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Incremental elicitation

In the last decade, there has been a huge growth in the use of artificial intelligence technologies in recommending products, entertainment content and services. As a consequence, AI-based recommenders, which act on behalf of users, need adequate mechanisms to assess users' preferences. Preference elicitation naturally emerges as having an important role, and approaches that elicit preferences incrementally are particularly suited to AI applications (in contrast with standardised protocols from classic decision theory).

Incremental elicitation methods ask queries to the user in order to acquire new preference information. The uncertainty over the user's preference model (often represented by a parameterised utility function) is gradually reduced as the user answers more queries. Queries are generated adaptively, i.e., they do not follow a fixed protocol, but, at each stage of the interaction the system may select the "best" query given what it already knows about the user (the nature of the best query depends on the specific approach). The interaction ends either when an optimal solution is found (the information provided by the user allows the system to infer optimality), or until a termination condition is met, for instance when some notion of loss is lower than a threshold, or when exceeding some notion of cognitive or time cost, or because of the user's fatigue. In the case of early termination, the system should be able to provide a recommendation based on the preference information that has been elicited.

Methods for interactive elicitation typically represent the uncertainty about the user's preference model in some principled way. In several works, the parameter space is reduced at each step by converting the new information into a constraint on some utility parameters. This is the approach taken by methods based on minimax regret [START_REF] Boutilier | Computational decision support: Regret-based models for optimization and preference elicitation[END_REF]. These methods are efficient since updating the model is quick: whenever a query is answered, the space of feasible parameters is reduced. But in the case of an erroneous answer, strict constraints on the preference state space may exclude the true user preference model; thus, the quality of the resulting recommendation may be abysmal.

A way to overcome this issue is to use probabilistic approaches that allow one to deal with the uncertainty about the decision-maker's answers. In such Bayesian approaches, the uncertainty about the real parameter value is represented by a probability distribution that is updated when new preference statements are collected and a noisy response model accounts for the possibility that a decision-maker may make a choice that does not maximise their utility. In [START_REF] Viappiani | On the equivalence of optimal recommendation sets and myopically optimal query sets[END_REF] and [START_REF] Bourdache | Bayesian preference elicitation for multiobjective combinatorial optimization[END_REF] the authors introduce an incremental preference elicitation procedure able to deal with noisy responses of a user. They propose a Bayesian approach for choosing a preferred solution among a set of alternatives in a multi-criteria decision problem. However, the Bayesian approach can be computationally expensive, making it difficult to use in real-time contexts, and it also makes assumptions about a prior probability distribution over preference models.

This paper presents a new, non-Bayesian, incremental preference elicitation technique that can handle noisy responses. We want to deal with a situation in which occasionally the user responses are inaccurate. We use a more qualitative representation of uncertainty, focusing on the set of the most plausible user models, which are those that are the most consistent with the answers to the queries. Our purpose is to develop a method that is robust to incorrect input preferences from the decision-maker, but still relatively efficient in terms of number of queries required, and computational time to generate the queries.

The rest of the paper is organised as follows. We next, in Section 2, discuss the related work; then, in Section 3 we define the formal settings including the terminology. Section 4 describes our approach in detail, including the stopping criterion for the algorithm. The query generation approach is described in Section 5, and Section 6 presents computational results showing how the methods perform, and include also a comparison with a Bayesian approach. Section 7 concludes.

A longer version of the paper is available online [START_REF] Pourkhajouei | An efficient non-Bayesian approach for interactive preference elicitation under noisy preference models (longer version)[END_REF]; this includes more discussion and experimental results.

Related Work

It is becoming important to develop methods that identify and assess user preferences. Research on preference elicitation has been widely conducted in decision analysis and artificial intelligence. As part of decision analysis [START_REF] Dyer | Interactive goal programming[END_REF][START_REF] Salo | Preference ratios in multiattribute evaluation (prime)elicitation and decision procedures under incomplete information[END_REF][START_REF] White | A model of multiattribute decisionmaking and trade-off weight determination under uncertainty[END_REF] and artificial intelligence [START_REF] Blythe | Visual exploration and incremental utility elicitation[END_REF][START_REF] Boutilier | A POMDP formulation of preference elicitation problems[END_REF][START_REF] Chajewska | Utility elicitation as a classification problem[END_REF][START_REF] Chajewska | Making rational decisions using adaptive utility elicitation[END_REF], automated decision support software is being developed. In this context, an active elicitation of a decision-maker's preferences can be crucial for user satisfaction. An automated agent can actively elicit decision-maker's preferences by asking queries about their preferences [START_REF] Keeney | Decisions with Multiple Objectives: Preferences and Value Trade-Offs[END_REF][START_REF] Salo | Preference ratios in multiattribute evaluation (prime)elicitation and decision procedures under incomplete information[END_REF][START_REF] Boutilier | A POMDP formulation of preference elicitation problems[END_REF].

Many methods for active preference elicitation have been developed, where the decision support system explicitly queries the decision-maker about her preferences. Previous works can be classified according to two main classes of models of preference uncertainty and optimisation.

In the robust approach, recommendations are generated according to the minimax-regret criterion [START_REF] Boutilier | Computational decision support: Regret-based models for optimization and preference elicitation[END_REF][START_REF] Bourdache | Anytime algorithms for adaptive robust optimization with OWA and WOWA[END_REF]; the system ask queries that are likely to decrease regret.

In the Bayesian approach to elicitation, the system maintains a distribution over the utility function's parameters and that is updated using the Bayes rule whenever new information is received from the decision-maker (as answers to queries). Choosing queries is primarily based on expected value of information and the alternative with the highest expected utility is recommended [START_REF] Bourdache | Incremental elicitation of rank-dependent aggregation functions based on bayesian linear regression[END_REF][START_REF] Vendrov | Gradient-based optimization for bayesian preference elicitation[END_REF][START_REF] Viappiani | On the equivalence of optimal recommendation sets and myopically optimal query sets[END_REF].

The Minimax regret method is applied both as a recommendation criterion as well as a technique for driving elicitation in a variety of settings, but it fails to tolerate user inconsistency. In an ideal setting, a decision-maker would always select the item with the highest utility with respect to her true utility function and never commits mistakes [START_REF] Price | Optimal recommendation sets: Covering uncertainty over user preferences[END_REF][START_REF] Bourdache | Anytime algorithms for adaptive robust optimization with OWA and WOWA[END_REF]. However, this is not realistic in general, and in learning a user utility function one needs to deal with uncertain and possibly inconsistent feedback from the decision-maker. The Bayesian framework can include user noise in the elicitation process. This is done by building a probability distribution, exploiting prior information, reasoning about the likelihood of user responses, and recommending options that are optimal in expectation [START_REF] Bourdache | Bayesian preference elicitation for multiobjective combinatorial optimization[END_REF][START_REF] Viappiani | On the equivalence of optimal recommendation sets and myopically optimal query sets[END_REF][START_REF] Sauré | Ellipsoidal methods for adaptive choicebased conjoint analysis[END_REF][START_REF] Vendrov | Gradient-based optimization for bayesian preference elicitation[END_REF]. The problem with this approach is that it is computationally expensive, does not scale and may even not be feasible in many scenarios. Our goal is to use a non-Bayesian approach to handle uncertainty in the elicitation and to be able to deal with noisy responses of a decision-maker.

Another non-Bayesian approach is based on a possibilistic extension of regret [START_REF] Adam | Possibilistic preference elicitation by minimax regret[END_REF], though it is also computationally expensive. Finally we mention an interactive elicitation method based on maximum margin [START_REF] Teso | Constructive preference elicitation by setwise max-margin learning[END_REF]; this method is interesting as it is resistant to noise, but it is, however, focused on configuration domains, while we focus on settings where alternatives are explicitly given in a dataset, as in multiple-criteria decision-making.

Problem setting

Let us suppose that a system is assigned the task of recommending an option to a user among a finite set A of alternatives. Alternative α ∈ A is characterized by a vector (α(1), . . . , α(p)) where each α(i) represents the value of the alternative α with respect to criterion (or objective) i. For convenience (and without loss of generality) we assume that the scales are arranged so that higher values of a criterion are better.

Utility function. We assume the decision-maker has a utility function u : (W, A) → R which is parameterised by some parameter vector w ∈ W, where W is the space of user preferences defined as the set of all the normalised nonnegative weights vectors w, {w ∈ R p :

p i=1 w(i) = 1; w(i) ≥ 0; ∀i = 1, . . . , p}.
In particular, we assume that the decision-maker's utility function evaluating alternatives is the weighted sum of the vector of criteria, with the weights vectors w ∈ W representing the possible decision-maker preferences. Given a vector of weights w ∈ W, an alternative α has then a utility value u(α, w) = p i=1 w(i)α(i). Let w * be the true preferences of a decision-maker; this is unknown to the decision support system (and also typically unknown to the decision maker). The preference statement α ≽ β represents a decision-maker preference of alternative α over alternative β. Thus, for a particular decision-maker with preferences w * , α ≽ β ⇐⇒ u(α, w * ) ≥ u(β, w * ).

Our goal is to find the most preferred alternative of a decision-maker, i.e., arg max α∈A u(α, w * ), without showing all the possible alternatives, and without knowing the true user preference w * .

Example: Consider a scenario in which a decision-maker wants to select a house from a list of houses that are available to rent as follows:

A = {α = (12.7, 5, 3), β = (13, 3, 2), γ = (10.5, 3, 2)}.
The utility of each house is represented with a vector (α(1), α(2), α(3)) representing monthly rent, distance from the city centre and the number of bedrooms, where the values of each criterion have been scaled so that the higher the value of each criterion, the better. Assume that the decision-maker uses a weighted sum model with vector of weights w * = (0.7, 0.1, 0.2). The utility function u(α i , w * ) ∈ R returns a real number representing the decision-maker score for the corresponding house. The most preferred house will then be the one with the highest score. In this example, we know that the most preferred alternative of the decision maker is α since u(α, w * ) = 12.7×0.7+5×0.1+3×0.2 = 9.99, u(β, w * ) = 13×0.7+3×0.1+2×0.2 = 9.8 and u(γ, w * ) = 10.5×0.7+3×0.1+2×0.2 = 8.05. In this example we are assuming that we know the decision-maker preference model. However, in the real world we don't know the weights vector representing the decision-maker preferences, but our interactive preference elicitation method can be used to estimate it, and to discover their optimal alternative. Possibly Optimal alternatives. We say that an alternative α is optimal in a set of alternatives A with respect to weights vector w if and only if u(α, w) ≥ u(β, w) for any β ∈ A. An alternative α ∈ A is possibly optimal in A, with respect to a set W of weights vectors, if and only if there exists w ∈ W such that u(α, w) ≥ u(β, w) for all β ∈ A, i.e., such that α is optimal in A with respect to w. We define PO(A, W) as the set of all possibly optimal alternatives in A with respect to W.

We can compute PO(A, W) with a linear programming solver (see, e.g., [START_REF] Toffano | Minimality and comparison of sets of multi-attribute vectors[END_REF]). Briefly, we can test if α ∈ PO(A, W) evaluating the feasibility of the set of linear constraints u(α, w) ≥ u(β, w) for all β ∈ A \ {α} with w ∈ W. We focus only on the alternatives in PO(A, W) because the decision-maker's most preferred alternative must be optimal for the true preference w * . Thus, we do not need to consider alternatives β ̸ ∈ PO(A, W) and these alternatives can be filtered out as pre-processing.

Queries. Our approach focuses on binary queries, i.e., on asking the decisionmaker to express their preferences with respect to pairwise comparisons of alternatives. We define a query as a pair (α, β) with α, β ∈ A (with α ̸ = β), and the corresponding question for the decision-maker is 'Do you prefer α or β? '. With a query (α, β) the decision-maker prefers α if and only if w * • (α -β) ≥ 0, and so otherwise, if w * • (α -β) < 0 then the decision-maker prefers β. Many incremental preference elicitation procedures (see, e.g., [START_REF] Zionts | An interactive programming method for solving the multiple criteria problem[END_REF][START_REF] Steuer | An interactive weighted tchebycheff procedure for multiple objective programming[END_REF][START_REF] Viappiani | On the equivalence of optimal recommendation sets and myopically optimal query sets[END_REF][START_REF] Toffano | Efficient exact computation of setwise minimax regret for interactive preference elicitation[END_REF])) iteratively ask this type of query with the purpose of reducing the space of feasible weights vectors by adding such hard constraints. However, a drawback of adding hard constraints to the set of feasible weights vectors is that we may exclude the optimal preference vector w * if we receive an incorrect decision-maker answer.

User model. We assume a simple form of user model with two parameters: the preference vector w * ∈ W and the noise parameter ρ with 0 ≤ ρ < 1, e.g., ρ = 0.1. Given a query (α, β), with probability 1 -ρ the user will answer correctly, i.e., answer α if and only w * •(α-β) ≥ 0, and answer β otherwise; with probability ρ, the user will answer incorrectly, answering β iff w * • (α -β) ≥ 0. Note that neither w * nor ρ are known by the learning system (only the answers to the queries).

Simplifying assumption. We assume that, for each preference vector w, there is a unique element α w in A that maximises u(α, w). With A consisting of random real-valued vectors this will almost certainly hold, and the assumption considerably simplifies the notation and the description of the algorithms. All the methods can be easily extended for situations in which this does not hold.

The Idea Behind Our Approach

If it were the case that there exists a unique possibly optimal alternative α in A, i.e., if PO(A, W) = {α}, then clearly we should recommend α, since it is optimal in A with respect to every preference vector w in W (and thus, in particular, with respect to the unknown user preference vector w * ). Similarly, if we were certain that the user was always answering our queries correctly, and U is the set of preference vectors compatible with the user's answers, and PO(A, U) = {α}, then we should recommend α. In our context, where we are never certain about the correctness of the user's answers, we can adapt this idea by considering PO(A, U ′ ), where U ′ is the set of most plausible preference vectors. We are making no assumptions about a prior distribution over W, so the plausibility of a preference vector w relates to how closely the user's answers are to those that would have been given if w were the true user preference vector w * (and the user gave accurate answers). Thus, for a given query (α, β) with answer α, we test if w • (α -β) ≥ 0 to check if α is preferred to β according to the weights vector w. We suppose that the more inequalities are satisfied for a given w ∈ W, the more plausible it is that w has a similar preference order to that of the true decision-maker preference. This is the formalised with the function mistakes(•).

The function mistakes(w).

To find the preference vectors in W that corresponds most closely to the decision-maker input preferences, we count the number mistakes(w) of mistakes that the decision-maker would have made if w ∈ W were the true user preference vector w * , i.e., the number of times the inequality w • (α -β) ≥ 0 is not satisfied, for each query (α, β) (or (β, α)) with answer α. For example, with a query (α, β), if the decision-maker answers α, and w • (α -β) < 0, we increment mistakes(w) by one unit.

Because the user's answers can be incorrect, mistakes(w * ) will often be greater than zero. In particular, because we are considering a simple noisy user model, with a chance ρ of giving an incorrect answer independently for each query, the random variable mistakes(w * ) is binomially distributed with expected value ρK, where K is the number of queries asked.

Of course, we do not know mistakes(w * ) since the true user preference w * is unknown; however, we can consider the set W k min of the most plausible preference vectors, including w such that mistakes(w) is within the threshold k of the minimal number of mistakes (defined below).

Finite approximation W ′ of W. It is computationally convenient to approximate W by a finite set of points W ′ . There are various ways this can be done; in our experiments we randomly sample elements of W using a uniform distribution over the probability simplex W; currently we use the same set W ′ throughout the whole iterative interaction process.

The set W k min of k-plausible preference vectors. Let µ be the minimum number of mistakes(w) over all w ∈ W ′ . For parameter k ≥ 0 define W k min to be all the preference points w ∈ W ′ such that mistakes(w) ≤ µ + k. We use W k min to generate queries for the decision-maker. (Note that W k min depends on the randomly chosen set W ′ , although our notation does not makes this explicit.)

We say that w and w * differ on a query (α,

β) if either (a) w • α ≥ w • β and w * • α < w * • β; or (b) w * • α ≥ w * • β and w • α < w • β.
The result below throws some light on how the set W k min will look after a sequence of queries.

Proposition 1. Let w ∈ W. Consider a sequence of queries, and let K w be the number of queries in the sequence in which w and w * differ. Let the random variable X w * w be equal to mistakes(w) -mistakes(w * ). Then X w * w ∼ K w -2B(K w , ρ), where B(K w , ρ) is a binomial distribution with K w experiments and probability of success ρ. The expected value E[X w * w ] of w * w is equal to K w (1 -2ρ), and the standard deviation of X w * w equals 2 K w ρ(1 -ρ).

Proof: Let us label the queries in the sequence on which w and w * differ as (α i , β i ) for i = 1, . . . , K w , and let the Boolean random variable Z i be such that Z i = 1 if and only if the user answers query (α i , β i ) incorrectly. The variables Z i for i = 1, . . . , K w are independent with Pr(Z i = 1) = ρ. If Z i = 1 then mistakes(w * ) is incremented and mistakes(w) is unchanged, so mistakes(w) -mistakes(w * ) is decremented; and if Z i = 0 then mistakes(w) is incremented and so mistakes(w)mistakes(w * ) is incremented. So, in both cases, X w * w changes by 1-2Z i . (For the other queries, on which w and w * do not differ, mistakes(w) -mistakes(w * ) is unchanged.) Thus, X w * w = mistakes(w)-mistakes(w * ) is equal to

Kw i=1 (1-2Z i ), i.e., K w -2 Kw i=1 Z i . Therefore, X w * w ∼ K w -2B(K w , ρ), because Kw i=1 Z i has the binomial distribution B(K w , ρ).
The expected value of

Kw i=1 Z i is K w ρ, and so E[X w * w ] = K w (1 -2ρ). The variance of Z i is equal to E[(Z i ) 2 ] -(E[Z i ]) 2 = ρ -ρ 2 ,
and so the variance of X w * w , which equals the variance of

2 Kw i=1 Z i , is 4K w ρ(1 -ρ); hence the standard deviation of X w * w is equal to 2 K w ρ(1 -ρ).
2 Proposition 1 implies that after a number of queries, the w (in W ′ ) with minimal K w will tend to be in W k min . In particular, if w * were in W ′ and K w is reasonably large, then it is very unlikely that w will be in W k min for small k such as k ∈ {0, 1, 2}, especially so for larger K w . This is because if w were in W k min then we would have X w * w ≤ k, which would make the approximately normally distributed random variable

X w * w at least Kw(1-2ρ)-k 2 √ Kwρ(1-ρ)
standard deviations from its mean. For instance, with k = 2 and ρ = 0.1 and K w = 10 (respectively, K w = 15), X w * w will be more than 3 (respectively, 4.3) standard deviations from its mean.

More generally, the weights vectors w that order the alternatives in A most similarly to how w * orders them, will tend to be in W k min , increasingly so as we ask more queries. Therefore, the most plausible user models w, i.e., those most likely to be the true user preference model w * (or close to it), are those with smaller values of mistakes(w), which is why W k min may be considered as consisting of the most plausible user preference models.

Stopping criterion. Our algorithm makes use of W k min , for k = 0, . . . , κ where we focus on κ = 2 in our experimental testing. The stopping criterion for our algorithm is that all the most plausible user preference models agree on which alternative α is best, i.e., PO(A, W κ min ) = {α}. With sufficient appropriately chosen queries this can be made to hold eventually (with probability tending to one). Generally our query strategies aim to ensure that the stopping criterion is satisfied as soon as possible. In particular, we can limit ourselves to queries of the form (α v , α w ), where v, w ∈ W κ min , since there always exists such a query if the stopping criterion is not yet satisfied, and such a query will with probability 1 -ρ increment the mistakes function for w, if w differs with w * on this query (and thus, v agrees with w * ). If we were to keep repeating this query then, with high probability, w will be eliminated from W κ min . Our active learning method is summarized by Algorithm 1. We select the query using the method described in Section 5. The decisionmaker response will be used to update mistakes(w) for each w ∈ W and to recompute W k min for k ∈ {0, 1, 2}. We iterate this procedure until PO(A, W 2 min ) becomes a singleton set, say {α} (so also, PO(A, W 1 min ) = PO(A, W 0 min ) = {α}); then α is our estimation of the most preferred alternative of the decision-maker, and we recommend it. Intuitively, this loop will tend to exclude weights vectors from W k min for k ∈ {0, 1, 2} whose preference orders are very different from the preferences of the decision-maker. Thus, weights vector in W k min for k ∈ {0, 1, 2} are more likely to have similar preference orders of that of w * . Algorithm 1

1: procedure Recommend_Alternative(A, W ′ ) 2: repeat 3: q ← Select_query(A, W k min for k ∈ {0, 1, 2}) 4:
Ask query q to the decision-maker 5:

Update

W k min for k ∈ {0, 1, 2} 6: until |PO(A, W 2 min )| = 1 7:
return The unique alternative in PO(A, W 2 min )

Query selection

We select as a query a pair of alternatives (α, β) that are optimal in A with respect to a maximum number of w ∈ W k min , focusing first on lower values of k. More precisely, let Opt k (α) be the number of preference points w ∈ W k min with α as the most preferred alternative α w with respect to w, i.e., maximising u(α, w). We select the query (α, β) as follows:

-If |PO(A, W 0 min )| > 1, select a query (α, β) with α, β ∈ PO(A, W 0 min ), Opt 0 (α) ≥ Opt 0 (γ) and Opt 0 (β) ≥ Opt 0 (γ) for each γ ∈ PO(A, W 0 min ) \ {α, β}. -If PO(A, W 0 min ) = {α 0 } and |PO(A, W 1 min )| > 1, select a query (α 0 , β) with β ∈ PO(A, W 1 min ), β ̸ = α 0 and Opt 1 (β) ≥ Opt 1 (γ) for each γ ∈ PO(A, W 1 min ) \ {α 0 , β}. -If PO(A, W 0 min ) = PO(A, W 1 min ) = {α 0 } and |PO(A, W 2 min )| > 1, select a query (α 0 , β) with β ∈ PO(A, W 2 min ), β ̸ = α 0 and Opt 2 (β) ≥ Opt 2 (γ) for each γ ∈ PO(A, W 2 
min ) \ {α 0 , β}.

Experimental Results

In this section we discuss the results of the experimental testing of our approach applied to randomly generated decision problems.

A random problem is represented by a random set A of possibly optimal utility vectors3 and a simulated decision-maker with utility function u(α, w * ). The goal is to find the most preferred alternative of the decision-maker, i.e., the alternative α w * ∈ A maximising u(α, w * ) for any α ∈ A. We simulate a decisionmaker for each experiment generating a random weights vector w * . With a noisefree user model, the simulated decision-maker response to a comparison query of two alternatives (α, β) will be α if w * • α ≥ w * • β, and β otherwise. However, we want to simulate noisy user responses, therefore we take into account a fixed probability ρ (e.g., ρ = 0.1) of receiving the incorrect answer.

In Table 1 we show the average number of queries, the average iteration time and the accuracy. The accuracy is the fraction of experiments in which the correct alternative was recommended, i.e., the optimal alternative α w * in A according to the unknown true user model w * . The results are an average of 100 experiments with random sets W ′ of 4000 weights vectors, and input sets A of 1000 random possibly optimal alternatives. We always used the same set A of alternatives, and 100 random user models w * . The accuracy was high and we always had at least one w ∈ W ′ with α w = α w * . In general, as the number of criteria increases, so does the number of queries.

Regarding the iteration time, the method seems to be roughly independent of the number of criteria. This is because the most time-consuming operation in this case is the update of mistakes(w) for each w ∈ W, which is not affected much by the number of criteria since the most expensive operation is the computation of |W ′ | dot products. For example, with p = 5, we required on average 0.34ms to compute the query, 36.2ms to update mistakes(w) for each w ∈ W and 1.05ms to compute the sets W k min . We provide, for comparison, the simulation results obtained by using stateof-the-art elicitation methods on the same datasets. In Table 2 we show the performance of interactive elicitation based on minimax regret with queries generated using the current solution strategies. Unsurprisingly, regret-based elicitation provides low accuracy as it cannot appropriately deal with user noise. In Table 3 we consider the Bayesian elicitation method from [START_REF] Viappiani | On the equivalence of optimal recommendation sets and myopically optimal query sets[END_REF]; queries are chosen to maximise Expected Value of Selection (EUS), a proxy of myopic value of information, using greedy maximisation; Bayesian updates are performed using Monte Carlo methods with 50000 particles. The elicitation stops when the expected loss is less than 0.001; when this happens the alternative with highest expected utility is recommended. As the table shows, the Bayesian method achieves high accuracy but at the cost of large computation times (higher accuracy may be obtained using more particles, but compaction time will increase even further).

In Table 4 we show the performances of our method with respect to the size of W ′ . The accuracy increases with increasing |W ′ |, as does the computation time, and, to a lesser extent, the average number of queries. We also tested the performances with respect to the number of alternatives |A| ∈ {200, 400, 600, 800, 1000} with |W ′ | = 4000, p = 4 and ρ = 0.1. However, we didn't notice any significant difference in terms of accuracy and execution time. The average number of queries was affected slightly more, i.e., between 20.67 and 22.16, with lower values for lower |A|.

In Figure 1 we show the accuracy varying with respect to the user noise ρ, with |A| = 1000, |W ′ | = 10000 and p = 4. Unsurprisingly, the accuracy decreases with increasing user noise ρ. However, this picture shows that our model can achieve good performance also with more noisy responses. In this case, the average query time was 0.093s. This dropping off of the accuracy for larger ρ tallies with our analysis around Proposition 1, and, to maintain very high accuracy, we will need to increase the parameter κ in our algorithm (from its current value of 2), in order to make the stopping condition harder to satisfy. 

Conclusions and Discussion

We have described a novel, non-Bayesian, approach for interactive elicitation for a setting in which the user's answers are not completely reliable. Our approach is based on maintaining a set of plausible preference models and to reason about the alternatives that are optimal according to these preference models. We provide fast and effective methods for generating comparison queries. In our model the stopping criterion is defined so that the system finishes the interaction, and recommends an alternative α, when α is the optimal alternative in all the most plausible preference models. The notion of plausibility of a preference model is based on how close the answers from that model would be to the received answers. For computational reasons we focus attention on a finite approximation W ′ of the set of all preference models.

Our results show that the approach is very fast and suitable for real-time applications, and maintains good accuracy with reasonable lengths of interactions. We have also compared our approach with the Bayesian approach from [START_REF] Viappiani | On the equivalence of optimal recommendation sets and myopically optimal query sets[END_REF], and our approach is very much faster, and with similar or perhaps slightly higher accuracy, and with similar number of queries required.

A variation of our approach that may further increase the accuracy, but at some computational cost, would be to update the finite set W ′ of preference models as the interaction progresses, so that the models become more densely populated in areas where they are most plausible.

Our stopping criterion, that a single alternative α in the set of alternatives A is optimal in all the most plausible user models W κ min , is equivalent to the max regret of α (over w ∈ W κ min ) being zero. We can weaken this condition by instead enforcing that this minimum max regret is less than a small threshold ϵ, which will allow our method to be applied to some more complex situations and with different user models, and perhaps reducing the number of interactions with the decision-maker.

We have shown that our approach can deal with significant numbers of alternatives, and the number of alternatives does not appear to very strongly affect the computation time or performance of the algorithm. A natural further step would be to develop the approach for combinatorial problems, where there are an exponential number of alternatives. In this case, for each preference model w in the finite set W ′ , we determine an optimal alternative α w of the combinatorial problem with respect to the linear objective function given by w, and again the queries can be based on the possibly optimal elements with respect to the most plausible user models W κ min .
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 1 Fig. 1: Accuracy varying with user noise ρ over 100 experiments with |A| = 1000, |W ′ | = 10000 and p = 4.

Table 1 :

 1 Experimental results w.r.t. the number of criteria p, with |A| = 1000, ρ = 0.1 and |W ′ | = 4000.

	p Queries Time[s] Accuracy
	3 10.66 0.038	1.00
	4 22.16 0.038	1.00
	5 30.44 0.038	0.97
	6 35.88 0.038	1.00

Table 2 :

 2 Experimental results for regret-based elicitation with the current solution query strategy; |A| = 1000 and ρ = 0.1.

	p Queries Time[s] Accuracy
	3 4.58	4.12	0.60
	4 7.82	3.41	0.34
	5 11.93	3.66	0.34
	6 16.69	3.69	0.28

Table 3 :

 3 Experimental results for Bayesian elicitation with the queries generated with greedy maximisation of value of information; |A| = 1000 and ρ = 0.1.

	p Queries Time[s] Accuracy
	3 12.05	2.62	0.97
	4 17.93	3.68	0.99
	5 26.46	5.07	0.97
	6 35.86	5.50	1.00

Table 4 :

 4 Experimental results w.r.t. the number |W ′ | of user preference models, with |A| = 1000, ρ = 0.1 and p = 5.

	|W ′ | Queries Time[s] Accuracy
	2000 27.28 0.019	0.97
	4000 30.44 0.038	0.97
	6000 32.71 0.057	1.00
	8000 33.12 0.075	0.99
	10000 34.50 0.096	1.00

Only the possibly optimal alternatives in a set A of alternatives are relevant, so if we didn't enforce that all alternatives are possibly optimal, then we would effectively be dealing with a (perhaps very much) smaller problem.
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