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Abstract. The development of models that can cope with noisy input
preferences is a critical topic in artificial intelligence methods for interac-
tive preference elicitation. A Bayesian representation of the uncertainty
in the user preference model can be used to successfully handle this, but
there are large costs in terms of the processing time required to update
the probabilistic model upon receiving the user’s answers, to compute the
optimal recommendation and to select the next queries to ask; these costs
limit the adoption of these techniques in real-time contexts. A Bayesian
approach also requires one to assume a prior distribution over the set of
user preference models. In this work, dealing with multi-criteria decision
problems, we consider instead a more qualitative approach to preference
uncertainty, focusing on the most plausible user preference models, and
aim to generate a query strategy that enables us to find an alternative
that is optimal in all of the most plausible preference models. We develop
a non-Bayesian algorithmic method for recommendation and interactive
elicitation that considers a large number of possible user models that
are evaluated with respect to their degree of consistency of the input
preferences. This suggests methods for generating queries that are rea-
sonably fast to compute. Our test results demonstrate the viability of
our approach, including in real-time contexts, with high accuracy in rec-
ommending the most preferred alternative for the user.

Keywords: Preference Elicitation · Preference Learning · Decision mak-
ing · User preference models

1 Incremental elicitation

In the last decade, there has been a huge growth in the use of artificial intel-
ligence technologies in recommending products, entertainment content and ser-
vices. As a consequence, AI-based recommenders, which act on behalf of users,
need adequate mechanisms to assess users’ preferences. Preference elicitation
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naturally emerges as having an important role, and approaches that elicit pref-
erences incrementally are particularly suited to AI applications (in contrast with
standardised protocols from classic decision theory).

Incremental elicitation methods ask queries to the user in order to acquire
new preference information. The uncertainty over the user’s preference model
(often represented by a parameterised utility function) is gradually reduced as
the user answers more queries. Queries are generated adaptively, i.e., they do not
follow a fixed protocol, but, at each stage of the interaction the system may select
the “best” query given what it already knows about the user (the nature of the
best query depends on the specific approach). The interaction ends either when
an optimal solution is found (the information provided by the user allows the
system to infer optimality), or until a termination condition is met, for instance
when some notion of loss is lower than a threshold, or when exceeding some
notion of cognitive or time cost, or because of the user’s fatigue. In the case of
early termination, the system should be able to provide a recommendation based
on the preference information that has been elicited.

Methods for interactive elicitation typically represent the uncertainty about
the user’s preference model in some principled way. In several works, the pa-
rameter space is reduced at each step by converting the new information into
a constraint on some utility parameters. This is the approach taken by meth-
ods based on minimax regret [8]. These methods are efficient since updating the
model is quick: whenever a query is answered, the space of feasible parameters is
reduced. But in the case of an erroneous answer, strict constraints on the pref-
erence state space may exclude the true user preference model; thus, the quality
of the resulting recommendation may be abysmal.

A way to overcome this issue is to use probabilistic approaches that allow
one to deal with the uncertainty about the decision-maker’s answers. In such
Bayesian approaches, the uncertainty about the real parameter value is repre-
sented by a probability distribution that is updated when new preference state-
ments are collected and a noisy response model accounts for the possibility that
a decision-maker may make a choice that does not maximise their utility. In [22]
and [5] the authors introduce an incremental preference elicitation procedure
able to deal with noisy responses of a user. They propose a Bayesian approach
for choosing a preferred solution among a set of alternatives in a multi-criteria
decision problem. However, the Bayesian approach can be computationally ex-
pensive, making it difficult to use in real-time contexts, and it also makes as-
sumptions about a prior probability distribution over preference models.

This paper presents a new, non-Bayesian, incremental preference elicitation
technique that can handle noisy responses. We want to deal with a situation
in which occasionally the user responses are inaccurate. We use a more qual-
itative representation of uncertainty, focusing on the set of the most plausible
user models, which are those that are the most consistent with the answers to
the queries. Our purpose is to develop a method that is robust to incorrect in-
put preferences from the decision-maker, but still relatively efficient in terms of
number of queries required, and computational time to generate the queries.
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The rest of the paper is organised as follows. We next, in Section 2, discuss
the related work; then, in Section 3 we define the formal settings including the
terminology. Section 4 describes our approach in detail, including the stopping
criterion for the algorithm. The query generation approach is described in Sec-
tion 5, and Section 6 presents computational results showing how the methods
perform, and include also a comparison with a Bayesian approach. Section 7
concludes.

A longer version of the paper is available online [13]; this includes more
discussion and experimental results.

2 Related Work

It is becoming important to develop methods that identify and assess user prefer-
ences. Research on preference elicitation has been widely conducted in decision
analysis and artificial intelligence. As part of decision analysis [11,15,23] and
artificial intelligence [2,7,9,10], automated decision support software is being
developed. In this context, an active elicitation of a decision-maker’s prefer-
ences can be crucial for user satisfaction. An automated agent can actively elicit
decision-maker’s preferences by asking queries about their preferences [12,15,7].

Many methods for active preference elicitation have been developed, where
the decision support system explicitly queries the decision-maker about her pref-
erences. Previous works can be classified according to two main classes of models
of preference uncertainty and optimisation.

In the robust approach, recommendations are generated according to the
minimax-regret criterion [8,3]; the system ask queries that are likely to decrease
regret.

In the Bayesian approach to elicitation, the system maintains a distribution
over the utility function’s parameters and that is updated using the Bayes rule
whenever new information is received from the decision-maker (as answers to
queries). Choosing queries is primarily based on expected value of information
and the alternative with the highest expected utility is recommended [4,21,22].

The Minimax regret method is applied both as a recommendation criterion
as well as a technique for driving elicitation in a variety of settings, but it fails
to tolerate user inconsistency. In an ideal setting, a decision-maker would always
select the item with the highest utility with respect to her true utility function
and never commits mistakes [14,3]. However, this is not realistic in general, and
in learning a user utility function one needs to deal with uncertain and possi-
bly inconsistent feedback from the decision-maker. The Bayesian framework can
include user noise in the elicitation process. This is done by building a proba-
bility distribution, exploiting prior information, reasoning about the likelihood
of user responses, and recommending options that are optimal in expectation
[6,22,16,21]. The problem with this approach is that it is computationally ex-
pensive, does not scale and may even not be feasible in many scenarios. Our goal
is to use a non-Bayesian approach to handle uncertainty in the elicitation and
to be able to deal with noisy responses of a decision-maker.
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Another non-Bayesian approach is based on a possibilistic extension of re-
gret [1], though it is also computationally expensive. Finally we mention an
interactive elicitation method based on maximum margin [18]; this method is
interesting as it is resistant to noise, but it is, however, focused on configuration
domains, while we focus on settings where alternatives are explicitly given in a
dataset, as in multiple-criteria decision-making.

3 Problem setting

Let us suppose that a system is assigned the task of recommending an option to
a user among a finite set A of alternatives. Alternative α ∈ A is characterized by
a vector (α(1), . . . , α(p)) where each α(i) represents the value of the alternative
α with respect to criterion (or objective) i. For convenience (and without loss
of generality) we assume that the scales are arranged so that higher values of a
criterion are better.

Utility function. We assume the decision-maker has a utility function u :
(W, A) → R which is parameterised by some parameter vector w ∈ W, where
W is the space of user preferences defined as the set of all the normalised non-
negative weights vectors w, {w ∈ Rp :

∑p
i=1 w(i) = 1;w(i) ≥ 0;∀i = 1, . . . , p}.

In particular, we assume that the decision-maker’s utility function evaluating
alternatives is the weighted sum of the vector of criteria, with the weights vec-
tors w ∈ W representing the possible decision-maker preferences. Given a vec-
tor of weights w ∈ W, an alternative α has then a utility value u(α,w) =∑p

i=1 w(i)α(i). Let w∗ be the true preferences of a decision-maker; this is un-
known to the decision support system (and also typically unknown to the decision
maker). The preference statement α ≽ β represents a decision-maker preference
of alternative α over alternative β. Thus, for a particular decision-maker with
preferences w∗, α ≽ β ⇐⇒ u(α,w∗) ≥ u(β,w∗).

Our goal is to find the most preferred alternative of a decision-maker, i.e.,
argmaxα∈A u(α,w∗), without showing all the possible alternatives, and without
knowing the true user preference w∗.

Example: Consider a scenario in which a decision-maker wants to select a
house from a list of houses that are available to rent as follows:

A = {α = (12.7, 5, 3), β = (13, 3, 2), γ = (10.5, 3, 2)}.

The utility of each house is represented with a vector (α(1), α(2), α(3)) repre-
senting monthly rent, distance from the city centre and the number of bedrooms,
where the values of each criterion have been scaled so that the higher the value
of each criterion, the better. Assume that the decision-maker uses a weighted
sum model with vector of weights w∗ = (0.7, 0.1, 0.2). The utility function
u(αi, w

∗) ∈ R returns a real number representing the decision-maker score for
the corresponding house. The most preferred house will then be the one with the
highest score. In this example, we know that the most preferred alternative of the
decision maker is α since u(α,w∗) = 12.7×0.7+5×0.1+3×0.2 = 9.99, u(β,w∗) =
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13×0.7+3×0.1+2×0.2 = 9.8 and u(γ,w∗) = 10.5×0.7+3×0.1+2×0.2 = 8.05. In
this example we are assuming that we know the decision-maker preference model.
However, in the real world we don’t know the weights vector representing the
decision-maker preferences, but our interactive preference elicitation method can
be used to estimate it, and to discover their optimal alternative.

Possibly Optimal alternatives. We say that an alternative α is optimal in
a set of alternatives A with respect to weights vector w if and only if u(α,w) ≥
u(β,w) for any β ∈ A. An alternative α ∈ A is possibly optimal in A, with
respect to a set W of weights vectors, if and only if there exists w ∈ W such that
u(α,w) ≥ u(β,w) for all β ∈ A, i.e., such that α is optimal in A with respect to
w. We define PO(A,W) as the set of all possibly optimal alternatives in A with
respect to W.

We can compute PO(A,W) with a linear programming solver (see, e.g., [20]).
Briefly, we can test if α ∈ PO(A,W) evaluating the feasibility of the set of linear
constraints u(α,w) ≥ u(β,w) for all β ∈ A \ {α} with w ∈ W. We focus only
on the alternatives in PO(A,W) because the decision-maker’s most preferred
alternative must be optimal for the true preference w∗. Thus, we do not need to
consider alternatives β ̸∈ PO(A,W) and these alternatives can be filtered out as
pre-processing.

Queries. Our approach focuses on binary queries, i.e., on asking the decision-
maker to express their preferences with respect to pairwise comparisons of al-
ternatives. We define a query as a pair (α, β) with α, β ∈ A (with α ̸= β), and
the corresponding question for the decision-maker is ‘Do you prefer α or β? ’.
With a query (α, β) the decision-maker prefers α if and only if w∗ · (α− β) ≥ 0,
and so otherwise, if w∗ · (α − β) < 0 then the decision-maker prefers β. Many
incremental preference elicitation procedures (see, e.g., [24,17,22,19])) iteratively
ask this type of query with the purpose of reducing the space of feasible weights
vectors by adding such hard constraints. However, a drawback of adding hard
constraints to the set of feasible weights vectors is that we may exclude the
optimal preference vector w∗ if we receive an incorrect decision-maker answer.

User model. We assume a simple form of user model with two parameters:
the preference vector w∗ ∈ W and the noise parameter ρ with 0 ≤ ρ < 1,
e.g., ρ = 0.1. Given a query (α, β), with probability 1 − ρ the user will answer
correctly, i.e., answer α if and only w∗ ·(α−β) ≥ 0, and answer β otherwise; with
probability ρ, the user will answer incorrectly, answering β iff w∗ · (α− β) ≥ 0.
Note that neither w∗ nor ρ are known by the learning system (only the answers
to the queries).

Simplifying assumption. We assume that, for each preference vector w, there
is a unique element αw in A that maximises u(α,w). With A consisting of ran-
dom real-valued vectors this will almost certainly hold, and the assumption con-
siderably simplifies the notation and the description of the algorithms. All the
methods can be easily extended for situations in which this does not hold.
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4 The Idea Behind Our Approach

If it were the case that there exists a unique possibly optimal alternative α in A,
i.e., if PO(A,W) = {α}, then clearly we should recommend α, since it is optimal
in A with respect to every preference vector w in W (and thus, in particular,
with respect to the unknown user preference vector w∗). Similarly, if we were
certain that the user was always answering our queries correctly, and U is the set
of preference vectors compatible with the user’s answers, and PO(A,U) = {α},
then we should recommend α. In our context, where we are never certain about
the correctness of the user’s answers, we can adapt this idea by considering
PO(A,U ′), where U ′ is the set of most plausible preference vectors. We are
making no assumptions about a prior distribution over W, so the plausibility
of a preference vector w relates to how closely the user’s answers are to those
that would have been given if w were the true user preference vector w∗ (and
the user gave accurate answers). Thus, for a given query (α, β) with answer α,
we test if w · (α− β) ≥ 0 to check if α is preferred to β according to the weights
vector w. We suppose that the more inequalities are satisfied for a given w ∈ W,
the more plausible it is that w has a similar preference order to that of the true
decision-maker preference. This is the formalised with the function mistakes(·).

The function mistakes(w). To find the preference vectors in W that cor-
responds most closely to the decision-maker input preferences, we count the
number mistakes(w) of mistakes that the decision-maker would have made if
w ∈ W were the true user preference vector w∗, i.e., the number of times the
inequality w · (α− β) ≥ 0 is not satisfied, for each query (α, β) (or (β, α)) with
answer α. For example, with a query (α, β), if the decision-maker answers α,
and w · (α− β) < 0, we increment mistakes(w) by one unit.

Because the user’s answers can be incorrect, mistakes(w∗) will often be
greater than zero. In particular, because we are considering a simple noisy user
model, with a chance ρ of giving an incorrect answer independently for each
query, the random variable mistakes(w∗) is binomially distributed with expected
value ρK, where K is the number of queries asked.

Of course, we do not know mistakes(w∗) since the true user preference w∗ is
unknown; however, we can consider the set Wk

min of the most plausible preference
vectors, including w such that mistakes(w) is within the threshold k of the
minimal number of mistakes (defined below).

Finite approximation W ′ of W. It is computationally convenient to approx-
imate W by a finite set of points W ′. There are various ways this can be done; in
our experiments we randomly sample elements of W using a uniform distribution
over the probability simplex W; currently we use the same set W ′ throughout
the whole iterative interaction process.

The set Wk
min of k-plausible preference vectors. Let µ be the minimum

number of mistakes(w) over all w ∈ W ′. For parameter k ≥ 0 define Wk
min to

be all the preference points w ∈ W ′ such that mistakes(w) ≤ µ + k. We use
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Wk
min to generate queries for the decision-maker. (Note that Wk

min depends on
the randomly chosen set W ′, although our notation does not makes this explicit.)

We say that w and w∗ differ on a query (α, β) if either (a) w ·α ≥ w · β and
w∗ ·α < w∗ · β; or (b) w∗ ·α ≥ w∗ · β and w ·α < w · β. The result below throws
some light on how the set Wk

min will look after a sequence of queries.

Proposition 1. Let w ∈ W. Consider a sequence of queries, and let Kw be the
number of queries in the sequence in which w and w∗ differ. Let the random vari-
able Xw∗

w be equal to mistakes(w)−mistakes(w∗). Then Xw∗

w ∼ Kw−2B(Kw, ρ),
where B(Kw, ρ) is a binomial distribution with Kw experiments and probability
of success ρ. The expected value E[Xw∗

w ] of Xw∗

w is equal to Kw(1− 2ρ), and the
standard deviation of Xw∗

w equals 2
√

Kwρ(1− ρ).

Proof: Let us label the queries in the sequence on which w and w∗ differ as (αi, βi)
for i = 1, . . . ,Kw, and let the Boolean random variable Zi be such that Zi = 1
if and only if the user answers query (αi, βi) incorrectly. The variables Zi for
i = 1, . . . ,Kw are independent with Pr(Zi = 1) = ρ. If Zi = 1 then mistakes(w∗)
is incremented and mistakes(w) is unchanged, so mistakes(w)−mistakes(w∗) is
decremented; and if Zi = 0 then mistakes(w) is incremented and so mistakes(w)−
mistakes(w∗) is incremented. So, in both cases, Xw∗

w changes by 1−2Zi. (For the
other queries, on which w and w∗ do not differ, mistakes(w) − mistakes(w∗) is
unchanged.) Thus, Xw∗

w = mistakes(w)−mistakes(w∗) is equal to
∑Kw

i=1(1−2Zi),
i.e., Kw − 2

∑Kw

i=1 Zi. Therefore, Xw∗

w ∼ Kw − 2B(Kw, ρ), because
∑Kw

i=1 Zi has
the binomial distribution B(Kw, ρ).

The expected value of
∑Kw

i=1 Zi is Kwρ, and so E[Xw∗

w ] = Kw(1 − 2ρ). The
variance of Zi is equal to E[(Zi)

2] − (E[Zi])
2 = ρ − ρ2, and so the variance of

Xw∗

w , which equals the variance of 2
∑Kw

i=1 Zi, is 4Kwρ(1−ρ); hence the standard
deviation of Xw∗

w is equal to 2
√

Kwρ(1− ρ). 2

Proposition 1 implies that after a number of queries, the w (in W ′) with
minimal Kw will tend to be in Wk

min. In particular, if w∗ were in W ′ and Kw is
reasonably large, then it is very unlikely that w will be in Wk

min for small k such
as k ∈ {0, 1, 2}, especially so for larger Kw. This is because if w were in Wk

min

then we would have Xw∗

w ≤ k, which would make the approximately normally
distributed random variable Xw∗

w at least Kw(1−2ρ)−k

2
√

Kwρ(1−ρ)
standard deviations from

its mean. For instance, with k = 2 and ρ = 0.1 and Kw = 10 (respectively,
Kw = 15), Xw∗

w will be more than 3 (respectively, 4.3) standard deviations from
its mean.

More generally, the weights vectors w that order the alternatives in A most
similarly to how w∗ orders them, will tend to be in Wk

min, increasingly so as
we ask more queries. Therefore, the most plausible user models w, i.e., those
most likely to be the true user preference model w∗ (or close to it), are those
with smaller values of mistakes(w), which is why Wk

min may be considered as
consisting of the most plausible user preference models.
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Stopping criterion. Our algorithm makes use of Wk
min, for k = 0, . . . , κ where

we focus on κ = 2 in our experimental testing. The stopping criterion for our
algorithm is that all the most plausible user preference models agree on which
alternative α is best, i.e., PO(A,Wκ

min) = {α}. With sufficient appropriately
chosen queries this can be made to hold eventually (with probability tending to
one). Generally our query strategies aim to ensure that the stopping criterion is
satisfied as soon as possible. In particular, we can limit ourselves to queries of
the form (αv, αw), where v, w ∈ Wκ

min, since there always exists such a query if
the stopping criterion is not yet satisfied, and such a query will with probability
1 − ρ increment the mistakes function for w, if w differs with w∗ on this query
(and thus, v agrees with w∗). If we were to keep repeating this query then, with
high probability, w will be eliminated from Wκ

min.
Our active learning method is summarized by Algorithm 1.
We select the query using the method described in Section 5. The decision-

maker response will be used to update mistakes(w) for each w ∈ W and to
recompute Wk

min for k ∈ {0, 1, 2}. We iterate this procedure until PO(A,W2
min)

becomes a singleton set, say {α} (so also, PO(A,W1
min) = PO(A,W0

min) = {α});
then α is our estimation of the most preferred alternative of the decision-maker,
and we recommend it. Intuitively, this loop will tend to exclude weights vectors
from Wk

min for k ∈ {0, 1, 2} whose preference orders are very different from the
preferences of the decision-maker. Thus, weights vector in Wk

min for k ∈ {0, 1, 2}
are more likely to have similar preference orders of that of w∗.

Algorithm 1
1: procedure Recommend_Alternative(A, W ′)
2: repeat
3: q ← Select_query(A, Wk

min for k ∈ {0, 1, 2})
4: Ask query q to the decision-maker
5: Update Wk

min for k ∈ {0, 1, 2}
6: until |PO(A,W2

min)| = 1
7: return The unique alternative in PO(A,W2

min)

5 Query selection

We select as a query a pair of alternatives (α, β) that are optimal in A with
respect to a maximum number of w ∈ Wk

min, focusing first on lower values of k.
More precisely, let Optk(α) be the number of preference points w ∈ Wk

min with α
as the most preferred alternative αw with respect to w, i.e., maximising u(α,w).
We select the query (α, β) as follows:

– If |PO(A,W0
min)| > 1, select a query (α, β) with α, β ∈ PO(A,W0

min),
Opt0(α) ≥ Opt0(γ) and Opt0(β) ≥ Opt0(γ) for each γ ∈ PO(A,W0

min) \
{α, β}.



An Efficient Non-Bayesian Approach for Interactive Preference Elicitation 9

– If PO(A,W0
min) = {α0} and |PO(A,W1

min)| > 1, select a query (α0, β)
with β ∈ PO(A,W1

min), β ̸= α0 and Opt1(β) ≥ Opt1(γ) for each γ ∈
PO(A,W1

min) \ {α0, β}.
– If PO(A,W0

min) = PO(A,W1
min) = {α0} and |PO(A,W2

min)| > 1, select a
query (α0, β) with β ∈ PO(A,W2

min), β ̸= α0 and Opt2(β) ≥ Opt2(γ) for
each γ ∈ PO(A,W2

min) \ {α0, β}.

6 Experimental Results

In this section we discuss the results of the experimental testing of our approach
applied to randomly generated decision problems.

A random problem is represented by a random set A of possibly optimal
utility vectors3and a simulated decision-maker with utility function u(α,w∗).
The goal is to find the most preferred alternative of the decision-maker, i.e., the
alternative αw∗ ∈ A maximising u(α,w∗) for any α ∈ A. We simulate a decision-
maker for each experiment generating a random weights vector w∗. With a noise-
free user model, the simulated decision-maker response to a comparison query
of two alternatives (α, β) will be α if w∗ ·α ≥ w∗ · β, and β otherwise. However,
we want to simulate noisy user responses, therefore we take into account a fixed
probability ρ (e.g., ρ = 0.1) of receiving the incorrect answer.

In Table 1 we show the average number of queries, the average iteration
time and the accuracy. The accuracy is the fraction of experiments in which
the correct alternative was recommended, i.e., the optimal alternative αw∗ in A
according to the unknown true user model w∗. The results are an average of 100
experiments with random sets W ′ of 4000 weights vectors, and input sets A of
1000 random possibly optimal alternatives. We always used the same set A of
alternatives, and 100 random user models w∗. The accuracy was high and we
always had at least one w ∈ W ′ with αw = αw∗ .

Table 1: Experimental results w.r.t. the number of criteria p, with |A| = 1000,
ρ = 0.1 and |W ′| = 4000.

p Queries Time[s] Accuracy
3 10.66 0.038 1.00
4 22.16 0.038 1.00
5 30.44 0.038 0.97
6 35.88 0.038 1.00

In general, as the number of criteria increases, so does the number of queries.

3 Only the possibly optimal alternatives in a set A of alternatives are relevant, so if we
didn’t enforce that all alternatives are possibly optimal, then we would effectively
be dealing with a (perhaps very much) smaller problem.
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Regarding the iteration time, the method seems to be roughly independent
of the number of criteria. This is because the most time-consuming operation in
this case is the update of mistakes(w) for each w ∈ W, which is not affected much
by the number of criteria since the most expensive operation is the computation
of |W ′| dot products. For example, with p = 5, we required on average 0.34ms to
compute the query, 36.2ms to update mistakes(w) for each w ∈ W and 1.05ms
to compute the sets Wk

min.

Table 2: Experimental results for regret-based elicitation with the current solu-
tion query strategy; |A| = 1000 and ρ = 0.1.

p Queries Time[s] Accuracy
3 4.58 4.12 0.60
4 7.82 3.41 0.34
5 11.93 3.66 0.34
6 16.69 3.69 0.28

We provide, for comparison, the simulation results obtained by using state-
of-the-art elicitation methods on the same datasets. In Table 2 we show the
performance of interactive elicitation based on minimax regret with queries gen-
erated using the current solution strategies. Unsurprisingly, regret-based elicita-
tion provides low accuracy as it cannot appropriately deal with user noise.

Table 3: Experimental results for Bayesian elicitation with the queries generated
with greedy maximisation of value of information; |A| = 1000 and ρ = 0.1.

p Queries Time[s] Accuracy
3 12.05 2.62 0.97
4 17.93 3.68 0.99
5 26.46 5.07 0.97
6 35.86 5.50 1.00

In Table 3 we consider the Bayesian elicitation method from [22]; queries are
chosen to maximise Expected Value of Selection (EUS), a proxy of myopic value
of information, using greedy maximisation; Bayesian updates are performed us-
ing Monte Carlo methods with 50000 particles. The elicitation stops when the
expected loss is less than 0.001; when this happens the alternative with high-
est expected utility is recommended. As the table shows, the Bayesian method
achieves high accuracy but at the cost of large computation times (higher accu-
racy may be obtained using more particles, but compaction time will increase
even further).

In Table 4 we show the performances of our method with respect to the size
of W ′. The accuracy increases with increasing |W ′|, as does the computation
time, and, to a lesser extent, the average number of queries.
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Table 4: Experimental results w.r.t. the number |W ′| of user preference models,
with |A| = 1000, ρ = 0.1 and p = 5.

|W ′| Queries Time[s] Accuracy
2000 27.28 0.019 0.97
4000 30.44 0.038 0.97
6000 32.71 0.057 1.00
8000 33.12 0.075 0.99
10000 34.50 0.096 1.00

We also tested the performances with respect to the number of alternatives
|A| ∈ {200, 400, 600, 800, 1000} with |W ′| = 4000, p = 4 and ρ = 0.1. However,
we didn’t notice any significant difference in terms of accuracy and execution
time. The average number of queries was affected slightly more, i.e., between
20.67 and 22.16, with lower values for lower |A|.

In Figure 1 we show the accuracy varying with respect to the user noise
ρ, with |A| = 1000, |W ′| = 10000 and p = 4. Unsurprisingly, the accuracy
decreases with increasing user noise ρ. However, this picture shows that our
model can achieve good performance also with more noisy responses. In this
case, the average query time was 0.093s. This dropping off of the accuracy for
larger ρ tallies with our analysis around Proposition 1, and, to maintain very
high accuracy, we will need to increase the parameter κ in our algorithm (from
its current value of 2), in order to make the stopping condition harder to satisfy.

Fig. 1: Accuracy varying with user noise ρ over 100 experiments with |A| = 1000,
|W ′| = 10000 and p = 4.

7 Conclusions and Discussion

We have described a novel, non-Bayesian, approach for interactive elicitation for
a setting in which the user’s answers are not completely reliable. Our approach is



12 S. Pourkhajouei et al.

based on maintaining a set of plausible preference models and to reason about the
alternatives that are optimal according to these preference models. We provide
fast and effective methods for generating comparison queries. In our model the
stopping criterion is defined so that the system finishes the interaction, and
recommends an alternative α, when α is the optimal alternative in all the most
plausible preference models. The notion of plausibility of a preference model
is based on how close the answers from that model would be to the received
answers. For computational reasons we focus attention on a finite approximation
W ′ of the set of all preference models.

Our results show that the approach is very fast and suitable for real-time ap-
plications, and maintains good accuracy with reasonable lengths of interactions.
We have also compared our approach with the Bayesian approach from [22], and
our approach is very much faster, and with similar or perhaps slightly higher
accuracy, and with similar number of queries required.

A variation of our approach that may further increase the accuracy, but at
some computational cost, would be to update the finite set W ′ of preference
models as the interaction progresses, so that the models become more densely
populated in areas where they are most plausible.

Our stopping criterion, that a single alternative α in the set of alternatives
A is optimal in all the most plausible user models Wκ

min, is equivalent to the
max regret of α (over w ∈ Wκ

min) being zero. We can weaken this condition by
instead enforcing that this minimum max regret is less than a small threshold
ϵ, which will allow our method to be applied to some more complex situations
and with different user models, and perhaps reducing the number of interactions
with the decision-maker.

We have shown that our approach can deal with significant numbers of alter-
natives, and the number of alternatives does not appear to very strongly affect
the computation time or performance of the algorithm. A natural further step
would be to develop the approach for combinatorial problems, where there are
an exponential number of alternatives. In this case, for each preference model w
in the finite set W ′, we determine an optimal alternative αw of the combinatorial
problem with respect to the linear objective function given by w, and again the
queries can be based on the possibly optimal elements with respect to the most
plausible user models Wκ

min.
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