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A B S T R A C T   

This paper aims at characterizing the sensitivity of a simulated plume’s properties to uncertainties in the wind 
fields which force the ocean model using an ensemble method. The case study is the Red River plume in the Gulf 
of Tonkin. The variability of the Red River plume in the mid and far field is described in a previous paper using a 
clustering analysis (Nguyen-Duy et al., 2021) and is shown to be mostly driven by monsoon winds and tides. In 
the present study, we also aim at assessing the robustness of the classification with respect to the wind forcing 
uncertainties. The variability of the wind uncertainty is estimated as 60% of the wind variability with a higher 
variability near the coast. Based on that estimation, two ensembles of 50 simulations each with perturbed wind 
forcing are run over the summer 2015 period. Then, we examine the ensemble spread (defined as the standard 
deviation across the members) of the wind stress and of the ocean variables. The coastal current shows similar 
spread for both meridional and zonal flows, with the highest spread related to the highest wind stress spread. The 
sensitivity is the largest at the surface for salinity and at the base of the mixed-layer for temperature. The 
properties of the river plume are analyzed. The spread of the plume area is maximum in August, which is the 
same time as when the plume is the most spread out. The clustering analysis applied to the ensemble members 
shows some cluster attribution shifts between different members, but the cluster that is most likely to occur is still 
the one from the reference simulation (with unperturbed wind). These limited changes suggest that the cluster 
analysis of the reference simulation in Nguyen-Duy et al. (2021) is indeed robust to the wind forcing errors. The 
uncertainty on the plume thickness is typically less than 2m, sometimes reaching 4m (for a total thickness of 
10m). The freshwater transport mainly follows the variations of the current due to the changes of wind. Possible 
implications of this study for the assimilation of high-frequency radar data are discussed at the end of the paper. 
Firstly, the relevance of the ensemble in simulating the model errors is assessed: the comparison with the data 
suggests that the model suffers from systematic errors that are not represented by the ensemble (by construction). 
Secondly, the ensemble is used to provide examples of model correction in a hypothetical data assimilation, 
highlighting its potential to constrain the plume by correcting directly the surface salinity, but also correcting the 
surface coastal current and the wind stress.   

1. Introduction 

The Gulf of Tonkin (GOT) is a shelf sea located east of Vietnam and 
south of China (Fig. 1A). It is a shallow area, with depth less than 100m. 
It connects with the open sea through the Hainan Strait and southwest of 
the Hainan island. The Red River is the main source of freshwater in the 
gulf, providing a mean runoff around 3300 m3/s (Luu et al., 2010), and 
is the second-largest river in Vietnam in terms of discharge. 

Rivers, in general, are vectors of exchange between the continent and 
the ocean. They bring freshwater that impacts the buoyancy of the 

coastal waters and therefore the coastal dynamics. Rivers carry matter 
and sediments that influence the coastal morphology (bathymetry, 
coastline). They also bring along other kinds of contaminants such as 
plastic debris. It is therefore crucial to fully understand the fate of the 
river water from the estuaries to the ocean, especially in the mid-field 
and far field, where the plume is mostly driven by its buoyancy, Earth 
rotation, wind and ambient currents in addition to the initial momentum 
of the river flow. In GOT, the variability of the Red River plume has been 
examined by several authors. Using numerical results combined with 
observational data, Gao et al. (2013) and Rogowski et al. (2019) show 
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that in winter, the plume forms a coastal buoyant current while 
spreading more offshore in summer. The difference between the two 
seasons is due to the monsoon wind, which is northeasterly in winter and 
southwesterly in summer, and to the runoff variability with the highest 
(lowest) Red River runoff in summer (winter). 

The variability of the plumes from the Red River and from three 
rivers south of the Red River (namely the Ma, Yen and Lam rivers) was 
further examined by Nguyen-Duy et al. (2021, hereinafter referred to as 
ND21), with the help of a high resolution, multi-year 3D simulation. This 
simulation was later used by Tran et al. (2022) together with 
high-frequency radar observations to examine the impact of the fresh
water on the dispersive properties of the coastal circulation. In ND21, 
the plumes of the Red River and of the southern rivers are identified 
using a passive tracer. Most of the time, they are mixed with each other 
and are therefore studied as a single plume that is called for simplicity 
‘the Red River plume’ in ND21 and in this study. The results of ND21 
confirm that the plume has a large variability, both in terms of surface 
coverage and thickness of the plume. A cluster analysis was performed in 
order to classify the main patterns of the Red River plume over the 
period 2011–2016. The classification is based on the K-means method 
and is described in detail in ND21 (see also their Appendix C in the 
Supplementary Material) and in Nguyen-Duy (2022). Four clusters were 
identified. The first one represents winter conditions, when the runoff is 
lowest, the current is southward, and the wind is northeasterly. In this 
cluster, the plume has the smallest area and flows mainly in a ~25 
km-wide band downstream (southward) along the Vietnamese coast. In 
the second cluster, the plume extends a little bit more, and represents the 
transition period between the two monsoon seasons. From June to 
August, the plume patterns are mainly represented by clusters 3 and 4. 
Fig. 2 displays the tracer concentration at surface, sea surface salinity 
(SSS), and wind conditions, corresponding to cluster 3 and cluster 4, but 

averaged from June to August 2015 (the focus period in this article) 
instead of over the whole period (2011 – 2016) adopted in ND21. The 
third cluster features the summer monsoon, when the wind is southerly 
and spreads the plume more offshore and northward; the plumes from 
the different rivers are then disconnected. The fourth cluster is present 
when the runoff is the highest and the wind is still upwelling favorable; 
it has the largest surface plume coverage. The transition from a down
stream coastal current to an upstream current under the effect of 
upwelling-favourable winds is observed in other off-equatorial plumes 
(e.g. Hickey et al., 2009; Yankovsky et al., 2022). 

The plume thickness is also strongly affected by the wind, as illus
trated in ND21. In winter, when the wind is downwelling favorable, the 
plume sticks to the coast and reaches the bottom. In summer, the runoff 
is three times higher than in winter, but since the plume spreads offshore 
it forms a thinner layer (between 5 and 10 m, see ND21). 

The work of ND21, as many studies on river plumes in other areas (e. 
g. Vaz et al., 2018; Wang et al., 2014; Jia et al., 2019), relies on nu
merical modeling. However, the model results are known with some 
uncertainties that can come from the model itself (physical assumptions, 
parameterizations, etc.), from the simulations’ configuration (pre
scribed coastline and bathymetry, parameters, etc.), or from the forcing 
(atmospheric forcing, lateral boundary forcing, initial conditions, etc.). 
Understanding the uncertainties and their sources can help us better 
assess the model results in different scenarios, and quantifying the un
certainties is a necessary first step toward data assimilation. One way to 
estimate model uncertainties is to use ensembles of simulations, to 
compute statistics from the ensembles, such as spread and quantiles, and 
to analyze the probabilistic distribution. Ensemble methods in ocean
ography were first introduced for data assimilation purposes (e.g. 
Evensen, 2003), and then have been used as well for uncertainties es
timates or budgets in open ocean (e.g. Lucas et al., 2008) or coastal 

Fig. 1. (A) Location of the Gulf of Tonkin. (B) Location of the rivers, section and data used in the paper. The thin grey line indicates the bathymetry isoline of 30m. 
Red numbers indicate the name of the Red River mouths, while black numbers show the name of the meteorological stations (on islands). 
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ocean studies (e.g. Auclair et al., 2003; Kim et al., 2011), and general
ized to coupled models such as physical-biogeochemical ones (e.g. 
Vervatis et al., 2021a). Probabilistic modeling is also implemented in 
numerical weather prediction systems, such as ECMWF1, while ensem
bles of models are used to assess seasonal to interannual predictions (e.g. 
Kirtman et al., 2014; Herrmann et al., 2021). 

Previous studies have evidenced the large impact of errors in the 
surface forcing on coastal simulations (e.g; Auclair et al., 2003; Vervatis 
et al., 2021b). Given the role of wind forcing on the Red River plume 
properties evidenced in ND21, we aim in the present study at analyzing 
the sensitivity of the coastal dynamics to uncertainties on wind forcing 
and to evaluate the robustness of the plume characteristics described in 

ND21. More specifically, we use stochastic modelling to address the 
following questions: what are the spatial and time structures of the 
sensitivity of the coastal dynamics and tracer dilution pathways to wind 
perturbations? Can we identify the physical processes at work? Are the 
plume properties, and in particular the typical patterns identified by the 
cluster analysis of ND21, robust to wind errors? In the final section, we 
take a preliminary look at the problem of data assimilation: could the 
model errors due to wind uncertainties estimated from the ensembles be 
used in the context of HF radar data assimilation? 

Our approach is based on the analysis of two ensembles of simula
tions generated by perturbing the wind forcing. A first step is to create 
the wind perturbations and to examine if the wind uncertainty is real
istically reproduced by comparing the ensemble wind speed with 
observational wind data from meteorological stations and a satellite 
product. We then examine the response of the model to those un
certainties, at the surface and in the subsurface layer. We focus on the 

Fig. 2. (A): Surface tracer concentration (arbitrary unit/m3), averaged from June to August 2015 over the days when the plume is classified into cluster 3. (B): Same 
as (A) but for SSS. (C): Same as (A) but for 10m wind from ECMWF (in m/s). (D–F): same as (A–C) but averaged over the days when the plume is classified into 
cluster 4. The contour lines in (A, D) show the area where the surface concentration is equal to or higher than 7 unit/m3, which is the threshold to identify the 
river plume. 

1 https://www.ecmwf.int/en/about/media-centre/focus/2022/30-yea 
rs-ensemble-forecasting-ecmwf 
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plume properties by revisiting the results of ND21. We also discuss the 
impact of wind uncertainties on freshwater transport through a coastal 
section. Finally, we explore the possibility of using the ensembles as a 
proxy of prior errors for assimilating surface velocity observations from 
high-frequency radars. We start by assessing whether the estimated 
uncertainties from the ensemble are statistically consistent with the 
model error deduced from model-observation misfits. We then conduct a 
very preliminary analysis of the impact of such observation on model 
variables. 

The period of study is from June to August 2015. It corresponds to 
the rainy season with high runoff and the period of strong wind 
variations. 

This paper’s outline is as follows. In Section 2, the method to create 
the wind perturbations is described; then, the model’s ability to repro
duce the wind uncertainty is assessed. The results from the ensemble 
simulation on the sensitivity of the ocean variables and of the plume 
variability are presented in Section 3. In Section 4, we discuss the use of 
the ensembles for data assimilation. The conclusion and perspectives are 
provided in Section 5. 

2. Methods 

2.1. SYMPHONIE model and reference configurations 

The simulations are conducted with the SYMPHONIE model imple
mented over the Gulf of Tonkin. Both SYMPHONIE and the Gulf of 
Tonkin configuration (hereafter named GOT_REF) have been described 
in detail in ND21. We just recall essential information here. 

SYMPHONIE is a numerical model that solves the primitive, Bous
sinesq, hydrostatic equations of ocean circulation (Marsaleix et al., 
2006; 2008) and has been specifically designed to simulate the coastal 
ocean. For instance, SYMPHONIE can accurately represent tides, inter
tidal areas, and the oceanic response to high-frequency atmospheric 
forcing in shallow areas. It can run on highly variable polar or bipolar 
grids in order to refine the resolution locally, for instance at river mouths 
or inside estuaries. 

The GOT_REF configuration has first been set-up by Piton et al. 
(2020) and has then been updated by ND21. It has a variable horizontal 
grid, with a fine horizontal resolution of 300m near the Red River 
mouths and a coarser resolution of 4.5km near the open boundary. The 
vertical discretization consists of 20 sigma levels. At the open bound
aries, tidal surface elevation and current at K1, O1, P1, Q1, K2, M2, N2, 
S2, M4 frequencies from the tidal atlas FES2014 (Lyard et al., 2021) are 
taken into account. The model is also forced by daily averages of sea 
surface height, 3D zonal velocity, meridional velocity, temperature, and 
salinity fields, from the global analysis (hereafter ‘OGCM’) produced by 
Mercator-Océan International and provided by Copernicus Marine Sys
tems (CMEMS) at a resolution of 1/12◦ (Mercator Océan, 2020). We 
adopted the implementation of open-boundary conditions as described 
in Toublanc et al. (2018). At the surface, operational European Centre 
for Medium-Range Weather Forecasts (ECMWF) analyses (with a spatial 
resolution of 1/8◦) are used to provide 3–hourly wind, precipitation, 
solar energy, atmospheric temperature, dew-point temperature, and 
surface pressure. Fluxes of momentum, heat, and freshwater are then 
computed using the bulk formulae of Large and Yeager (2004). The K-ε 
turbulence closure scheme is used, with the implementation described in 
Michaud et al. (2012). The QUICKEST scheme is used for the advection 
and diffusion of tracers (Neumann et al., 2011). Horizontal advection 
and diffusion of momentum are respectively computed with a 4th-order 
centered scheme and a bi-harmonic scheme, while a 2nd-order centered 
scheme is used for vertical advection of momentum (Damien et al., 
2017). 

There are 3 main river systems in the gulf: (1) the Red River, (2) the 
Ma, Yen, and Lam rivers south of the Red River delta and hereafter 
referred to as the ‘southern rivers’, and (3) six rivers north of the delta 
and along the Chinese coast, hereafter referred to as the ‘northern rivers’ 

(Fig. 1B). In GOT_REF, the Red River is configured with daily discharge 
data obtained from the National Hydro-Meteorological Service of Viet
nam (NHMS) at Son Tay hydrological station (close to the apex of the 
delta); the discharge is then split into 7 distributaries using the results of 
Vinh et al. (2014). In this configuration, the delta is represented by its 
main 7 distributaries. Each distributary is connected to the ocean 
through an estuary with a realistic bathymetry. The estuary is extended 
upstream by a channel with an idealized rectangular shape and sloping 
depth to damp the tidal propagation (the channels are illustrated by the 
red boxes numbered (1) – (7) in Fig. 1). The length of the channel is 
chosen to exceed the salt water intrusion as explained in ND21 and 
illustrated in Nguyen-Duy, (2022). For the smaller rivers at the north 
and south of the delta (blue and cyan points in Fig. 1), there are no es
tuaries and channels; the salinity and temperature are prescribed to 
seasonally varying values. The boundary condition at the most upstream 
entry point of the channel or directly at the river mouth into the ocean 
(southern and northern rivers) is described in detail in Appendix B of 
ND21 (provided in supplementary material) and is not repeated here. In 
particular, the current is adjusted to the dynamics of the downstream 
flow and is not necessarily uniform on the vertical. For the southern and 
northern rivers, monthly mean climatological runoffs from NHMS and 
from Gao et al. (2013) respectively are used. According to these data, the 
Red River, southern and northern rivers account for 60%, 30%, and 10% 
of the total runoff, respectively. To simulate the fate of the freshwater, 
we inject a passive tracer at the Red River and southern rivers’ entry 
points, with a concentration equal to 100 arbitrary unit/m3. The amount 
of tracer units entering the ocean is therefore varying according to the 
discharge. As in ND21, the river plume is identified as the area where the 
tracer concentration is equal to or higher than 7 unit/m3. Using the 
tracer (and not surface salinity) to detect the plume is intended to avoid 
the freshening effect due to the high precipitation in the summer. The 
threshold of the tracer is chosen so that the plume area fits with the area 
identified by a criterion on sea surface salinity (sea surface salinity less 
than 30) in the low precipitation period, as suggested by ND21. We have 
checked that the impact of evaporation (which tends to increase the 
tracer surface concentration) is not significant: we made a rough esti
mate of the ratio of the change of surface concentration over the surface 
concentration, averaged over the area of interest, and found that it 
varies around 4‰ and does not exceed 15‰. This is much smaller than 
the impact of the perturbations on the wind presented in the next sec
tions and is therefore neglected in the rest of the paper. 

The long reference simulation (GOT_REF) has been assessed with 
several datasets (Piton et al., 2021; Nguyen-Duy et al., 2021; Nguyen-
Duy, 2022) and shows adequate skills in reproducing the ocean state, 
both at the surface and sub-surface. Nothing indicates a major deficiency 
in the model or configuration. Therefore, in this paper, we do not 
duplicate the assessment published earlier but analyze the sensitivity of 
the simulations to wind forcing uncertainties. 

2.2. Ensemble method 

2.2.1. Generation of wind perturbation 
The ensemble is generated by perturbing the ECMWF wind forcing. 

The perturbations are meant to represent uncertainties of the ECMWF 
wind analyses. Several methods have been developed in past studies, (e. 
g., Ayoub et al., 2015, Storto and Yang, 2023, Vervatis et al., 2021a). It is 
difficult to compare their performance as they are not applied in the 
same purpose nor region and period of study. Here, we assume that the 
space and time structure of the wind uncertainties are the same as those 
of the wind variability as in some previous studies (Le Hénaff et al., 
2009; Barth et al., 2011; Quattrocchi et al., 2014; Ghantous et al., 2020). 
This allows us to build the perturbations from the bivariate (zonal, 
meridional) Empirical Orthogonal Functions (EOFs) of the wind vari
ability as described below. 

The perturbed wind condition: 

T. Nguyen-Duy et al.                                                                                                                                                                                                                           
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Wp(x, y, t) = W(x, y, t) +
∑n

k=1
ϕk(x, y)θk(t)σk(t) (1)  

where: 

Wp(x,y, t): perturbed wind vector 
W(x, y, t): original wind vector (ECMWF field) 
ϕk(x,y): spatial component of EOF mode k 
θk(t): temporal component of EOF mode k 
σk(t): pseudo-random number 
n: number of EOFs used to compute the perturbation (see Section 
2.2.2) 

Values of σk are pseudo-randomly drawn for each EOF mode k and 
each member; the distribution of σk is assumed to be Gaussian, with a 
zero mean and a given standard deviation ε. The choice of ε is discussed 
in Section 2.2.3. The σk are updated every 5 days independently from the 

previous drawn 5 days earlier, which reflects the synoptic weather time 
scale over the region (e.g. tropical cyclones); in between, they are lin
early interpolated. 

The perturbations are computed at the time step of the ECMWF 
fields, that is every 3 h. The resulting wind field is then linearly inter
polated at every model time step and spatially interpolated onto the 
model grid. 

The ensemble simulation is composed of 50 members, divided into 
25 pairs. In each pair, the absolute value of the perturbations is the 
same, but the signs are opposite. Therefore, at any time, the average of 
the ensemble perturbations is 0; the average response in the model will 
be different from zero because of non-linearities. 

The ensemble is run from 01 May 2015 to 31 August 2015, starting 
from initial conditions from the reference run. We then allow for a 1- 
month spin-up time of the ensemble. All the analyses are carried out 
from 01 June 2015 to 31 August 2015. 

In summary, to create the wind perturbations, the wind EOFs and 

Fig. 3. (A): Spatial component of EOF1 (Unit: m/s). The arrows show the direction while the color map shows the amplitude. The grid over which the arrows are 
shown is subsampled for the figure, but EOFs are calculated over the full-resolution ECMWF grid. The number indicates the explained variance. (B): Temporal 
component of EOF1. (C, D), (E, F), (G, H): same as (A, B) but for EOF 2, 3, 5, respectively. 
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pseudo-random numbers are needed. In the next two sections, we 
examine the choices applied for each of them. 

2.2.2. EOF analysis 
Fig. 3 shows the spatial and temporal components of the dominant 

bivariate EOFs that are computed from 3-hourly, 0.25 degree, ECMWF 
winds from 01 May to 31 August 2015, over the GOT domain and over 
the ocean points only. From 19 to 26 June, there was a tropical cyclone 
in the gulf. This extreme event is not within the scope of this study and 
not well represented by second-order statistics such as EOFs2, therefore 
we decided to exclude that period before calculating the EOFs. It means 
that we chose to set the perturbation to 0 during that period. Therefore, 
in the ensemble simulations, the model will run with unperturbed wind 
forcing. 

EOF 1 is the main contribution to the wind variability, explaining 
49.3% of the total variance. Its spatial component shows a wind mostly 
in the north-south (northwest-southeast) direction in the northern 
(southern) part of the GOT (Fig. 3A). The velocity is lower near the coast 
and reaches its highest values near the center - north of the gulf. The 
temporal components in May and June show negative values, which 
means that the wind direction is mostly northward, and corresponds to 
the summer monsoon (Fig. 3B). In early July, the wind direction reverses 
and a strong southward wind event is observed between 5–12 July. After 
this event, alternating southerlies and northerlies are observed. 

EOF 2 accounts for 21% of the total variance, representing mostly a 
zonal wind pattern with the largest velocity located north of the Hainan 
island. EOF 3 explains 5.1% of the total variance, with the lowest values 
at the center of the gulf (near 20◦N), and largest at the coast. 

The wind perturbations are built from Eq. (1) with a limited number 
n of EOFs. Here, it would seem reasonable at first glance to keep the first 
5 EOFs to reach at least 80% of the total variance. If we included higher 
modes, the percentage of accumulated variance would not change much 
(from EOF 5 to EOF 12 it would only increase from 80.3% to 88.6%, not 
shown). However, EOF 4 shows a very strong wind near the Hainan 
Strait (not shown). We suspect that its geometric pattern may not be 
realistic (due to an artifact of data assimilation). Therefore, in this study, 
EOF 4 is discarded and four EOFs are used (1, 2, 3, 5) with the total 
variance of ~ 77.5%. 

2.2.3. Estimation of the amplitude of the random error 
Another challenge of the perturbation generation is the choice of the 

amplitude of random errors. Quattrocchi et al. (2014); Vervatis et al. 
(2016), and Ghantous et al. (2020), in their stochastic studies in the Bay 
of Biscay, generated the ensemble with a Gaussian pseudo-random 
number generator with standard deviation ε = 0.3, which assumes 
that the standard deviation of uncertainty on the wind velocity is 30% of 
the standard deviation of the wind velocity. However, this value is not 
necessarily general as it is based on the assumptions of the authors for a 
specific situation. Pasmans and Kurapov, (2019) estimated ε from sat
ellite (ASCAT) and in situ observations of wind and from a Bayesian 
Hierarchical Model; in their case, ε differs according to the rank of the 
EOFs. They found that in their area of study, the value 30% is usually an 
underestimation, especially for the high modes. 

In this study, we use ASCAT wind products under the following 
assumption: the difference between ECMWF and ASCAT winds can be 
used as a proxy of the uncertainty on ECMWF fields. This allows us first 
to estimate ε, as described below, and then to verify the generated wind 
perturbations ensemble as presented in Section 2.3. 

The ASCAT product distributed by EUMETSAT (EUMETSAT, OSI 
SAF, 2021) contains level 2 wind data, retrieved from the Advanced 
Scatterometer (ASCAT) on MetOp-B satellite, at 12.5 km sampling res
olution (with an effective resolution of 25 km). It is available daily and 

can be downloaded from the JPL website: https://podaac.jpl.nasa. 
gov/dataset/ASCATB-L2-Coastal. The data are downloaded for the 
period from 01 May to 31 August 2015. The ASCAT User Manual in
dicates that the accuracy is better than 2 m/s in wind component stan
dard deviation with a bias of less than 0.5 m/s in wind speed. 

Since ASCAT data are provided on different tracks on different days, 
they are first linearly interpolated onto the ECMWF grid. Then, the daily 
fields where less than 50% of the data are valid over the study region are 
filtered out; over the 123 days of this period, only 72 days (~58.5%) are 
used for further calculation. 

To estimate ε, our approach is much simpler than the one of Pasmans 
and Kurapov, (2019) and does not introduce modal dependency. Since ε 
is built as the ratio between the standard deviation of uncertainty on the 
wind velocity and the standard deviation of the wind, then here ε is 
computed as the standard deviation of the difference between ECMWF 
and ASCAT data (std(diff)) divided by the standard deviation of the 
ECMWF field (std(ECMWF)). For both the zonal (Uw) and meridional 
(Vw) components, this ratio is higher at the Red River coast and can be 
locally higher than 1 (not shown). Further offshore, this ratio decreases 
to less than 0.5. On average over the domain, this ratio is around 0.8 for 
Uw and 0.7 for Vw. In conclusion, these comparisons show that it seems 
reasonable to choose the value of ε within the range [0.5-1.0]. However, 
we did not take into account the ASCAT measurement error in the above 
calculations. This is equivalent to assuming that the differences between 
ECMWF and ASCAT winds are due to uncertainties on ECMWF winds 
only; this implies that the variability of ECMWF wind uncertainties are 
likely overestimated. We therefore choose the conservative value of ε =
0.6 for the reference ensemble called ENS_REF. 

Higher values of ε near the coast are expected mainly because of the 
insufficient effective resolution of the ECMWF model for solving the 
atmospheric dynamics at the land-sea interface. Let’s note however that, 
by constructing the perturbations from the wind fields EOFs, we 
consider only the uncertainties in the ECMWF model space; in other 
words, we cannot represent sub-grid scale errors or other omitted pro
cesses. Nevertheless, to better reproduce the higher wind uncertainty 
close to the coast and to assess the sensitivity of the river plume due to 
coastal wind errors, we configure another ensemble, called ENS_COAST, 
by doubling in (Eq. (1)) the contributions of EOF 3 and EOF 5, which are 
both locally intensified at the coast (Fig. 3). 

Both ensembles have 50 members. The size of the ensembles has 
been determined (not shown) as the best compromise between cost 
(computing and storage) and keeping a large enough number of mem
bers to yield reasonably robust second-order statistics. 

Table 1 summarizes the list of simulations used in this paper. 

2.3. Ensemble verification 

In this section, we will analyze the simulated wind uncertainties 
from the ensemble using wind measurements first from satellite (ASCAT 
mission) and then from marine stations. The purpose is to assess whether 
the ensemble wind can represent the error of the wind forcing. In other 
words, we address the meaningfulness of the wind perturbations. 

We use the ASCAT observations first, considering that the misfits 
between ASCAT and ECMWF wind velocity components are represen
tative of ECMWF wind velocity errors, as stated in Section 2.2.3. Our 

Table 1 
List of simulations.  

Name Number of 
members 

Characteristics 

GOT_REF 1 reference simulation (with unperturbed winds) 
over 2010-2016 and described in ND21 

ENS_REF 50 Reference ensemble with ε = 0.6, over May-August 
2015 

ENS_COAST 50 Same as ENS_REF but the amplitude of the 
contributions of EOF 3 and EOF 5 is multiplied by 2  

2 Extreme events contribute asymmetrically to statistical distributions, and as 
such are better represented by odd-order moments such as skewness. 
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approach is explained in the Appendix. For each wind component, the 
variance over the ensemble and time samples (hereafter ’ensemble-time 
variance’) (left-hand side term of Eq. (4) in the Appendix) is compared to 
the variance of the differences between ASCAT and ECMWF over the 
study period minus the variance of ASCAT errors (right-hand side terms 
of Eq. (4)) (Fig. 4). For the latter, we take the maximum value, i.e. 4 m2/ 
s2 (see 2.2.3). For both Uw and Vw components, the variance of the 
misfits varies between 4 and 8 m2/s2 offshore and is the largest near the 
Red River delta, with values higher than 10 m2/s2 (Fig. 4A, B). 

The variance of ENS_COAST shows different spatial patterns (Fig. 4B, 
D) which are consistent with those of the main EOFs. It is characterized 
by low values near the Red River delta (5 - 9 m2/s2 and 10 - 20 m2/s2 for 
Uw and Vw respectively), which is consistent with the variance of the 
misfits minus the variance of the error. The ensemble-time variance for 
Uw reaches its maximum near the southern boundary (around 17 m2/s2), 
which is much higher than the variance of the misfits minus the variance 
of the error. The ensemble-time variance for Vw is maximum in the north 
of the gulf (more than 30 m2/s2). In ENS_REF (not shown), the variance 
is slightly smaller along the Vietnamese coast than in ENS_COAST, 
which is consistent with the lower magnitude of EOF 3 and 4 added to 
the perturbation by structure. Overall, the ensemble-time variance is 
larger than the variance of the misfits (minus the variance of ASCAT 
errors). We interpret these inconsistencies as an indication of two 
possible limitations of our approach: (1) ECMWF errors are biased in the 
region (their mean over the period of study is non null) which means 
that we do not represent with our ensemble-time samples all the ECMWF 
errors (since our samples represent their variable part only, and not the 

systematic errors), (2) the error variance is not stationary in time and so 
we cannot adopt the formalism described in the Appendix to assess the 
ensemble consistency using ASCAT observations. 

Locally, in the center of the gulf for Uw and south of 19◦N for Vw, the 
variance of the misfits is lower than 4 m2/s2, meaning that the right- 
hand side term of Eq. (3) (see Appendix) is negative, and Eq. (3) 
cannot hold. This suggests that ASCAT errors are overestimated there or 
that ECMWF errors have a non-zero mean over the period of study 
(contrary to our hypothesis). 

With ENS_COAST, the ECMWF errors are better represented than in 
ENS_REF close to the Vietnamese coast (not shown) but, as ENS_REF, the 
ensemble is underdispersive. 

Another way to assess the ensemble is to check its ability to represent 
the wind conditions from different observational datasets. Here, wind 
data (hereafter WIND_ISLAND) is provided by Viet Nam Meteorological 
and Hydrological Administration. These data contain the wind speed 
measured at 10m every 6 h; the instrumental error is not reported. We 
use observations from 3 stations, located on islands (Fig. 1B): Bach Long 
Vy (~120 km from the coast), Hon Ngu (~4 km from the coast), Hon 
Dau (~1 km from the coast). WIND_ISLAND is used as a ‘truth’ value to 
validate the wind ensemble. Since WIND_ISLAND represents the wind 
velocity at a station, while the ensemble wind represents that in a grid 
point, WIND_ISLAND velocity is compared to the ensemble wind ve
locity inside a box of 0.25 degrees around the station. We also use 
ASCAT wind speed data at the closest point to the station within 0.25 
degrees. 

In Bach Long Vy, most of the time (71 over 85 days), ENS_REF is able 

Fig. 4. (A) Variance of the difference between ASCAT and ECMWF wind, for Uw component. (B): Ensemble variance of ENS_COAST, for Uw component. (C–D): same 
as (A–B) but for Vw component. Units are m2/s2. Different color scales are used for Uw and Vw, and for the variance of the ASCAT-ECMWF difference and the 
ensemble variance. 
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to span the full range of the WIND_ISLAND (Fig. 5A). This is likely due to 
the fact that the wind data from Bach Long Vy is assimilated into the 
ECMWF forecasting system. Also, the variance budget analysis shows 
that this station is located in the area where the variance of the ensemble 
is consistent with the variance of the ECMWF-ASCAT misfit. ENS_COAST 
does not produce a much larger ensemble range, which is as expected 

since the amplitude of EOF 3 and 5 is small near Bach Long Vy. When 
considering the range between the first and the third quartile only, the 
numbers of days that the speed of WIND_ISLAND falls within this range 
are similar for ENS_REF (31 days) and ENS_COAST (33 days). Similarly, 
ASCAT follows the same trend as WIND_ISLAND. The mean of the ab
solute bias between the ASCAT and WIND_ISLAND is 1.87 m/s, 

Fig. 5. The ensemble range of the daily mean wind amplitude from ENS_REF (shaded area), and the daily mean wind of WIND_ISLAND (black line) in Bach Long Vy 
(A), Hon Ngu (B), and Hon Dau (C). Units are m/s. 

T. Nguyen-Duy et al.                                                                                                                                                                                                                           



Ocean Modelling 186 (2023) 102256

9

equivalent to 26.6% of the ECMWF mean speed. 
In Hon Ngu, the ECMWF wind seems to overestimate the wind speed 

of the WIND_ISLAND in June, but it is getting closer from July (Fig. 5B). 
The effect of the stronger perturbation near the coast is clearer, with the 
larger ensemble range shown in ENS_COAST. The number of days that 
the WIND_ISLAND stays within the ensemble range is 71 (for ENS_REF) 
and 77 (for ENS_COAST). Within the 1st–3rd quartile, the numbers of 
days are 18 and 20, for ENS_REF and ENS_COAST, respectively. The 
ASCAT data availability is limited here since the station location is 
adjacent to the coast. In all three data points, the wind speed from 
ASCAT overestimates WIND_ISLAND, however, it is still lower than the 
upper value of the ensemble range. 

In Hon Dau, ECMWF and WIND_ISLAND wind velocities show 
similar variations, however, ECMWF data overestimate the observed 
one (Fig. 5C). Compared to other stations, the number of days when the 
WIND_ISLAND falls between the ensemble range is lower, reaching 63 
(for ENS_REF) and 67 (for ENS_COAST), which correspond to 74% and 
79% of the total days. The limited performance of the ensemble in this 

station can be explained by the underdispersion near the coast, as evi
denced in the variance budget analysis. Similarly, due to the location of 
the station, most of the time, ASCAT data is not available in Hon Dau. 

Overall, although both ensembles are underdispersive near the coast, 
they still show some skill at reproducing the wind uncertainty. Firstly, 
the ensemble can exhibit sharpness, meaning that the spread is small 
where the uncertainty is small and vice versa. Here, the range of the 
wind perturbations is smaller offshore and larger near the coast, which is 
consistent with the spatial error patterns estimated by ECMWF and 
ASCAT. Secondly, there is a bias between the two observational data 
sources (ASCAT and WIND_ISLAND), however, most of the time (at least 
74%), the WIND_ISLAND amplitude stays within the ensemble range. 
Finally, ENS_COAST shows a better performance in the coastal area, 
which is consistent with the perturbations construction. Therefore, in 
the next sections, we will focus mostly on analyzing the results from 
ENS_COAST. 

Fig. 6. Time-mean of ENS_COAST spread for wind stress, for the zonal (A) and for meridional (B) components. Spatial mean of the wind stress spread inside the red 
box, for the zonal (C) and meridional component (D). Units are N/m2. 
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3. Sensitivity analysis 

In this section, we will present the main results of the paper. We will 
first examine the sensitivity of the wind stress, then of various ocean 
variables, and, finally, of different characteristics of the river plume. 

3.1. Wind stress 

Fig. 6A and 6B show the mean ensemble spread of wind stress over 
the period, for the zonal (τx) and meridional (τy) components, respec
tively. The spread of τx is higher in the south of the gulf, while the spread 
of τy is higher in the north. This spatial structure is consistent with the 
variability of ECMWF wind velocity as depicted by EOFs 1 and 2, for τy 
and τx, respectively (Fig. 3). The maximum spread of τy is twice as large 

as the spread of τx, indicating that the spread affects not only the 
amplitude but the N-S direction as well. 

Fig. 6C and 6D show the spatial mean over the red box of the un
perturbed wind stress and of the ensemble spread as a function of time 
for the zonal and meridional components respectively. We first note that 
the time series for both τx and τy of the two ensembles only differ over 
short periods of a few days and, in these days, the spread of ENS_COAST 
is always larger than ENS_REF. Therefore, in the description below we 
will not differentiate the two ensembles. 

Most of the time, the mean meridional wind component over the 
study domain is from the south. In the first three weeks, the zonal 
component is from the east; then it veers from the west. The wind stress 
is stronger in June-July than in August and corresponds to the summer 
monsoon. Disregarding the tropical cyclone occurring during June 

Fig. 7. (A): time-mean spread of the zonal surface current of ENS_COAST (cm/s). (B): same as (A) but for the meridional component. (C): Spatial mean of the 
ensemble spread of the zonal surface current, for ENS_REF and ENS_COAST (red and blue line, respectively, left axis). Spatial mean of the surface current in GOT_REF 
(unperturbed simulation, right axis). (D): same as (C) but for the meridional component. Units are cm/s. 
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20–26, we can distinguish four main periods. In June, the southeasterly 
wind stress is moderate (τx < 0.04 N/m2 and τy < 0.1 N/m2); the mean 
spread does not exceed 0.03 N/m2 for τx and 0.05 N/m2 for τy. Then, 
from July 5–12, the wind stress weakens, but the meridional component 
reverses and the wind is mainly southward (τx < 0.03 N/m2 and τy <

0.06 N/m2). The ensemble spread of τy reaches about 0.12 N/m2 which 
is by far the largest value of the ensemble spread for both τx and τy. In 
concrete terms, this means that some members have opposite meridional 
wind directions. From July 20 – Aug 1, we observe strong wind stress 
from the southwest, with the zonal and meridional components larger 
than 0.05 N/m2 and 0.1 N/m2 respectively with a peak of 0.17 N/m2. 
The mean spread is large as well, reaching ~50% of the mean wind 
stress amplitude for τx, and ~30% for τy. Finally, from August 5–31, the 
wind stress is weak, mostly lower than 0.04 N/m2 for both components, 
except around August 15, when the southwesterlies strengthen for a few 
days. The spread is relatively weak as well but can exceed the wind stress 
amplitude (for τy only). 

In the rest of Section 3, we characterize the impact of the wind stress 
perturbations on the main ocean variables of interest for each of these 
four periods (Section 3.2), then the impact on the Red River plume 
properties (Section 3.3) and on the freshwater transport (Section 3.4). 

3.2. Ocean variables 

3.2.1. Surface current 
Fig. 7A and 7B show the mean ensemble spread of the surface current 

over the period, for U and V components, respectively. The spread is 
about 6-8 cm/s on average over the area. The largest values (> 10 cm/s) 
are found for the coastal current, between 19.8–20.2◦N for U and 
18.8–20.5◦N for V. As seen in Section 3.3, for a given day, the coastal 
current can have different directions for different members. 

Fig. 7C and 7D show the temporal evolution of the spatial mean of 
the ensemble spread of the surface current over the area shown in 
Fig. 7A, B for ENS_REF and ENS_COAST. Both ensembles show a similar 

trend, as for the wind stress shown in Fig. 6. For ENS_COAST, in June, 
the spread of U and V components is similar, approximately 4 cm/s, 
while the mean current is around 6 cm/s. Then, from July 5, the spread 
increases to around 6 cm/s and can reach more than 8 cm/s in some 
events. 

From July 05–10, the spread exceeds 8 cm/s for U and 10 cm/s for V. 
This peak occurs at the time when the wind stress amplitude is weak 
(Fig. 6C, D). The spread of the bottom current also shows a maximum 
(2–4 cm/s) showing that strong wind perturbations have a considerable 
impact on the wind-driven current both at the surface and subsurface. 

Other high mean spread events occur from Aug 5–10 and Aug 20–25, 
but there is no clear signal of increased wind stress spread. The spread 
(higher than 8 cm/s for both components) is larger than the magnitude 
of the current (fluctuating around 0 for U and less than 5 cm/s for V) 
suggesting that the simulated result of the instantaneous current is not 
robust (at least in the low wind or changing wind conditions). Inter
estingly, in all 3 events, high spreads occur when the current direction 
changes. Indeed, during these transition periods, the current weakens 
and becomes more sensitive to wind perturbations. 

Over the whole period, the spread of ENS_COAST is higher than 
ENS_REF, for both components. We, therefore, expect ENS_COAST to 
feature larger uncertainties on the plume. 

3.2.2. Sea surface salinity 
The time mean spread of the SSS is the largest along the vietnamese 

coast; further offshore it falls below 0.5 (Fig. 8A). At the river mouths, 
the spread is very low due to the homogeneity within the ensemble of 
the riverine water properties which are set by the runoff and the tidal 
mixing. Downstream, the spread increases and can reach 2 near the Yen 
river. The high spread in the plume can be due to two reasons. Firstly, 
wind perturbations affect the wind-driven current at the surface, and 
therefore the horizontal advection. Secondly, they have an impact on the 
vertical mixing. In that case, the uncertainties on the plume should also 
be significant at the subsurface. In the next section, the subsurface 

Fig. 8. (A) Temporal mean of the spread of the ENS_COAST SSS. (B): Hovmöller diagram of the ENS_COAST spread of SSS at 20◦N.  
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spread will be examined. 
Fig. 8B shows that the spread is also highly variable in time. From 

June to August, it increases all along the coast with the largest values 
north and south of 20◦N in August. At 20◦N, interestingly the spread 
decreases close to the coast between July 25 and August 1, likely 
because the plumes from the different rivers are not connected anymore 
during this period. The maximum spread occurs around August 10, just 
after a peak in the spread of the coastal current. 

3.2.3. Subsurface temperature and salinity 
The vertical section at 19◦N of the ensemble spread for temperature 

on August 20 shows a maximum of 1.9◦C at around 25m depth (Fig. 9A). 
By comparing with the same section of temperature from GOT_REF, we 
find that the maximum spread occurs at the maximum gradient depth 
(base of the mixed layer) (Fig. 9B) consistently with the findings of past 
studies (e.g. Andreu-Burillo et al. (2002) and Ayoub et al. (2015)). 

For salinity, the maximum spread occurs near the surface (Fig. 9C), 
where the salinity is low due to runoff. Similar to temperature, the 
maximum spread should occur where the gradient is the highest. For 
salinity, the horizontal gradient is large where the river plume is present 
(Fig. 9D), therefore the spread is highest at the surface. The vertical 
gradient of salinity is small except in the area strongly influenced by 
runoff. Uncertainties in temperature and in salinity have thus a distinct 
spatial distribution due to the different underlying driving processes. 

3.3. River plume 

In this section, we will examine the sensitivity of the river plume to 
the wind forcing uncertainty, including the surface plume area and the 
plume thickness. Here, the plume is identified as the area where the 
passive tracer concentration is equal or higher than 7 arbitrary units/m3, 
as explained in Section 2.1. 

3.3.1. Plume surface area 
The runoff of the Red River and southern rivers, the plume area in the 

GOT_REF and in the ENS_COAST members are shown in Fig. 10A. 
The river runoff is almost stable around 4000 m3/s until July 25, 

apart from two small peaks in early July. It then increases, exceeds 8000 
m3/s between August 1-5 and then stabilizes around 6000 m3/s from 
August 10 until the end of the study period. 

In GOT_REF, the plume area fluctuates around 5000 km2 until July 5, 
when it starts increasing, reaching ~12000 km2 on July 15. It then 
decreases, down to a value below 5000 km2 at the end of July, then 
increases again until August 22-25 when it reaches a maximum value of 
~20000 km2. These plume area variations are clearly linked to the 
runoff variations, with a lag in time of 10 to 15 days, but, as discussed in 
ND21, wind strongly impacts the plume area through dilution and 
horizontal transport. Interestingly, the members have a different 
behavior from August 13-15 (when the wind stress increases for a few 
days): in some members the plume area continues increasing, while in 
others, it decreases more or less and, in some cases, stays below its 
August 15 value (less than 10000 km2) until the end of the run. In one 
member, the plume area reaches up to 25000 km2 on August 25. 

On average, the spread of the plume area of ENS_REF is around 1452 
km2 (not shown), which is equal to 18.6% of the plume area in 
GOT_REF. The corresponding values for ENS_COAST are 1607 km2 and 
20.4%, suggesting that the plume area is also sensitive to the coastal 
wind error. Most of the time, the spread is smaller than 2000 km2 

(Fig. 10B). The peak of the spread (~4000 km2) occurs between 20 - 26 
August; it then represents about 20% of the plume area. The spread 
reaches another peak (~2000 km2) between July 20-28, corresponding 
to about 40% of the plume area. The spread of the plume area is 
therefore large in two situations: when the wind stress spread is large 
(July 20-28) as expected, and when the plume is the most extended (end 
of August). 

3.3.2. Sensitivity of the plume pattern with respect to the wind uncertainty 
In ND21, using daily fields of the tracer concentration from a 6-year 

simulation, the surface plume patterns have been classified into 4 clus
ters, as reminded in the introduction. In this section, we examine the 

Fig. 9. (A): Ensemble spread of temperature at 19◦N on August 20, 2015 (◦C). (B): Vertical section on the same day from GOT_REF (unperturbed simulation) (◦C). (C, 
D): same as (A, B) but for salinity. 
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robustness of this classification with respect to the wind perturbations. 
More precisely, we consider the clusters of ND21 trained over 2011- 
2016, hereafter called the reference clusters: by construction, each 
daily plume pattern is associated to a cluster. In this paper, we focus on 
the June-August 2015 period, and check whether the daily patterns in 
each ensemble member of ENS_COAST are associated to the same cluster 
as the reference run pattern. 

To do that, for each member, the daily plume pattern is identified by 
the tracer concentration threshold (>=7 unit/m3). Then, the distances 
between this daily pattern and the centroids of the 4 reference clusters 
are computed. Finally, the daily pattern is attributed to the cluster with 
the minimum distance. 

We define a simple Maximum Likelihood estimate by choosing, for 
each date, the cluster that occurrs the most frequently across the 
ensemble (denoted as MAX estimate). Fig. 11A shows that the MAX 
clusters are the same as the reference clusters (REF on the figure), except 
on July 20 and 21 when the most likely cluster changes from 4 to 2 and 
3, respectively. Therefore, we conclude that within our experimental 
conditions the findings of ND21 are yet unchallenged and robust with 
respect to wind perturbations. 

In GOT_REF, the most frequent cluster over the study period is cluster 
3 (54/92 days, Fig. 11A). It is also the most stable one, in the following 
sense: across the ensemble, we do not observe many changes from 
cluster 3 to other clusters; if it changes, it mostly changes to/from cluster 
1 (5 July) or cluster 2 (5 August). The other two most frequent clusters in 
GOT_REF are cluster 2, which is mainly associated with low wind con
ditions, and cluster 4 which also corresponds to low wind but with a 
larger runoff. 

Cluster 1 happens in just 2 days (06 and 07 July) in GOT_REF. In 
ND21, it is described as the pattern that occurs in the lowest runoff 
period and winter monsoon, so it is not expected to occur much in the 
rainy season in July. When submitted to the wind perturbations, the 

classification fluctuates between clusters 1 and 2 suggesting that the 
plume pattern on 06 and 07 July in GOT_REF is on the edge of cluster 1 
and cluster 2. In that case, the attribution to cluster 1 in GOT_REF may 
not be as robust as the one to cluster 3. 

The plume pattern appears to be the least robust to the wind per
turbations over 3 periods: 5-22 July, 5-12 and 21-28 August, when 
clusters 2 and 4 occur. During these periods, at least 3 different clusters 
occur in different members on the same day (Fig. 11B). For example, on 
August 21, the reference cluster is 2; it only happens in 21 members, and 
17 other times it is classified as cluster 4. This suggests that, these days, 
the plume patterns vary significantly, and using the MAX estimate may 
not be sufficient to conclude about the sensitivity of the plume pattern. 

In order to have a more in-depth view about how much the cluster 
attribution changes across the ensemble and quantifying the uncertainty 
of the classification, we calculate the ratio D = D1/D2 * 100%, while D1 
is the distance from the plume to the nearest cluster, and D2 is the 
distance from the plume to the second-nearest cluster (Fig. 11C). If D is 
small, the plume pattern robustly belongs to the specific cluster; in 
contrast, a larger value of D indicates that it stays near the edge of the 
two clusters. It is partly similar to the membership coefficient presented 
in Delaval et al. (2021), which is used to describe how closely the data is 
located to the cluster center, taking into account the pre-defined overlap 
of the cluster (fuzziness coefficient) in the Fuzzy C-Means (FCM) clus
tering algorithm. In contrast, our classification approach does not allow 
overlapping between different clusters. We first find that in GOT_REF, D 
can exceed 70% meaning that the classification is then less robust. For 
instance cluster 3 on June 21 or on July 27 is less robust than on August 
1st. The periods of high value of D coincide with the periods of highly 
variable clusters across the ensemble (Fig. 11A, B) (5-22 July, 5-12 and 
21-28 August), hinting at the fact that another possible measure of 
classification uncertainty (not tested) could be the spread of cluster 
attribution. 

Fig. 10. (A): Plume area (in km2) from GOT_REF (red line, left axis). Plume area from all the members of ENS_COAST (black line, left axis). Daily runoff from the Red 
River and southern rivers (blue line, right axis, in m3/s). (B): Ensemble spread of the plume area of ENS_COAST in km2 (black line, left axis). Ratio between the 
ensemble spread (of ENS_COAST) and the plume area from GOT_REF (red line, right axis). 
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We now illustrate through an example a change of attribution, 
examining two members of the same pair. In member 33 (of 
ENS_COAST), the plume is classified as cluster 3 most of the time unlike 
GOT_REF. Fig. 12 shows the mean surface tracer concentration, current 
and wind velocity over 5-10 July. The plume is advected northward; the 
plume from the Lam river is disjoint from the other rivers plumes, which 
is indeed a characteristic of reference cluster 3 (Fig. 12A). Close to the 
Red River delta, the wind is stronger and favors a northward advection, 
consistently with the surface tracer distribution. In member 34, the 
plume extends in a narrow band along the coast and is classified as 
cluster 1 (Fig. 12D). The strong northeasterly and westerly winds in the 
north and south of the GOT respectively trigger the southward coastal 
current, which explains why the tracer is trapped near the coast. 

Fig. 11 evidences the impact of wind perturbations on the shape of 
the plume. It might be convenient for applications to further quantify the 

uncertainties on the plume location at given dates. This can be achieved 
by mapping the probability of occurrences of the plume, as done for 
three specific events on Fig. 13. 

From 8-12 July, the spread of meridional wind stress is the highest 
(Fig. 6D) and there is also an increase of the plume area spread 
(Fig. 10B). On July 10, the plume is advected southward, with half of the 
members extending to around 25 km from the coast. This pattern is 
consistent with the fact that cluster 2 is the most likely in that period 
(Fig. 11A), but that all 4 different clusters are found in the ensemble on 
this day (Fig. 11B). 

From 25 - 30 July, both the wind stress of GOT_REF and the spread of 
wind stress reach high values (Fig. 6C, D). It is also the time when the 
ratio between the spread of the plume area and the unperturbed plume 
area is the largest over July and August (Fig. 10B). On 25 July, along the 
coast from 20 – 21◦N, the plume seems to be stable across the ensemble, 

Fig. 11. (A): Classification of the daily plume patterns in June-July 2015 across the ENS_COAST ensemble, using the reference clusters from Nguyen-Duy et al. 
(2021). REF shows the same classification for the (unperturbed) GOT_REF run. MAX is the cluster with the MAXimum likelihood, defined as the most frequent cluster 
drawn within the 50 samples shown underneath. (B): The number of members in each cluster over the period. (C): The ratio D = D1/D2 * 100%, where D1 is the 
distance from the plume pattern to the nearest cluster centroid, and D2 is the distance to the second-nearest cluster centroid. 
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as shown by the small difference between the 5-member and 45-member 
plume occurrence (Fig. 13B). It is consistent with Fig. 11A where all 
members belong to cluster 3. In contrast, along 20◦N, the spread is large: 
for half of the members, the plume extends to 106.3◦E, while 5 members 
reach ~107.4◦E, which is more than 100km from the coast. A large 
spread is also observed on the Lam river plume near 19◦N. As discussed 
previously, cluster 3 is found to encompass plumes with similar shapes 
but with different areas. Note that the plume in the unperturbed run 
corresponds to the first decile of occurrence, with a large extension 
offshore. 

On August 22, the plume in GOT_REF extends both offshore and 
along the coast and is associated to cluster 4. From the analysis of the 
surface current variability over the preceding days (not shown), we 
attribute this pattern to the succession of two types of wind conditions: 
(1) summer monsoon winds conditions and large runoff (> 6000 m3/s) 

over August 15-20 (Figs. 6D and 10A) leading to an offshore extension of 
the plume over the shelf; the plume’s pattern is associated to cluster 3. 
(2) the wind stress intensity decreases after August 20 and the plume 
flows downstream along the coast. On August 22, the plume offshore 
represents a thick layer (thickness of 8-12 m) of freshwater which is 
older than the newer plume along the coast whose thickness does not 
exceed 5 m. The plume occurrence shows strong variations (Fig. 13C). 
Along around 20.6N, 5 members can extend to 108.8E, while 45 mem
bers extend to 107.3E only. A large spread is also observed near 19.5◦N. 
The plume pattern classification shows that on this day, the plume 
mostly belongs to cluster 4, but it can also be attributed to cluster 2 and 
cluster 3. It is the time when the wind stress and its spread are relatively 
low (Fig. 6), however, the runoff is high and the plumes span a large area 
in all members (Fig. 10) and the mean spread of the surface current 
reaches a local maximum on August 20-23 (Fig. 7C, D). We suggest that 

Fig. 12. (A): mean surface concentration (unit.m− 3) over 5 - 10 July for member 33. The dashed lines show the isobaths of 20m and 40m. (B): same as (A) but for 
surface wind velocity (m/s). (C): same as (A) but for surface current (cm/s). (D–F): same as (A–C) but for member 34. 

Fig. 13. (A): Quantiles of plume occurrence on 10 July 2015. The contour lines show the area where the plume occurs in 5 (blue), 25 (black) and 45 (red) times over 
50 members of ENS_REF. Cyan color shows the plume area from GOT_REF. (B): Same as (A) but for 25 July. (C): Same as (A) but for 22 August. 
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the sensitivity to the wind is itself sensitive to the runoff, and the vari
ation of the plume occurrence is strengthened by the high spread of the 
current. 

3.3.3. Plume thickness 
The plume thickness at 19◦N in GOT_REF is shown in Fig. 14A as a 

function of time. It is computed as the depth where the concentration is 
equal to 7 units/m3. In June, the plume is about 2 m deep and detached 
from the coast. Then, the thickness increases and the plume extends 
further offshore, reaching a maximum thickness of around 10m on 20-25 
July. In August, the plume thickness varies from 2 to 7m. 

The number of members in ENS_COAST where the plume is present is 
shown in Fig. 14B and the spread of the plume thickness, is illustrated in 
Fig. 14C. To better estimate the spread of the plume thickness, we look 
at the points where the plume is present in at least 30 members (dotted 
red in Fig. 14C). In June, the spread is less than 1m. The peak of the 
spread occurs on 09-13 July (> 3m), which is also when the wind stress 
spread is the largest, suggesting that the change of the wind condition 
also has a considerable impact on mixing. Other high values of the 
spread occur also in the period of 5-12 August and 21-28 August at times 
of large variations of the plume pattern (Fig. 10), and of peaks in the 
surface current spread (Fig. 7). 

In the period of 20-25 July, the plume in GOT_REF is the thickest, 
increasing from 3m near the coast to 10m offshore. The deepening of the 
plume is associated with an eddy (Fig. 15A), such as the one described in 
ND21. The map of relative surface vorticity on 24 July 2015 shows the 
signature of an anticyclonic eddy; part of the plume is drawn into the 
eddy where it undergoes some mixing and deepens. In this period, the 
spread of the plume thickness at 19◦N is around 1-2m (Fig. 14C). Our 
first idea is that the processes causing or involved in the eddy have a 
critical impact on the mixing inside the eddy, so the direct effect of the 
wind perturbations on the mixing there is relatively weak. However, the 
surface vorticity computed from each member of the ENS_REF shows 

that the wind perturbation can alter the current, change the shape of the 
eddy and finally modify the plume thickness. Fig. 15B–D show the 
relative surface vorticity and plume thickness on the same day but from 
3 members of ENS_COAST. Under different wind conditions, the plume 
can be either thicker (Fig. 15B), thinner (Fig. 15C), or its thickness is 
smaller than 8m (Fig. 15D). Another interesting finding is that the eddy 
in GOT_REF is located in the area where the plume is present in less than 
20 members of ENS_REF, which means that the eddy’s location and in
tensity cannot be considered as robust. 

Now, we examine the impact of the wind perturbation on the mixing 
for a specific event. Fig. 16A–C shows the surface tracer concentration 
from GOT_REF, from the members with the largest plume area (member 
41) and with the smallest plume area (member 42) on 25 July. The daily 
wind conditions corresponding to each simulation are shown in 
Fig. 16D–F. The wind patterns are similar in the three simulations: the 
winds blow from the southeast in the south and from the southwest in 
the north of the gulf, which favors northward and offshore transport of 
the tracer. However, the wind intensity differs between the simulations: 
it is the weakest in member 41 and the largest in member 42 on average 
over the whole domain. 

In all 3 simulations, the passive tracer tends to extend offshore 
consistently with the wind direction, but with very different concen
trations at surface (Fig. 16A–C) and subsurface (Fig. 16G–I). Between 
18.5N and 19.5N, the stronger the wind, the more the influence of river 
waters extends offshore (with concentration below the threshold of 7 
units/m3 though). Between the isobaths 20m and 40m, the surface 
concentration is weak (< 2 units/m3) under strong wind (member 42), 
while it locally exceeds 7 units/m3 in GOT_REF and member 41. North of 
21◦N, the 3 simulations show little differences. The wind perturbations 
impact (1) the horizontal advection by wind-induced currents and (2) 
the vertical mixing by wind-induced vertical shear of the current; the 
distribution of the tracer concentration results from these two 
competing processes. In member 42, the surface currents south of 20◦N 

Fig. 14. (A): Plume thickness in GOT_REF (in m) at 19◦N as a function of time and longitude. Red dots represent the area where the plume reaches the bottom. (B): 
the number of members for which the plume is present and is used to compute the spread. (C): spread of plume thickness (m). Red dots indicate the area where the 
plume is present in at least 30 members of the ensemble. (B) and (C) are computed from ENS_COAST. 
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are indeed stronger than in member 41, not only on July 25 but also on 
average over the 4 previous days (not shown). They are probably 
responsible for the export further offshore between 18.5◦N and 19.5◦N 
(discussed previously). But they mostly lead to a more intense vertical 
mixing hence a dilution in surface and a deeper penetration of the tracer 
in the center of the basin, as depicted at 20◦N (Fig. 16G–I). 

To assess the mixing between different ensemble members, the his
togram of the vertical diffusivity across the ensemble at a point (20◦N, 
107◦E) at different depths is shown in Fig. 16J–M. At 4.4m, the diffu
sivity is distributed differently between members, mostly ranging be
tween 0.01 and 0.025 m2/s. Then, it decreases to less than 0.001 m2/s in 
more than 10 members at 7.9 m, and more than 30 members at 13.0m. 
At 19.9m, all members show diffusivity smaller than 0.001 m2/s, and 48 
of them show diffusivity smaller than 0.0001 m2/s, suggesting that the 
impact of the perturbation on mixing is limited at deeper depth. 

However, it should be noted that the ocean state results from the 
integrated effect of wind forcing over time, which implies examining the 
wind conditions over at least several days preceding the event. Besides, 
the effect of the wind induced mixing on the ambient shelf water may 
also influence the path of the plume, as suggested by Toublanc et al. 
(2023) in their study of the Gironde River plume in the Bay of Biscay 
(France). From model sensitivity experiments, these authors suggest that 
the density gradient between the ambient ocean and estuarine waters 
conditions the dynamics of the plume, hence the development of a bulge 
in the case of the Gironde River. Understanding all the processes 
involved in the event of Fig. 16 would clearly require a very in-depth 
analysis, which is beyond the scope of this study. 

3.4. Freshwater transport 

The sensitivity of the plume (area, pattern, thickness) to the wind 
perturbations results from the combined effect of the sensitivity of the 
dilution (vertical mixing mainly) and of the horizontal transport (hori
zontal advection). As reported in the review papers of Horner-Devine 
et al. (2015) and Hetland and Hsu, (2013), both processes interplay. The 
horizontal transport is not only wind-driven but also buoyancy driven, 
therefore, it also depends on vertical mixing. Similarly, when the plume 
spreads, shear-induced vertical mixing is enhanced while the spatial 

extent on which mixing is active increases; the net mixing therefore 
increases. Wind induced mixing is produced by shear in the Ekman 
surface layer. As noted by Hetland and Hsu, (2013), upwelling and 
downwelling winds do not have equivalent impacts on mixing: up
welling winds which lead to more extended plumes are a priori more 
efficient in mixing the freshwater. This mechanism could explain why 
the spread of the plume properties (area, pattern, thickness) is large 
from August 15 whereas the spread of the wind stress is moderate: as the 
plume is well spread (due to a large runoff and low wind) and surface 
trapped, it is more sensitive to perturbations on wind-induced mixing. 

The last property of the plume that we examine in this paper is the 
freshwater transport by the coastal current through a section south of 
the delta, where the water depth is less than 30 m (Fig. 1B). 

The freshwater transport through a vertical section, for instance 
along the y-direction, is usually computed as follows (e.g. Schiller et al., 
2011): 

Q =

∫ ∫ η

− h
fwf udydz (3)  

where fwf is the freshwater fraction defined by: fwf = (S-Sb)/Sb with S 
the local salinity and Sb the background salinity (representative of the 
open ocean). u is the horizontal velocity in the direction perpendicular 
to the section. η and -h are the sea surface elevation and bottom floor 
respectively. We have found that this calculation is highly sensitive to 
the choice of Sb. Besides since S is also influenced by precipitation, we 
find more convenient and reliable to estimate the freshwater transport 
from the tracer concentration, using the definition below: 

Q =

∫ ∫ η

− h

c
100

udydz (4)  

where c is the local concentration of the tracer. 
The freshwater transports from GOT_REF and ENS_COAST through 

the section are shown in Fig. 17A. From June to August, the freshwater 
transport is changing repeatedly between southward and northward 
transports. As expected, it is northward when the wind is mostly 
northward (end of June, end of July and around August 15, corre
sponding to cluster 3 periods), and reverses when the summer monsoon 
relaxes (clusters 2 and 4). The spread of the transport is 1502 m3/s on 

Fig. 15. (A): Relative surface vorticity (10− 6/s) (contour fill, left color bar) and plume thickness (m) (line, right color bar) on 24 July 2015 from GOT_REF. (B–D): 
same as (A) but from members 18, 38, and 42 of ENS_COAST. The black solid line indicates the 20m isobath. 
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average; it is minimal in June, and then increases from July. The 
maximum of the spread happens around 9 July, 18 July, 8 August and 
late August. It is highly correlated to the spread of the meridional cur
rent velocity (Fig. 7D). 

To assess the contribution of the different factors to the spread of the 
transport, we decompose the freshwater transport into different terms 
(for each member): 

Q =

∫ ∫

c ∗ u dydz =
∫ ∫

(cmean + c′) ∗ (umean + u′)dy dz (5)  

Q=

∫ ∫

cmean ∗umeandydz+
∫ ∫

cmean∗u′dydz+
∫ ∫

c′∗umeandydz

+

∫ ∫

c′∗u′dydz

= Q1 + Q2 + Q3 + Q4 (6) 

With 

cmean: ensemble mean of the tracer concentration (divided by 100) 
c′: difference between the concentration from the member and from 
the ensemble mean (divided by 100) 
umean: ensemble mean of the velocity 

Fig. 16. Surface tracer concentration of GOT_REF (A), the member with the largest plume area (B), the member with the smallest surface plume area (C) on 25 July 
(arbitrary unit/m3). The dashed lines show the isobaths of 20m and 40m. (D–F): Daily mean wind conditions (m/s). (G–I): Vertical profiles of tracer concentration at 
20◦N (arbitrary unit/m3). (J–M): Histogram of vertical diffusivity (m2/s) across the ensemble at a point (20◦N, 107◦E) at 4.4 m, 7.9 m, 13.0m, 19.9m, respectively. 
The width of each bin is 0.001 m2/s for J, K, L and 0.0001 for M. 
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u′: difference between the velocity from the member and from the 
ensemble mean 

The freshwater transport is controlled by the tracer concentration 
and by the current. To assess the relative contributions of the tracer and 
of the current sensitivity to the total transport spread, we analyze Q2 
and Q3 corresponding respectively to the flux of an ensemble mean 
tracer concentration by the anomalous current of each member with 
respect to the ensemble mean and to the flux of the anomalous con
centration by the ensemble mean current. The time series of the 
ensemble spread of Q2 and Q3 at Section 1 are shown in Fig. 17B. First, 
the increase of the total freshwater transport spread at the end of June is 
due to the increase of spread of both current and concentration. Then, 
the spread of Q2 grows larger than the spread of Q3: at the peak periods, 
Q2 reaches three times the value of Q3. We can deduce that the fresh
water transport across this particular section is more sensitive to un
certainties on the current than on the tracer concentration. On average, 
the mean spreads of Q2 and Q3 for ENS_REF are 996 m3/s and 497 m3/s, 
respectively. The corresponding values for ENS_COAST are 1187 m3/s 
(+19%) and 557 m3/s (+12%). The differences between ENS_REF and 
ENS_COAST indicate that the transport is also sensitive to the coastal 
wind errors. 

4. Discussion on the use of the ensembles for data assimilation 

Ensemble statistics are used as proxies of model errors in ensemble- 
based data assimilation methods, such as the Ensemble Kalman Filter (e. 
g. Evensen, 2003; Sakov and Oke, 2008). In this section we propose a 
preliminary study of the possible use of ENS_COAST in the case HF radar 
observations were assimilated into the model to constrain the plume. We 
first evaluate the consistency between the ensemble and the misfit be
tween the observations to be assimilated and the model, within the 
observations uncertainties. Then we analyze the influence function of a 
single observations onto several model variables. 

We use surface velocity data from the high–frequency radar (here
after HFR) system based on two antennas located at 18.62◦N and 
17.47◦N (R1 and R2 site, respectively, see Fig. 1B) along the coast and 
operated by the Center for Oceanography, Vietnam Administration of 
Sea and Islands (CFO, VASI). The data consists of daily maps of zonal and 
meridional components of the surface current, over the year 2015, built 
and provided by Tran et al. (2021). HFR data are representative of 
currents at 2.4 m below the surface (Tran et al., 2021). To compare 
observed and simulated currents, we first estimate the latter at 2.4 m 
depth. and then interpolate them onto the HFR grid (yellow area of 
Fig. 1B). 

4.1. Empirical ensemble assessment from high-frequency radar data 

We use rank histograms (Talagrand et al., 1997) to evaluate if the 
ensemble provides reliable probabilities of the observed quantity 
(Hamill, 2000); in other words we assess the compatibility between the 
distribution of the ensemble and the distribution of the observational 
data, as described in Vervatis et al. (2021b). 

The rank histograms are computed for both components of the cur
rents taking into account all the model and data values over the HFR 
grid. The computation is repeated every day, leading to the Hovmöller 
diagrams of Fig. 18. 

In general, the ensemble is found to be underdispersive. In addition, 
the relative behavior of the observed and simulated currents show 
nonstationarity and biases. For the U component, the rank histogram is 
U-shaped in June, but it shows biases in mid July and in August, with the 
simulated current being too weak and too strong respectively with 
respect to the observations. For the V component, a bias is found in the 
first half of June, then the histograms have a U shape most of the time. 
This could mean that increasing the perturbation may improve the 
performance of the ensemble at describing the observed variance in 
statistical terms. However, as noted by Hamill, (2000), the U-shape of 
the histogram may be due to errors in the observations that are not taken 

Fig. 17. (A): Freshwater transport of GOT_REF (red) and ENS_COAST (black) at a section (see Fig. 1B), positive southward (in m3/s). (B): Ensemble spread of the 
freshwater transport (Q, red), and of component 2 (Q2, blue) and component 3 (Q3, green) of the freshwater transport (in m3/s), from ENS_COAST. 
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into account. The histogram seems flatter and even overdispersive in 
July 5 - 15, which is the same time as the large spread of wind stress and 
surface current. 

Another way to assess the relevance of the ensemble in simulating 
the model errors is to evaluate the skill of the ensemble variance at 
reproducing model errors. This method shares the same formalism as the 
method in Section 2.3 (see Appendix). We first compute the ensemble 
variance (ENSVAR) for the zonal and meridional components of the 
current over the HF radar domain and over time. We also compute the 
difference of the current between the ensemble mean and the observed 
one (for each component) at each radar grid point (hereafter innova
tion); we then compute the variance of these differences (VARDIFF) over 
the radar domain and over time. Assuming that the model error and 
observational error are uncorrelated, and non-biased (i.e. their expec
tancy over the period of study is null), VARDIFF should be close to the 
sum of ENSVAR and the observational error variance. 

Table 2 shows that for both components, there is a large difference 
between VARDIFF and the sum of ENSVAR and the observational error 
variance. This comparison therefore reveals an inconsistency between 
the two estimates of the model errors variance. One hypothesis that is 
likely to be questioned is the absence of systematic model errors; if such 

errors were indeed present, the square of their expectancy would add to 
VARDIFF and may balance the budget discussed above. Besides, the rank 
histograms described above evidence the presence of biases over period 
of several days, indicating that VARDIFF may not have the required 
stationarity property. At last, it is also possible that the observations 
errors are imprecisely specified for our period of study. 

4.2. Impact of a surface current observation on the simulation of the 
plume 

In order to explore further the use of HFR observations to constrain 
the model, we compute the representers, that is the influence functions 
(covariances) in the model state of a single assimilated observation, and 
the associated corrections to the model state within some assumption on 
the innovation. We follow the method of Echevin et al. (2000). 

We analyze the corrections onto different variables when an obser
vation of the zonal or of the meridional current component is assimi
lated, with an innovation of +15 cm/s. This value is chosen arbitrarily 
but based on comparisons between the simulation and the HFR data. The 
observation error is assumed to be 10 cm/s based on estimates provided 
in Tran et al. (2021). The HFR observation is located at 19◦N, 106◦E 
within the coastal current (when present); for comparison we also 
compute the correction from an observation of the meridional current 
further offshore (outside the HFR grid). The data is assimilated on July 
10 and we analyze the zero-lag correction on the same day. This date 
corresponds to a period of large spread of the current (6-8 cm/s) and a 
situation with a coastal current to the south along the Vietnamese coasts 
with an amplitude larger than 20 cm/s (not shown). A positive inno
vation at 19◦N corresponds to a simulated coastal current which has a 
stronger southward component and a weaker component in the offshore 
direction than the observation. 

Fig. 18. Rank histograms of ENS_COAST near surface current versus HFR data over the HFR data grid, using 51 ranks (Rank 1 and 51 are open rank). F defines the 
value in which the histogram is flat (i.e. the rank is equi-distributed, F = 1/51 ~ 0.0196). The y-axis shows the rank. Gray (pink) color indicates pdf with lower 
(higher) values than the color scale. There is no data on 20 and 21 June. 

Table 2 
Empirical assessment of ENS_COAST. The variance of the observational errors is 
computed from the information given by Tran et al. (2021) (their Table 1).   

Variance of the 
difference (cm2/s2) 
(VARDIFF) 

Ensemble 
variance (cm2/ 
s2) (ENSVAR) 

Variance of the 
observational error 
(cm2/s2) 

Zonal current 91 83 135 
Meridional 

current 
154 141 91  
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As expected, the corrections applied to the meridional velocity field 
if an observation of the meridional velocity at (19◦N, 106◦E) is assimi
lated are positive on the coastal current (reaching 5 cm/s, Fig. 19B). If 
the observation is on the zonal velocity (Fig. 19A), the correction on the 
coastal current is smaller by ~2-4 cm/s and is positive: the current is 
deflected offshore and consequently the coastal component decreases. 
Fig. 19C shows that an observation of the meridional component out of 

the coastal current leads to corrections with similar pattern and ampli
tude at the basin scale than an observation close to the coast; its impact 
on the coastal current is however smaller by several cm/s. 

Fig. 19D shows the correction on sea surface salinity resulting from 
the assimilation of the meridional component of the current at (19◦N, 
106◦E). As expected, a decrease of the southward coastal current leads to 
an increase of SSS along the coast south of 19.5◦N. On the contrary the 

Fig. 19. (A) Correction (in cm/s) on the meridional velocity (V) in response to a 15 cm/s innovation in zonal velocity (U) at 19◦N, 106◦E (blue point) on July 10. (B) 
Corrections on V in response to an innovation in V (15 cm/s) at the same point. (C): The correction on V in response to an innovation in V at the different location 
(19.5◦N, 107◦E). (D–F): Corrections on surface salinity, τx, τy, respectively, in response to an innovation in V (15 cm/s) at the same point as (A, B). 
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correction is negative (corresponding to an increase of freshwater) in the 
northeastward direction off the mouths of the Red River and of the Lam 
and Ma rivers. The correction does not exceed 0.5. We also note an 
impact on the SSS in the northernmost part of the basin, probably due to 
the general increase of the northward velocity component (Fig. 19B) 
that prevents a southward spread of the freshwater from the northern 
rivers. 

Previous results (e.g. Lamouroux, 2006; Barth et al., 2011) suggested 
that to efficiently constrain the high frequency dynamics over the shelf, 
correcting the ocean state sequentially may not be sufficient: a proposed 
complement or alternative is to correct the wind forcing (and possibly 
the atmospheric pressure forcing as well). Fig. 19E, F show the correc
tions on the zonal and meridional components of the wind stress that 
would result if the same observation of the meridional surface current at 
(19◦N, 106◦E) were assimilated. We observe an increase of the north
ward wind stress component all over the basin with a maximum 
correction north of 19N of ~0.03 N/m2 (Fig. 19F), consistently with the 
pattern of the mean wind stress spread (Fig. 6B). The correction on the 
zonal wind stress leads to an intensification of the easterlies in the south 
and westerlies in the north but does not exceed 0.01 N/m2 (Fig. 19E). 

In conclusion to this section, our first attempt to estimate the impact 
of assimilating HFR observations using the ENS_COAST ensemble and an 
EnKF-like assimilation method shows that indeed the assimilation would 
be useful to constrain the river plume by correcting directly the surface 
salinity, but also the surface coastal current and the wind stress. Of 
course this experiment remains ‘theoretical’ since single observations 
only are considered. However, they pave the way for configuring more 
realistic DA experiments in the future, by evidencing the possible scales 
and amplitude of the correction. 

5. Conclusions and perspectives 

This study was meant as a complement to previous work (ND21) 
where we analyzed the variability at different time scales of the Red 
River plume in the far field, using numerical simulations and an unsu
pervised classification method. In particular, we had evidenced the 
impact of the monsoon reversal on the plume pattern, thickness and on 
the associated coastal circulation. In this study, ensemble simulations 
are used to assess the impact of an important source of uncertainties, 
namely the uncertainties on the forcing wind field (ECMWF analyses), 
on the Red River plume and transport of freshwater. In particular, we 
aim at assessing the robustness of the clustering results of ND21 and 
identify the physical processes at work to explain the sensitivity. We 
further explore the potential impacts of the assimilation of single ob
servations of surface current stemming from high-frequency radars. This 
paper is dedicated to the Red River plume but we believe that the results, 
which are summarized below, contain valuable information for the 
modeling of other river plume systems in shelf seas. 

One preliminary methodological question that we address is: how to 
generate wind perturbations that are indeed representative of ECMWF 
wind errors? By comparing the daily ECMWF analyses to satellite 
(ASCAT) wind data, the uncertainty of the ECMWF wind in this area is 
estimated as 60% of the wind variability. Two ensembles of 50 members 
each are generated: ENS-REF and ENS_COAST which represents 
enhanced uncertainties of the wind in a coastal strip along Vietnam. We 
then check if both ensembles are indeed significantly representative of 
ECMWF wind errors by comparing the statistical distributions of the 
perturbed winds with satellite and in situ observations. 

We start the analysis of the ensemble by examining the spatial av
erages and time variability of the ensemble spread (defined as the 
standard deviation across the members) of the wind stress and of the 
ocean variables. We identify three typical situations. The first one (5-12 
July) corresponds to a temporary weakening and reversal of the summer 
monsoon wind and to the largest wind stress spread. The plume is 
advected southward along the coast, but the spread of the current is 
large, both at surface and at the bottom: 8-10 cm/s and 2-4 cm/s 

respectively on average in the area. The second period (July 20 - August 
5) corresponds to strong summer monsoon winds from the southwest; 
the mean spread of the wind stress is also high. Consistently, the surface 
current has large components to the north and east with a mean spread 
of 4-6 cm/s. The third period (5-30 August) is characterized by weaker 
winds (except around Aug 15), weaker wind spread and weak surface 
currents. The spread of the surface current reaches its maximum when 
the current is the lowest, suggesting that weak currents are more sen
sitive to the wind perturbations during this period. This period also 
corresponds to the largest runoff and to the largest spread of sea surface 
salinity. 

The sensitivity of the plume is then examined relying on the metrics 
used by ND21 to characterize the plume main properties. We first find 
that wind uncertainties induce large uncertainties on the plume area 
that are highly variable in time. They reach 40% of the plume area in 
late July, but are the largest in absolute at the end of August when the 
plume area itself is the largest. During this period, the plume area 
evolves very differently depending on the members: the difference be
tween the largest and the smallest areas reaches about 15000 km2 when 
the plume area is about 20000 km2. It also shows that the plume area is 
sensitive to the coastal wind error in ENS_COAST. 

A difficulty in analyzing the ensemble behavior in terms of plume 
properties is that the occurrence of the plume is expressed as a cate
gorical variable (with two values 1 and 0), making usual metrics such as 
ensemble mean or spread less suitable. The uncertainties on the plume 
location are thus presented as maps of probability of occurrence. The 
clustering method is another option. The patterns of the plume are 
classified using as reference (i.e the centroids) the clusters from the 
unperturbed run (i.e. the clusters of ND21). The classification is robust 
with respect to the wind uncertainties since the most likely cluster to 
occur is consistently found to be the one of the unperturbed simulation. 
However, depending on the dates, different members can be attributed 
to different clusters at the same date. The representativity of each cluster 
is also questioned in the sense that the membership to a cluster is more 
or less strong and thus more or less significant. This leads us to consider 
for future work a classification approach taking into account at least two 
criteria to characterize the plume, for instance both the occupied surface 
and the thickness. Other classification methods, such as the ‘fuzzy 
classification’ of Delaval et al. (2021), could lead to a more useful notion 
of membership; the counterpart is the need to choose additional pa
rameters (e.g. the coefficient of fuzziness), often using arbitrary choices. 
One idea to be tested would be to use the cluster attribution spread in 
this study to build the fuzziness coefficient. 

The plume thickness is also shown to be highly sensitive to the wind 
perturbations with typical variations of 2-3 m across the ensemble. We 
evidenced several processes. First, when the wind is weak, the pertur
bations can lead to wind reversal which, in turn, changes drastically the 
coastal circulation and therefore the advection of the freshwater. This 
results in different shapes and sizes of the plume at the surface. Changes 
in wind amplitudes also directly impact the local vertical mixing. In
teractions between these processes explains the large time variability of 
the sensitivity. For instance, when the plume is surface advected 
offshore it is more sensitive to wind mixing than when it is confined to 
the coast with a deeper extent. The impact of the wind forcing on the 
mesoscale activity is also found to impact the plume dilution and 
transport. Another expected driver of the plume mixing is the frontal 
activity (as discussed for instance by Horner-Devine et al., 2015); we 
have chosen not to examine this process, which should be the subject of 
a full separate study. 

Similarly, in this study we focus on the far field of the Red River 
plume but it would be interesting to study in detail the impact of wind on 
the near and mid field regions of the plume, as previous studies evidence 
different behaviors. For instance, Kakoulaki et al. (2014) suggested that 
the wind speed of more than 4m/s can affect the Merrimack River plume 
trajectory in all regions including the near field where the flow is crit
ical. In contrast, Toublanc et al. (2023) find that the wind variability 
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does not impact the near field of the Gironde River plume. 
At last we estimate the impact of the wind uncertainties on the 

freshwater transport by the coastal current. We found that the sensitivity 
of the transport is large, sometimes almost as large as the transport itself; 
this suggests that the transport estimate from a single simulation is not a 
robust quantity with respect to uncertainties in the wind forcing. We 
also show that the uncertainties on the transport are mainly due to 
uncertainties on the surface current, at least in the section studied. 

In the prospect of assimilating HFR observations, we assessed the 
ensemble consistency with respect to the HFR data and found that the 
range of values reached by the model in both ensembles (ENS_REF and 
ENS_COAST) and by the HFR data (given their uncertainties) are not 
disjoint (at least not always and not everywhere); however, it is likely 
that the model suffers from systematic errors that are not represented by 
the ensemble (by construction). We then examine the impact of assim
ilating single observations of surface current at a given point and dates 
on ocean variables and wind stress. We found that indeed HFR data 
could constrain the simulation of the plume both directly (through 
correction on the surface salinity and current) and indirectly (through 
corrections on the wind stress). 

In this study, due to constraint in computing resources, the ensemble 
size does not exceed 50 members; clearly, it would be relevant in the 
future to investigate the robustness of the ensemble statistics for much 
larger ensembles (e.g. 100 members). Besides, we limited the source of 
stochastic perturbations to the surface wind. Although it is likely that the 
wind is an essential, if not dominant, source of ocean uncertainties (as 
shown in past studies on different regions) in a shelf sea such as the Gulf 
of Tonkin, we could have considered other sources (e.g. Vervatis et al., 
2021a; Matsuzaki and Inoue, 2022), including forcings such as boundary 
conditions or parameterization (e.g on vertical mixing). In a future 
study, we intend to focus on the plume uncertainties due to uncertainties 
on the Red River distributaries discharge at daily to seasonal scales. 
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Appendix A. Ensemble assessment using observations 

In Section 2.3, we aim at verifying if the variance of the generated wind perturbations is consistent with ECMWF wind error variance as estimated 
from the comparison with satellite data. In Section 4.1, we use HF radar observations to verify if the model error variance that is computed from the 
ensemble simulations is consistent with errors estimated from the model-data misfits. In both sections, the consistency check is based on the same 
approach which is described in this appendix. Such approach is used in data assimilation studies, as for example described in Appendix A of Evensen, 
(2003). 

Let ψm and ψo be the estimates of the true variable ψt from the model and from observations respectively; the variables are expressed in the 
observation space. We can write: 

ψm = ψt + εm (1a)  

ψo = ψt + εo (1b)  

where εm,εoare the errors from the model and observations respectively. 
In the case of Section 2.3, ψt is a zonal or meridional wind component at 10 m, ψo is the corresponding component from ASCAT data interpolated 

onto the ECMWF grid, ψm is the corresponding component from ECMWF. The wind perturbations that we generate aim at representing the ECMWF 
model uncertainty εm. 

In the case of Section 4.1, ψt is a zonal or meridional component of the surface current, ψo is the corresponding component from HF radar data, ψm 

is the corresponding simulated component with the SYMPHONIE model interpolated onto the HF radar grid. The ensemble of simulations allows us to 
estimate εm. 

The ensemble method assessment relies on the statement that two estimates of the model errors are available: one direct estimate from the 
ensemble, one indirect estimate from the model-data misfits, ψo − ψm, (the so-called innovation). 

Assuming that the errors from the model and the data are uncorrelated and non-biased (i.e. their expectancy is null), the variance of the innovation 
writes: 
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[(ψo − ψm) − (ψo − ψm)]
2
= εo2

+ εm2 (2) 

where the overline (.) denotes an expectancy value. (2) can be rewritten: 

εm2
= [(ψo − ψm) − (ψo − ψm)]

2
= εo2 (3) 

The left-hand side term of (3) is the variance of the model errors; we choose here to estimate it from the ensemble-time variance (the variance over 

ensemble and time samples) computed in the observation space (that is, in our case, at the observations grid points). Hereafter, we note (.)
E 

the 
expectancy when estimated from the ensemble and time (including both member samples and time samples), i.e. as a discrete sum over the members 
and over time. 

The first term on the right-hand side of (3) is the variance of the innovation which we compute as the variance over time (i.e. the expectancy is 

estimated as a discrete sum over the time samples). Hereafter, we note (.)
T 

the expectancy when estimated over time. 
εo2 is the variance of the observation errors, as provided with the observations. 
Finally (3) can be re-written, using our choice of statistical estimators: 

εm2 E
= [(ψo − ψm) − (ψo − ψm)]

2T
− εo2 (4) 

Any misfits between the left-hand and right-hand side of (4) indicate inconsistencies that may have several origins: (a) the observations errors are 
incorrectly specified, (b) there is a systematic error in the model, (c) the generated perturbations are incorrectly calibrated, (d) the model errors are 
due to different sources than the one(s) represented by the ensemble (in our case uncertainties on the forcing wind field), (e) the ensemble statistics 
have not converged yet (and a larger size ensemble should be considered), (f) the time statistics have not converged, e.g. because of the inherent non- 
stationarity of 1st- or 2nd-order statistics. 
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