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ABSTRACT This paper addresses the problem of capturing a light field using a single traditional camera,
by solving the inverse problem of dense light field reconstruction from a focal stack containing only very few
images captured at different focus distances. An end-to-end joint optimization framework is presented, where
a novel unrolled optimization method is jointly optimized with a view synthesis deep neural network. The
proposed unrolled optimization method constructs Fourier Disparity Layers (FDL), a compact representation
of light fields which samples Lambertian non-occluded scenes in the depth dimension and from which all the
light field viewpoints can be computed. Solving the optimization problem in the FDL domain allows us to
derive a closed-form expression of the data-fit term of the inverse problem. Furthermore, unrolling the FDL
optimization allows to learn a prior directly in the FDL domain. In order to widen the FDL representation to
more complex scenes, a Deep Convolutional Neural Network (DCNN) is trained to synthesize novel views
from the optimized FDL. We show that this joint optimization framework reduces occlusion issues of the
FDL model, and outperforms recent state-of-the-art methods for light field reconstruction from focal stack
measurements.

INDEX TERMS Unrolled optimization, view synthesis, joint optimization, Fourier disparity layer, light field
reconstruction, focal stack.

I. INTRODUCTION camera placed on a moving gantry [5]. Alternatively, more

In a conventional camera, each sensor element sums all
the light rays emitted by one point over the lens aperture.
In contrast, light field camera architectures aim at capturing
the radiance of every light ray, at every position (x,y, z),
in every direction (6, ¢), for every wavelength A at any time ¢,
thus enabling functionalities useful for computer vision appli-
cations such as post-capture scene refocusing [1], synthetic
aperture imaging [2], or depth estimation [3]. An intuitive
approach for capturing light fields consists in taking pictures
from several viewpoints, either simultaneously thanks to
a large camera array [4], or sequentially with a single

The associate editor coordinating the review of this manuscript and

approving it for publication was Deepak Mishra

lightweight camera designs have been proposed to capture
light fields on a single 2D sensor. Plenoptic cameras [6]
are based on an array of microlenses placed in front of the
photosensor to separate the light rays striking each microlens
into a small image on the photosensors pixels, however at
the cost of sacrificing the spatial resolution for the angular
resolution. More recent designs consider coded masks to
modulate 4D light fields into 2D projections captured by 2D
digital camera sensors [7], [8], [9]. An alternative, which
does not require hardware modifications to conventional
cameras, consists of capturing a focal stack, i.e. several
images of the scene at different focus distances, in order
to reconstruct a light field. However, existing reconstruction
methods [10], [11] typically require focal stacks with dense

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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sampling in the focus dimension, so that the details can be
retrieved at every depth in the scene. Hence, many shots are
needed in the capture process.

The problem of reconstructing a light field from a focal
stack with only a few shots can be seen as a form of
compressive sensing, hence posed as an ill-posed image
inverse problem. A common strategy to deal with ill-posed
image inverse problems consists of introducing image
priors as regularization terms in optimization methods. The
optimization problem is then posed as the minimization of
a function composed of two terms: a data-fidelity term and
a regularization term. The data-fidelity term measures the
fidelity of the solution to the measurements. It is usually
expressed as the squared error between the measurements
and the estimated solution on which a measurement operator,
representing the image formation model, is applied. The
regularization term is used to rule out solutions that are
unlikely according to our prior knowledge on images.

While traditional approaches consider hand-crafted priors
to regularize the optimization problem, such as sparsity [12],
smoothness [13] or total variation [11], significant advances
have been achieved thanks to the introduction of learned
priors. A first category of methods, referred to as ‘“‘Plug-
and-play” (PnP) [14], [15], has been introduced where a
pre-learned prior is plugged into an iterative optimization
algorithm. One advantage of the PnP approach is its
genericity in the sense that the learned priors do not need to
be re-trained for each new image inverse problem. However,
learning priors independently of the targeted inverse problem
may not yield the best solution. Unrolled iterative algorithms,
introduced in [16], have emerged as a way to learn an
optimized task-specific image prior within an iterative
optimization algorithm. A learnable network is trained end-
to-end within a fixed number of iterations of an iterative
optimization algorithm to optimize the learnable prior for a
specific image inverse problem. Many iterative algorithms
have been unrolled, e.g. the Iterative Shrinkage Thresholding
Algorithm (ISTA) [16], the gradient descent [17], the
Half-Quadratic Splitting (HQS) [18], the Alternating Direc-
tion Method of Multipliers (ADMM) [19]. Since computing
the proximal operator of the regularization term is equivalent
to applying Gaussian denoising [15], a well-known approach
is to unroll a proximal optimization algorithm, e.g. the
ADMM, in order to learn a deep denoiser instead of learning
the regularization function directly. Learning a Gaussian
denoiser has the advantage of tackling a well-studied problem
with specific deep network architectures [15], [20]. Thanks to
the capacity of deep neural networks to learn complex image
priors, several works in the literature achieved state-of-the-
art reconstruction performances for a plethora of 2D image
inverse problems [17], [21], [22], [23].

Unrolling optimization algorithms in the context of light
field reconstruction from a limited number of measurements
is, however, a challenging task. Indeed, the measurement
operator representing the light field image formation model
is usually very large or hard to represent numerically, hence
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FIGURE 1. Overview of the proposed joint optimization framework.

making the data-fidelity optimization problem hard to solve
efficiently in an unrolled optimization algorithm. An unrolled
HQS optimization approach has been recently introduced
for light field reconstruction from coded projections [24],
where a novel way to compute the solution of the proximal
operator of the data-fidelity term is presented to avoid the
computational burden due to the size of the measurement
operator.

In the context of light field reconstruction from focal
stack measurements, optimization algorithms that have been
designed in the literature mostly use handcrafted priors [11],
[25], [26], [27], [28], [29]. One of them uses a Tikhonov
regularization to optimize the Fourier Disparity Layers (FDL)
representation of a light field [29], which has been introduced
as a compact representation of scenes. It samples the light
field in the depth dimension to decompose the scene as a
discrete sum of layers in the Fourier domain, hence the name
Fourier Disparity Layers. Each layer contains the texture of
the scene that corresponds to a specific disparity/depth value,
and is computed from input views or focal stack images
by solving an optimization problem using a regularized
least squares regression approach. One important property
of the FDL representation is that the data-fidelity term of
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the FDL optimization is posed per-frequency component
and its proximal operator is a small-scale linear least
squares problem. Hence, it can be solved efficiently for
each frequency in parallel to reduce the computational
burden. However, the FDL optimization requires to design
a regularization function directly in the FDL domain which
is a challenging task. Furthermore, this representation of
light fields assumes non-occluded scenes with Lambertian
reflectance. Therefore, artifacts, such as transparency in
occluded regions, may appear with the FDL model [29], [30].
Based on these properties, the FDL model is well-suited
for unrolled optimization approaches. Indeed, on one hand,
the FDL model allows us to efficiently compute a solution to
the data-fidelity term. On the other hand, unrolling the FDL
optimization allows us to learn the regularization function
directly in the FDL domain. Consequently, we proposed, in a
previous paper [31], an unrolled ADMM FDL optimization
method. In this paper, we enhance this method and present
a joint unrolled FDL optimization with a learned view
synthesis, as illustrated in Figure 1, to address the problem
of light field reconstruction from a small set of focal stack
images, which can be captured with a single traditional
camera. The main contributions of this work are summarized
as follows:
o A novel learned view synthesis process to reconstruct
light field views from optimized FDL is presented.
A Deep Convolutional Neural Network (DCNN) is
added within the FDL view synthesis process and is
trained to minimize the errors of the reconstructed views,
in particular to cope with the occlusion and reflectance
issues of the FDL model, as shown in the ablation study.
« A joint optimization framework is presented, coupling
our unrolled ADMM FDL optimization framework
in [31] with the proposed learned view synthesis process.
Both parts of the network are jointly optimized to ensure
the best reconstruction performances. The proposed
joint optimization framework significantly outperforms
the state-of-the-art methods for light field reconstruction
from a set of focal stack images.

Il. BACKGROUND AND RELATED WORKS

A. IMAGE INVERSE PROBLEMS

An image inverse problem is the problem of recovering an
image x from a set of incomplete or corrupted measure-
ments b. Formally, an acquisition process can be represented
by the following linear system:

b=7x)+e, (1)

where 7 is the measurement operator and € is an additive
noise. In several applications, the measurement operator 7
is ill-conditioned, meaning that the inverse problem of
reconstructing the original signal x from the measurements b
is ill-posed, i.e. an admissible numerical solution is hard to
find. A regularized minimization problem is then usually
posed, introducing an image prior via a regularization
constraint R along with a data-fidelity term. The optimization
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problem of recovering an estimate X is thus posed as follows:

% = argmin || 7(x) — bl|3 + AR(X), )
X
where A controls the amount of regularization.

B. UNROLLED OPTIMIZATION WITH DEEP PRIORS
Classical approaches to solve the optimization problem posed
in Eq. (2) use iterative optimization algorithms, usually
introducing hand-crafted [11] or pre-learned [14], [15] image
priors. Unrolled optimization methods have enabled major
progress in the field of image inverse problems. The idea
behind unrolling an iterative optimization algorithm is to
learn an image prior within the algorithm so that it performs
best for a given iterative optimization algorithm and for a
given task. Several iterative optimization algorithms have
been unrolled in the literature [16], [17], [18], [19]. In this
paper, we focus on the Alternating Direction Method of
Multipliers (ADMM) [32], that solves the problem in Eq. (2)
by decoupling the data-fidelity term and the regularization
term, and with each iteration consisting of the following
steps:

2

4 1 o
£+ = argmin - ||T(x)—b||%+£ HX—yl‘i‘Ul‘ )
x 2 2 2

‘ . 2
y*! = argmin g Hy — &+ lll)) ) + A - R(y), 4)
y

ui"rl — ui + (ﬁi"t‘] _ yl"'rl)’ (5)

where p is a penalty parameter, u is called the dual variable
which is typically zero-initialized, and y is an auxiliary
variable with y* being the initial image estimate. One can
note that the sub-problem (4) performs Gaussian denoising
of (X! 4 u’) assuming a noise variance A/p and under the
prior defined by R. Hence, instead of learning R directly,
unrolled ADMM optimization methods typically learn a deep
denoiser D with trainable parameters 6, and replace Eq. (4)
with:

Yy =D& +u’;0). (6)

The deep denoiser D can thus be trained within the ADMM
optimization algorithm so that unrolling a given number N of
ADMM iterations gives the estimate X"V that best reconstructs
the ground truth x for a training image dataset.

C. LIGHT FIELD IMAGING MODEL

Let us consider an input light field, represented by a
4D function L(x,y,u,v) describing the radiance along
light rays, with the two-plane parameterization proposed
in [5] and [33]. The parameters (u,v) denote the angular
(view) coordinates and (x, y) the spatial (pixel) coordinates.
In this paper, for notation simplicity and without loss of
generality, we consider a 2D light field L(x, ) with one
angular dimension and one spatial dimension. Focal stack
images taken at different focus distances can be seen as
measurements of the light field to be reconstructed. Let a
refocused light field L* be defined as L*(x, u) = L(x — us, u),
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with a refocus parameter s. A refocused image I , at posi-
tion up on the camera plane, is obtained by integrating the
light rays over the angular dimension using the refocused
light field and the camera aperture ¥:

I, (x) = / L(x — us, ug + )y (u)du. (7)
R

D. LIGHT FIELD RECONSTRUCTION FROM A FOCAL STACK
Optimization methods for light field reconstruction from a
set of focal stack images have been introduced, at first,
without any image prior. Takahashi et al. [25] proposed
an iterative method to construct a light field representation
named ‘“‘tensor-display” from a focal stack. The scene is
decomposed into a few light-attenuating layers, from which
the light field views can be synthesized. Using the similarity
between both light field reconstruction from a focal stack and
CT image reconstruction tasks, Liu et al. [26] applied the
filtered back-projection and the Landweber iterative methods
for light field reconstruction. Yin et al. [27] presented a
filter-based iterative method to solve the inverse problem
with a linear projection system used to model the focal
stack imaging process. Another filter-based iterative method
was proposed by Gao et al. [28]. The paper introduces an
optimized relaxation strategy and a fast-guided filter in the
filter-based Landweber iterative method. Lien et al. [34]
proposed a method for light field reconstruction from a
focal stack captured in one shot with a stack of transparent
graphene photodetectors.

Handcrafted priors have then been introduced in the
formulation of the inverse problem of recovering light
fields from focal stacks. Gao et al. [11] proposed the
ADMM algorithm with a TV-regularization along with a
guided filter. A convolution kernel is derived to model the
focal stack imaging process. Additionally to sparsity priors,
Blocker et al. [35] and Kamal et al. [36] proposed a low-rank
prior to respectively model (i) the low angular variation of
light fields (ii) the redundancies of high-dimensional visual
signal. Le Pendu et al. [29] proposed the Fourier Disparity
Layers (FDL) representation of light fields to decompose the
scene into a set of additive layers from which any view can
be reconstructed. The author used a Tikhonov regularization
constraint in the optimization of the FDL.

Deep learning techniques were also recently considered by
Huang et al. [37] to reconstruct a light field from a focal
stack. They proposed a three sequential convolutional neural
networks framework that reconstructs the light field from
estimated all-in-focus images, depth maps, and Lambertian
light fields. However, the method does not benefit from the
advantages of having a data-fidelity block as in optimization
algorithms.

In this paper, we propose to combine the FDL model in [29]
with an unrolled ADMM optimization method along with a
learned view synthesis process in order to introduce learned
priors in the context of light field reconstruction from focal
stack images.

VOLUME 11, 2023

IIl. JOINT FOURIER DISPARITY LAYERS UNROLLING
WITH LEARNED VIEW SYNTHESIS

In this section, we present our joint optimization framework,
illustrated in Figure 2. We first introduce in Section III-A
the Fourier Disparity Layers (FDL) by Le Pendu et al. [29]
that will be used in our framework. The proposed method
is a joint optimization of two different parts introduced in
Sections III-B and III-C (i) the parameters 6; of a denoiser
CNN D used in an unrolled ADMM FDL optimization, as we
proposed in [31] (ii) and the parameters 6, of a CNN S
of a novel learned view synthesis process trained to adapt
the optimized FDL for each novel view to be reconstructed,
in order to cope with the issues of the FDL model. Finally,
in Section III-D, we present the joint optimization process.

A. FOURIER DISPARITY LAYERS

Fourier Disparity Layers (FDL) have been introduced in [29]
as a compact representation of dense light fields. The FDL
model consists of a set of additive layers Z,k, each associated
with a disparity value d*, inversely proportional to the depth,
where each layer mostly contains details in the regions of
disparity @ in the scene. The FDL model is defined such that
a sub-aperture view, or viewpoint, at angular coordinate ug
is reconstructed by shifting each layer LX by djug, and by
summing the shifted layers.

Formally, let a Lambertian non-occluded scene be divided
into n spatial regions €2 with constant disparity di. The
Fourier transform L(wy, w,) of a light field L(x, u) can thus be
re-written such that the spatial information remains the same
for any view:

Loy, 00) = ) 8(wy — drw) L (), ®)
k

with L*(w,), the FDL associated with the disparity dg,
defined by:

LMwy) = /Q e HTXON (v 0)dx. )
k

The relation between the Fourier transform i;o(wx) of a
refocus image of a focal stack and the FDL is thus established
in [29] as follows:

L) = D ek oy (s —dp) - Ly, (10)
k

Based on Eq. (10), we can define an optimization algorithm
to optimize the FDL from a set of refocused images. Our
proposed optimization algorithm will be further detailed in
section III-B. It is important to notice that Egs. (8), (9),
and (10) are only verified in the case of non-occluded
scenes with Lambertian reflectance. Assuming this model,
performing an FDL optimization algorithm will produce
light field views with occlusion and reflectance artifacts,
e.g. transparency in occluded areas, as illustrated in recent
works [29], [30]. We address this problem in section III-C by
proposing a neural network based view synthesis process to
reconstruct light field views from the optimized FDL.
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FIGURE 2. Architecture of the proposed end-to-end framework for light field reconstruction from focal stack measurements. The pipeline is composed
of two blocks: (i) an unrolled ADMM FDL optimization (red block) which optimizes a matrix Xi, where each row X’ corresponds to the vectorized FDL k
(ii) a view synthe5|s (blue block) with a learned network, where the optimized FDL are shifted and concatenated wnth additional coordinate channels to

indicate which view to reconstruct to the network.

B. UNROLLED ADMM FDL OPTIMIZATION

Let us consider an input focal stack containing images I;.
We note m and n respectively the number of measured focal
stack images and the number of considered layers in the FDL
model. For each spatial frequency component w, of index g
in the discrete Fourier transform, we note bq € C™ a vector
with [bq]; = Z,'(a)q), xq € C" a vector with [Xqlx = Zk(wq),
and Aq € C™*" a matrix defined as follows:

[Agljx = e (s; — di)). (11)

Eq. (10) is thus reformulated as Aqxq = bq. Thus, the
construction of the FDL spatial frequencies xq from mea-
surements bq is posed as a linear least squares optimization
problem independently for each frequency component wy.
The matrices Aq are usually ill-conditioned, making the latter
optimization problem ill-posed. To reduce overfitting on the
measurements that may cause severe artifacts in the FDL, the
authors in [29] include a Tikhonov regularization term, which
results in the following per-frequency minimization problem:

Xq = argxmin |Aqxq — bq H; + A quq”i . (12)
q

with I" being the Tikhonov matrix. A calibration method
is also proposed in [29] to determine the angular coordi-
nate ug of each input view and the disparity values d of the
layers. However, it only applies in the case of sub-aperture
images as measurements. In this paper, we consider focal
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stacks where all the images are taken at the same angular
coordinate uy = 0, and assuming a known focus parameter s
and aperture . For the disparity values dj of the FDL model,
we use uniformly sampled values over the disparity range of
the scene.

While the author in [29] uses a Tikhonov regularization
to encourage smooth variations between the light field views
generated by the optimized FDL, designing a more complex
prior directly in the FDL domain is a challenging task.
To cope with this issue, we propose to unroll the FDL
optimization, following the ADMM unrolling framework,
in order to automatically learn a deep prior in the FDL
domain. In order to account for complex image statistics
on the FDL model, we consider a regularization of the
full layers, rather than a per-frequency regularization as in
Eq. (12). Furthermore, since most neural networks operate
on images in the pixel domain, we regularize the images
obtained by the inverse Fourier transform of the FDL
layers.

Let us define the matrix X = [xq]...|xq] representing
the full FDL as a concatenation of the column vectors xq
for all the frequency components w, with g € [1..Q]. The
regularized FDL reconstruction problem is then formulated
as:

X = argmin [ A - R(Xd) + Z |Aqxq = bq ”; - (13)
X
q
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where ®~! is the inverse 2D Fourier transform, applied to
each FDL layer (i.e. rows of X) to regularize the images in
the pixel domain. The steps of the unrolled ADMM iteration
in Egs. (3), (6), (5), can then be written:

Aj ! 2 P . 12
XHH :a_rg;mn 3 ”Aqx—bq ||2+§ Hx—ya + uil . 14)
Yt = DX + UHo ! 6, (15)

where we note X! = K. .. |§(6] and Yi = [¥il... |§76]. For
the regularization, one can see in Eq. (15) that denoising can
be applied in the pixel domain by performing the inverse 2D
Fourier transform of the denoiser’s input layers (Xi+1 + U,
and reapplying the 2D Fourier transform on the denoised
output. Instead of using a pre-learned denoiser as in the Plug-
and-Play approach [15], [38], the denoiser D is here trained
end-to-end within the unrolled algorithm to better train it for
the task of FDL denoising. On the other hand, the data-fidelity
subproblem in Eq. (14) can still be solved independently per-
frequency component, and has a well-known closed form
solution:

%q = (AJAq + pD ' (Afbg + oy —ub)).  (17)

where I is the identity matrix and * is the Hermitian transpose
operator. Note that for each frequency component of index g,
the matrix inversion (Aqu + pD~! in Eq. (17) can be
performed efficiently thanks to the small dimensions of the
matrix Agq (A;’iAq € C™" with n the number of layers).
The per-frequency computation of the proximal operator
allowed by the FDL model thus significantly reduces the
computational burden of computing the estimate X.

C. VIEW SYNTHESIS FROM OPTIMIZED FDL

As derived in [29], the Fourier transform I:u(a)x) of a view
L(x, u) can be reconstructed by applying a shift-and-sum on
the optimized k FDL Lk (wy) as follows:

Lwy) =Y et K (g,). (18)
k

However, it is well-known that artifacts will occur in specific
areas with this technique, e.g. in occluded regions [29], [30],
as mentioned in Section III-A. Since these artifacts are
different for each reconstructed light field view, we need to
slightly adjust the optimized k FDL L*(w,) for each novel
view. Since the ground truth views Lg; (x, u) are known during
the training phase, we propose to train the parameters 6
of a CNN S to modify the k optimized FDL L¥(w,) for
each view to be reconstructed, such that the reconstructed
views well-estimate their corresponding ground truth views.
As described in Eq. (9), the FDL contain only the spatial
information of the light field within each depth plane.
Therefore, we also need to add angular information to the
input of the network S in order to specify which view
to reconstruct. We propose to shift the optimized FDL
accordingly to the angular coordinates of the view to be
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reconstructed as in Eq. (18). However, instead of directly
summing the shifted layers, we first concatenate them along
with two additional channels C, each containing an angular
coordinate of the view. The resulting tensor is fed into a
view synthesis CNN S which computes the modified shifted
layers. These modified layers are then summed to reconstruct
the view, as in Eq. (18).

Formally, let u be the coordinates of the view to be
reconstructed, X € C"€ be the matrix representing the
concatenation of the optimized FDL as in Eq. (13), and
Z € C"™ be a matrix with Zy , = et?™4? The matrix
X,, e C"™Q, being the concatenation of the shifted FDL
associated to the angular coordinates u, is thus computed as
follows:

X, =Z0X, (19)

with © being the Hadamard product. With C,, being a channel
filled with the value of the angular coordinate u of the view
to be reconstructed, the parameters 6, of the network S are
thus optimized as follows:

2
. (20
2

> [sKue™, Cur )|~ Lot )
k

6, =arg min

0>
where we compute the inverse Fourier transform of the
shifted layers X, ®! so that the network S in the view
synthesis process operates in the pixel domain, similarly to
the denoising network in Eq. (15).

In practice, we observed that pre-training the framework
using only the shifted FDL as the input of the network,
and then fine-tuning by adding the coordinate channels to
the input offers the best performances. One can notice that
several approaches can be used to model the input of the
network. We further discuss our choice in comparison with
other approaches in Section IV-E2.

D. JOINT OPTIMIZATION

The proposed framework is composed of 2 successive
optimizations: the unrolled ADMM FDL optimization, with a
network D parameterized with 61, described in Section III-B,
and the learned view synthesis process, with a network S
parameterized with 8, described in Section III-C. Instead
of training both networks independently, we propose a joint
optimization in an end-to-end framework. A joint optimiza-
tion of 01, 6, ensures that both networks are optimized such
that the synthesized views well-estimate their corresponding
ground truths. Let F be a function parameterized with 6y,
which computes the application of the whole forward pass
of the unrolled ADMM FDL optimization algorithm. The
optimization problem of the entire end-to-end framework is:

2
01, 0, = arg min z [S(f(ud)*l, Cy; 92)] —Lg(x,u)| ,
61,62 2 5
with X, =Z0OX,
and X = F(b; 6)), 21)
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where b is a vector containing the measured focal stack
images. The joint optimization algorithm is described in
Algorithm 1. For more implementation details, our pytorch
implementation is available at: https://github.com/Brandon
LeBon/Joint_Optimization_FDL.

Algorithm 1 : Proposed Joint Optimization

1: initialize 61,0,
2: for each training iteration do
3 XOYO U <o

4 b <« input measurements

5: L_gt < groundtruth views

6: L_recons < 0

7

8 for each unrolled iteration i do

9: for each frequency component q do

10: Rq < (AfAq + oD (A%bg + p(yi — u))
11: end for

12: Yt <« DX+ UHe ! op)@

13: Ui+l <« Ui + (f(i+1 _ Yi+1)

14: end for

15:

16: for each view coordinate u do

17: X' =z2oX

18: L_recons, < >, [S()A(icb_l, C.; 92)]
19: end for
20: loss = ||L_recons — L_gtll%

21: 01 = 01 — AVy, (loss)
22: 0 = 62 — AV, (loss)
23: end for

IV. EXPERIMENTS

We assess our framework for light field reconstruction from
focal stacks containing very few shots, i.e. with 2 and
3 shots. We compare the proposed method against the most
recent and efficient state-of-the-art methods for this task:
the Fourier Disparity Layers by Le Pendu et al. [29], the
TV regularized sparse light field reconstruction model based
on guided-filtering recently proposed by Gao et al. [11],
the light field reconstruction and depth estimation using
convolutional neural networks proposed by Huang et al. [37],
and the Unrolled ADMM Fourier Disparity Layer Opti-
mization by Le Bonetal. [31]. For fair comparisons, the
methods of Huang et al. [37] and of Le Bon et al. [31] have
been re-trained using the datasets listed in Section IV-A.
Additionally, an ablation study is proposed in Section IV-E
to study the importance of (i) using jointly the unrolled
ADMM FDL optimization and the learned view synthesis
network compared to our previous work [31] (ii) using
the shifted version of the FDL as well as the angular
coordinate channels as network input in the view synthesis
process.
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A. DATASETS

Two-thirds of both the Stanford Lytro light field archive
dataset [40] and the Kalantari dataset [39] were used
as training datasets. Reconstruction performances are then
evaluated with the remaining third of both datasets along
with the Linkoping Light Field dataset [41]. The input
measurements consist of focal stacks with 2 or 3 images (i.e.
shots) synthesized from ground truth views with the shift-
and-add method [6] and with focus parameters s covering the
disparity range of the scene. As ground truth, a dense light
field with a 7 x 7 angular resolution is considered.

B. ARCHITECTURE AND TRAINING SETTINGS

We used the DRUNet denoising architecture as in [15] for
both the denoiser D in Eq. (15) and the view synthesis
network S in Eq. (20). A total of 30 layers in the FDL model
and 12 unrolled iterations have been used. Both networks
D and S use as input the concatenation of all the layers,
in order to treat them jointly. For the input of S, the layers
are additionally concatenated with the coordinate channels as
described in Section III-C. The penalty term p in Eq. (14) is
trained along with the weights of the two networks. During
training, we used a patch size of 64 x 64 with an additional
padding of size 8. Networks are trained for 1000 epochs with
a learning rate of 10~ and a batch size of 1. The networks
have been retrained specifically for each number of measure-
ments. The loss function £ used was the squared £;-norm
between the ground truth light field sub-aperture views and
the corresponding synthesized views as defined in Eq. (21)

C. RECONSTRUCTION PERFORMANCES

To evaluate the reconstruction performances of the different
methods, we measured the quality of the reconstructed
light field views using the PSNR and the SSIM metrics,
traditionally used by the the image processing community.
Table 1 gives the average PSNR and SSIM values over the
three considered testing datasets for light field reconstruction
from 2 and 3 focal stack images as measurements. It shows
that the proposed approach significantly outperforms all
the state-of-the-art methods on every dataset, with an
average gain of 1 dB compared to the best approaches.
Additionally, Fig. 3 shows a reconstructed central view for
each evaluated method. As illustrated in the figure, the
proposed joint optimization method better reconstructs finer
details compared to other approaches.

D. ALGORITHM COMPLEXITY

In this section, we evaluate the complexity of our proposed
joint optimization algorithm compared to other state-of-
the-art iterative methods. Since the implementation of the
method by Gao et al. [11] in CPU only, we present results
obtained on both CPU and GPU for fair comparisons.
In Table 3, we computed the average computation time for the
different iterative reconstruction algorithms, and the average

VOLUME 11, 2023



IEEE Access

B. L. Bon et al.: Joint FDL Unrolling With Learned View Synthesis for Light Field Reconstruction

TABLE 1. Comparisons with efficient state-of-the-art methods: average PSNR and SSIM for light field reconstruction.

Datasets Kalantari [39] Stanford [40] Linkoping [41]
Metrics PSNR [ SSIM PSNR [ SSIM PSNR [ SSIM
Number of shots 2

31.44 dB | 0.880
33.01 dB | 0.924
35.62 dB | 0.936

Le Bon et al. [31] 39.82dB | 0.968 | 37.32dB | 0.955
Joint optimization FDL 40.93dB | 0.974 | 38.35dB | 0.961

Number of shots 3
Huang et al. [37] 31.53dB | 0.895 | 30.59 dB | 0.883

Le Pendu et al. [29] 35.47 dB | 0.947 | 36.83 dB | 0.953
Gao et al. [11] 37.21dB | 0.950 | 36.38 dB | 0.947

Le Bon et al. [31] 40.79 dB | 0.974 | 38.48 dB | 0.964
Joint optimization FDL || 41.83 dB | 0.978 | 39.39 dB | 0.969

31.02 dB | 0.875
34.76 dB | 0.933
35.12dB | 0.935

24.18 dB | 0.780
26.62 dB | 0.861
27.19 dB | 0.853
29.22 dB | 0.902
29.96 dB | 0.917

Huang et al. [37]
Le Pendu et al. [29]
Gao et al. [11]

23.62 dB | 0.788
29.15dB | 0.900
28.10 dB | 0.872
30.75 dB | 0.920
31.87dB | 0.933

Ground truth Le Pendu et al. Gao et al. [11 Huang et al.

PSNR: 32.83 dB

PSNR: 32.43 dB
Joint Optimization FDL

PSNR: 31.81 dB

Unrolled ADMM FDL [31]

PSNR: 38.06 dB PSNR: 39.05 dB

FIGURE 3. Reconstructed central views for the light field occlusions_26_eslf from the Stanford dataset [42] using 2-shots, with the different evaluated
methods. A portion of the error map is highlighted.

TABLE 2. Ablation study: average PSNR for light field reconstruction.

Datasets Kalantari [39] Stanford [40] Linkdping [41]
Metrics PSNR [ SSIM PSNR [ SSIM PSNR [ SSIM
Number of shots 2

38.75dB | 0.966 | 36.56 dB | 0.954 | 27.91 dB | 0.890
29.22 dB | 0.902

29.96 dB | 0.917

FDL + view synthesis
Unrolled ADMM FDL 39.82dB | 0.968 | 37.32dB | 0.955
Joint optimization FDL || 40.93 dB | 0.974 | 38.35 dB | 0.961

Number of shots 3
FDL + view synthesis 39.77dB | 0.971 | 38.08 dB | 0.963
Unrolled ADMM FDL 40.79 dB | 0.974 | 38.48 dB | 0.964
Joint optimization FDL 41.83dB | 0.978 | 39.39dB | 0.969

30.12 dB | 0.910
30.75 dB | 0.920
31.87 dB | 0.933

computation time for the synthesis of a single view with the
FDL-based methods.

On one hand, the obtained computation time shows that the
unrolled ADMM FDL optimization in [31] and in our pro-
posed joint optimization method increases the computation
time compared to the original FDL reconstruction algorithm
presented in [29]. This difference in computation time is
mostly due to the computation of the closed-form solution
in Eq. (12) and to the application of the denoiser D in
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Eq. (15) for several iterations. However, the overall iterative
reconstruction algorithm in the FDL domain stays faster
to compute than the iterative reconstruction algorithm by
Gaoetal. [11].

On the other hand, the learned view synthesis presented in
Section III-C increases the computation time of computing
a single view from the optimized FDL. Indeed, while each
view is computed by a simple shift-and-sum applied on
the optimized FDL with the methods in [29] and [31],
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TABLE 3. Algorithm complexity: average computation time (in seconds)
(i) for the iterative reconstruction algorithms (ii) for the rendering of a
single view.

Reconstruction View synthesis
algorithm
CPU GPU | CPU GPU
Gao et al. [11] 443.27 s - - -
Le Pendu et al. [29] 5.56 s 0.22s | 0.02s | 0.002 s
Le Bon et al. [31] 159.49s | 449s | 0.02s | 0.002 s
Joint optimization FDL 159.49s | 449s | 5.51s | 0.220 s

the synthesis network S in (20) is applied for each view
to be reconstructed in our proposed method. Therefore,
the computation time of rendering a dense light field is a
limitation of the proposed method. However, it is important
to notice that the view synthesis process can be parallelized
to synthesize several views simultaneously, which permits to
overcome this computational issue.

E. ABBLATION STUDY: THE LEARNED VIEW SYNTHESIS

In this section, we first study the importance of both the
unrolled ADMM FDL optimization and the view synthesis
network in the proposed end-to-end framework. We then
propose to evaluate different approaches for the input of the
network used in the view synthesis process.

1) END-TO-END FRAMEWORK

First of all, we propose to compare the light field recon-
struction performances for different frameworks that consider
different parts of the proposed joint optimization:

o FDL + view synthesis: this framework uses the FDL
optimization proposed in [29], without any learned
prior. The learned view synthesis process is trained to
reconstruct views from the estimated FDL.

e Unrolled ADMM FDL: the unrolled ADMM FDL
optimization presented in [31] without learning the view
synthesis process.

« Joint optimization FDL: the proposed joint optimization
FDL that considers both the unrolled ADMM FDL
optimization and the learned view synthesis parts.

The reconstruction performances are listed in Table 2.
As shown in the table, having both the unrolled optimization
and the view synthesis network offers the best performances
by a large margin.

To further study this improvement over our previous
work [31], we propose to empirically verify that the learned
view synthesis process is able to reduce the occlusion
artifacts not well-handled by the FDL model, as explained
theoretically in Sections III-A and III-C. Since the FDL are
optimized from focal stack measurements captured at angular
coordinates ug = 0, the optimized FDL are then well-defined
to reconstruct the central view for any type of scene, while
artifacts are expected on the other views in certain areas,
e.g. transparency in occluded regions [29], [30]. Therefore,
we expect the joint optimization method to reduce these
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artifacts in order to improve the PSNR of the reconstructed
views that are far from the central view.

Fig. 4 illustrates a transparency artifact occurring in an
occluded region with the unrolled ADMM FDL method.
We can visually see that the proposed joint optimiza-
tion method significantly reduces this artifact. In Fig. 5,
we computed the average PSNR gain over the Kalantari
testing dataset [39] with the end-to-end approach over the
unrolled ADMM FDL optimization for several views with
different angular coordinates. As shown in Fig. 5, the
proposed framework always improves the reconstruction
quality compared to the unrolled ADMM FDL method,
especially for the views that are distant from the central view
with an average gain of over 1 dB.

Ground truth

Unrolled ADMM FDL (PSNR: 33.82 dB)

Joint Optimization FDL (PSNR: 39.34 dB)

FIGURE 4. Example of an occluded region in the light field
occlusion_36_eslf. The middle row illustrates the transparency artifacts
with the FDL model in occluded regions: a building is visible through the
grid of a window. These artifacts are reduced in the last row thanks to the
learned view synthesis block of the proposed joint optimization.

2) NETWORK INPUT

In this section, we propose a study of different approaches for
the network input in the view synthesis process. To be able to
reconstruct any view from the optimized FDL, the network
needs an input which contains all the spatial information
carried by the optimized FDL, but also angular information so
that its output are specific and optimal for each view. A first
approach is to concatenate the optimized FDL with additional
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TABLE 4. Ablation study on view synthesis network input: average PSNR for light field reconstruction.

Coordinate channels | FDL shifted Kalantari [39] Stanford [40] Linkoping [41]

PSNR_ | SSIM | PSNR | SSIM | PSNR | SSIM

yes no 40.77dB | 0.974 | 38.19dB | 0.960 | 29.67 dB | 0.914

no yes 40.82dB | 0.974 | 38.26 dB | 0.960 | 29.93 dB | 0.916

yes yes 40.93 dB | 0.974 | 38.35dB | 0.961 | 29.96 dB | 0.917
(ADMM) optimization method is unrolled using a deep
convolutional denoiser of FDL, where a closed-form solution
140 15 of the proximal operator of the data-fit term is derived.
5 oo 10 Additionally, a deep network is trained to adapt the optimized
2 104 a5 FDL for each view to be reconstructed, in order to minimize
; s - the artifacts created with the generation of the views
5 o6 o from the FDL model. Thanks to the capacity of deep
044 networks to represent complex priors, the proposed approach
032 1.0 significantly outperforms state-of-the-art methods for light

-15

FIGURE 5. Mean PSNR gain over the test set of the Kalantari dataset [39]
for different light field view coordinates with the proposed joint
optimization framework compared to the unrolled ADMM FDL
optimization using 3-shots focal stacks.

channels that contains the value of the angular coordinates of
the view to be reconstructed. Another approach is to directly
incorporate the angular information in the optimized FDL,
i.e. by shifting the optimized FDL accordingly to the angular
coordinates of the view to be reconstructed, following the
view synthesis process of the FDL model in Eq. (18).

In order to select the best approach, we propose to compare
the reconstruction performances with different network input
configurations, using either additional coordinate channels
or the shifted version of the FDL, or both at the same time.
In our experiments, when using both approaches at the same
time, we obtained better results by first training the joint
optimization method by considering only the shifted FDL
without any additional coordinate channels as network input,
then fine-tune this pre-trained model by adding the coordinate
channels in the network input. We listed the obtained results
in Table 4 for 2-shots focal stacks. As shown in the table, the
joint optimization method is able to efficiently reconstruct
the light fields with both approaches. According to these
results, both approaches are also complementary, giving the
best results when using both at the same time.

V. CONCLUSION

In this paper, we have presented a method to reconstruct
a light field from a set of focal stack images captured
with a single traditional camera. A joint unrolled ADMM
FDL optimization with a learned view synthesis network
is presented to extend the Fourier Disparity Layer (FDL)
representation of scenes to occluded and non-Lambertian
scenes. The Alternating Direction Method of Multipliers
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field reconstruction from focal stacks with very few shots,
with an average gain of about 1 dB of PSNR, on each
considered dataset, in comparison with the best approaches.
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