
HAL Id: hal-04292369
https://hal.science/hal-04292369v1

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The alternative Kirchhoff approximation in
elastodynamics with applications in ultrasonic testing

Larissa Fradkin, Audrey Kamta Djakou, Christopher B Prior, Michel Darmon,
Sylvain Chatillon, Pierre Calmon

To cite this version:
Larissa Fradkin, Audrey Kamta Djakou, Christopher B Prior, Michel Darmon, Sylvain Chatillon, et
al.. The alternative Kirchhoff approximation in elastodynamics with applications in ultrasonic testing.
The ANZIAM Journal, 2020, 62 (4), pp.1-17. �10.1017/S1446181120000036�. �hal-04292369�

https://hal.science/hal-04292369v1
https://hal.archives-ouvertes.fr


ANZIAM J. 0(2020), 1–18

The Alternative Kirchhoff Approximation in elastodynamics, with
applications in ultrasonic non-destructive testing

L. JU. FRADKIN�∨ 1, A. KAMTA DJAKOU2, C. PRIOR3, M. DARMON4, S. CHATILLON5

and P. CALMON6

(Received xx Month 2020)

Abstract

The Kirchhoff Approximation is widely used to describe scatter of elastodynamic
waves. It simulates the scattered field as the convolution of the free-space Green’s tensor
with the geometrical elastodynamics approximation to the total field on the scatterer
surface and therefore cannot be used to describe non-geometrical phenomena, such as
head waves. The aim of this paper is to demonstrate that an alternative approximation,
the convolution of the far-field asymptotics of the Lamb’s Green’s tensor with incident
surface tractions has no such limitation. This is done by simulating scatter of a critical
Gaussian beam of transverse motions from an infinite plane. The results are of interest
in ultrasonic non-destructive testing.
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1. Introduction

Non-Destructive Testing (ndt) is commonly used to assess size, location and
orientation of flaws in industrial structures. The ultrasonic inspections offer the
least expensive alternative. In nuclear industry, it is a legal requirement that ndt
inspectors carry out inspection qualification to demonstrate that safety critical defects
can be detected. As part of inspection qualification they routinely perform computer
simulation of relevant configurations. If necessary this can be done with commercial
finite-element packages, but when the speed of simulation is of essence, whenever
possible, inspectors use packages such as CIVA [10], which utilise approximate tools
for simulating radiation, propagation and scattering of ultrasonic pulses in solids. One
such tool is the elastodynamic Kirchhoff Approximation (ka) [4], [13] that relies on
the well-known free-space Green’s tensor for a homogeneous and isotropic solid as
well as the classical assumptions of the geometrical elastodynamics (GE): these are
satisfied by large scatterers with locally straight edges, when both the incident wave
front and scatterer surface are locally plane. The industrial ultrasonic probes operate
at relatively high frequencies, so these assumptions usually hold.

The ka cannot be used to simulate non-geometric phenomena, such as head waves,
which arise when the wave fronts or scatterers are curved or contain irregularities.
One circumstance, in which such waves make a significant contribution arises when
the probing beam of T (transverse) motions is incident on the plane surface at the
critical angle. Then the reflected T beam and head wave both propagate in the same
direction and may experience destructive interference. The accompanying effects are
beam shifting (the Goos-Hänchen effect) [12] and a GoodierBishop type wave [14].

In order to overcome this drawback we propose to simulate non-geometric aspects
of scatter using an Alternative Kirchhoff Approximation (aka) that relies on (the high-
frequency asymptotics) of the Lamb’s Green’s tensor instead of the free-space Green’s
tensor. The rationale behind the proposal is simple: the free-space Green’s tensor
does not contain any information on the boundary of the solid, while the Lamb’s
Green tensor describes the field radiated by a point source situated on such boundary
(provided its is planar) and using its far-field asymptotics can lead a computer code
that is still relatively fast. In this paper we demonstrate capabilities of the aka by
simulating scatter of a critical Gaussian T beam by a planar scatterer. To be more
precise, the incident beam is chosen to be generated by a CPS (Complex Point Source),
which in the paraxial approximation behaves as a Gaussian beam. Such beams serve
as a good model of beams generated by industrial ultrasonic transducers, are easy to
treat analytically and have intensity dropping at the beam boundary so fast that the
geometrical elastodynamics does not apply.

The article is organised as follows: the problem statement is offered in §2, followed
by §3, where the incident CPS beam is described. The exact integral representation of
the Lamb’s Green’s tensor as well as its high frequency asymptotics are introduced in
§4 and appendices. The validation of aka is presented in §5.
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Figure 1. The scatterer Cartesian coordinate system and associated spherical polar coordinate system.
Thick line—boundary of a solid half-space.

2. Problem statement

We consider the displacement fields U exp[−i(ωt) − kx] created in an
homogeneous and isotropic solid half-space by a time-harmonic load, where i is the
imaginary unit; x—point in space; t—time, ω—circular frequency; k—wave vector
with amplitude k = ω/c; and c—wave speed. For simplicity of presentation, below
the exponential factor exp(−iωt) is omitted but implied everywhere. We use bold
symbols to denote vectors, and when in regular font, the same symbols denote the
corresponding amplitudes.

Let the scatterer be the planar boundary of this half-space. Let us introduce the
scatterer Cartesian coordinate system {e1, e2, e3}, with e3—the inner normal to this
boundary. The corresponding Cartesian coordinates of any vector x are (x1, x2, x3)
and associated spherical polar coordinates are (s, φ, θ) (see Figure 1). Everywhere
below the subscripts k, l, m, n = 1, 2, 3 refer to the the respective coordinates in the
appopriate Cartesian system. Other subscripts and superscripts are used to indicate
the field or scalar type. In particular, descriptors in, sc and tot relate to the incident,
scattered and total fields, respectively.

Inside the half-space, let the incident and total (and hence scattered) displacement
vector fields u(x) = (um(x)) and the associated stress tensor fields σ(x) = (σ`m(x))
satisfy the reduced equations of motion of linear elasticity (see e.g. [8, §. 5.1]),

σ`m,` + ρω2um = 0, (1)

as well as Hooke’s law (see e.g. [8, Eq. (A.5.13)]),

σ`m = ρc2
T (u`,m + um,`) + ρc2

L(1 − 2γ2)δ`mun,n], (2)

with δ`m—the Kronecker delta; subscript ,k—partial derivative with respect to xk; ρ—
material density; cL, cT —speeds of longitudinal and transverse motions, respectively;
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γ = cT/cL < 1; and the summation convention implied. Also let the boundary be
subjected to an integrable incident traction (see e.g. [8, Eq. (5.1.39)])

tin = σin · e3, (3)

and let the stress-free boundary condition be (see e.g. [8, Eq. (6.1.13)])

σsc
`3(x)|x3=0+ = −tin

` (x)|x3=0+ .

On top of that, let us assume the usual radiation condition (see e.g. [8, §1.1.7]) that
when kT is complexified with a small complex part all outgoing waves decay at infinity.

The above boundary value problem can be formulated via the Green’s Theorem
(see e.g. [13, Eq. (5.57)]) to represent the scattered field usc(x) as convolution of the
free-space Green’s stress tensor of the third rank σG(x) and (an unknown) surface
displacement utot(x′) = uin(x′) + usc(x′),

usc
` (x) = −

∫ ∞

−∞

∫ ∞

−∞

σG
`3k(x − x′) utot

k (x′) dx′1 dx′2, (4)

with x′ = (x′1, x′2, 0)—an arbitrary surface point; and stress tensor σG associated with
the second rank free-space Green’s tensor G`k—the displacement due to δk`δ(x − x′),
the delta function type point source at x′. The standard ka utilises this relationship
and assumption that on the shadow side of the boundary, utot(x′) is zero and on the
irradiated side, it is the sum of incident and reflected field (see e.g. [13, §6.6]).

Let us now introduce the Lamb’s Green’s tensor of the second rank GLamb(x) and
stress tensor of the third rank σLamb(x), solutions of Equation (1) supplied with the
same radiation condition as above and boundary condition

σLamb
`3k (x)|x3=0+ = −δ`kδ(x)|x3=0+ . (5)

It is easy to check by substitution that convolution

usc
` (x) =

∫ ∞

−∞

∫ ∞

−∞

GLamb
`k (x − x′) tin

k (x′) dx′1 dx′2 (6)

is an alternative representation to (4). In physical terms, (6) represents the Huygens
principle: the displacement is the superposition of the displacements generated by the
elementary point loads on the scatterer surface. Below we derive expressions for GLamb

and construct the aka by substituting into (6) the far-field asymptotics of this tensor.

3. Incident tractions

Let us assume that the incident field in (6) is due to a CPS.
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Figure 2. Scatterer / beam coordinate systems {e1, e2, e3} / {ē1, ē2, ē3}.

3.1. Complex Point Source To introduce a CPS let us first consider an ordinary
point source U0 δ(x − a) at point a. It radiates the outgoing spherical field U0 G, where
the reduced free-space Green’s tensor has components [3, Eq. (2.5.54)]

G`k =
1
ρc2

T

[
k−2

T (IT − IL),`k + ITδ`k
]
, Iα =

eikαsin

4πsin
, (7)

with sin =
√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2; and α = L or T .
Let us complexify the first coordinate of a. This operation turns the spherical

field into a beam, which propagates along the axis singled out by the complexification
process (see e.g. [5]). Introducing the beam Cartesian coordinate systems {ē1, ē2, ē3}

shown in Figure 2, this beam axis lies in the (ē1, ē3) plane; the beam coordinates of
the source a are (−ā1, 0, 0); and the beam coordinates of its complexified version A
are (−ā1 + iaR, 0, 0). Figure 2 introduces ϑin, the supplementary angle between e1 and
beam axis, and below we sometimes make use of its counterpart ϑ̄in = −ϑin. For a
point load fδ(x − A) the resulting displacement is

UCPS = U0G(x, A)f. (8)

Introducing the distance along the beam axis ∆x̄1 = x̄1 + ā1, in the paraxial
approximation x̄2

2 + x̄2
3� (∆x̄1)2, the complexified distance between an arbitrary point

x and the complexified source A can be approximated in the following manner:√
(∆x̄1 − iaR)2 + x̄2

2 + x̄2
3 ≈ ∆x̄1 − iaR +

1
2

x̄2
2 + x̄2

3

∆x̄1 − iaR
.

Therefore on the surface of the scatterer, inside the beam, ∆x̄1 can be treated as
constant and we can write

Īα ≈ −
i

4π
w0

w(x̄1)
e
kα

aR −
x̄2

2 + x̄2
3

2w2


e
ikα

∆x̄1 +
x̄2

2 + x̄2
3

2%

 − iζ
, (9)



6 Fradkin et al. [6]

demonstrating that in the paraxial approximation the CPS field behaves as a three-
dimensional Gaussian beam [12], with

√
2w2(∆x̄1)/kα—beam spot (the radius of the

beam at distance ∆x̄1 from the waist);
√

2w2(0)/kα—beam spot at the waist; aR— the
Rayleigh length (the distance along the propagation direction of the beam from its
waist to where the beam spot increases by

√
2); % = %(∆x̄1)—radius of curvature of the

beam wavefront; and ζ = ζ(∆x̄1)—the Gouy phase shift, where

% = ∆x̄1

1 +

(
aR

∆x̄1

)2 , w2 = aR

1 +

(
∆x̄1

aR

)2 , ζ =
1
2

tan−1 ∆x̄1

aR
.

Above, w = w(∆x̄1). It is reasonable to select the constant U0 = exp(−kα aR).

3.2. Surface tractions due to Complex Point Source Let us now find the incident
surface tractions tin

` (x′1, x′2, 0) generated by a CPS. Applying (2) to the complexified
version of (7), the beam coordinates of the corresponding stress tensor become

σ̄G
`mk = ρc2

T [Ḡ`k,m + Ḡmk,` + γ−2(1 − 2γ2)Ḡnk,nδ`m]. (10)

Using beam coordinates (x̄1, x̄2, x̄3) and their complexified version

X̄1 = ∆x̄1 − iaR, X̄2 = x̄2, X̄3 = x̄3,

the derivatives of IT -terms and IL-terms in (10) become

Īα,` =
Iα
S 2

in

(ikαS in − 1)X̄`,

Īα,`m =
Iα
S 4

in

[(
3 − 3ikαS in − k2

αS 2
in)X̄`X̄m + S 2

in(ikαS in − 1)δ`m
]
,

Īα,`mk =
Iα
S 6

in

[
(−15 + 15ikαS in + 6k2

αS 2
in − ik3

αS 3
in)X̄`X̄mX̄k +

S 2
in(3 − 3ikαS in − k2

αS 2
in)(X̄`δmk + X̄mδ`k + X̄kδ`m)

]
.

Using (3), (8) and the beam coordinates of both the normal n = e3 and point load f, at
the surface point x′, the components of the incident surface traction are

t̄in
` = σ̄G

`mkn̄m f̄k.

4. The Lamb’s Green’s tensor

The components of the Lamb’s Green tensor have no analytical expressions but
their Fourier transforms do. These are derived below.
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4.1. The Lamb’s Green’s tensor in the Fourier space We introduce the relevant
Fourier Transforms first. In an isotropic and homogeneous space, there is no difference
between directions, but the plane boundary singles out the direction of its normal. For
this reason, we utilise the double spatial transform defined for any integrable function
f (x1, x2) as

f̃ (ξ1, ξ2) =

∫ ∞

−∞

∫ ∞

−∞

f (x1, x2) e−ikT (ξ1 x1+ξ2 x2) dx1dx2. (11)

Its inverse is the usual spectrum of the outgoing waves

f (x1, x2) =
k2

T

4π2

∫ ∞

−∞

∫ ∞

−∞

f̃ (ξ1, ξ2) eikT (ξ1 x1+ξ2 x2) dξ1dξ2. (12)

Above, ξ = (ξ1, ξ2, ξ3) are dimensionless wave vectors; introducing ξ⊥ =

√
ξ2

1 + ξ2
2 and

γα = cT/cα, their magnitudes are ξα = γα; and their third components are given by

ξα3 =

√
γ2
α − ξ

2
⊥, (13)

with the root chosen to be principal, so that the outgoing waves u exp i(−ωt + kTξ · x)
decay at infinity and thus satisfy the radiation condition.

Applying (11) to (1) the double Fourier Transforms of each column k of the Lamb’s
Green’s tensor can be represented as a sum of TV (transverse vertical), T H (transverse
horizontal) and L (longitudinal) components,

G̃Lamb
k (ξ1, ξ2, x3) = ŨTV

k eikT ξ
T
3 x3 + ŨT H

k eikT ξ
T
3 x3 + ŨL

k eikT ξ
L
3 x3 . (14)

The amplitudes Ũα
`

= Ũα
`
(ξ1, ξ2) = Ũα

`
(ξ1, ξ2)̃dα(ξ1, ξ2) can be found by applying (11)

to (5), see Appendix A.

4.2. The Lamb’s Green’s tensor in the physical space Using Appendix A and (12),
in the physical space, the columns of Lamb’s Green’s tensor can be represented as
double integrals

GLamb
k (x − x′) =

k2
T

4π2

∫ ∫ {
ŨT

k eikT ξ
T ·(x−x′) + ŨL

k eikT ξ
L·(x−x′)

}
dξ1dξ2, (15)

where ŨT
k = ŨTV

k + ŨT H
k . It is convenient to introduce cylindrical coordinates

(ξ⊥, ϕ), such that ξ1 = ξ⊥ cos ϕ, ξ2 = ξ⊥ sin ϕ, x1 − x′1 = r′ cos φ′, x2 − x′2 = r′ sin φ′

and express the TV components of the Lamb’s Green’s tensor as

GLamb(TV)
`k (x − x′) =

ikT

2πρc2
T

∫ ∞

0
A`k g(2)

k

ξ2
⊥(1 − 2ξ2

⊥)

R
(
ξ2
⊥

) eikT ξ
T
3 x3 dξ⊥. (16)
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Above, g(2)
1 = ξT

3 , g(2)
2 = ξT

3 , g(2)
3 = −ξ⊥; and, using Euler’s formula, the standard

definition of the Bessel function Jp(z) [1, Eq.(9.1.21)] as well as identity J−p(z) =

−Jp(z), with p = 0− treated as p = 0+, the components of the symmetric matrix A are

A11 =
1
2

[J0(kTξ⊥r′) − i sin (2φ′)J2(kTξ⊥r′)],

A22 =
1
2

[J0(kTξ⊥r′) + i sin (2φ′)J2(kTξ⊥r′)], A12 = −i cos (2φ′)J2(kTξ⊥r′),

A13 = i cos(φ′)J1(kTξ⊥r′), A23 = i sin(φ′)J1(kTξ⊥r′), A33 = J0(kTξ⊥r′).

Integrals (16) can be evaluated with a two-dimensional variable step version of the
Simpson rule [7]. There is no need to derive similar results for L and T H components,
because their stationary phase asymptotics give satisfactory results—see below.

4.3. Numerical evaluation of integral (6) It is easy to check that at the Rayleigh
distance aR from the waist, the boundary value of the intensity of the Gaussian beam
falls from its axial value by the factor of exp(−2). Therefore choosing a1 = aR, a
reasonable approximation to (15) can be achieved by reducing the integration domain
to the foorprint of the beam on the scattering surface (see Figure 2). This footprint
is an ellipse with the axes amin = 2

√
aR/kα and amax = 2

√
aR/kα/ cos ϑin. Hence its

boundary can be described by the parametric equations

x′1 = amax cos ϕ′, x′2 = amin sin ϕ′ = amax cos ϑ̄in sin ϕ′.

Let us introduce the corresponding circular coordinates (a′, ϕ′),

x′1 = a′ cos ϕ′, x′2 = a′ cos ϑ̄in sin ϕ′.

The Jacobian of transformation from (x′1, x′2) coordinates to (a′, ϕ′) coordinates is
a′ cos ϑ̄in. It follows that (6) can be approximated by using

usc(α)
k (x) ' cos ϑ̄in × (17)∫ 2π

0

∫ amax

0
GLamb(α)

k` (x1 − a′ cos ϕ′, x2 − a′ cos ϑin sin ϕ′, x3)t`in(a′, φ′)a′da′dϕ′.

In order to evaluate this integral numerically we employ a 2D Simpson’s scheme,
with the intervals [0, amax] and [0, 2π] divided, respectively, into N f and M f

subintervals and also specify the grid of evenly distributed observation points. Below
we plot results in the x1x3-plane only, and No and Mo are the numbers of nodes in
x1- and x3-directions, respectively. When dealing with the exact expression for the
Lamb’s Green’s tensor considerable reduction in runtime is achieved by specifying the
footprint grid first and then specifying a convenient grid of observation points.

5. The Alternative Kirchhoff Approximation and its Validation

If the Lamb’s Green’s tensor in (17) is evaluated numerically the resulting codes
have long run times. Fortuitously, the ultrasonic inspections are normally conducted
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in the far field |kLx3| � 1, with x3—the vertical distance from the observation point to
scatterer. In this approximation the double integrals (15) contain a rapidly oscillating
exponent and slowly varying amplitude and therefore can be evaluated using the
uniform stationary phase method [2]. The method describes asymptotic contributions
of such critical points as stationary points of the phase and singularities of the
amplitude, both in the geometrical regions in the scattered field, where the critical
points are isolated and transition regions, where some of them coalesce.

It is easy to check that in (15) the phases kαξT · (x − x′) possess stationary points,
and the amplitudes have poles as well as branch points ξ⊥ = ±γ, where ξL

3 = 0. These
amplitude singularities give rise to the Rayleigh wave and head waves, respectively.
Calculation of the Rayleigh wave is easy and lies outside the scope of this paper. The
simplest situation giving rise to a head wave is discussed in [6] and presented in Figure
3, where the fronts of longitudinal, transverse and head waves are designated by L, T
and H, respectively. The T and L fronts are semi-spherical and the conical H front
exists only for θ > θH .

To evaluate the contributions of the isolated stationary phase points, for each
surface point x′ let us choose the Cartesian coordinate system with the origin at
this point. The associated cylindrical coordinates are (r′, s′, θ′), where ∆x′n = xn −

x′n, n = 1, 2; r′ =
√

∆x′21 + ∆x′22 ; s′ =
√

r′2 + x2
3; and sin θ′ = r′/s′ (see Figure 1).

In these coordinates the phase functions in (15) are f α(ξ1, ξ2) = ξ1 ∆x′1 + ξ2 ∆x′2 +√
γ2
α − ξ

2
⊥ x3. It is easy to check that each has one stationary point (ξα(GE)

1 , ξα(GE)
2 ) =

(γα∆x′1/s′, γα∆x′2/s′); f α(ξα(GE)
1 , ξα(GE)

2 ) = s′; ξα(GE)
⊥ = γα sin θ′; and the eigenvalues of

each Hessian ( f α)
′′

(ξα(GE)
1 , ξα(GE)

2 ) are positive. The above considerations allow us to
produce asympotic description of TV, T H and L waves generated by each Huygens
source, see Appendix B. The superscript GE emphasises that the same description can
be obtained using the Geometrical Elastodynamics.

The asymptotic contributions of branch points ξ⊥ = ±γ, where ξL
3 = 0 (see Equation

(13)) are also well known [3]. However, in industrial steels these asymptotics do not
work well [9]. For this reason we do not use them and advocate the aka instead—
that is, substitute into Equation (6) the amplitudes GLamb(β,GE)

k` (β = TV, T H or L) of
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the semi-spherical waves from Appendix B. Note that the components GLamb(TV,GE)
k`

possess branch points at sin θ′ = ±γ and therefore retain information about the branch
points in the Fourier space.

The aka has been tested by simulating scatter of Gaussian beams oscillating at
f = ω/2π = 5MHz, a typical frequency of industrial transducers, from the surface of
a block of stainless steel with cL = 5890 m/s, cT = 3210 m/s and ρ = 8050 kg/m3. The
corresponding critical incident angle is ϑin = cos−1 γ ≈ −57o(θin ≈ 33o).

Figures 4(c) and 4(d) simulate reflection of the subcritical T Gaussian beam. For
comparison, reflection of the L beam is shown in Figures 4(a) and 4(b). As expected,
the L beams have a wavelength twice as large and display larger footprints. In both
L − L or T − T cases the reflection takes place according to Snell’s law for elastic
waves, see e.g. [8, Eq. (6.1.33)]. By contrast, Figure 4(e) shows the full scatter of the
T beam into a weaker upper beam (reflected according to the Snell’s law) and stronger
lower beam (propagating at the critical angle). In principle, beam splitting could be
due to variation in the incidence angle over the footprint, but inspection of the incident
beams in Figure 4 shows no comparable variation. We conclude that the lower beam
is formed by the head wave. This conclusion is supported further by the fact that
the beam appears or disappears depending on whether, when imaginary, the radical√
γ2 − sin2 θ′ is supplied with the + or - sign: such behaviour is typical to branch

point contributions [7]. Figures 4(f) and 4(g) simulate scatter of the critical Gaussian
T beam. They demonstrate a small Goos-Hänchen shift to the right: the reflected T
wave and head wave both propagate at the same angle, and their interference breaks
the incident/reflected beam symmetry.

Let us now compare compare ka and aka. Figures 5(a) and 5(b) demonstrate that
the two approximations produce similar scattered L beams—the fact that the ka beam
is somewhat stronger might be due to the fact that ka does not allow for the head wave
and the head wave energy must be distributed between L and T modes. For the same
reason, when the incidence is subcritical, the ka T beam is stronger than aka T beam
(see Figures 5(c) and 5(d); c f . Figure 5(e)). At the critical incidence, ka produces a
much stronger T beam than aka and no Goos-Hänchen shift.

Finally, let us compare both aka and ka to the exact numerical solution based
on Equation (17). Figure 6 shows that when the incident Gaussian T beam is critical,
unlike ka, aka produces reasonable results: it reproduces the footprint, angle of scatter
and even the scattered intensity. Note that using the Intel (R) Core (TM) i3-3227U
processor CPU @1.90 GHz, Figures 6(a) and 6(b) have been produced in 11 hours
and four minutes, respectively.

6. Conclusions

We have shown that while the ka is incapable of simulating head waves, the aka
simulates the effect similarly to the exact numerical solution, reproducing a small
lateral Goos-Hänchen shift and—more importantly—the correct amplitude of the
scattered critical Gaussian beam. The result is not obvious, because the asymptotic
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Figure 4. Simulation of scatter of Gaussian beams using aka. The scalar displacement amplitude in the

beam u is traditionally defined as |Re
√

u2
1 + u2

2 + u2
3|. The color bar represents displacement amplitudes

in pm.
ϑin

L = −75◦: (a) incident L beam, (b) reflected L beam;
ϑin

T = −75◦: (c) incident T beam, (d) reflected T beam;
(e) reflected T beam and head wave beam;

ϑin
T = −ϑH : (f) incident T beam, (g) scattered T beam.

No = 120, Mo = 120, N f = 24, M f = 40.
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Figure 5. Comparison of ka and aka of scattered Gaussian beams.
ϑin

L = −75◦, reflected L beam simulated using (a) ka, (b) aka;
ϑin

T = −75◦, reflected T beam simulated using (c) ka, (d) aka ;
reflected T beam and head wave beam simulated using (e) aka;

ϑin
T = −ϑH , scattered T beam simulated using (f) ka, (g) aka.

N f = 24, M f = 40, No = 80, Mo = 80. The color bar as above.
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Figure 6. Comparison of TV components of scattered critical Gaussian beam simulated using (6) and (a)
§4.2 (N f = 36, M f = 40), (b) aka and (c) ka (N f = 36, M f = 80 for both). No = 80, Mo = 40. The color
bar as above.

expressions of the Lamb’s Green’s tensor utilised in the aka describe only the semi-
spherical L and T waves generated by each Huygens source and not the associated
head waves. On the other hand, the amplitudes of the T waves contain the square
roots, retaining information about the square roots in their Fourier Transforms, and it
is these roots (more precisely, the fact that the integrands used in the aka are double-
valued functions) that gives rise to the head waves. The findings are of interest in ndt
applications.
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contribution.

A. The Lamb’s Green’s tensor in Fourier space

Each component GLamb
`k = GLamb

`k (x1, x2, x3) of the Green’s Lamb’s tensor represents
the `th component of the displacement GLamb

k = GLamb
k (x1, x2, x3), which is due to a unit

traction acting in the direction ek. Therefore the original problem can be decomposed
into three, two—with the tangential unit traction acting in the direction e1 and e2 and
one—with the traction acting normally to the surface. In order to find the Green’s
Lamb’s tensor we first rewrite Equation (1) as

Lm`GLamb
`k + ρω2GLamb

mk = 0, (18)
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where Lm` = Lm`(∂1, ∂2, ∂3) are components of the operator matrix

L = ρc2
L

(1 − γ
2)∂2

1 + γ2∇2 (1 − γ2)∂1∂2 (1 − γ2)∂1∂3
(1 − γ2)∂1∂2 (1 − γ2)∂2

2 + γ2∇2 (1 − γ2)∂2∂3
(1 − γ2)∂1∂3 (1 − γ2)∂2∂3 (1 − γ2)∂2

3 + γ2∇2

 ,
with ∂`—the partial derivative with respect to x` and ∇2 = ∂2

1 + ∂2
2 + ∂2

3. Applying to
(18) the double Fourier Transform (11) we obtain the system of ordinary differential
equations

L̃m`(ξ1, ξ2, ∂3)G̃Lamb
`k (ξ1, ξ2, x3) + ρω2G̃Lamb

mk (ξ1, ξ2, x3) = 0. (19)

Let us seek the outgoing solutions of this system in the form

G̃β (Lamb)
k (ξ1, ξ2, x3) = Ũβ

k(ξ1, ξ2)eikT ξ3 x3 = Ũβ
k (ξ1, ξ2) d̃β(ξ1, ξ2)eikT ξ3 x3 . (20)

Substituting (20) into (19) we obtain

L̃(ξ)Ũβ
k(ξ1, ξ2) = −ρω2Ũβ

k(ξ1, ξ2), (21)

where the operator L̃ = L̃(ξ) has components

L̃m` = −ρω2[(γ−2 − 1)ξmξ` + ξ2δm`]. (22)

Equation (21) can be embedded into the so-called Kelvin-Cristoffel equation

L̃d̃
β

= −ρω2νβd̃
β
, (23)

which possesses a non-zero solution only if we have

|L̃ + ρω2νI| = −ρω2(ξ2 − ν)2(γ−2ξ2 − ν) = 0,

where I is the unit matrix. It follows that the operator L̃ has a double eigenvalue
νTV = νTH = ξ2 and simple eigenvalue νL = γ−2ξ2, with the corresponding eigenvectors
d̃β = d̃β(ξ1, ξ2) given by

d̃TV =


1

ξTξ⊥


ξ1ξ

T
3

ξ2ξ
T
3

−ξ2
⊥

 ,
e1,

d̃T H =


1
ξ⊥


ξ2

−ξ1

0

 if ξ⊥ , 0,

e2 if ξ⊥ = 0,

d̃L =
1
ξ L

ξ1
ξ2
ξL

3

 . (24)

As usual, there is arbitrariness in choosing eigenvectors corresponding to a double
eigenvalue. The choice made in Equation (24) ensures that limξ⊥→0(ξ1/ξ⊥) = 1 and
limξ⊥→0(ξ2/ξ⊥) = 0. The eigenvectors (24) become solutions of Equation (22) when
νβ = 1, that is, when |kTξ

β| = kβ.
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The unknown amplitudes Ũβ
k = Ũβ

k (ξ1, ξ2) can be found from the boundary
condition (5) re-written as

BmkGLamb
k |x3=0+ = −δmkδ(x)|x3=0+ , (25)

with Bmk = Bmk(∂1, ∂2, ∂3)—elements of the operator matrix

B = ρc2
L

 γ2∂3 0 γ2∂1
0 γ2∂3 γ2∂2

(1 − 2γ2)∂1 (1 − 2γ2)∂2 ∂3

 .
The double Fourier Transform of (25) is

B̃G̃Lamb
k |x3=0+ = −ek, (26)

with the operator matrix B̃ = B̃(ξ1, ξ2, ∂3) given by

B̃(ξ1, ξ2, ∂3) = ρc2
L

 γ2∂3 0 γ2ikTξ1
0 γ2∂3 γ2ikTξ2

(1 − 2γ2)ikTξ1 (1 − 2γ2)ikTξ2 ∂3

 .
Combining (20), (24) and (26) produces the linear algebraic system

AŨk = ck, (27)

where we use notation

A =





ξ1(1 − 2ξ2
⊥) ξ2ξ

T
3 2γ−1ξ⊥ξ1ξ

L
3

ξ2(1 − 2ξ2
⊥) −ξ1ξ

T
3 2γ−1ξ⊥ξ2ξ

L
3

−2ξT
3 ξ

2
⊥ 0 γ−1ξ⊥

(
1 − 2ξ2

⊥

)


, if ξ⊥ , 0,



1 0 0

0 1 0

0 0 γ−1


, if ξ⊥ = 0,

Ũk(ξ1, ξ2) =


ŨTV

k
ŨT H

k
ŨL

k

 , ck =
iξ⊥

kTρc2
T

ek.

For ξ⊥ , 0, |A| = −γ−1ξ3
⊥ξ

T
3 R

(
ξ2
⊥

)
, with the Rayleigh function

R
(
ξ2
⊥

)
= 4ξ2

⊥ξ
T
3 ξ

L
3 + [1 − 2ξ2

⊥]2. (28)
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Solving (27), components of vectors Ũk are
ŨTV

1 =
i

kTρc2
T

ξ1(1 − 2ξ2
⊥)

ξ⊥R
(
ξ2
⊥

) , ŨT H
1 =

i
kTρc2

T

ξ2

ξ⊥ξ
T
3

, if ξ⊥ , 0,

ŨTV
1 =

i
kTρc2

T

, ŨT H
1 = 0, if ξ⊥ = 0,

ŨL
1 =

2i
kLρc2

L

ξ1ξ
T
3

R
(
ξ2
⊥

) ,


ŨTV
2 =

i
kTρc2

T

ξ2(1 − 2ξ2
⊥)

ξ⊥R
(
ξ2
⊥

) , ŨT H
2 (ξ1, ξ2) = −

i
kTρc2

T

ξ1

ξ⊥ξ
T
3

, if ξ⊥ , 0,

ŨTV
2 = 0, ŨT H

2 =
i

kTρc2
T

, if ξ⊥ = 0,

ŨL
2 =

2i
kLρc2

L

ξ2ξ
T
3

R
(
ξ2
⊥

) ,
ŨTV

3 = −
2i

kTρc2
T

ξ⊥ξ
L
3

R
(
ξ2
⊥

) , ŨT H
3 = 0, ŨL

3 =
i

kLρc2
L

1 − 2ξ2
⊥

R
(
ξ2
⊥

) .
Each column of the Lamb’s Green’s tensor can be represented as a sum (14). Similar
results have been obtained earlier for a linear source [11].

B. Stationary phase asymptotics of the Lamb’s Green’s tensor

Let us associate with each Huygens source x′ a Cartesian coordinate system
{e′1, e′2, e3} with the origin at this source, and let all such systems be oriented the same
way as the scatterer coordinate system {e1, e2, e3}. Then all vectors have the same
components in all of them. Evaluating the stationary phase asymptotics of (15), for
each Huygens source the unit displacement vectors (24) and the Rayleigh functions
(28) become, respectively,

dTV (x − x′) =

cos θ′ (cos φ′ e1 + sin φ′ e2) − sin θ′ e3, if r′ , 0,
e1, if r′ = 0,

dT H(x − x′) =

sin φ′ e1 − cos φ′ e2, if r′ , 0,
e2, if r′ = 0,

dL(x − x′) = sin θ′ (cos φ′ e1 + sin φ′ e2) + cos θ′ e3,
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and

RT (sin2 θ′) = 4 sin2 θ′ cos θ′
√
γ2 − sin2 θ′ +

(
1 − 2 sin2 θ′

)2
,

RL(sin2 θ′) = 4γ3 sin2 θ′ cos θ′
√

1 − γ2 sin2 θ′ +
(
1 − 2γ2 sin2 θ′

)2
,

where φ′ and θ′ are specific to the source. (Similarly to Appendix A, the formal rule
applied above is lim(x1,x2)→(x′1,x

′
2)(x1 − x′1)/r′ = 1 and lim(x1,x2)→(x′1,x

′
2)(x2 − x′2)/r′ = 0.)

The stationary phase contributions to the ` components of GLamb(GE)
k = GLamb(GE)

k (x −
x′) become

GLamb(TV,GE)
`1 =


−

cos φ′

2πρc2
T

cos θ′(1 − 2 sin2 θ′)
RT (sin2 θ′)

eikT s′

s′
dTV
` , if r′ , 0,

−
1

2πρc2
T

eikT s′

s′
δ`1, if r′ = 0,

GLamb(T H,GE)
`1 =


−

sin φ′

2πρc2
T

eikT s′

s′
dT H
` , if r′ , 0,

0, if r′ = 0,

GLamb(L,GE)
`1 = −

cos φ′

2πρc2
L

sin 2θ′
√

1 − γ2 sin2 θ′

RL(sin2 θ′)
eikL s′

s′
dL
` , &GLamb(TV,GE)

`2 =


−

sin φ′

2πρc2
T

cos θ′(1 − 2 sin2 θ′)
RT (sin2 θ′)

eikT s′

s′
dTV
` , if r′ , 0,

0, if r′ = 0,

GLamb(T H,GE)
`2 =



cos φ′

2πρc2
T

eikT s′

s′
dT H
` , if r′ , 0,

−
1

2πρc2
T

eikT s′

s′
δ`2, if r′ = 0,

GLamb(L,GE)
`2 = −

sin φ′

2πρc2
L

sin 2θ′
√

1 − γ2 sin2 θ′

RL(sin2 θ′)
eikL s′

s′
dL
` ,

GLamb(TV,GE)
`3 =

1
2πρc2

T

sin 2θ′
√
γ2 − sin2 θ′

RT (sin2 θ′)
eikT s′

s′
dTV
` ,

GLamb(L,GE)
`3 = −

1
2πρc2

L

cos θ′ (1 − 2γ2 sin2 θ′)
RL(sin2 θ′)

eikL s′

s′
dL
` .
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