set D of encoded agents that win against q

and D contains at least 2r agents of complexity < k. Furthermore
∑

x∈D m(x)
∗
> 2r2−k, so using

Theorem 1, there is an agent p ∈ D, where, using Lemma 1, K(p) <log k − r + I(D;H) <log

k − r + I(〈r, k,q〉;H). �

Theorem 23 If probabilistic agent p′ wins against environment q with at least probability p, then
there is a deterministic agent p of complexity <log K(p′)− log p+ I(〈p,p′,q〉;H) that wins against
q.

Proof. Let I be a set of interactions between an arbitrary agent and the environment q such
that each interaction ends in W and with probability > p/2, p′ will act according to an interaction
in I. Thus K(I|p,p′,q) = O(1). p′ can be encoded into a random function F , where the domain
(N × N)∗ of p′ can be encoded into a single number N. K(F |p′) = O(1). Similarly, I can be
encoded into a set of samples C, where Pr[F (C)] > p/2 and K(〈C〉|〈I〉) = O(1). Using Corollary 1,
there is a deterministic function G : N→ N, such that

K(G) <log K(F )− log[F (C)] + I(〈C〉;H)

<log K(p′)− log[F (C)] + I(〈C〉;H)

<log K(p′)− log p+ I(〈C〉;H)

<log K(p′)− log p+ I(〈I〉;H) (5.9)

<log K(p′)− log p+ I(〈p,p′,q〉;H), (5.10)
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where Equations 5.9 and 5.10 are due to Lemma 1. The deterministic function G is an encoding of
an agent, p, proving the theorem. �

The second game derandomization theorem is modified such that the environment gives a non-
negative rational penalty term to the agent at each round. Furthermore the environment specifies
an end to the game without specifying a winner or loser. This is called a penalty game.

Corollary 2 If given probabilistic agent p, environment q halts with probability 1, and p has
expected penalty less than n ∈ N, then there is a deterministic agent of complexity <log K(p) +
I(〈p, n,q〉;H) that receives penalty < 2n against q.

Proof. We create a win/no-halt game from q where an agent wins if it gets a penalty less than
2n. Thus p is a probabilistic agent that wins this new game with probability > .5. Theorem 23
then can be used to prove the corollary. �
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Chapter 6

Game Derandomization

For a given win/no-halt game if there is a good simple randomized player but no sim-
ple winning deterministic player, then that game is exotic, in that it has high mutual
information with the halting sequence.

This mirrors derandomization, where if a solution to a problem can be produced easily with a
simple probability, but has no simple solutions, then it is exotic. A game instance that has a simple
winning probabilistic agent but no simple winning deterministic agent can be found in Example 1.

6.1 Even-Odds

We define the following win/no-halt game, entitled Even-Odds. There are N rounds. At round
1, the environment q secretly records bit e1 ∈ {0, 1}. It sends an empty message to the agent who
responds with bit a1 ∈ {0, 1}. The agent gets a point if e1 ⊕ b1 = 1. Otherwise the agent loses
a point. For round i, the environment secretly selects a bit ei that is a function of the previous
agent’s actions {aj}i−1

j=1 and sends an empty message to the agent, which responds with ai and the
agent gets a point if ei⊕ ai = 1, otherwise it loses a point. The agent wins after N rounds if it has
a score of at least

√
N .

Theorem 24 For large enough N , there is a deterministic agent p that can win Even-Odds with
N rounds, with complexity K(p) <log I(q;H).

Proof. We describe a probabilistic agent p′. At round i, p′ submits 0 with probability 1/2. Oth-
erwise it submits 1. By the central limit theorem, for large enough N , the score of the probabilistic
agent divided by

√
N is S ∼ N (0, 1). Let Φ(x) = Pr[S > x]. A common bound for Φ(x) is

Φ(x) >
1

2π

x

x2 + 1
e−x

2/2

Φ(1) >
1

4π
e−1/2 >

1

8π
.

Thus when S ≥ 1, the score is at least
√
N . Thus p′ wins with probability at least p = 1

8π . Thus
by Theorem 23, there exists a deterministic agent p that can beat q with complexity

K(p) <log K(p′)− log p+ I((p,p′,q);H) <log I(q;H).

�
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Figure 6.1: A graphical depiction of a winning deterministic player to the Graph-
Navigation game. The player starts at s and chooses a path to reach the goal state r,
(assuming tG = 8).

6.2 Graph-Navigation

The win/no-halt game is as follows. The environment q consists of (G, s, r). G = (E, V ) is a non-
bipartite graph with undirected edges, s ∈ V is the starting vertex, and r ∈ V is the goal vertex.
Let tG be the time it takes for any random walk starting anywhere to converge to the stationary
distribution π(v), for all v ∈ V , up to a factor of 2.

There are tG rounds and the agent starts at s ∈ V . At round 1, the environment gives the
agent the degree s ∈ V , Deg(s). The agent picks an number between 1 and Deg(s) and sends it to
q. The agent moves along the edge the number is mapped to and is given the degree of the next
vertex it is on. Each round’s mapping of numbers to edges to be a function of the agent’s past
actions. This process is repeated tG times. The agent wins if it is on r ∈ V at the end of round tG.
A graphical depiction of this can be seen in Figure 6.1.

Theorem 25 There is a deterministic agent p that can win the Graph-Navigation game with
complexity K(p) <log log |E|+ I((G, s, r);H).

Proof. It is well known if G is non-bipartite, a random walk starting from any vertex will converge
to a stationary distribution π(v) = deg(v)/2|E|, for each v ∈ V .

A probabilistic agent p′ is defined as selecting each edge with equal probability. After tG rounds,
the probability that p′ is on the goal r is close to the stationary distribution π. More specifically

the probability is
∗
> |E|−1. Thus by Theorem 23, there is a deterministic agent p that can find r

in tG turns and has complexity K(p′) <log log |E|+ I((G, s, t);H).

6.3 Interactive-k-Sat

The penalty game Interactive-k-Sat is as follows. The environment q has access to a hidden
k-Sat formula, with n variables and some number of clauses, each containing k literals, which
are a variable instance or its negation. Each variable appears in at most 2k/ke clauses. The
environment’s first action is to send the number of variables to the agent. After this step, the
agent, p has n variables, each initially set to true. At each subsequent round, the environment
gives to the agent the clauses which are not satisfied. The player can change up to k variables,
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Figure 6.2: A graphical depiction of a turn in the Interactive-k-Sat game. The
player’s current assignment of variables has resulted in two unsatisfied clauses, which
the environment sends to the player. The environment has a complete picture of the
variables and clauses, which are hidden to the player.

and sends these changes to the environment. If the k-Sat formula is satisfied, the game stops.
Otherwise the game continues. When the game ends, the penalty is the number of terms. A
graphical representation of this game can be seen in Figure 6.2. Obviously there is a deterministic
player of complexity O(1) that can try every possible assignment of variables. This is a winning
strategy of at most 2n turns. However, the following theorem shows that a much more successful
player exists without much more complexity bounds.

Theorem 26 There exists a deterministic player p that can achieve a penalty of (1 + ε)(n/2k +
n/(2k/e− k)) with complexity K(p) <log I(q;H)− log ε, for ε ∈ (0, 1).

Proof. We use the Algorithmic Lovász Local Lemma, from [MT10]. The randomized algorithm,
when applied to k-Sat is as follows.

1. Given is a random assignment of n variables.

2. While there exists an unsatisfied clause.

(a) Pick an unsatisfied clause at random.

(b) Reassign the variables of this clause randomly.

3. Return the variable assignment.

It was proved in [MT10] that this algorithm has n/D expected steps, where D is the size of the
dependency between events. So D = (2k/e − k). Thus the goal of this proof is to construct a
randomized player p′ that simulates the above randomized algorithm. The player p′ first starts out
by randomizing its variables. Thus at each turn in this phase, it selects up to k untouched variables
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and gives them random assignments. This takes at most dn/ke steps. However, noting that player
p′ only needs to update the variables that are set to true, this task takes n/2k expected steps.
Once this is complete, whenever the environment sends back unsatsified clauses, the randomized
agent chooses one at random and randomly resamples its k variables. Thus, by [MT10], this has
n/(2k/e − k) expected steps before a satisfying assignment is found and the game halts. So the
randomized player runs in (n/2k + n/(2k/e − k)) expected steps. Thus by Corollary 2, there is a
deterministic player that can find a satisfying assignment in less than (1 + ε)(n/2k+n/(2k/e− k))
turns with complexity

K(p) <log I(q;H)− log ε.

�
Note that as the game proceeds, the environment reveals more and more information about

its hidden k-Sat formula to the player. This leaves open the possibility of a deterministic player
of Kolmogorov complexity O(1) that coerces the environment to reveal all the clauses and then
manually set the corresponding satisfying assignment. Whether or not this will take less steps than
that proved in the above theorem is unknown.

6.4 Penalty-Tests

An example penalty game is as follows. The environment q plays a game for N rounds, for some
very large N ∈ N, with each round starting with an action by q. At round i, the environment
gives, to the agent, an encoding of a program to compute a probability Pi over N. The choice of
Pi can be a computable function of i and the agent’s previous turns. The agent responds with a
number ai ∈ N. The environment gives the agent a penalty of size Ti(ai), where Ti : N→ Q≥0 is a
computable test, with

∑
a∈N Pi(a)Ti(a) < 1. After N rounds, q halts. A graphical representation

of this game can be found in Figure 6.3.

Theorem 27 There is a deterministic agent p that can receive a penalty < (1 + ε)N and has
complexity K(p) <log I(q;H)− log ε, for ε ∈ (0, 1).

Proof. A very successful probabilistic agent p′ can be defined. Its algorithm is simple. On receipt
of a program to compute Pi, the agent randomly samples a number N according to Pi. At each
round the expected penalty is

∑
a Pi(a)Ti(a) < 1, so the expected penalty of p for the entire game

is < N . Thus by Corollary 2, there is a deterministic agent p such that

1. The agent p receives a penalty of < (1 + ε)N ,

2. K(p) <log I(q;H)− log ε.

�

Example 1 Let q be defined so that Pi(a) = [a ≤ 2i]2−i and Ti = [a ≤ 2i]2i−K(a|i), where [A] = 1
if A is true, and 0 otherwwise. Thus each Ti is a randomness deficiency function (to the power of
2). The probabilistic algorithm p′ will receive an expected penalty < N . However any deterministic
agent p that receives a penalty < 2N must be very complex, as it must select many numbers with
low randomness deficiency. Thus, by the bounds above, I(q;H) must be very high. This makes
sense because q encodes N randomness deficiency functions.
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Figure 6.3: Three rounds of the Penalty-Test game. At each round i the probability,
Pi, that the environment gives to the player is a uniform measure over a unique interval.
The environment has three tests {T1, T2, T3}, which is not shared with the player, that
represent the penalties. In this depiction, the player’s moves are numbers in the interval
(represented by the arrows) and result in low total penalty.

6.5 Set-Subset

We define the following win/no-halt game, entitled Set-Subset. There are k rounds. At round
i = {1, . . . , k}, the environment q gives n numbers Ai ⊂ N to the agent p. The environment
secretly selects m ≤ n numbers Bi ⊆ Ai. The player selects a number ai ∈ Ai. Each Ai and Bi are
a function of the player’s previous actions. The player wins if for every round, his selection ai is in
the secret set Bi. So for all i ∈ {1, . . . , k}, ai ∈ Bi. A graphical depiction of this game can be seen
in Figure 6.4.

Theorem 28 There is a deterministic agent p that win against Set-Subset environment q, where
K(p) <log k log(n/m) + I(q;H).

Proof. Let p′ be the randomized the player that selects a member of the given set with Ai
with uniform probability. The probability that p′ picks a member of Bi is |Bi|/|Ai| = m/n. The
probability that p′ picks a member of Bi for all i ∈ {1, . . . , k} is (m/n)k, which is the probability
that p′ wins. K(p′) = O(1). Thus by Theorem 23, there exists a deterministic player p that wins
against q with complexity bounded by the theorem statement. �

6.6 Interactive-Hypergraph

We define the following penalty game, entitled Interactive-Hypergraph. The environment has
access to a hidden k-regular -hypergraph. A hypergraph is a pair J = (V,E) of vertices V and
edges E ⊆ P(V ). Thus each edge can connect ≥ 2 vertices. A hypergraph is k-regular of the size
|e| = k for all edges e ∈ E. A 2-regular hypergraph is just a simple graph. The player has access
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Figure 6.4: A graphical depiction of the Set-Subset game. Each line represents a
round of the game. The boxes of the ith line represent Ai, and the filled boxes represent
the secret set Bi ⊂ Ai. A winning player is shown, by placing a circle in Bi for each
round i.

to a list of vertices and the goal of the player is to produce a valid 2-coloring of the hypergraph.
A valid 2-coloring of a hypergraph (V,E) is a mapping f : V → {1, 2} where every edge e ∈ E is
not monochromatic |{f(v) : v ∈ e}| = 2. We assume that for each edge f of the graph, there are at
most 2k−1/e− 1 edges h such that f ∩ h 6= ∅.

The game proceeds as follows. For the first round, environment gives the number of vertices
to the player. The player has n vertices, each with starting color 1. At each subsequent turn, the
environment sends to the player the edges which are monochromatic. The player can change the
color of up to k vertices and sends these changes to the environment. The game ends when the
player has a valid 2-coloring of the graph.

Theorem 29 There exists a deterministic player p that can beat the environment q in (1 +
ε)(n/2k + n/(2k−1/e− 1)) turns of complextiy K(p) <log I(q;H)− log ε.

Proof. We use the Algorithmic Lovász Local Lemma, from [MT10]. The randomized algorithm,
when applied to hypergraphs is as follows.

1. Given is a random 2-color assignment of n vertices.

2. While there exists a monochromatic edge.

(a) Pick a monochromatic edge random.

(b) Reassign the colors of the vertices of this edge randomly.

3. Return the valid 2-coloring.

It was proved in [MT10] that this algorithm has n/D expected steps, where D is the size of
dependency between the events. So D = 2k−1/e − 1. Thus the goal of this proof is to construct
a randomized player p′ that simulates the above randomized algorithm. The player p′ first starts
out by randomizing the color assignments of each vertex. Thus at each turn in this phase, it selects
up to k untouched vertices and gives them random assignments. This takes at most dn/ke steps.
However, noting that player p′ only needs to update the colors that are set to 2, this task takes
n/2k expected steps. Once this is complete, whenever the environment sends back unsatsified
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Figure 6.5: A graphical depiction of a random two dimensional walk. The radius r is
the length of the line between the starting and ending points.

edges, the randomized agent chooses one edge at random and randomly recolors its k vertices.
Thus, by [MT10], this has n/D = n/(2k−1/e − 1) expected steps before a valid two-coloring is
found and the game halts. So the randomized player runs in (n/2k + n/(2k−1/e − 1)) expected
steps. Thus by Corollary 2, there is a deterministic player that can find a valid 2-coloring in less
than (1 + ε)(n/2k + n/(2k−1/e− 1)) turns with complexity

K(p) <log I(q;H)− log ε.

�

6.7 Grid-Walk

We define the following win/no-halt game, entitled Grid-Walk. The player starts at the origin
of a two dimension grid with integer coordinates. At the start of the turn, the player chooses a
number from {1, . . . , 4} and the the environment maps this number to a direction (North, South,
East, West) based on a function of the player’s previous actions. The enviroment moves the player
in the choseen direction and the next round begins. No messages are sent from the environment to
the player. The radius of the player is its Euclidean distance to the origin. The player wins if after
N rounds, it has a radius at least

√
N . An example random walk can be seen in figure 6.5.

Theorem 30 For large enough N , there is a deterministic agent p that can win against Grid-
Walk environment q such that K(p) <log I((q, N);H).

Proof. We define a probabilistic player p′ that randomly chooses a number from {1, 2, 3, 4} with
uniform probability. Thus p′ performs a random walk on the two dimensional grid. For large
enough N , the probability density function for the radius r of random walker p′ is the Rayleigh
density function P (r) = 2r

N e
−r2/N . The culmulative distribution function is F (r) = 1 − e−r2/N .

Thus c = 1 − F (
√
N) = 1 − e−1. Thus with at least constant probability c the radius of p′ is at

least
√
N , and p′ wins. So by Theorem 23, there exists a deterministic player p that wins against
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Figure 6.6: A graphical depiction of a minimum cut. By removing the edges along the
dotted line, two components are created.

q where
K(p) <log K(p′)− log c+ I((p′, N,q);H) <log I((N,q);H).

�

6.8 Min-Cut

We define the following win/no-halt game, entitled Min-Cut. The game is defined by an undirected
graph G and a mapping ` from numbers to edges. At round i, the environment q sends the number
of edges of G. The player responds with a number. The environment maps the number to an
edge, and this mapping can be dependent on the player’s previous actions. The environment then
contracts the graph G along the edge. The game halts when the graph G has contracted into two
vertices. The player wins if the cut represented by the contractions is a min cut. A minimum cut
of a graph is the minimum number of edges, that when removed from the graph, produces two
components. A graphical depiction of a min cut can be seen in Figure 6.6.

Theorem 31 There is a deterministic agent p that can win against Min-Cut instance (G,S, `),
|G| = n, such that K(p) <log 2 log n+ I((G, `);H).

Proof. We define the following randomized agent p′. At each round, p′ chooses an edge at
random. Thus the interactions of p′ and q represent an implementation of Karger’s algorithm.
Karger’s algorithm has an Ω(1/n2) probability of returning a min-cut. Thus p′ has an Ω(1/n2)
chance of winning. By Theorem 23, there exist a deterministic agent p and c where p can beat q
and has complexity K(p) <log K(p′)− log c/n2 + I(q;H) <log 2 log n+ I((G, `);H). �

6.9 Cover-Time

We define the following interactive penalty game. Let G = (E, V ) be a graph consisting of n vertices
V and undirected edges E. The environment q consists of (G, s, `). G = (E, V ) is a non-bipartite
graph with undirected edges, s ∈ V is the starting vertex. ` is a mapping from numbers to edges
to be described later.

The agent starts at s ∈ V . At round 1, the environment gives the agent the degree s ∈ V ,
Deg(s). The agent picks a number between 1 and Deg(s) and sends it to q. The agent moves along
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Figure 6.7: An example vertex-transitive graph.

the edge the number is mapped to and is given the degree of the next vertex it is on. Each round’s
mapping of numbers to edges, `, is a computable function of the agent’s past actions. The game
stops if the agent has visited all vertices and the penalty is the number of turns the agents takes.

Theorem 32 There is a deterministic agent p that can play against Cover-Time instance (G,S, `),
|G| = n, and achieve penalty 8

27n
3 + o(n3) and K(p) <log I((G, s, `);H).

Proof. A probabilistic agent p′ is defined as selecting each edge with equal probability. Thus the
agent performs a random walk. The game halts with probability 1. Due to [Fei95], the expected
time (i.e. expected penalty) it takes to reach all vertices is 4

27n
3 + o(n3). Thus by Corollary 2

there is a deterministic agent p that can reach each vertex with a penalty of 8
27n

3 + o(n3) and has
complexity

K(p) <log K(p′) + I((G, s, `);H) <log I((G, s, `);H).

�

6.10 Vertex-Transitive-Graph

We describe the following graph based game. The environment q = (G, `, u, 2k) consists of an
undirected vertex-transitive graph G = (V,E), a start vertex u ∈ V , the number of rounds 2k, and
a mapping ` from numbers to vertices. A vertex-transitive graph G = (V,E) has the property that
for any vertices u, v ∈ V , there is an automorphism of G that maps u into v. An example of a
vertex transitive graph can be seen in Figure 6.7. At round 1, the agent starts at vertex u ∈ V and
the environment send to the agent the degree of u. The agent picks a number from 1 to Deg(u)
and the environment moves the agent along the edge specified by the mapping ` from numbers to
edges. The mapping ` can be a function of the agents previous actions. The agent wins if after 2k
rounds, the agent is back at u.

Theorem 33 There is a deterministic agent p that can win at the Vertex-Transitive-Graph
game (G = (V,E), `, u, k), |V | = n with complexity K(p) <log log n+ I((G, `, u, k);H).

Proof. We define the following randomized agent p′. At each round, after being given the degree
d of the current vertex, p′ chooses a number randomly from 1 to d. K(p′) = O(1). This is equivalent
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to a random walk on G. Let P l(u, v) denote the probability that a random walk of length l starting
at u ends at v. Then due to [AS04], for vertex-transitive graph G,

P 2k(u, u) ≥ P 2k(u, v).

So after 2k rounds the randomized agent is back at u with probability P 2k(u, u) ≥ 1/n, which lower
bounds the winning probability of p′ against q. By Theorem 23, there exists a deterministic agent
p that can beat q with complexity

K(p) <log K(p′) + n+ I((n,p′,q);H) <log n+ I((G, `, u, k);H).

�
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Chapter 7

Resource Bounded Derandomization

7.1 Resource Bounded EL Theorem

In this section we derive the resource bounded EL theorem. We also derive an interesting corollary
to Theorem 4.1 in [AF09] which states to invert a hash function f−1(x), one can find a secret key π
of size approximiately equal to x that will efficiently decompress to a pre-image of x with respect to
f . The results in this section are not unconditional, they require the existence of the pseudorandom
generator, introduced in [Nis94].

Assumption 1 Crypto is the assumption that there exists a language in DTIME(2O(n)) that does
not have size 2o(n) circuits with Σp

2 gates. This asssumption is need in the proof of Theorem 34 in
[AF09] to assume the existence of a pseudorandom generator g : {0, 1}k logn → {0, 1}n, computable
in time polynomial in n.

Definition 5 FP′ = {f : f ∈ FP and ‖x‖ = ‖f(x)‖}.

Definition 6 For A ∈ FP′ we say that A samples D ⊂ {0, 1}n with probability γ, if |{0, 1}n ∩
A−1(D)|/2n > γ.

Theorem 34 ([AF09]) Assume Crypto. Let F ∈ FP′. Let m,n ∈ N where {0, 1}n ⊇ f({0, 1}m).
Let Ty = {w ∈ {0, 1}m : F (w) = y} and Vk = {y : ‖y‖ = n and |Ty| ≥ 2k}. There exists a function

G : Σm−k+O(logm) → Σm

computable in polynomial time such that for all y ∈ Vk, range(G) ∩ Ty 6= ∅.

Remark 1 In the previous theorem, the running time of G is a polynomial function of the running
time of F . This was noted in [LOZ22]. In addition, in subsequent theorems and corollaries of
this section, the polynomial time function p in the resource bounded complexity Kp is a polynomial
function of the running times of the algorithms of the theorem/corollary statements. Furthermore,
due to [AF09], G can be encoded in O(1) bits.

The following corollary implies that to invert x with a hash function f , one can find a secret key π
of size approximately equal to x that efficiently expands to an element in f−1(x).

Corollary 3 Assume Crypto. Let f ∈ FP′, where f({0, 1}n) ⊆ {0, 1}n−k. Then for some poly-
nomial p where for {0, 1}n ⊇ D = f−1(x),

min
y∈D

Kp(y) = n− log |D|+O(log n).
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Proof. Follows directly from Theorem 34. �

Corollary 4 (Resource EL) Assume Crypto. Let L ∈ P, A ∈ FP′, and assume A samples Ln
with probability δn. Then for some polynomial p,

min
x∈Ln

Kp(x) < − log δn +O(log n).

Proof. Let F ∈ FP′ where F ({0, 1}n) ⊆ {0, 1}n and for x ∈ {0, 1}n, F (x) = 1n if A(x) ∈ Ln and
F (x) = 0n otherwise. Let k ∈ N be maximal such that δn ≥ 2k−n. Let ` = n− k + O(c log n). By
Theorem 34, there exists a function G : {0, 1}` → {0, 1}n running in polynomial time such that
there exists x ∈ `, with G(x) = 1n. This is because 1n ∈ Tk, using the definition in Theorem 34,
because A produces a member of Ln with probability at least δn and all of Ln is mapped to 1n. We
define a program P that uses G to map x to a string y, then use A to map y to a string z ∈ Ln.
This program P is of size ` and runs in polynomial time. �

A verifier V : {0, 1}∗×{0, 1}∗ → {0, 1} is a function computable in polynomial time with respect
to the first argument. For a given x, Proofs(x) = {y : V (x, y) = 1}.

Corollary 5 Assume Crypto. Let {xn} be uniformly computable in polynomial time. For a
verifier V (x, y), let A ∈ FP′ sample Proofs(xn) with probability γn. Thus there is a polynomial p
and y ∈ Proofs(xn) with

Kp(y) < − log γn +O(log n).

7.2 Resource Bounded Derandomization

In this section, we use Corollary 5 to produce three examples of resource bounded derandomization.

Lemma 6 (Lovasz Local Lemma) Let E1, . . . , En be a collection of events such that ∀i : Pr[Ei] ≤
p. Suppose further that each event is dependent on at most d other events, and that ep(d+ 1) ≤ 1.

Then, Pr
[⋂

iEi
]
>
(

1− 1
d+1

)n
.

Proposition 3 (Mutual Independence Principle) Suppose that Z1, . . . Zm is an underlying
sequence of independent events and suppose that each event Ai is completely determined by some
subset Si ⊂ {Z1, . . . , Zm}. If Si ∩ Sj = ∅ for j = j1, . . . , jk then Ai is mutually independent of
{Aj1 , . . . , Ajk}.
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7.2.1 Vertex-Disjoint-Cycles

Theorem 35 Assume Crypto. Let {Gn} be a uniformly computable in polynomial time sequence
of k-regular graphs, with k ≥ 5. There is a polynomial p where for each Gn, there is a partition x
of b k

3 ln kc components each containing a cycle with

Kp(x) < 2n/k2 +O(log n).

Proof. We partition the vertices of G into c = bk/3 ln kc components by assigning each vertex to
a component chosen independently and uniformly at random. With positive probability, we show
that every component contains a cycle. It is sufficient to prove that every vertex has an edge leading
to another vertex in the same component. This implies that starting at any vertex there exists a
path of arbitrary length that does not leave the component of the vertex, so a sufficiently long path
must include a cycle. A bad event Av = {vertex v has no neighbor in the same component}. Thus

Pr[Av] =
∏

(u,v)∈E

Pr[u and v are in different components]

=

(
1− 1

c

)k
< e−k/c ≤ e−3 ln k = k−3.

Av is determined by the component choices of itself and of its out neighbors Nout(v) and these
choices are independent. Thus by the Mutual Independence Principle, (Proposition 3) the depen-
dency set of Av consist of those u that share a neighor with v, i.e., those u for which ({v}∪N(v))∩
({u} ∪N(u)) 6= 0. Thus the size of this dependency is at most d = (k + 1)2.

Take d = (k + 1)2 and p = k−3, so ep(d + 1) = e(1 + (k + 1)2)/k3 ≤ 1, holds for k ≥ 5. Thus,
noting that k ≥ 5, by Lovasz Local Lemma, (Lemma 6),

Pr

[⋂
v∈G

Av

]
>

(
1− 1

d+ 1

)n
=

(
1− 1

(k + 1)2 + 1

)n
>

(
1− 1

k2

)n
. (7.1)

Graphs Gn of size n are encoded in strings of size kndlog ne and partitions are the proofs, encoded
in strings of size ndlog ke. The verify V returns 1 if each partition contains a cycle. The verifier
runs in time O(n log n). We define a sampling function A ∈ FP′ over the partition/proofs that is
the same as the probability used in the Lovasz Local Lemma, i.e. the uniform distribution. Thus
A(x) = x. A samples Proofs(Gn) with probability γn, where by Equation 7.1,

− log γn < −n log(1− 1/k2) < 2n/k2.

Thus by Corolloray 5, there is a polynomial p, where for each graph Gn ∈ Q of n vertices, there is
a partition x ∈ Proofs(Gn) with

Kp(x) < 2n/k2 +O(log n).

�
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7.2.2 Balancing-Vectors

Corollary 6 Assume Crypto. For vector v, ‖v‖∞ = maxi |vi|. A binary matrix M has entries of
0s or 1s. Let {Mn} be a uniformly polynomial time computable sequence of n× n binary matrices.
There is a polynomial p where for each Mn there is a vector b ∈ {−1, 1}n such that ‖Mnb‖∞ ≤
4
√
n lnn and

Kp(b) = O(log n).

Proof. Let v = (v1, . . . , vn) be a row of M . Choose a random b = (b1, . . . , bn) ∈ {−1,+1}n. Let
i1, . . . , im be the indices such that vij = 1. Thus

Y = 〈v, b〉 =

n∑
i=1

vibi =

m∑
j=1

vijbij =

m∑
j=1

bij .

E[Y ] = E[〈v, b〉] = E

[∑
i

vibi

]
=
∑
i

E[vibi] =
∑

viE[bi] = 0.

By the Chernoff inequality and the symmetry Y , for τ = 4
√
n lnn,

Pr[|Y | ≥ τ ] = 2 Pr[v · b ≥ τ ] = 2 Pr

 m∑
j=1

bij ≥ τ

 ≤ 2 exp

(
− τ2

2m

)
= 2 exp

(
−8

n lnn

m

)
≤ 2n−8.

Thus, the probability that any entry in Mb exceeds 4
√
n lnn is smaller than 2n−8. Thus, with

probability 1− 2n−7, all the entries of Mb have value smaller than 4
√
n lnn.

Let A(x) = x be the uniform sampling function. The verifier V takes in a matrix M and a
vector b and returns 1 iff ‖Mb‖∞ ≤ 4

√
n lnn. Let D ⊂ {0, 1}n consist of all strings that encode

vectors bx ∈ {−1,+1}n in the natural way such that ‖Mbx‖∞ ≤ 4
√
n lnn. By the above reasoning,

A samples D with probability ≥ 1− 2n−7 > 0.5. So by Corollary 5, there is a polynomial p, where
for each n× n matrix Mn there is a binary vector b ∈ {−1, 1}n with ‖Mb‖∞ ≤ 4

√
n lnn and

Kp(b) = O(log n).

�

7.2.3 k-Sat

Corollary 7 Assume Crypto. Let Φn be a k(n)-SAT formula, using n variables, m(n) clauses,
uniformly polynomial time computable in n. Furthermore, each variable occurs in at most 2k(n)/k(n)e−
1 clauses. There is a polynomial p and a satisfying assignment x of Φn where

Kp(x) < 2m(n)e2−k(n) +O(log n).

Proof. The sample space is the set of all 2n assigments. We choose a random assignment, where
each variable is independently equally likely to have a true or false assignment. For each clause CJ ,
Ej is the bad event “Cj is not satisfied”. Let p = 2−k(n) and d = (2k(n)/e)−1. Thus ∀j, Pr[Ej ] ≤ p
as each clause has size k(n) and each Ej is dependent on at most d other events since each variable
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appears in at most 2k(n)/k(n)e − 1 other clauses, and each clause has k(n) variables. Thus since
ep(d+ 1) ≤ 1, by the Lovasz Local Lemma 6, we have that,

Pr

⋂
j

Ej

 > (1− 1

d+ 1

)m(n)

=
(

1− e

2k(n)

)m(n)
. (7.2)

Let Dn ⊂ {0, 1}n be the set of all assignments that satisfy φn. We use a uniform sampler, with

A(x) = x. By the above reasoning, A samples Dn with probability γn >
(

1− e
2k(n)

)m(n)
. Thus

− log γn < −m(n) log
(

1− e/2k(n)
)
< 2em(n)2−k(n).

By Corollary 5, there is a polynomial p, where for all n, there is a satisfying assignment x ∈ Dn of
Φ(n) with

Kp(x) < 2m(n)e2−k(n) +O(log n).

�
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