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Abstract

This paper presents a novel method for accurately identifying the
large strain elastic response of elastomeric materials. The method
combines the Data-Driven Identification (DDI) algorithm with a unique
heterogeneous experiment, deviating from the conventional approach
of conducting multiple simple experiments. The primary objective of
the method is to decouple the experimental process from the fitting
technique, relying instead on a single comprehensive experiment to
generate an extensive collection of stress and strain energy fields. This
collection is then utilized in conjunction with a standard fitting tech-
nique to determine the parameters of hyperelastic models. Notably,
the approach places significant emphasis on the strain energy density
field as a critical factor in model identification, as it encompasses the
full material response within a single scalar quantity.

To demonstrate the effectiveness of the proposed approach, a proof-
of-concept is provided using synthetic data. The results highlight the
efficiency of the method and emphasize the importance of incorpo-
rating the strain energy density field for precise model identification,
surpassing the reliance on stress data alone. Additionally, the paper
introduces several graphical tools to evaluate and analyze the quality
of both the generated mechanical fields and the identification results.
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The proposed approach offers a more comprehensive representa-
tion of the material behavior, and enhances the reliability and predic-
tion capabilities of hyperelastic material models. It holds significant
potential for advancing the field of solid mechanics, particularly in
accurately characterizing the mechanical responses of elastomeric ma-
terials.

1 Introduction

Elastomeric materials are extensively employed in various industries due to
their ability to withstand large strains, as well as their applications in shock
absorption, sealing, and elasticity. Since the 1940s, researchers have devel-
oped numerous models within the framework of hyperelasticity to describe
the unique response of these materials to large strains. Recently, He et al.
conducted a comprehensive review of 85 such models.1 These models can be
categorized as either phenomenological or based on microstructural consid-
erations. Regardless of their specific formulation, they are characterized by a
strain energy density function, denoted as W , which can be written in terms
of the principal stretch ratios (λi)i=1,2,3 or, in the special case of isotropic
materials, of the first two principal strain invariants, I1 and I2 (with the
third invariant I3 being equal to 1 due to incompressibility). Practically,
these models involve scalar parameters that depend on the specific elastomer
under consideration.

The determination of these parameters involves fitting the mechanical
response of the models to experimental data, a process commonly known
as ”identification.” Various minimization methods can be employed for this
purpose. In the majority of studies, parameter identification is conducted
using experimental stress and strain obtained from simple deformation tests,
typically including uniaxial tension (UT), planar tension (PT, also referred
to as ”pure shear”), and equibiaxial tension (ET). The stress-strain curves
obtained from these tests are fitted to the selected model, either by consid-
ering the whole dataset, or dividing it into four distinct regions to increase
accuracy.2 Although Steinmann et al. have demonstrated that fitting a
model solely on a single deformation state, typically UT, leads to poor relia-
bility and prediction capabilities, and that the accuracy heavily relies on the
diversity of experimental data used for identification,3,4 there is a scarcity
of comprehensive data sets in the literature. Indeed, two widely recognized
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data sets are often considered: those provided by Treloar5 and Kawabata et
al.6 Authors widely used them to validate their models.7,8

To address the limitations of identification on multiple experiments, alter-
native methods have been developed, aiming to incorporate a single compre-
hensive experiment with a heterogeneous strain field into the identification
process. This concept forms the basis of the Finite Element Model Up-
dating (FEMU) technique.9 FEMU requires the utilization of strain field
measurements, such as Digital Image Correlation (DIC). The technique in-
volves a series of finite element computations that aim to replicate the ex-
perimental strain field measured during the test. However, FEMU requires
the preselection of a hyperelastic model, which is chosen in advance. More
generally, this is also typically the case for identification methods based on
full-field measurements, such as Virtual Fields Method, Constitutive Equa-
tion Gap Method, Equilibrium Gap method or Reciprocity Gap Method.10,11

More recently, techniques like EUCLID have emerged, expanding upon the
FEMU concept by enabling the determination of an appropriate model from
a given set of hyperelastic constitutive equations using a single complex ex-
periment.12

The present paper proposes a new identification method based on a single
complex experiment. More precisely, it has two main objectives:

• Firstly, it aims to explore the benefits of the two aforementioned identi-
fication approaches: decoupling the experiments from the fitting tech-
nique and relying on a single heterogeneous experiment.

• Secondly, it seeks to conduct the identification process by minimizing
the difference to the strain energy density, as opposed to the standard
minimization of the difference to stress.

To fulfill these objectives, the Data-Driven Identification (DDI) method, re-
cently proposed by Leygue and co-workers,13,14 is considered. Roughly speak-
ing, the method consists of computing both stress and strain energy density
fields during a complex experiment, i.e. an experiment in which the strain
field is heterogeneous, without prescribing the constitutive equation. Once
the strain energy field is estimated throughout the experiment, hyperelastic
models are fitted.

In the next section, we present the model underlying the synthetic data.
We then provide a brief overview of the DDI technique and describe the
identification method. Throughout this section, we introduce new graphical
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tools that aid in visualizing the strain and strain energy fields, as well as
analyzing the results of identification. Following that, Section 3 presents
the identification results and compares them to both the results obtained by
fitting the stress field and the ”exact solution” used to construct the data
set.

2 Methods

2.1 Data generation

The data required to apply the proposed technique consists of a series of
strain fields measured during the experiment, for example, using DIC (Digital
Image Correlation). In this study, we consider the numerical experiment
proposed by Dalmat in her PhD thesis.15

2.1.1 Sample and loading conditions

The experiment involves the uniaxial tension of a perforated elastomer mem-
brane. Figure 1 illustrates the sample geometry, its mesh, and the bound-
ary conditions for the experiment. The detailed geometry is presented in
Fig. 1(a). The corresponding mesh, composed of 3379 nodes and 6108 linear
triangular plane stress finite elements, is shown in Figure 1(b).

The loading conditions are also depicted in Fig. 1(b): the lower part of
the sample is clamped (orange boundary conditions in the figure), while the
top part is subjected to displacement up to 200% stretch in 20 loading steps
(green boundary conditions and black arrow in the figure).

2.1.2 Material

The material considered in this study is the classical 8% sulfur-vulcanized
Natural latex Rubber, as tested by Treloar,5 and widely used in numerous
papers.1 It is modeled using a three-term Ogden model:16

W (λ1, λ2, λ3) =
3∑
i=1

µi
αi

(λαi
1 + λαi

2 + λαi
3 − 3) , (1)

where the six corresponding parameters (µi, αi)i=1,2,3 calculated by Ogden

are provided in Table 1. Note that the corresponding shear modulus is17
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Figure 1: Synthetic experiment: (a) geometry, (b) mesh and boundary con-
ditions.

Parameters µ1 (Pa) µ2 (Pa) µ3 (Pa) α1 α2 α3

Values 6.18× 105 1.18× 103 −9.81× 103 1.3 5.0 −2.0

Table 1: Material parameters of the three-term Ogden model.

µ =
1

2

3∑
i=1

µi αi ≈ 4.14× 105 Pa. (2)

2.1.3 From synthetic to experimental data

The previous problem, including the geometry, boundary conditions, and
material properties, is solved using the commercial finite element software
Abaqus CAE.18

From the numerical results, only the kinematic fields (displacement and
strain) and the net force that exerts on the top side boundary throughout the
test are retained for further analysis. These quantities represent the data that
would typically be obtained in a ”real” experiment, with the displacement
and strain measured using DIC (Digital Image Correlation) and the net force
measured using a load cell.
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2.1.4 Graphical visualization of kinematical data

To characterize the heterogeneous kinematic field, we employ the Hencky
logarithmic strain tensor, also known as the true strain tensor. It is defined
as:

H =
1

2
log
(
F F T

)
, (3)

where F represents the deformation gradient tensor and ·T denotes trans-
position. The principal components H can be expressed in terms of stretch
ratios: (Hi = log λi)i=1,2,3.

Inspired by the classical invariants of the Cauchy stress tensor used in
plasticity,19 Criscione et al. introduced three interesting invariants of H
denoted as K1, K2, and K3.

20 They are defined as follows:

K1 = tr(H), K1 ∈ < (4)

K2 =
√

dev(H) : dev(H), K2 > 0 (5)

K3 =
3
√

6

K2
3 det(dev(H)), K3 ∈ [−1, 1] (6)

Here, dev(·) represents the deviator operator defined as · − trace ((·)/3) I,
where I is the identity tensor.

These invariants provide characterization of different aspects of the de-
formation field. Specifically, they represent the ”amount-of-dilatation”, the
”magnitude-of-distortion”, and the ”mode-of-distortion”, respectively. Since
the material is incompressible, the deformation is always isochoric, resulting
in K1 = 0. K2 is a real positive number that increases with the magnitude
of strain, while K3 is a real number that describes the nature of the defor-
mation state. Table 2 presents three particular values of K3 along with their
corresponding deformation states.

K3 Deformation state

1 Uniaxial tension or equibiaxial compression
0 Planar tension (also known as pure shear)
-1 Uniaxial compression or equibiaxial tension

Table 2: Particular values of K3 and their corresponding deformation states.

6



In the following, these invariants are utilized to visualize the strain field
obtained from an inhomogeneous experiment. At each time step, for every
finite element of the mesh, the Hencky strain tensor H and its invariants
K2 and K3 (recall K1 = 0) are computed. These values can then plotted
as points in the (K2, K3)-plane. The shape, density, and size of such scatter
plot emphasize the heterogeneity of the strain field within the sample during
the experiment.

2.2 Identification method

2.2.1 From kinematic fields to strain energy density field

Data-Driven Identification (DDI) is an algorithm developed by Leygue et
al.13 It computes the balanced stress field for a given experiment using
a series of strain fields, and without prescribing the constitutive equation.
The efficiency of the method is closely related to the variety and the size
of the collection of strain fields, also referred to as the “richness” of this
collection. It corresponds to the number and distribution of the points in
the plot described in Sec. 2.1.4. The technique has been applied to real
experiments on elastomers by Dalmat et al.14

The method’s specific details are not reiterated here; interested readers
can refer to the aforementioned papers and the references therein. Only a
brief overview of the practical steps is provided. The algorithm takes the
following inputs:

• Geometry and mesh of the sample, along with the kinematic boundary
conditions,

• Measurements of the strain field and the net force throughout the ex-
periment.

Two parameters need to be defined: the ratio r∗ between the number of data
points, referred to as mechanical states, and the number of stress-strain pairs
used to sample the material response, referred to as material states.13 Ad-
ditionally, the norm tensor C is required to determine the distance between
mechanical and material states, which needs to be minimized by the algo-
rithm. In this study, the values of r∗ ranging from 20 to 75 were investigated,
and the best convergence was achieved with r∗ = 44. This value is used for
all subsequent computations. The norm tensor is set as C = βI, where I
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represents the fourth-order identity tensor and β is a weighting parameter.
To focus solely on the strain fields, β is set to 1× 106 Pa.

The outputs of the algorithm are:

• The stress fields throughout the experiments,

• The material states that sample the response of the material.

After convergence of the DDI algorithm, the magnitude change between two
successive values of the stress tensor is approximately 1 × 10−14 Pa. In the
subsequent analysis, only the first output is considered for identifying the
constitutive equation.

Considering that the history of the deformation gradient tensor F (t) and
the Cauchy stress tensor σ(t) is known for the entire mesh, it is possible to
compute the strain energy density for each finite element e at each discrete
time ti:

W e
DDIi

=

∫ ti

0

σe(t) : De(t) dt, (7)

where D is the strain rate tensor defined as:

D = sym
(
Ḟ · F−1

)
, (8)

with sym(·) representing the symmetrization operator. Finally, utilizing the
previously obtained (K2, K3) values from Section 2.1.4, it becomes straight-
forward to plot the 3D surface of the strain energy density

(
Ke

2i
, Ke

3i
,W e

i

)
,

where the superscript e and subscript i hold the same meaning as in Eq. (7).

2.2.2 Determination of the material parameters

The last step of our Data-Driven Model Identification method involves select-
ing a hyperelastic model and fitting its parameters to experimental data. Our
primary focus will be on fitting the strain energy density, while a secondary
fit will be conducted on the stress tensor for comparison purposes.

Let y denote the vector of parameters involved in the model, and W e
i (y)

represent the computed strain energy density to be fitted to the measured
strain energy W e

DDIi
data points. The solution ysol is obtained by minimizing

the following objective function:

ysol = arg min
y

1

2

∑
i

∑
e

(
W e

DDIi
−W e

i (y)
)2
, (9)

8



where the double summation accounts for all the discrete time steps i and
finite elements e.

2.2.3 A graphical tool to discuss the results of identification

To quantitatively analyze the fitting results, we propose a plot illustrating
the distribution of relative errors. The plot is constructed as follows:

• The x-axis represents the relative error between the measured strain
energy field obtained from the DDI algorithm and the model response,
given by (WDDI −W )/WDDI.

• The y-axis corresponds to the reference field WDDI.

• The distribution of the relative error calculated for every finite elements
(e) at every discretized times (i), is plotted on a 100 × 100 grid. The
number of data points within each grid element is counted and divided
by the size of the database to obtain the probability of the error. To
enhance readability, we consider the logarithm of this probability.

Four examples of such plots, generated using a Gaussian distribution, are
shown in Figure 2.

• The top-left graph represents a ”perfect fit” scenario, where all errors
are zero, and the colorbar depicts the distribution of the experimental
data WDDI.

• The top-right graph illustrates a distribution of normally distributed
errors centered around zero, i.e. the mean value of W is equal to the
one of WDDI, and a standard deviation of 0.1.

• The bottom-left graph shows the distribution of normally distributed
relative errors, centered around 0.5, indicating a systematic underesti-
mation of W compared to WDDI.

• The bottom-right graph represents a more realistic scenario, where de-
pending on the measured data, W can either underestimate or overes-
timate WDDI.

In the next section, we will utilize these tools to analyze the proposed
identification method.

9



-1 -0.5 0 0.5 1

(WDDI - W)/WDDI

0

1

2

3

4

5
W

D
D

I

a)

-4

-3.5

-3

-2.5

-2

-1.5

P
ro

ba
bi

lit
y 

lo
ga

rit
hm

-1 -0.5 0 0.5 1

(WDDI - W)/WDDI

0

1

2

3

4

5

W
D

D
I

b)

-4

-3.5

-3

-2.5

-2

-1.5

P
ro

ba
bi

lit
y 

lo
ga

rit
hm

-1 -0.5 0 0.5 1

(WDDI - W)/WDDI

0

1

2

3

4

5

W
D

D
I

c)

-4

-3.5

-3

-2.5

-2

-1.5

P
ro

ba
bi

lit
y 

lo
ga

rit
hm

b)

-1 -0.5 0 0.5 1

(WDDI - W)/WDDI

0

1

2

3

4

5

W
D

D
I

d)

-4

-3.5

-3

-2.5

-2

-1.5

P
ro

ba
bi

lit
y 

lo
ga

rit
hm

a)

Figure 2: Four examples of error plots.

3 Results and discussion

3.1 Data visualization

First, we display the experimental data using the proposed graphical tools.
Figure 3 presents the distribution of strain throughout the entire sample
during the experiments. In the figure, the three red dashed lines represent
the classical deformation experimental data of Treloar:5 K3 = 1 for uniaxial
tension (UT), K3 = 0 for planar tension (PT), and K3 = −1 for equibiaxial
tension (TEQ) (Tab. 2). Despite the majority of experimental points falling
within the UT region, it is evident that the entire (K2−K3) plane is explored
during the test. Additionally, points are observed in the areas between the
simple deformation states. Values of K3 (horizontal lines) ranging from -1
to 0 describe intermediate deformation states between planar tension and
equibiaxial tension, which can be achieved through (non-equibiaxial) biaxial
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Figure 3: Deformation magnitude and mode in the experiment described
in Section 2.1.1. Each black dot represents a specific finite element at a
particular time step.

experiments.6 Values between 0 and 1 describe intermediate deformation
states between uniaxial tension and planar tension. As far as we know, there
are no technical means to experimentally investigate such states with an ho-
mogeneous experiment. The dataset presented here targets mixed modes
that are not represented by traditional identification methods using homo-
geneous deformations fields. Those “blind-spots” of the traditional identifi-
cation method correspond to real stress-strain scenarios of rubber products
in use.

After applying the DDI algorithm, we can visualize the 3D distribution of
the strain energy density in relation to the strain state (K2 −K3). Figure 4
displays this plot. In this figure, the gray surface represents the analytical
solution obtained by computing both the (K2, K3) couples (Eqs (3), (5),
(6)) and the corresponding strain energy W (Eq. (1)) for a large number of
deformation gradient tensors F . It is included for visual clarity. The data
of Treloar are depicted as black crosses, while our experimental data are
represented as purple crosses.
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Figure 4: Strain energy response of the sample during the experiment, plotted
along Treloar’s data.5

This figure demonstrates that the DDI technique enables the investiga-
tion of a significant range in the material’s mechanical response. However,
it should be noted that we cannot reach the maximum strain observed in
Treloar’s experiments, as the maximum global stretch during our experiment
is 200%.

3.2 Identification results

Once the data has been established, one or several hyperelastic models can
be fitted to this data using Eq. (9). A large number of various hyperelastic
models has been derived1 ; among them we can mention the proposals of
Thomas and co-workers.21,22 To illustrate our approach, we selected here
a 3-term Ogden strain energy function, which is the same form than the
one used to generate the data. It is well-known that each pair of parameters
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(µi, αi) must satisfy µi αi > 0 to ensure the polyconvexity of the strain energy
function (see, for example the book of Holzapfel17). To incorporate this
constraint naturally into the identification process, the strain energy density
Eq. (1) is expressed in terms of (µi, βi), where βi =

√
µi αi, ensuring that µi

and αi have the same sign. The corresponding fitted parameters are presented
in Table 3.

Parameters µ1 (Pa) µ2 (Pa) µ3 (Pa) α1 α2 α3

Results 2.83× 105 4.66× 107 −3.15× 105 1.91 5.85× 10−4 −0.84

Table 3: Parameters of a 3-term Ogden model identified with the strain
energy density.

First, the shear modulus, calculated using Eq. (2), is approximately 4.16×
105 Pa. This result indicates that the identification technique successfully
preserves the value of the shear modulus.

Secondly, utilizing the graphical tool discussed in Section 2.2.3, the rela-
tive error of the identification results is presented in Figure 5. The following
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Figure 5: Relative error on the strain energy density.

observations can be made:
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• The majority of points align along the vertical x = 0 axis, indicating
the high quality of the identification.

• The width of the vertical region (approximately between -10% and
+10%) represents the scattering of the results, which is relatively small.
However, for very small values of the strain energy density, the scatter-
ing is more pronounced, primarily due to the error calculation involving
division by WDDI.

• The red points (with higher density) correspond to small values of
WDDI and are associated with the distribution of measurements shown
in Fig. 4 in the vicinity of the K2 = 0 (small strain) axis.

3.3 Why choose the strain energy density for identifi-
cation?

To discuss the choice of fitting the strain energy density rather than stress
data, we modify Eq. (9) by changing the cost function as follow

1

2

∑
i

∑
e

∥∥σeDDIi
− σei (y)

∥∥2
2
, (10)

with ||σ||22 = (σ : σ) (11)

where σeDDIi
is the stress tensor in element e at time ti computed by the

DDI algorithm and σei (y) is its counterpart calculated by the model.
For a 3-term Ogden model, the fitted parameters are given in Table 4.

Both α1 and α2 are approximately zero, with magnitudes on the order of

Parameters µ1 (Pa) µ2 (Pa) µ3 (Pa) α1 α2 α3

Results 4.24× 105 2.73× 107 −5.65× 105 1.74 ≈ 0 ≈ 0

Table 4: Relative error on the strain energy density for the model identified
with the DDI stress field.

10−12 and 10−11, respectively. As a result, the model simplifies to a 1-term
Ogden model.

Firstly, the shear modulus, calculated using Eq. (2), is approximately
3.69 × 105 Pa. In contrast to the previous case, the current identification
process fails to recover the shear modulus of the initial model.
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Figure 6: Relative error on the strain energy density for the model identified
with experimental stress data.

Second, the error graph is given in Figure 6. The same observations can
be made as in the previous case. However, there is some curvature in the
scatterplot due to the fact that for small values of WDDI, which correspond to
small small, the error deviates from zero. This demonstrates the inadequate
prediction of the shear modulus mentioned earlier.

To close this comparison between strain energy and stress identification,
the two models respectively defined by Tab. 3 and 4 are compared to the
initial one (Tab. 1). The three simple experiments, uniaxial tension, pla-
nar tension and equibiaxial tension tests, are compared in Figure 7. The
models have been evaluated based on the stretch ratios achieved in Treloar’s
experiments.5

From a global perspective, both models successfully reproduce the mate-
rial response for the range of stretch ratios used in the identification process.
However, there is a discrepancy in the case of uniaxial tension for stretch
ratios greater than 4, specifically corresponding to K2 > 1.7. By examining
Fig. 3, it is evident that there are very few data points in this region. As a
result, these points have minimal impact on the objective function. However,
it is important to note that the extrapolated portions of the curves deviate
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Figure 7: Accuracy of the models for the three simple experiments: nominal
stress vs. largest stretch ratio for (a) uniaxial tension, (b) planar tension,
and (c) equibiaxial tension. The initial model is represented by a black
continuous line, and the corresponding stress values are depicted by a sky
blue surface with a tolerance of ±5%. For each identified model, represented
by blue (identified with σDDI) and red (identified with WDDI), the solid line
illustrates the model response at stretch ratios achieved by at least one finite
element during the heterogeneous test. The dashed and dotted lines are used
for extrapolation beyond the tested range.
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significantly from the initial model, regardless of the experiment. This obser-
vation is a common phenomenon in hyperelasticity. It is widely recognized
that accurately predicting the large strain response of elastomers requires
relevant data points for model fitting.

Finally, it is worth noting that the small strain predictions in both pla-
nar and equibiaxial tension experiments exhibit excellent agreement for the
model identified using the strain energy density field. In contrast, the model
identified using σDDI shows relatively poorer agreement in these cases. This
discrepancy is primarily attributed to the inaccurate estimation of the shear
modulus in the latter model. By considering the strain energy density,
the identification process becomes less biased towards uniaxial tension data,
which typically provides a large number of data points. This mitigates the
potential dominance of a single type of deformation and allows for a more
balanced and robust identification of the material behavior.

4 Conclusion

The accurate identification of material mechanical responses remains a per-
sistent challenge in the field of solid mechanics. Numerous methods have
been developed to tackle this issue, many of which involve conducting multi-
ple simple experiments. However, the method proposed in this study takes a
different approach by combining the Data-Driven Identification (DDI) algo-
rithm with a unique heterogeneous experiment to generate a comprehensive
collection of stress and strain energy fields. These fields are then utilized in
conjunction with a standard fitting technique for model identification.

The proof-of-concept presented in this paper, using synthetic data, serves
to demonstrate the effectiveness of the proposed approach. It not only high-
lights the efficiency of the method but also underscores the significance of
utilizing the strain energy density field for model identification, as opposed
to relying classically on stress data. Specifically, the strain energy density
field offers the advantage of incorporating different deformation states in a
single scalar quantity, allowing for a more comprehensive representation of
the material behavior.

While the proof-of-concept demonstrates the efficacy of the approach us-
ing synthetic data, further validation and testing on experimental data will
be necessary to fully establish its applicability and reliability in real-world
scenarios.
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