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Implicit time integration simulation of robots with rigid bodies
and Cosserat rods based on a Newton-Euler recursive algorithm

Frédéric Boyer, Andrea Gotelli, Philipp Tempel, Vincent Lebastard, Federico Renda, Sébastien Briot

Abstract—In this paper, we propose a new algorithm for
solving the forward dynamics of multibody systems consisting
of rigid bodies connected in arbitrary topologies by localised
joints and/or soft links, possibly actuated or not. The simula-
tion is based on the implicit time-integration of the Lagrangian
model of these systems, where the soft links are modelled
by Cosserat rods parameterised by assumed strain modes.
This choice imposes a predictor-corrector structure on the
approach, and requires computing both the residual vector and
the Jacobian of the residual vector of the dynamics constrained
by the time integrator. These additional calculations are han-
dled here with a new Newton-Euler recursive inverse dynamics
algorithm and its linearized tangent version. The approach is
illustrated with numerical examples from the Cosserat rod
literature and from recent robotic applications.

I. INTRODUCTION

A. State of the art

With the rise of continuum and soft robotics, many recent
robotic designs hybridize rigid and soft bodies in complex
topologies actuated in a localized or distributed manner
[1], [2]. In this context, the statics and dynamics model of
Cosserat rods is gradually becoming one of the standards
for the analysis, control and design of these systems [3], [4],
[5], [6]. By Cosserat’s rod, we mean a continuous stacking
of infinitesimally thin rigid cross-sections along a material
line [7]. Cosserat rods theory is a sub-chapter of continuous
media mechanics [8]. As is always the case, in this more
general context, the medium is modelled by a closed set
of partial differential equations (PDEs) or “strong form”,
which consists of the equilibrium of its stresses plus their
boundary conditions, a definition of the strains, and the
constitutive law that relates the stresses and strains [9]. At
this primary stage, the formulation is continuous and gov-
erns the evolution of the system in an infinite-dimensional
configuration space of kinematic fields (for example, the
absolute position or displacement field of a 3D medium).
In the case of Cosserat rods, the material medium is one-
dimensional and we have two independent variables, namely
time and a spatial variable, typically the arc-length along
the rod. As a consequence of this restriction, whether for a
system realised by serial (e.g. a Tendon Actuated Continuum
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Robot or TACR) or parallel (e.g. a Continuum Parallel
Robot or CPR) connection of rods, its strong form defines a
boundary value problem (BVP) in space and an initial value
problem (IVP) in time. In this form, the simulation problem
can be treated with standard numerical solution methods
based on collocation, finite differences, spectral integration,
shooting algorithm. In the shooting based approach, the
forward static spatial BVP is transformed into a sequence of
spatial IVPs whose unknown proximal boundary conditions
(BCs), are iteratively approximated in a Newton loop until
some of the distal BCs coincide with their required values.
Applied at each loading step, this method is well suited
to the quasi-static simulation of continuum and soft robots
[5]. After this success in statics, Till et al. extended the
approach to dynamics [10]. Inspired by the work of the
ocean engineering community on towed submarine cables,
at each time step of a simulation, the time derivatives of the
kinematic fields are removed using an implicit integration
scheme. The BVP-IVP in space-time then changes to a
simple BVP in space, which can be processed at each of
these time steps by the shooting algorithm, in a similar
way to the static case. Recently, it has been shown in [11]
that: (1) the forward dynamics BVP on which this approach
is based derives from a singular optimal control problem,
regularised by the implicit time integration scheme; (2) this
regularisation works less and less well as the time step
and/or beam stiffness decreases; (3) as a consequence, the
approach fails in many practical circumstances encountered
in soft robotics.

To overcome this issue, we can replace the strong
formulation of the original PDEs by the weak formulation
of the virtual works in the framework of Lagrangian
mechanics [12]. In the most employed method of this
framework, the configuration of a rod is parameterized
with a set of independent vector fields whose components
are decomposed on a truncated basis of functions. The
direct dynamics problem is then transformed into a finite-
dimensional optimization problem [13], whose stationarity
conditions are the Lagrange equations of the system with
respect to the coefficients of the basis, which stand for a
set of generalised coordinates. Well known as the Ritz, or
Rayleig-Ritz, method [14], this reduction process is the
basis of the finite elements method (FEM) of classical
three-dimensional (3D) media as that implemented in
SOFA [15]. To be applied to Cosserat rods, it was extended
from R3 to the Lie group SO(3), by J. C. Simo and his
successors in the framework of the geometrically exact
FEM, or GE-FEM [16], [17], [18]. An efficient Lagrangian
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alternative to GE-FEM has been developed in the computer
graphics community. Called discrete elastic rod approach or
DER, it has been designed for fast interactive simulation of
hairs and other filaments [19], [20]. Unlike other Lagrangian
approaches, in DER, the discretization (reduction) process
is not applied to fields defined on a continuous rod, but
from the outset to the rod itself, which is transformed into
a discrete rod, i.e. a set of edges separated by vertices [21].
By redefining all the geometric objects on this discrete
manifold and introducing them into the Lagrange equations,
we obtain the expected reduced dynamics in a discrete
form that resembles that provided by finite differences
[19]. However, in contrast to usual finite differences, the
approach preserves exactly all the intrinsic properties of
the original continuous formulation [21]. First developed
for Kirchhoff rods [19], [20] possibly connected to rigid
bodies by the fast projection method (FPM) of [22], the
DER has recently been extended to Cosserat rods [23].
This context is now implemented in PyElastica, a free and
open-source software package for the simulation of slender
body assemblies in Python [24].

More recently, some of the authors of this article have
proposed an alternative Lagrangian approach to GE-FEM
and DER. In this approach based on a Ritz reduction,
each of the strain fields of a Cosserat rod (stretch, shear,
curvature and torsion) is developed on a truncated basis of
assumed strain modes [25], [26], [27]. Named GVS, for
Geometric Variable Strain method in [27], the approach has
the advantage of providing models in the usual matrix form
of rigid manipulators, while offering good accuracy with
a small number of modal (strain) coordinates [26]. So far,
the approach has been implemented in two different algo-
rithms, depending on whether the generalised forces of the
Lagrangian model are calculated with kinematic Jacobian
matrices [28], [27], according to a projective matrix process,
often referred to as Kane’s method [29], or with a Newton-
Euler (NE) inverse dynamic algorithm [26]. Named IDM
for “inverse dynamic model”, this algorithm generalises the
computed torque algorithm used in the 1980s to solve the
inverse dynamics of rigid manipulators [30]. While in [26]
the approach is restricted to rods serially fixed together,
in [27], open, tree and closed loop systems are treated.
In the case of kinematic loops, the resulting Lagrangian
model takes the form of a set of differential and algebraic
equations or DAEs, where the algebraic equations are the
geometric constraints of the loop closure [31]. Despite these
differences, when applied to forward dynamics (simulation),
all these approaches based on modal strain reduction use
explicit time integration schemes. That is, schemes known
to be much less stable than implicit schemes when applied
to the generally “stiff problems” of nonlinear structural
dynamics [32].

B. Contributions of the article
As [27], the present article addresses the dynamic modeling
and simulation of hybrid systems composed of Cosserat

rods and rigid bodies in arbitrary topologies with the modal
strain reduction. However, unlike all previous work based
on this approach, the forward dynamics of soft systems are
here integrated in time using an implicit unconditionally
stable scheme. This choice strongly structures the simulation
algorithm as it requires not only to compute the dynamic
model of the robot, but also its tangent dynamics. The first
is required to calculate the residual vector of the original
DAEs constrained by the integration scheme, and the second
to calculate the Jacobian of this vector. This extra effort,
compared to explicit integration, has been accomplished
by GE-FEM [16] and DER [20]. In the case of strain-
parameterized models here considered, this extension is
particularly challenging. Indeed, the use of relative variables
(strains) instead of the absolute variables of GE-FEM or
DER, increases the non-linearities of the model, which
are then transferred from the stiffness matrix to the mass
matrix. To address this issue, the article refers to rigid
robots dynamics, for which efficient algorithms working in
relative (joint) coordinates have been developed since the
1980s in the well-known Newton-Euler framework [33]. To
this end, the IDM of [26] will be hybridized with that of
rigid multibody-systems [30] in a single unified algorithm
that generalizes the Lie group recursive formulation of rigid
robot dynamics [34], [35]. Going one step further, applying
an exact differentiation to this IDM considered as an input-
output map, provides a second algorithm named TIDM for
“tangent inverse dynamic model”. By feeding these two new
algorithms with inputs compatible with the implicit time
integration scheme, in this case a one-step integrator of the
Newmark class, both the residual vector and its Jacobian
matrix can be computed in the Newton correction loop of a
general predictor-corrector algorithm. Like in the GE-FEM
of [31] and the FPM of [22], the case of closed loops
is treated in its index-3 formulation1, which, compared to
Baumgart’s index-1 method [37], used in [27] after [38], has
the advantage of providing solutions that do not depend on
the user’s choice of some stabilisation parameters, while sat-
isfying the constraints exactly [39]. At the end, the proposed
dynamic simulation algorithm generalizes the quasi-static
simulation algorithm of [40] and [41], recently proposed for
CPRs and TACRs respectively. In particular, like in [41],
the differential properties of the IDM and TIDM are
exploited in order to achieve all the space integrations of
generalized forces with spectral methods [42]. The general
algorithm of the article is illustrated through numerical
examples, both inspired from the GE-FEM literature of
Cosserat rods and of some recent robotics applications.

C. Stucture of the article

The article is structured as follows. Section II presents
the Lagrangian parametrisation and the corresponding dy-

1The index of a system of DAEs is roughly defined as the number
of times we need to differentiate the constraints in order to change the
DAEs into ODEs (ordinary differential equations). For multibody systems,
differentiating once (resp. twice) the geometric constraints, changes the
index-3 formulation into an index-2 (resp. index-1) formulation [36].
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Fig. 1: Different types of SMMS discussed in the article.
The ellipsoids and thick lines represent rigid bodies and
Cosserat rods, respectively. From left to right: (a) Tree-
shaped manipulator. (b) Manipulator with a closed loop.
(c) Locomotor in tree form. (d) Manipulator modelled as
a locomotor connected to the ground (see Remark 1). The
dashed lines represent the location of the virtual cuts.

namic model of systems discussed in the paper systems.
In Section III, we present the implicit time integration
scheme used by the approach, while section IV presents
the general prediction-correction algorithm in which this
scheme is integrated for the purpose of dynamic simula-
tion. The central calculation of this algorithm is a Newton
loop that requires the calculation of the residual vector of
the dynamics and its Jacobian matrix (constrained by the
integrator) as explained in Section V. These calculations
are based on a Newton-Euler recursive inverse dynamics
algorithm, and its differential, or tangent inverse dynamics
recursive algorithm. The NE model is presented in Section
VI, while the two algorithms are detailed in Section VII
and used in section VIII to compute the residual vector
and its Jacobian. These algorithms require to space integrate
the continuous kinematics and stress along the structure as
explained in section IX. Numerical illustrations are reported
in Section X, while the paper ends with some perspectives
in the conclusion section XI.

II. LAGRANGIAN MODEL OF A SMMS

A. Systems addressed

We consider a soft mobile multibody system (SMMS)
(see figure 1). Such a system consists of rigid bodies and
Cosserat rods connected by fixed or revolute joints2 which
can be passive or torque actuated. The rods can be passive or
internally actuated through distributed actuation systems as
cables or pressurized fluids. The system can have a simple
open, tree-like or closed topology, with kinematic loops.
The system can be a manipulator or a locomotor depending
whether it has one of its bodies (named the basis) connected
to the ground, or not.

2This is assumed for the sake of simplicity, but the approach can be
extended with no difficulty to other joints as prismatic or universal ones.

B. Lagrangian parametrization of a SMMS
If the considered SMMS contains some kinematic loops

(see figure 1 (b,d)), then we start by virtually cutting3 each
of these loops at the level of a passive joint (that can be
fixed)4. Then, the configuration of the so defined tree-like
SMMS is parameterized as follows. Any localized joint
of revolute type is parameterized by one angle, and the
set of all these angles is gathered in the (nr × 1) vector
denoted qr. Regarding the rods, we use the reduced strain
parameterization of [26] i.e., we decompose the allowed
strain field ϵj of each Cosserat rod of index j and length at
rest lj , on a Ritz basis according to:

ϵj(X) = Φj(X)qϵ,j , ∀X ∈ [0, lj ], (1)

with X the arc-length along the rod in a resting
configuration, Φj a matrix of functions (typically
polynomials), and qϵ,j ∈ Rnϵ,j , the vector of strain
(generalized) coordinates of rod j. Gathering all the
strain vectors qϵ,j defines an (nϵ × 1) vector, noted qϵ.
When the SMMS is a manipulator, its configurations or
“shapes”, are entirely parameterized by the generalized
coordinates vector q = (qTr , q

T
ϵ )

T of size (n × 1) with
n = nr + nϵ. In contrast, if the SMMS is a locomotor,
it is not only subject to time-variations of its internal
degrees of freedom (d.o.f) parameterized by q, but also
to some net rigid motions. These additional external d.o.f
require a further set of coordinates that parameterize the
pose (position-orientation) of a frame F0 attached to one
of the rigid bodies of the SMMS, that takes the meaning
of a reference body B0. This rigid body can be a full
(3D) rigid body, or a rigid cross sections at one of the
tips of a Cosserat rod. The pose of this reference rigid
body is parameterized by a homogeneous transformation
g0 ∈ SE(3). Finally, in the most general case, the set of
Lagrangian coordinates is defined as a pair (g0, q) i.e.,
an element of the configuration space SE(3) × S with
S ∼= Rn the shape space of the SMMS. With this definition
of the configuration space, the velocities of the SMMS are
described at any time t, with a vector (ηT0 , q̇

T )T of R6+n,
where η0 = (g−1

0 ġ0)
∨ ∈ se(3) ∼= R6 is the twist of B0 in

its mobile frame F0, and a dot indicates d./dt.

Remark 1: Note that a same closed-loop SMMS can be
modelled by different tree-like systems depending on the
cuts chosen. To illustrate this, consider a planar CPR like
the one in figure 1 (d), where one of the upper joints is
actuated, while all the others are passive. The system can
be cut at the upper passive joint (shown in red in figure
1 (d)) and the ground defined as the base B0 of a two-
armed manipulator. Alternatively, all the lower joints can be
cut off (shown in blue in figure 1 (d)) and the upper rigid
platform defined as the reference body B0 of a two legged
locomotor■

3A virtual cut is a purely mathematical process. Real cuts, such as the
detachment of two bodies, are not covered in this article.

4Once again, this condition is imposed for the sake of simplicity, but the
approach can be extended to virtual cuts applied to active joints.
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C. Lagrangian dynamic model of a SMMS

Once the configuration space of a general SMMS is de-
fined, applying one of the variational principles of dynamics
as D’Alembert’s principle of virtual works, or Hamilton’s
principle of least action, provides its dynamics as a set of
differential-algebraic equations of the form [31]:(

06×1

Qad

)
=

(
M00 M0q

Mq0 Mqq

)(
η̇0
q̈

)
+

(
F
Q

)
,

Φ(g0, q) = 0m×1. (2)

The bottom (algebraic) equations define a set of m inde-
pendent constraints imposed by the closure loops, which in
the general case can depend on both g0 and q depending
on the topology of the system after cuts and the choice of
B0 (see Remark 1). The time-differential of these geometric
constraints defines the kinematic form of constraints:

Φ̇ =
(
J0 Jq

)( η0
q̇

)
= 0m×1, (3)

where Jq(g0, q) and J0(g0, q) are some kinematic Jacobian
matrices defined by the usual derivation in Rn, for the first:

Jq q̇ =

(
∂Φ

∂q

)
q̇, (4)

and by the directional derivative on SE(3) for the second:

J0 η0 =
d

dϵ

∣∣∣∣
ϵ=0

Φ(g0 exp(ϵη̂0), q), (5)

with “exp”, the exponential map of SE(3). In the top
(differential equations) of (2), from left to right, one
finds: (1) The vector of generalized internal actuation
forces Qad = (τTd , QT

adϵ)
T including the localized joint

torques τd(t) as well as the distributed actuation gen-
eralized forces QT

adϵ(qϵ, t) of a set of cables for in-
stance. (2) The q-dependent symmetric matrix of gener-
alized inertia. (3) The vector of generalized accelerations.
(4) The vector (FT , QT )T = (FT

v , QT
v )

T + (FT
c , QT

c )
T ,

with (FT
v , QT

v )
T (q, η0, q̇) the velocity-dependent general-

ized forces including the effects of Coriolis and centrifugal
accelerations, and (FT

c , QT
c )

T , the vector of configuration-
dependent forces. This vector can be detailed as:(

Fc

Qc

)
=

(
Fg

Qg +Qe

)
−
(

JT
0

JT
q

)
λ, (6)

where (FT
g , QT

g )
T (g0, q) is the vector of gravity forces,

while Qe = (01×nr
, QT

ϵ )
T stands for the internal restoring

(elastic) forces, with Qϵ(qϵ) = Kϵϵqϵ, and Kϵϵ, the
matrix of generalized (constant) stiffness. In (6), JT

0 λ
(respect. JT

q λ) is the wrench in se(3)∗ ∼= R6 (respect. the
vector of internal generalized forces in Rn) induced by
the reaction forces λ imposed by the m constraints of loops.

Remark 2: Although limited to time-independent holonomic
constraints of the form (2), all the results of the article can
be extended without conceptual difficulty to constraints of
the more general form [31]:

Φ(g0, η0, q, q̇, t) = 0m×1, (7)

where the components of Φ that depend on velocities
(η0, q̇) can be non-integrable with respect to time i.e.,
non-holonomic [43]■

Remark 3: Using notation χ = (g0, η0, η̇0, q, q̇, q̈, λ), the
integration of the dynamics of the SMMS from a set of
initial conditions at t = t0, consists in finding a time-
evolution: t ∈ [t0,+∞[7→ χ(t) ∈ R3×6+3n+m, solution
of:

R(χ(t), t) = 0(6+n+m)×1, (8)

where R defines the dynamic residual vector of the SMMS,
which can be deduced from (2) as:

R =

 R0

Rq

Rλ

 =

 M00η̇0 +M0q q̈ + F
Mq0η̇0 +Mqq q̈ +Q −Qad(t)

Φ

 .

(9)
Note that this residual vector is continuous in time and needs
to be discretized for numerical simulation purpose. This
discretization is based on an implicit integration approach
as detailed in next section■

III. TIME INTEGRATION

In the context of simulation, a time-integrator allows ap-
proximating (8) along a sequence of time instants {tk}k∈N+ ,
with tk+1 = tk + ∆t and ∆t a time-step that we consider
constant. For reasons of stability and simplicity, we adopt
an implicit one-step scheme of the Newmark type [44].
Specifically designed for second order ODEs of Newtonian
mechanics, this scheme has been refined over the years to
meet the specific needs of structural dynamics [32]. Defined
at the origin on a vector space, it can be directly applied
to the generalized coordinates q ∈ Rn of the internal d.o.f.
of a SMMS. In this case, the scheme requires any (q, q̇, q̈)
candidate to be a solution of (8) at a time tn+1, to satisfy
the usual implicit relations:

q̇ = a(q − q(n)) + f (n)
q , q̈ = b(q − q(n)) + h(n)

q . (10)

Here q(n) denotes the value of q at tn (a notational con-
vention that will be systematically used in what follows),
a, b are two scalars that depend on the time-step ∆t, while
f
(n)
q = f(q̇(n), q̈(n)), h

(n)
q = h(q̇(n), q̈(n)), with f and h

two vector functions fixed by the scheme and reminded
in Appendix 1. As detailed in [11], this integrator can be
extended to the external d.o.f. of g0 ∈ SE(3). To that end,
we impose to any (g0, η0, η̇0) candidate to be solution of
(8) at tn+1, to fulfill the Newmark scheme on SO(3)×R3:(

Ω0

ṙ0

)
= a

(
Θ0

d0

)
+

(
f
(n)
θ

f
(n)
r

)
,

(
Ω̇0

r̈0

)
= b

(
Θ0

d0

)
+

(
h
(n)
θ

h
(n)
r

)
, (11)

where g0 = (R0, r0), R0 ∈ SO(3), r0 ∈ R3, η0 =
(ΩT

0 , V
T
0 )T , with Ω0 and V0 = RT

0 ṙ0 the angular and linear
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velocities of B0 in the body frame, while we introduced a
new vector ν0 = (ΘT

0 , d
T
0 )

T ∈ so(3)× R3 ∼= R6:

R0 = R
(n)
0 exp(Θ̂0) , r0 = r

(n)
0 + d0, (12)

with “exp” here denoting the exponential map of SO(3).
Omitting the upper indices, in (11), (fθ, hθ) and (fr, hr)
are defined similarly to (fq, hq) of (10), but with (Ω0, Ω̇0)
and (ṙ0, r̈0) replacing (q̇, q̈) respectively (see Appendix 1).
Introducing (11) and (12) into the kinematic definitions of
(g0, η0, η̇0) in terms of R0 and r0, allows expressing them
at any time beyond tn, in terms of ν0 only [11]:

η0 = A(ν0) , η̇0 = B(ν0) , g0 = C(ν0), (13)

where the detailed expressions of A,B,C are reminded
in Appendix 1. Finally, thanks to the Newmark integrator,
the search for (g0, η0, η̇0, q, q̇, q̈, λ) at any time tn+1, is
reduced to that of (ν0, q, λ).

Remark 4: In the subsequent numerical resolution, one will
need to use the increments of velocities and accelerations
compatible with the Newmark integration. To get them, it
suffices to apply the variation ∆ to (10):

∆q̇ = a∆q , ∆q̈ = b∆q. (14)

Similarly, defining the differential of g0 as ∆ζ0 =
(g−1

0 ∆g0)
∨ ∈ se(3), the ∆-variation applied to (13) gives

[11]:

∆η0 =

(
∂A

∂ν0

)
∆ν0 , ∆η̇0 =

(
∂B

∂ν0

)
∆ν0,

∆ζ0 =

(
∂C

∂ν0

)
∆ν0, (15)

whose detailed expressions are reminded in Appendix 1■

IV. NUMERICAL RESOLUTION

Based on this approximation, the numerical resolution is
achieved by induction as follows. Assuming we know χ(n)

compatible with the constraints (10-13) and solution of (8)
at tn, we have to find a χ(n+1) compatible with the same
constraints, and solution of (8) at tn+1. To that end, we first
introduce (10-13) into (8). This changes the system of DAEs
(8), into the algebraic system:

R̄(n)(χ̄, tn+1) = 0(6+n+m)×1, (16)

whose root χ̄ = (ν0, q, λ) ∈ R6+n+m defines χ̄(n+1),
and the over-bar indicates that the residual vector is now
constrained by the integrator. In details, we have:

R̄(n) =
(
R̄(n)T

0 , R̄(n)T
q ,ΦT

)T
, (17)

with upper index (n) keeping trace of the dependence to
(g

(n)
0 , η

(n)
0 , η̇

(n)
0 ) and (q(n), q̇(n), q̈(n)) in (10) and (11). Now

remark that (16) is a square system of algebraic nonlinear
equations that can be addressed with an iterative root finder,

Compute

Prediction

Compute (18)

Initialisation

Time incrementation

Yes

No

• Forward kinematics : eq. (39-41), (46)

• Backward dynamics : eq. (42-44), (45)

• Projections of wrenches:  eq. (63,64).

• Tangent forward kinematics : eq. (48-50)

• Tangent backward dynamics : eq. (51-54), (56-59)

• Projections of wrenches variations: eq. (65,66)

?

Update                from      

             with (10), (11) 
• Loop closure kinematics : eq. (36,38)

Fig. 2: Flowchart of the “predictor-corrector” simulation
algorithm. The calculation of the residual vector and its
Jacobian are based on the IDM and TIDM . The over-
bar indicates that these algorithms are fed by inputs that
fulfill the constraints (10-13) and (14,15), imposed by the
integration scheme. The lower star defines some adapta-
tions of these two algorithms allowing to calculate directly
R̄(n)(χ̄, tn+1) and its differential, as detailed in section VIII.

as the Newton algorithm. In this latter case, the algorithm
solves at each iteration the linearized system tangent to (16):

χ̄+ = χ̄−
(
∂R̄(n)

∂χ̄

)−1

R̄(n)(χ̄, tn+1), (18)

where the index “+”, denotes the value of χ̄ corrected by the
current Newton iteration. In this linear system, (∂R̄(n)/∂χ̄)
is the Jacobian matrix of the residual vector constrained by
the integrator, which details as:

(
∂R̄(n)

∂χ̄

)
=


∂R̄(n)

0

∂ν0

∂R̄(n)
0

∂q JT
0

∂R̄(n)
q

∂ν0

∂R̄(n)
q

∂q JT
q

J0 Jq 0

 . (19)

Note that after convergence of the Newton loop, the full
set χ is updated from the converged χ̄ by using (10-13).
Furthermore, at each time step tn, (g0, q) of χ̄ = (g0, q, λ)
can be initialized in the Newton algorithm, with one of the
usual predictors of the Newmark scheme, as for instance,
the “inertial” or “ballistic” predictor, which is defined by
imposing (Ω̇0, r̈0, q̈) = (03×1, 03×1, 0n×1) in (10) and (11),
while for λ, one can use its value at the previous step tn−1.
Finally, the dynamic simulator is structured by two nested
loops, one global time-loop (the Newmark loop) and the
other (Newton loop) that solves (16) (see figure 2). Note
that while this secondary loop runs, the time is frozen and
incremented by the Newmark loop only after the Newton
loop has converged.

Remark 5: At each iteration of the Newton loop, the
resolution of (18) requires the computation of R̄(n) and
(∂R̄(n)/∂χ̄). In order to avoid the heavy symbolic computa-
tions, we propose to compute R̄(n) implicitly, by applying
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the Newton-Euler (NE) approach of robotics [33]. To do
so, we will use the inverse algorithm of SMMS, named
IDM for “inverse dynamic model”. Moreover, although
the Jacobian (∂R̄(n)/∂χ̄) can be evaluated numerically
by finite difference approximations (as done by defaults,
by Matlab’s fsolve function, for instance), we propose
here a more accurate computation of this matrix, based
on another Newton-Euler algorithm named TIDM , for
“tangent inverse dynamic model”■

V. CALCULATION OF THE RESIDUAL VECTOR AND ITS
JACOBIAN MATRIX

To introduce the NE computational process of the residual
vector and its Jacobian matrix, let us reconsider the upper
ODEs of (2), in which Qe is moved from the right to the left-
hand side, and the vector (01×6, (Qad−Qe)

T )T , is replaced
by a full vector of fictitious actuation forces (FT

a , QT
a )

T .
This defines an (inverse) Lagrangian model of the form:(

Fa

Qa

)
=

(
M00 M0q

Mq0 Mqq

)(
η̇0
q̈

)

+

(
Fv + Fg − JT

0 λ
Qv +Qg − JT

q λ

)
. (20)

As this is the case of rigid manipulators [30], we will see
soon (Section VII) that the Lagrangian model (20) can be
realized alternatively by an inverse Newton-Euler algorithm
in two pass, which formally reads:(

Fa

Qa

)
= IDM(χ), (21)

where remind that χ = (g0, η0, η̇0, q, q̇, q̈, λ). Physically, this
IDM computes for any state (g0, η0, q, q̇), the wrench Fa

and the full vector of internal forces Qa (applied on all the
entries of q = (qTr , q

T
ϵ )

T ), that would be required to ensure
the SMMS, considered as fully actuated, to accelerate at
(η̇0, q̈), while being subject to the external forces λ applied
at the tip of the cut branches. Now using the identity (21) in
(16), the two top block-components of the residual vector
of the SMMS constrained by the Newmark integrator read:(

R̄(n)
0

R̄(n)
q

)
(χ̄, tn+1) = IDM(χ̄)−

(
06×1

Υ(q, tn+1)

)
,

(22)
where the overbar indicates that the IDM is now fed with
inputs compatible with the integrator constraints (10,11) i.e.,
with inputs that depend on χ̄ only, while we used the further
notation:

Υ(q, t) = Qad(qϵ, t)−Qe(qϵ). (23)

In summary, one can compute (R̄(n)
0 , R̄(n)

q )(χ̄, tn+1) with
the IDM . To this end, it suffices to force its inputs to
fulfill the constraints of the integrator (10,11), and to remove
(01×6,Υ(q, tn+1)

T )T from its vector of outputs. Remark-
ably, the same idea can be applied to the computation of the

top two block-rows of (∂R̄(n)/∂χ̄). Indeed, differentiating
(22) provides the identity:(

∆R̄(n)
0

∆R̄(n)
q

)
=

 ∂R̄(n)
0

∂χ̄
∂R̄(n)

q

∂χ̄

∆χ̄

= TIDM(χ̄,∆χ̄)−
(

06×1

∆Υ(q,∆q, tn+1)

)
, (24)

where:

∆Υ(q,∆q, t) = ∆Qad(qϵ,∆qϵ, t)−∆Qe(qϵ,∆qϵ), (25)

with ∆Qe = Kϵϵ∆qϵ, and ∆Qad = (∆τd(t)
T ,∆QT

adϵ)
T =

(01×nr ,∆QT
adϵ)

T , since the time is frozen in the correction
Newton’s loop, while Qadϵ can depend on qϵ [26]. In (24),
TIDM denotes the tangent algorithm to the IDM or
TIDM , with the over-bar indicating that it is fed with inputs
compatible with the constraints (10,11) and (14,15) imposed
by the integrator. Formally, this further NE algorithm is
defined by the differential of the input-output map (21):(

∆Fa

∆Qa

)
= TIDM(χ,∆χ), (26)

which for any χ = (g0, η0, η̇0, q, q̇, q̈, λ), allows to
compute the variations of outputs ∆Fa and ∆Qa

required by imposing variations ∆χ = (∆ζ0,∆η0,∆η̇0,
∆q,∆q̇,∆q̈,∆λ) as inputs. Now let us define δi ∈ R6+n+m

as the unit vector, with zero entries, except the ith, which
is equal to one. Then, the identity (24) shows that feeding
TIDM with χ̄ and ∆χ̄ = δi, i = 1, 2...., 6 + n +m, and
removing from its outputs, (01×6,∆ΥT )T fed with the
same inputs (see next remark), allows to compute column
after column, the top two block-rows of (∂R̄(n)/∂χ̄) in
any χ̄.

Remark 6: Before detailing the IDM and TIDM algo-
rithms of a SMMS, it is worth mentioning that if we have
at our disposal these two algorithms, exploiting the two
identities (22) and (24) to compute their left-hand sides,
requires to calculate Υ(tn+1) = Qad(tn+1) − Qe and
∆Υ(tn+1) = ∆Qad(tn+1)−∆Qe (for the sake of concision,
we will often indicate the time dependency, only). Moreover,
using the identity (22) only provides R̄(n)

0 and R̄(n)
q in (9),

and not R̄(n)
λ = Φ(g0, q). On the other hand, owing to the

symmetries of the block matrix (19), calculating its two
top rows with the identity (24) is enough to reconstruct
the full Jacobian (∂R̄(n)/∂χ̄). As we will see later (see
section VIII), the missing vectors Υ(tn+1), ∆Υ(tn+1), and
R̄(n)

λ = Φ(g0, q) can also be computed with some of the
subparts of the IDM and TIDM . Therefore, these two
algorithms are the key of the computation of the residual
vector and the Jacobian of (18). Since they are both based on
the Newton-Euler model of SMMS, we will now introduce
this model■

VI. NEWTON-EULER MODEL OF A SMMS
As per usually, a rigid link is modelled by a rigid 3D body
of arbitrary shape (not necessarily rod-shaped). On the other
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joints
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Fig. 3: Segmentation of a SMMS for IDM and TIDM .
The two Cosserat rods are declared as joints J3 and J6.
Their two tip-cross sections are declared as rigid bodies
(B2,B3) and (B5,B6).

hand, in order to easily hybridize the IDM of rigid multi-
body systems [30], with that of Cosserat rods [26] into
a single generalized IDM , it is convenient to consider a
Cosserat rod as two tip cross-sections (i.e., two rigid bodies
with no thickness and no inertia), connected by a distributed
flexible joint. Therefore, the continuous model of poses,
velocities, acceleration and stress of Cosserat rods is used in
the model of joints and not bodies. As we will soon see, by
adopting this choice, the resulting generalized IDM will,
at the highest level, take a form similar to that of the rigid
case.

A. Segmentation of a SMMS

Using the above viewpoint, the tree-like SMMS of section
II is first segmented into a rigid body sequence consisting
of the original 3D rigid bodies and the tip sections of the
Cosserat rods. All these rigid bodies are indexed following
the usual Newton-Euler conventions i.e., from the reference
body B0, which is the fixed basis for a manipulator, or
the free-floating one of a locomotor, to BN , with bodies
B0,B1, ...BN numbered increasingly while descending the
branches. As in any tree-like system, a body has only one
antecedent and possibly several successors. In the subse-
quent developments, j preferentially denotes the current
body index of the algorithm, while k = a(j) is its antecedent
and l is the index of one of its successors i.e., l ∈ s(j),
where s(j) is the set of the indexes of all the successors
of Bj . As for rigid systems, any two contiguous bodies
are separated by a joint. Indexing each of these joints with
the index of its succeeding body, one can form the set of
joints J1,J2, ...JN , some of them being rigid lumped joints
(fixed or revolute) as those met in rigid systems, while others
are soft distributed joints modelled by Cosserat rods. This
segmentation process is illustrated in figure 3.

B. Frames

According to the standard uses of NE’s approach, each
of the rigid bodies that belongs to the SMMS is equipped

with a frame rigidly attached to it and positioned according
to some conventions. With the segmentation introduced
above, this concerns both the rigid bodies (3D or rod
end cross-sections), and the distributed joints modelled by
Cosserat rods. Regarding distributed joints, we adopt for
each of them, say Jj , the convention of Cosserat rods and
attach to each cross-section labelled by its reference arc-
length X ∈ [0, lj ], a frame Fj(X) = (Oj , sj , nj , aj)(X)
where Oj(X) is centered on the X-cross-section, and
sj(X) is its unit normal. Regarding rigid bodies, if Bj is a
3D body, we adopt the usual Newton-Euler conventions of
rigid systems [45] i.e., a body frame Fj = (Oj , sj , nj , aj)
is positioned on Jj , with aj , supported by the joint axis if
Jj is revolute. If Bj is a 2D body, this is one of the two
end cross-section of a Cosserat rod, and its body frame
is that used in the model of the corresponding distributed
joint. If a body Bj is at the end of a branch resulting of
the virtual cut of a loop, a second frame, other than Fj ,
noted F+

j = (O+
j , s

+
j , n

+
j , a

+
j ) is attached to Bj with O+

j

located on the cut, and a+j supported by the axis of the
cut joint, when it is revolute. Finally, the Euclidean space
is equipped with an inertial frame Fe. In the rest of the
article, for any vector (or tensor) V mechanically related to
a body Bj , iVj denotes the matrix of its components in the
frame Fi, while for the sake of concision, the upper-left
index is omitted when Fi = Fj i.e., jVj = Vj . For similar
reasons of concision, the pose of a frame Fj with respect to
another Fk is denoted kgj ∈ SE(3), while when Fk = Fe,
the index e is omitted i.e., egj = gj , and the pose is said
“inertial”.

Remark 7: Note that some conflicts between the frame
placement conventions of Cosserat beams and those of
rigid robots may occur, e.g. when a rod is preceded by a
rotary joint of negligible inertia. However, such conflicts
can always be removed by declaring a fictitious rigid body
supported by the revolute joint and fixed to the first cross
section of the following rod. This explains why we have
introduced the a priori unnecessary fixed joints in our
description■

C. Newton-Euler model of rigid bodies

In the Newton-Euler approach, the configuration of
each rigid body Bj is defined by the inertial pose of its
body frame i.e., gj = (Rj , rj) ∈ SE(3), with Rj and
rj the orientation matrix and origin’s position of Fj , in
Fe. Introducing the inertial velocity twist of Bj in the
body frame ηj = (g−1

j ġj)
∨ ∈ R6, and applying Newton’s

laws and Euler’s theorem to each body Bj isolated in the
structure, provides the usual Newton-Euler equations that
govern the time evolution of the gjs on SE(3):

• NE dynamic balance (ODEs) of rigid bodies:

Mj η̇j − adTηj
Mjηj = Fext,j + Fj −

∑
l∈s(j)

jFl. (27)
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In these dynamic balances, Mj ∈ R6×6 is the (screw)
inertia matrix of an arbitrary shaped rigid body Bj (equal
to zero if Bj is a rod end cross-section), Fext,j ∈ R6 is the
wrench of external forces (e.g gravity, external contacts)
exerted on it, Fj ∈ R6 is the wrench of internal contacts
exerted by the antecedent body Bk, (k = a(j)) onto Bj ,
all these vectors and tensors being expressed in the mobile
body frame Fj . With these definitions and our notational
conventions, the wrenches in the sum of (27) are contact
wrenches transmitted by Bj to all its successors Bl through
the joints that connect them. Therefore they are first defined
in the Fl frames by Fl, and then expressed in Fj through
jFl, while action-reaction principle motivates the minus
sign.
Remark 8: When a rigid body Bj is preceded by an actuated
lumped (revolute) joint Jj , the projection of the contact
wrench Fj transmitted by the joint from Bj−1 to Bj , along
the joint axis aj , is no more than the motor torque:

Qar,j = AT
j Fj , (28)

where Aj = (0, 0, 1, 0, 0, 0)T ∈ R6 is the unit twist sup-
porting the localized rotation of the revolute joint. Note that
according to the common uses in rigid robotics, (28) stands
for a constitutive law of the joint, that can be supplemented
with a model of friction [45].

D. Newton-Euler model of soft joints

In the rest of the article, the temporal and spatial
derivations ∂./∂t and ∂./∂X are designated by a
“dot” and a “prime” respectively. In the Newton-Euler
approach, the configuration of a Cosserat rod Jj is
defined by the inertial pose of all its cross-sectional
frames gj(X) = (Rj , rj)(X) ∈ SE(3), ∀X ∈]0, lj [,
whose time and space variations are described by the
two twists (in R6): ηj(X) = (g−1

j (X)ġj(X))∨, and
ξj(X) = (g−1

j (X)g′j(X))∨, both being expressed in the
cross-sectional frames. Then, applying Newton’s laws and
Euler’s theorem along such a rod, provides the following
closed formulation that governs the time-evolution of gj(.):

• NE dynamic balance of X-cross sections (PDEs), ∀X ∈
]0, lj [:

Mj η̇j − adTηj
Mjηj = F̄ext,j + Λ′

j − adTξjΛj , (29)

• Boundary conditions:

Λj(0) = −Fa(j) , Λj(lj) = −Fj . (30)

• Active constitutive law along [0, lj ]:

BT
j Λj = BT

j Λd,j(t) + (BT
j HjBj)ϵj . (31)

In these equations, ϵj(X) = BT
j (ξj − ξoj )(X) is the strain

field at X , with Bj a matrix (with zero and unit entries)
selecting the strain components allowed by the adopted
beam kinematics (e.g. Reissner, Kirchhoff...), and ξoj (X)
the value of ξj(X) in a reference (stress-less) configuration
indexed by o. F̄ext,j(X) ∈ R6, Mj(X) ∈ R6×6 and

Hj(X) ∈ R6×6 are the density of external wrenches, this
of inertia (screw) matrix, and the stiffness (screw) matrix
along the rod at X , while Λj(X) is the wrench of stress
exerted by the piece of rod [X, lj ] onto the piece [0, X]
across the X-cross section, all these vectors and tensors
being expressed in the cross-sectional frames of the rod.
Finally, Λd,j(X, t) ∈ R6, is a stress wrench modelling
the effect of the distributed actuation (if any), across the
X-cross-section of Jj as illustrated by the following remark.

Remark 9: In the case of a rod Jj actuated by a set of
pj tendons of index (α = 1, 2..., pj), with routings defined
by their positions Dj,α(X) ∈ R3 in the X-cross-sectional
frames, Λd,j can be detailed as [26]:

Λd,j =

pj∑
α=1

1

∥Γj,α∥

(
Dj,α × Γj,α

Γj,α

)
Tj,α(t), (32)

where Tj,α is the tension exerted on the tendon α, and
Γj,α = Γj +Kj ×Dj,α +D′

j,α, with ξj = (KT
j ,Γ

T
j )

T . In
general, the model of Λd,j depends on ϵj and needs to be
derived on the case by case basis■

Remark 10: The above constitutive law can be adapted
to approximate the material friction between cross-sections
with a simple viscous damping model. To this end, it suffices
to change (31) into:

BT
j Λj = BT

j Λd,j(t)+ (BT
j DjBj)ϵ̇j +(BT

j HjBj)ϵj , (33)

where Dj(X) ∈ R6×6 is the damping matrix along the rod
at X . Using the Kelvin-Voigt model, it is convenient to
impose Dj = µjHj , with µj a scalar damping coefficient■

E. Kinematic model of joint connections

Using the segmentation of Section VI.A, a joint connecting
any two consecutive rigid bodies Bk and Bj imposes the
relation between their poses:

gj = gk
kgj . (34)

In details, according to the standard uses of rigid robots,
when Jj is a rigid lumped joint, the relative pose kgj in (34)
is a function of qrj or is fixed by design, depending whether
the joint is revolute or fixed. When Jj is a (distributed) soft
joint, following [26], the internal rod kinematics (Reissner,
Kirchhoff...) imposes to any two infinitely close cross-
sections along the joint, the differential relation between
their poses:

g′j = gj(ξ
o
j +Bjϵj)

∧, (35)

where the strain field ϵj(.) of (35) is reduced on a strain
(polynomial) basis with the Ritz approximation (1) in
which remind that the vector of strain coordinates of Jj

qϵ,j ∈ Rnϵ,j , defines a sub-part of qϵ. In the following
NE algorithm, (34) and (35) are used to relate the inertial
poses gj and gj(.) to the SMMS generalized coordinates
q = (qTr , q

T
ϵ )

T of the Lagrangian parametrization of Section
II. Finally, remark that the cut revolute joint of a closed
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loop will not introduce such kinematic parameters, but rather
Lagrange multipliers in charge of forcing a set of closure
kinematic constraints that we are now going to detail.

F. Kinematic model of loop closures

Let us consider two terminal bodies Bp and Bs connected
by a revolute joint virtually cut when opening a loop. Then,
using the convention that when s > p, Fp+ is the leader
frame and Fs+ is the follower one, a virtually cut revolute
joint imposes to the relative pose p+gs+ to be compatible
with the five scalar geometric constraints:

Φs|p = ĀT
p+

(
log(p+Rs+)

p+rs+

)
= ĀT

p+

(
03×1

03×1

)
, (36)

where the log-map stands for the inverse of the exponential
in SO(3) and Āp+ ∈ R6×5 is the complementary matrix to
the virtually cut revolute joint axis Ap+ = (0, 0, 1, 01×3)

T

i.e., it is such that AT
p+Āp+ = 01×5, and ĀT

p+Āp+ = 15×5.
This context holds for any type of cut joint where it suffices
to replace the 5 constraints above by any number of con-
straints depending on the nature of the joint. In particular,
virtually cutting a fixed joint introduces six constraints
instead of five (i.e. Āp+ = 16×6). Time-differentiating (36)
provides the kinematic form of the closure loop constraints:

Φ̇s|p = Js|p ηs+/p+
= ĀT

p+06×1, (37)

where ηs+/p+
= (s+gp+

p+ ġs+)
∨ = ηs+ − Ads+gp+

ηp+
is

the relative twist of the follower frame Fs+ with respect
to the leader one Fp+ , while Js|p, is a kinematic Jacobian
matrix defined by:

Js|p = ĀT
p+

(
T (Θs|p)

−1 03×3

03×3
p+Rs+

)
, (38)

which depends on Θs|p = log(p+Rs+) ∈ R3. Finally, note
that if the loop is connected to the ground, we simply have
s = 0.

Remark 11: Gathering all the equations from (27) to (38)
defines the Newton-Euler formulation of the SMMS dynam-
ics. It is here expressed on the Lie group SE(3) as this was
the case for rigid robots in [34], [35]. This formulation is
entirely equivalent to the Lagrangian one defined by the set
of DAEs (2). As announced in Section V, we are now going
to exploit this equivalence in order to calculate the residual
of the Lagrangian formulation (17) and its Jacobian matrix
(19). This is achieved with two recursive algorithms based
on the NE formulation that are detailed in the next section■

VII. RECURSIVE IDM AND TIDM OF A SMMS

A. Newton-Euler IDM of a SMMS

Like for a rigid manipulator [30], the IDM proceeds in
two passes. The first, descending (from the base to the ends
of the branches), calculates the inertial poses, velocities
and accelerations along the branches from the knowledge
of (g0, η0, η̇0, q, q̇, q̈). The second, ascending, calculates the
interbody wrenches transmitted across the rigid and soft

joints from the knowledge of λ and the inertial kinematics
calculated by the first pass. These interbody wrenches are
then projected on the d.o.f of joints to calculate Qa of (20),
while Fa is the last “interbody” wrench computed by the
second pass. As introduced before, thanks to the declaration
of rods as distributed joints, at a first (high) level, this
algorithm takes the usual form of that of rigid systems, but
here applied to the segmentation of section VI.A. The only
difference lies in a second (low) level, where the usual
discrete forward and backward transfers on inter-body
kinematics (poses, velocities, accelerations) and inter-body
wrenches, respectively, are replaced by continuous transfers
obtained by integrating forward (35) (and its first and
second temporal derivatives), and backward (29), when the
joint is a soft distributed one.

1) Forward kinematics: Time differentiating twice (34)
provides the kinematic model that relates the pose, velocities
and accelerations of all the rigid bodies Bj (including the
tip cross sections of soft links) in the form of a recursion
on body indexes, initialized by (g0, η0, η̇0):

For j = 1, 2, ..., N, do :

k = a(j),

gj = gk
kgj ,

ηj = Ad jgkηk + ηj/k,

η̇j = Ad jgk η̇k + adηjηj/k + η̇j/k, (39)

where from now on, ηj/k =
(
kg−1

j
kġj
)∨ ∈ R6 denotes the

twist of relative velocities between Bj and its antecedent
Bk expressed in the mobile frame of Bj .

Now, when computing (39), we have two cases:

• If Jj is a lumped rigid one, one uses the usual relations:
kgj =

kgj(qrj) , ηj/k = Aj q̇rj , η̇j/k = Aj q̈rj , (40)

where Aj is the unit twist supporting the localized rotation
of a revolute joint as introduced in remark 8, while if the
joint is fixed, qrj is replaced by a constant angle, that
depends on the design.

• If Jj is a soft joint, (kgj , ηj/k, η̇j/k) is the terminal
value of the forward integration from X = 0, where
(kgj , ηj/k, η̇j/k)(0) = (14×4, 06×1, 06×1), to lj , of the
following system of space ODEs, deduced from (34) and
its time derivatives:

d

dX

 kgj
ηj/k
η̇j/k

 =

 kgj ξ̂j
−adξjηj/k + ξ̇j

−adξj η̇j/k − adξ̇jηj/k + ξ̈j

 ,

(41)
where using the strain based parametrization of (1),
(ξj , ξ̇j , ξ̈j) = (ξoj + BjΦjqϵ,j , BjΦj q̇ϵ,j , BjΦj q̈ϵ,j). To
summarize, if Jj is rigid, the joint kinematics between Bk

and Bj are directly given by the discrete (lumped) relations
(40), while if it is soft, they are defined by the continuum
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composition of poses, velocities and accelerations along the
distributed joints, with (41). These discrete and continuous
kinematic transfers along the joints are illustrated in the
top two diagrams of the figure 4.

2) Backward dynamics: The model that relates the
wrenches transmitted between the Bjs (including the tip
cross-sections of the rods) consists of the backward recur-
sion on body indexes:

For j = N,N − 1, ...1, do : (42)

Fj = Mj η̇j − adTηj
Mjηj + Fext,j +

∑
l∈s(j)

jFl,

which are initialized by the wrenches applied to the tip of
the branches as detailed in the Remark 12 below.

Now when computing (42), we have two cases:

• If Jl is rigid, we use the usual relations:

jFl = AdTlgjFl, (43)

• If Jl is soft, jFl = −Λl(0) is the result of the backward
integration from X = ll to 0 of:

Λ′
l = adTξlΛl +Mlη̇l − adTηl

Mlηl − F̄ext,l, (44)

starting from initial conditions Λl(ll) = −Fl. In words, if
the Jl joint is rigid, Fl is directly transmitted to Bj through
the rigid transport of (43), while if it is soft, the contact
wrench −Fl is transmitted to Bj through the continuum
transport of the wrench along the rod that connects Bj to
Bl according to its dynamic balance (44). This context is
illustrated in figure 4 (bottom).

Remark 12: The initial conditions of the backward dynamics
enter through the sum term in (42), when j is the index,
say p, of a terminal body of a branch. In particular, if such
a terminal body does not support any cut joint, it does not
contribute to the initial conditions in (42). Otherwise, let us
consider two terminal bodies Bp and Bs connected by a cut
revolute joint as in Section II. Then, using the kinematic
model of constraints (38) and the duality between twists
and wrenches, we have:

Fs+ = JT
s|p λs|p , Fp+ = −AdTs+gp+

Fs+ , (45)

where λs|p ∈ R5 is a vector of reaction generalized forces,
dual of Φ̇s|p in (38), which defines five components of the
Lagrangian vector λ in (6), while λs|p ∈ R6 if the cut joint
is fixed■

Remark 13: Note that in (44), one needs to use the inertial
fields (gl, ηl, η̇l)(.), that can be computed with the formulas:

gl(X) = gj
jgl(X), (46)

ηl(X) = Ad jgl(X)ηj + ηl/j(X),

η̇l(X) = Ad jgl(X)(η̇j + adηl/j(X)ηj) + η̇l/j(X),

Backward dynamics ODE

Forward kinematics ODE

Fig. 4: Forward transport of poses (top) and backward
transport of wrenches (bottom) over a rigid (left) and a soft
joint (right). The joints are coloured green, the rigid bodies
red and purple.

where the inter-body kinematic fields (kgj , ηj/k, η̇j/k)(.)
along the rods are known after the first pass through the
integration of (41)■

3) Summary of the IDM : The IDM algorithm pro-
gresses as follows. First, a forward pass initialized by
(g0, η0, η̇0) and fed by (q, q̇, q̈), computes from the basis
B0 to all the tip branches, the inertial poses, velocities
and accelerations through the composition of the kinematic
model of rigid bodies and soft joints (39,40,41) and using
(46). These kinematic variables are used to feed a second
backward pass that computes the inter-body wrenches from
the tip branches to the basis B0 through the composition of
the dynamic model of rigid bodies and soft joints (42,43,44).
According to (45), this second pass is initialized by the
contact forces λ transmitted by the cut joints, that are part of
the inputs to the algorithm. While running, the second pass
provides all the contact wrenches Fj and Λj(.) transmitted
across the rigid bodies and soft joints to which we apply
the projective relations:

Qar,j = AT
j Fj , Qaϵ,j = −

∫ lj

0

ΦT
j B

T
j ΛjdX, (47)

for all lumped revolute and soft joints. Then all the values
of (47) are used to fill Qa = (QT

ar, Q
T
aϵ)

T . Moreover, if the
system has a free floating basis, the algorithm also provides
F0 = Fa which completes the outputs (FT

a , QT
a )

T of the
input-output map (21).

B. Newton-Euler TIDM of a SMMS

The TIDM is derived by calculating the linear
perturbations of the outputs of the IDM produced by
linear perturbations of its inputs. Practically, it is simply
deduced from the IDM by applying the variation ∆ to
all the above expressions and exploiting the properties
of the Ad and ad maps. Like the IDM , the TIDM
consists of two recursions on the body indexes, one
(tangent) forward, computes the variations of kinematics,
the second, (tangent) backward, computes those of the
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internal wrenches transmitted along the structure.

1) Tangent forward kinematics: It is deduced from the
variation ∆ of (39):

For j = 1, 2, ..., N, do : (48)
k = a(j),

∆ζj = Ad jgk∆ζk +∆ζj/k,

∆ηj = Ad jgk∆ηk + ad(Ad jgk
ηk)∆ζj/k +∆ηj/k,

∆η̇j = Ad jgk∆η̇k + ad(Ad jgk
η̇k)∆ζj/k − adηj/k

∆ηj

+adηj
∆ηj/k +∆η̇j/k,

which is initialized by the basis kinematic variations
(∆ζ0,∆η0,∆η̇0), and where:

• If Jj is a lumped rigid joint, one simply has:

(∆ζj/k,∆ηj/k,∆η̇j/k) = Aj(∆qrj ,∆q̇rj ,∆q̈rj). (49)

• If Jj is soft, (∆ζj/k,∆ηj/k,∆η̇j/k) is the terminal value
of the forward integration:

d
dX

 ∆ζj/k
∆ηj/k
∆η̇j/k

 =

 −adξj∆ζj/k
−adξj∆ηj/k + adηj/k

∆ξj
−adξj∆η̇j/k − adξ̇j∆ηj/k


+

 ∆ξj
∆ξ̇j

adηj/k
∆ξ̇j + adη̇j/k

∆ξj +∆ξ̈j

 , (50)

with initial conditions (∆ζj/k,∆ηj/k,∆η̇j/k)(0) = 06×3,
and (∆ξj ,∆ξ̇j ,∆ξ̇j) = BjΦj(∆qϵ,j ,∆q̇ϵ,j ,∆q̈ϵ,j).

2) Tangent backward dynamics: Applying the variation
∆ to (42) gives:

For j = N,N − 1, ...1, do : (51)
∆Fj = Mj∆η̇j − adTηj

Mj∆ηj − adT∆ηj
Mjηj

+∆Fext,j +
∑

l∈s(j)

∆jFl,

which is initialized by the variations of the wrenches applied
onto the terminal bodies of the branches i.e., through some
∆jFl when Bj is a terminal body. These variations
take different expressions depending whether the terminal
body supports a virtually cut joint or not (see section below).

Once again, we have two cases:

• If Jl is a rigid joint, one has:

∆jFl = AdTlgj∆Fl +∆AdTlgjFl, (52)

which can be detailed as:

∆jFl = AdTlgj∆Fl −AdTlgjad
T
∆ζl/j

Fl, (53)

• If Jl is soft, ∆ jFl = −∆Λl(0) is the result of the
backward integration from X = ll to 0 of:

∆Λ′
l = Ml∆η̇l − adTηl

Ml∆ηl − adT∆ηl
Mlηl

+adTξl∆Λl + adT∆ξl
Λl −∆F̄ext,l, (54)

starting from initial conditions ∆Λl(ll) = −∆Fl. In these
ODEs, ∆ξl = BlΦl ∆qϵ,l, while ∆ηl, ∆η̇l, and even ∆ζl
(which can be required by ∆F̄ext,l), are all deduced by
varying (46), that provides formulae similar to (50) with
(l, j) instead of (j, k).

Once all the ∆Fjs and ∆Λj(.)s known, one can calculate
the outputs of the TIDM i.e.,:

∆Qar,j = AT
j ∆Fj , ∆Qaϵ,j = −

∫ lj

0

ΦT
j B

T
j ∆ΛjdX, (55)

depending whether it is lumped (rigid) or distributed
(soft). Finally, if B0 is a free floating basis,
∆Fa = ∆F0, and the algorithm feeds back all the
outputs (∆FT

a ,∆QT
a,r,∆QT

a,ϵ)
T of the input-output map

(26).

3) Initialization of tangent backward dynamics: Using
the notations of Remark 11, if a terminal body supports a
cut, this body can be a leader Bp or a follower Bs i.e., one
can have (j, l) = (p, p+) or (s, s+) in (51). Then, since
sgs+ and pgp+ are constant, the initial conditions of (51)
are of the form ∆pFp+ = AdTp+gp

∆Fp+ and ∆sFs+ =

AdTs+gs
∆Fs+. Thus, we need to calculate ∆Fp+ and ∆Fs+.

Regarding ∆Fs+, applying ∆ to the left expression of (45),
gives first:

∆Fs+ = JT
s|p ∆λs|p + (∆Js|p)

T λs|p, (56)

with ∆λs|p a sub-vector of ∆λ, and where we used the
variation of the Jacobian matrix (38):

∆Js|p = ĀT
p+

(
∆T (Θs|p)

−1 03×3

03×3
p+Rs+T (Θs|p)

)
, (57)

with ∆T the second differential of the exponential map of
SO(3) [18]. Regarding ∆Fp+, using the properties of Ad
and ad, the variation ∆ applied to the right expression of
(45) gives:

∆Fp+ = −AdTs+gp+
(∆Fs+ − adT∆ζs+/p+

Fs+), (58)

which involves the relative variation:

∆ζs+/p+ = ∆ζs+ −Ad s+gp+∆ζp+, (59)

where ∆ζs+ = Ads+gs∆ζs, ∆ζp+ = Adp+gp∆ζp are
deduced from ∆ζs and ∆ζp computed by the forward
tangent kinematics (48). Therefore, if (j, l) = (s, s+), (51)
is initialized with (56,57), and if (j, l) = (p, p+), with
(58,59), both being function of (λ,∆λ). At last, if a terminal
body of a branch does not support any virtual cut, we simply
take ∆jFl = 06×1 as initial condition.

VIII. CALCULATION OF R̄(n) AND
(
∂R̄(n)/∂χ̄

)
Referring to Remark 5, the calculation of R̄(n)(χ̄, tn+1)

and (∂R̄(n)/∂χ̄)(χ̄, tn+1) requires that of R̄(n)
λ = Φ(g0, q)

along with Υ(q, tn+1) and ∆Υ(q,∆q, tn+1) in (22) and
(24). These additional computations are by-products of
IDM and TIDM which we will now detail.
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A. Calculation of R̄(n)

λ = Φ(g0, q)

For each loop virtually cut between Bp and Bs, one can
compute a vector of the type Φp|s by feeding the general
formula (36) with p+gs+ = g−1

p+
gs+ numerically calculated

by the forward kinematics (39) along each branch of the
SMMS. Note that each of the Φp|s-vectors defines a set
of nonlinear algebraic equations depending in general on
(g0, q). Gathering all of these Φp|s-vectors, provides the
expected Φ of the original system of DAEs (2).

B. Calculation of Υ(tn+1) and ∆Υ(tn+1)

To finish the computation of the residual vector (22), it
remains to compute Υ(tn+1) = Qad(tn+1)−Qe. As regards
Qe, we have Qe = (0T1×nr

, QT
ϵ )

T , with Qϵ obtained by
gathering the vectors of Rnϵ,j :

Qϵ,j =

(∫ lj

0

ΦT
j (B

T
j HjBj)ΦjdX

)
qϵ,j = Kϵϵ,j qϵ,j , (60)

for all soft Jjs. Remarking that Kϵϵ,j ∈ Rnϵ,j×nϵ,j is
constant, we have Qϵ = Kϵϵqϵ where Kϵϵ = diag(Kϵϵ,j)
is the constant stiffness matrix of the entire structure. As
regards Qad, we have Qad(tn+1) = (τTd , QT

adϵ)
T (tn+1),

where Qadϵ(tn+1) is obtained by gathering the vectors
Qadϵ,j ∈ Rnϵ,j , defined by [26]:

Qadϵ,j(tn+1) = −
∫ lj

0

ΦT
j B

T
j Λd,j(tn+1)dX, (61)

for all soft Jjs. Similarly, one can compute ∆Υ(tn+1) =
∆Qad(tn+1) − ∆Qe by differentiating (60) and (61). The
former variation is merely ∆Qϵ = Kϵϵ∆qϵ, while the latter
is ∆Qad = (01×nr

,∆QT
adϵ(tn+1))

T , with:

∆Qadϵ,j(tn+1) = −
∫ lj

0

ΦT
j B

T
j ∆Λd,j(tn+1)dX. (62)

C. Adaptation of the IDM and TIDM to compute the
residual and its Jacobian

Finally, to calculate the two top entries of R̄(n)(χ̄, tn+1),
one can numerically integrate by quadrature (60) and (61),
and remove Υ(tn+1) from IDM(χ̄), or more directly,
replace in the IDM , the left side equation of (47) by:

Rj(χ, t) = AT
j Fj − τd,j(t), (63)

if Jj is rigid, and the right side one by:

Rj(χ, t) = (64)∫ lj
0

ΦT
j B

T
j (Λd,j(t) +HjBjΦjqϵ,j − Λj)dX,

if it is soft. Similarly, one can calculate the two top rows of
(∂R̄(n)/∂χ̄)(χ̄), by replacing in the TIDM , the left-side
expression of (55) by:

∆Rj(χ,∆χ, t) = AT
j ∆Fj , (65)

if Jj is rigid, and the right-hand side one by:

∆Rj(χ,∆χ, t) = (66)∫ lj
0

ΦT
j B

T
j (∆Λd,j(t) +HjBjΦj∆qϵ,j −∆Λj)dX,

if Jj is soft. Finally, feeding the IDM and TIDM , with
inputs compatible with the Newmark scheme (10,13-15) and
using as outputs (63,64) and (66,65) instead of (47) and
(55) for every Jj , allows to compute directly R̄(n) and
∆R̄(n). This defines two further algorithms, noted IDM⋆

and TIDM⋆ in figure 2, where the IDM⋆ also includes
the calculation of R̄(n)

λ = Φ(g0, q) of Section VIII.A.

IX. SPACE INTEGRATION

The algorithm needs to forward (respect. backward) in-
tegrate a sequence of space initial value problems (IVPs)
defined by (41) (respect. (44)), along the tree, where the ini-
tial conditions of one joint, are fixed by the final conditions
imposed by its antecedent body (respect. by its successors).
This can be achieved with standard finite-difference integra-
tors as ODE45 of Matlab [26]. Nevertheless, let us remark
that (ξj , ξ̇j , ξ̈j)(.) being fixed by the inputs (qr,j , q̇r,j , q̈r,j)
of the algorithm, they can be considered as constants in (41)
which turn to be linear ODEs with respect to (gj , ηj , η̇j)(.).
Similarly, once the first pass is achieved, (gj , ηj , η̇j)(.) can
be considered as fixed in the backward ODEs (44), which
become linear with respect to the Λj(.)s. Parameterizing
the rotational component Rj(.) of gj(.) = (Rj , rj)(.), with
a unit quaternion field5 Hj(.) : X ∈ [0, lj ] 7→ Hj(X) ∈ R4,
this property of the IDM allows us to apply efficient
spectral methods to the integration of (41) and (44). These
methods can be optimized by exploiting a further property
of the IDM related to its differential structure. Indeed,
if one details all the fields of (41,44) into their angular
and linear components, with notations: (Rj , rj) = (Hj , rj),
ξj = (KT

j ,Γ
T
j )

T , ηj = (ΩT
j , V

T
j )T , η̇j = (Ω̇T

j , V̇
T
j )T and

Λj = (CT
j , N

T
j )T , it is straightforward to show that each of

these two sets of ODEs enjoys a block triangular differential
structure which can be solved in cascade, by integrating
block after block in an ordered manner, a sequence of linear
systems of the canonical state-form:

x′ = A(X)x+ b(X) , X ∈ [0, lj ], (67)

where for each soft Jj , the state vector x ∈ R3 or R4,
successively takes the meaning of Hj , rj , Ωj , Vj , Ω̇j ,
V̇j for the forward ODEs (41), and of Nj , Cj for the
backward one (44). Respecting this order, at each step of
the cascade resolution, one uses the result of the previous
step to feed A and b in (67).Therefore, owing to this
differential property of the IDM , spectral integration based
on collocation over a Chebyshev grid, allows to change
ODEs (41,44) into algebraic linear systems of triangular
structure, that can be solved efficiently with respect to the
successive finite dimensional vectors of the values of the
fields (Hj , rj ,Ωj , Vj , Ω̇j , V̇j , Cj , Nj)(.) at the Chebyshev
nodes of the grids. Finally, by adding to the linear backward
ODE systems, the expressions (64) reformulated as ODEs
of the form (67) with A = 0, one completes the spatial inte-
grations required by the computation of the residual vector

5Alternatively, one could use quadrature integration based on Magnus
expansion in order to remain in SO(3) as this is done in [28], [46].
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R(n)

, while a strictly similar process can be applied with the
TIDM in order to compute ∆R(n)

, and finally the expected
Jacobian of the residual vector. Before concluding this
section, let us note that while all the formulas required by
IDM and TIDM were obtained by symbolic calculations
on the Lie group SE(3), in their numerical implementation,
these expressions are integrated on SO(3)×R3 with SO(3)
parameterized by usual quaternions, as was done in [3], [5].

X. ILLUSTRATIVE EXAMPLES

We now illustrate the above general algorithm on a set of
numerical examples and refer the reader to Appendix 2 for
a symbolic illustration. We start by two elementary benches
well known from the literature on geometrically exact FEM
where they are used to validate new numerical methods in
the field [26]. These first examples consists of one single
rod in different conditions of connection offered by the
algorithm. They are here used to compare several methods
recently proposed in soft robotics. Once this is achieved,
the section continues with three examples more related to
robotics. Note that the algorithm presented in the article
has been programmed in Matlab, but is not yet optimised,
as mentioned in the conclusion.

A. Single rod benchmarks

We consider single rods in different conditions of
connection with the ground. In the first case, a soft and
a stiff rod is cantilevered i.e., fixed at one end and free
at the other [17]. In the second, another two soft and stiff
rods are kinematically free at both ends according to the
so-called flying rod bench [16]. Note that these tests are
complementary since they illustrate the case of a fixed and
a free base system (locomotor and manipulator), while
closed loop systems will be illustrated later with a two rod
system. These two first benches were used to validate the
strain-based parametrization of (1) against GE-FEM in [26]
and to study the relationships between the shooting based
resolution and optimal control in [11]. We use them here to
provide the reader with a very first idea of the robustness
and time-consumption of the algorithm in comparison to
the explicit time-integration methods of [24], [26] and [27],
as well as to the shooting-based approach of [10] and [11]
based on implicit integration. Recall that although all these
approaches are based on the same model (Cosserat rods),
[26] and [27] use the modal strain reduction (1), while
[10], [11] and [24] require no configuration space reduction
beyond nodal discretization (based on finite differences in
the first two cases, and on DER in the third).

1) Cantilever rod: The soft rod is that of [17] with
l = 10m, ρ = 7800 kg.m−3, E = 105 MPa, and a circular
cross section with 0.01m diameter. The stiff rod is that of
[11], with l = 0.4m, ρ = 8000 kg.m−3, E = 2 × 103 MPa
and 0.002m diameter. Each of them is first subject to a
horizontal static force (f, 0, 0)T in the inertial frame, and
released in the vertical gravity at t = 0 s. In figure 5, we

Fig. 5: Clamped soft (a) (blue) and stiff (b) (red) beam
released after bending with a horizontal tip force f = 50N
and 10N respectively. (a) snapshots every 0.5 s for 10 s of
simulation. (b) selected snapshots for 1 s of simulation.

reported a set of snapshots simulated with f = 50N over
10 s, and f = 10N over 1 s, for the soft and stiff rods
respectively. Simulations based on the strain parametrization
are performed with the Kirchhoff model and 3 bending
modes. Note that the results of all methods that converged
are indistinguishable.

2) Flying rod: Each of the two rods floats in vacuum
without gravity. They are initially inclined and loaded
in the inertial plane (o, e1, e2) as indicated in figure
6 (a) and (b). The soft beam is that of Simo [16]
i.e., l = 10m, H = diag(5, 5, 5, 102, 102, 102)102, and
M = diag(10, 10, 10, 1, 1, 1) (all in IF units). The stiff rod
parameters are those of [11], i.e l = 1m, ρ = 103 kg.m−3,
E = 1MPa, for a diameter of 0.1m. Strain parametrization
is performed with the Kirchhoff model with 3 modes for
the two curvatures and for torsion. Figures 6 (b) and 6 (c)
show a few snapshots of the two rods simulated over 10 s.
Note that the results of all the methods that converged are
indistinguishable.

With the exception of PyElastica [24], which is programmed
in Python, all other methods were implemented in Matlab.
All simulations were run on a single computer6. In addition,
the tuning parameters of each method (time and space-steps,
Chebychev grid, quadrature order, etc.) were chosen in such
a way as to obtain an accuracy similar to that of the GE-
FEM, without penalising any of them in terms of efficiency.
In details ∆t = 0.01 s for the implicit integrators of [11]
and that of the paper, tolerance of ODE45 in the time-
integration of [26] and [27] is 10−6, while the spatial grids
of [27], PyElastica and the present algorithm have 20 , 50
and 20 discretization points respectively. Finally, note that
in the case of soft rods, the shooting approach of [10] as
well as its extension to floating base systems of [11], fail
for intrinsic reasons related to the singular character of the
underlying optimal control problem from which the spatial
BVP is derived [11].
As expected, the simulation times for methods based on
explicit integration increase with stiffness since in this case,
the time step must be reduced to preserve stability. In

6A PC dell (DESKTOP-5F02EKM), Processeur Intel(R) Core(TM) i9-
9880H CPU @ 2.30GHz, RAM 32.0Go)
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(a) (b)

Fig. 6: Top: Conditions of the test for the soft (a) (blue)
and stiff (b) (red) rods. Snapshots of the soft (middle) and
stiff (bottom) flying rod projected on x− z (left), and y− z
(right) planes.

Test▼ |Method ▶ [10], [11] [24] [26] [27] Article
Stiff cantilever rod 71.9 336 6173 4.5 7.1
Soft cantilever rod fails 133 1675 1.9 9.1
Stiff flying rod 52.2 36 2806 7.2 8.5
Soft flying rod fails 1.6 609 1.8 7.9

TABLE I: ”Simulation-time over real-time” ratio, for can-
tilever and flying rod benches obtained with [10], [11], [24]
(PyElastica), [26], [27] and the algorithm of the article.

contrast, the article’s implicit integrator can be run with a
large time step in both cases, which explains why simulation
time is independent of rod stiffness. By way of illustration,
the critical time step beyond which PyElastica is no longer
stable is 3.4×10−6s for the stiff cantilevered rod, and must
be divided by

√
α when E is multiplied by α ∈ [0.01, 100],

whereas our implicit integrator remains stable over this
range of stiffness with a time step of 0.1s. Finally, it should
be remembered that these initial estimates of calculation
times are far from definitive, and will be systematically
studied in the future. For the moment, they tend to show
that the extra computations of the Jacobian of the residual
vector required by implicit integration are well compensated
by the width of the time steps it allows, as it is often the
case in nonlinear structural dynamics [47].

B. Example 1: A mass attached to a rod moved by two flying
drones at its two ends

We consider the case of a locomotor, namely a cuboid
payload carried by two identical hexarotor flying drones
through two identical rods. The ends of the two rods are
connected by fixed joints to the drones (UAVs), and to the
payload. They are modelled as 3D rigid bodies subject to a
lift force of controlled direction and strength. According to
our general setting, this SMMS is segmented as indicated in

Soft joints

Tip cross-
sections

Tip cross-
sections

Segmentation

Soft 
joints

Tip cross-
sections

Tip cross-
sections

3D rigid
body

3D rigid
body

Representation

Fig. 7: Segmentation of a cuboid mass attached to two
rods moved by two flying drones. The two Cosserat rods
are declared as joints J2 and J5, respectively. Their two
tip-cross sections are declared as rigid bodies (B1,B2) and
(B4,B5), respectively.

figure 7 i.e., it contains seven rigid bodies B0,1,...6, namely
three 3D ones and the four tip cross-sections of the rods.
These bodies are connected by six joints J1,2...,6, namely
four fixed lumped ones and two distributed soft ones. One
of the two drones is considered as the reference body B0,
and all the other rigid bodies are numbered increasingly
along this open chain. The dynamics of the UAV rotors are
assumed to be fast enough to impose instant velocity control
of external wrenches:

j = 0, 6 : Fext,j = kP eηj
+ kI

∫
eηj

dt, (68)

with kP and kI two diagonal 6×6 matrices of proportional
and integral gains respectively, and eηj

∈ R6 the velocity
error defined by:

eηj
= Ad

(g−1
j gd

j )
ηdj − ηj , (69)

with t 7→ ηdj (t) = ((gdj )
−1ġdj )

∨ a desired velocity time-
evolution. In figures 8, 9, we reported the results of a simu-
lation of this system obtained with ηdj (t) = (01×3, V

dT
j (t))

and V d
0 (t) = (0, 0, sin(πt))T , V d

6 (t) = (0, 0, sin
(
π
2 t
)
)T .

The simulation is performed over 10s with a time-step
∆t = 0.01 s and requires on average, 3 Newton’s steps per
time-step. The two rods J2 and J5, are Kirchhoff, straight
at rest, and parameterized with 3 Chebyshev polynomials
for each of the three components (two curvatures and
torsion) of ϵj = Kj , j = 2, 5. Their geometrical and
physical parameters are l = 1m, ρ = 950 kg.m−3, diameter
= 0.07m, E = 0.25MPa. For the sake of simplicity,
gravity is neglected, while we did not seek to optimize
the controllers but rather to reveal the richness of the
dynamic interactions between the drones and the rods. To
this end, taking (kP , kI) = (diag(20, 20), diag(2.5, 2.5)) in
(68), defines a soft controller that keeps the velocity errors
limited, while not reacting too much to the elastic restoring
torques induced by the rods on the two drones. In Figure 8,
snapshots and trajectories of the two drones and the payload
B3 (see also the multimedia attachment for a video) show
how the rods move B3 on an almost cyclic circular path.
The time evolution of the displacement of these 3 bodies is
displayed in figure 9.
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Fig. 8: From left to right and top to bottom: Snapshots
and trajectories of the two drones and the cuboid payload
between t = 0 s and t = 1.68, 4.22, and 9.44 s
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Fig. 9: Displacements of body 0, 3 and 6 vs time in the
inertial frame, projected onto the x (top), y (middle) and
z-axis (bottom).

C. Example 2: A continuum parallel robot (CPR)

This second example is a planar continuum parallel ma-
nipulator with two identical legs connected at both ends by
friction-less revolute joints, the proximal ones are actuated,
while the distal one connecting the two legs together, is
passive. As imposed by the modelling approach, the closed
loop of the CPR is first opened by virtually cutting the
passive joint, and the resulting tree-like system is segmented
as indicated in figure 10 i.e., it consists of two identical
branches, each with two bodies (rod’s end cross-sections)
B1,2 and B3,4, and four joints J1,2,3,4, J1,3 being revolute,
J2,4 being soft. The ground defines the fixed reference body
B0. The design parameters of this CPR are as follows. The
legs are two identical 1-meter Kirchhoff rods with section
such that I = 1.5708×10−8 m4 and A = 3.1416×10−6 m2.
They are made of an ordinary steel, of Young modulus
E = 2.1× 105 MPa and volume mass ρ = 7800 kg.m−3. In
this example, the closure loop introduces 2 constraints with
two Lagrange multipliers. As for all closed loop systems,
any dynamics simulation needs to be preceded with a static
mounting phase which consists in closing the loop in statics,
starting from an open configuration of the two branches. In
this case, this reference configuration is such that the two

Soft joints

Tip cross-
sections

Tip cross-
sections

Virtual
cut

Segmentation

Soft 
joints

Tip cross-
sections

Tip cross-
sections

Representation

Fig. 10: Segmentation of a planar CPR. The two Cosserat
rods are declared as joints J2 and J4, respectively. Their
two tip-cross sections are declared as rigid bodies (B1,B2)
and (B3,B4), respectively.

t(s) ∈ ]1, 2] ]2, 4] ]4, 7] ]7, 10]
τd,1 +kt +τhold τhold + ks(1− cos(θ(t))) +τhold
τd,2 −kt −τhold −τhold −τhold

TABLE II: Loading time law of the CPR.

links form the sides of a triangle symmetrical about the
horizontal axis (x) (see figure 13 (a)). Note that this initial
configuration is a resting one i.e., it is free of internal stress.

Once this static phasis achieved, the dynamics is started
by imposing a prescribed time-evolution of the joint torques
t 7→ τd(t) = (τd1, τd2)

T (t) defined as indicated in Table
II, and plotted in figure 11 (a). The two torques start with
zero values and then increase linearly with time, before
reaching a constant value that is maintained until one of
the two torques oscillates and finally recovers its constant
value. In Table II, k = 0.5Nm/s is the ramp coefficient,
τhold is the maximum torque reached by the ramp i.e., when
t = 2 s. The harmonic phase is defined by ks = 7Nm and
θ(t) = ω(t − thold) with ω = 2cπ

ts−thold
, c = 3 the number

of cycles, and thold = 4 s and ts = 7 s, the ending time
of the holding and harmonic phase respectively. Note that
the sinusoidal addendum to the torque is not symmetric but
ranges from 0 to 2. Figures 11 (b) and 12 (a,b) respectively
show the time evolution of the joint angles, the Lagrange
multipliers in the inertial frame, and the inertial position of
the tip (the passive joint) for a ∆t = 0.01 s and 5 Chebyshev
polynomials for each rod curvature. Figure 13 (a,b) display a
sequence of snapshots over [1, 2] s and [4, 7] s. As observed
in these snapshots and the attached video, with the torque
law of Table II, the CPR first bends symmetrically with its
tip getting closer to the base, then because of the oscillating
component added to τd,1, the CPR tilts upwards. While the
torque makes three cycles, the up and down movement of
the robot makes only two. This is due to inertia effects.
When we control the robot by imposing torques, the inertia
of the robot can affect the joint angles, as shown in figures
12 (a) and (b). Note that as expected, one can observe
structural (harmonic) oscillations superimposed with overall
deformations imposed by the torque time variations. This
simulation is representative of many others we tested. In
any case, we observed that using the constitutive law (33)
of Remark 9 applied to J2 and J4, a slight internal damping
(here µ2 = µ4 = 10−4), is required to stabilize the
algorithm. This observation is fully consistent with the
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Fig. 11: (a) Actuation torques τd,1 and τd,2 vs time. (b)
Revolute joint angles qr,1 and qr,2 vs time.

Fig. 12: (a) Two components of λ in the inertial frame
vs time. (b) Inertial position (x, y) of the tip of the robot
(passive revolute joint) vs time.

knowledge about stiff systems of DAEs, for which it is well
known that the geometric constraints of the residual balance
(8) introduce high-frequency parasitic (numerical) modes,
that can compromise the stability of simulations [32].

D. Example 3: A bio-inspired swimmer actuated with ten-
dons

In this last example, we consider a bio-inspired locomotor,
namely an undulatory swimmer of 1m length and non-
uniform elliptical cross-sections along its rostro-caudal axis.
Its geometry is that of [48] with maximum lateral width of
0.1m. However, in contrast to [48], we here consider it as
being constituted of three segments serially fixed to each
other from the head to the tail (see figure 14). The first seg-
ment (the head) is a rigid body, the second is a rod internally
actuated by a pair of antagonistic tendons as those currently
used for TACRs [5], the third is a passive elastic rod. The
swimmer is neutrally buoyant i.e., ρ = 103 kg.m−3, and the
first and second rod are Kirchhoff with a bending stiffness
EI = 4.9Pa.m 4 and EI = 4.9 × 10−2 Pa.m4 respectively.
The tendons are parallel to the robot axis and located at

Fig. 13: (a) Snapshot every 0.5 s of the robot between: (a)
1 and 2 s, and (b) 4 and 7 s.
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Tip cross-
sections

3D rigid
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Actuated
Soft joint

Representation
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Tip cross-
sections

Passif 
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Actuated
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Fig. 14: Segmentation of a bio-inspired swimmer actuated
with tendons. The two Cosserat rods are declared as joints
J2 and J4, respectively. Their two tip-cross sections are
declared as rigid bodies (B1,B2) and (B3,B4), respectively.

Fig. 15: Snapshots every 1.65 s of a continuum undulatory
swimmer internally controlled with a single pair of tendons.

a distance D = 0.05m from it. According to our general
setting, this system is segmented in 5 bodies B0,1,2,3,4,
with B0, a 3D rigid body modelling the head, and all the
others standing for the rod’s end cross-sections. All these
bodies are connected by four joints J1,2,3,4, with J1,3 two
lumped fixed joints, and J2,4 two distributed soft ones. The
hydrodynamic forces are modelled with Lighthill’s Large
Amplitude Elongated Body Theory (LAEBT), here coupled
to the Cosserat model as proposed in [48]. The planar
swimming of this bio-inspired system can be achieved by
applying to the two tendons, the tensions:

T±(t) = T0 + T1 sin
(
ωt± π

2

)
, (70)

where indexes + and − denote the left and right tendons re-
spectively, T0 > 0 is a constant antagonistic component en-
suring that T±(t) > 0 for all t, and T1 > 0 is the amplitude
of an harmonic component of pulsation ω, responsible of the
body undulations. In figures 15 and 16, we reported some
simulation results carried out over 10 s with ∆t = 0.01 s,
and 5 Chebychev polynomials per rod curvature. The results
are obtained by using the control law (70) in the model
(32), with T0 = T1 = 20N, and ω = 5π rad/s (see also
video). In figure 15, snapshots of the robot are drawn every

Fig. 16: Time evolutions of τ(t) = D(T+ − T−)(t), and
C = (EI3KZ,3)(0) along the first 3 s of swim.
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1.65 s. Figure 16 shows the time evolution (over the first
3 s) of the control torque τ(t) = D(T+ − T−)(t), and of
the elastic torque C = (EI3KZ,3)(0) at the root of the
third (elastic) body B3, where the subscript Z, indicates a
component taken along the normal to the plane of the swim.

XI. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a new algorithm for
solving the forward dynamics of soft and continuum robots
consisting of rigid bodies connected in arbitrary topologies
by localised joints and/or soft links, possibly actuated or not.
The soft joints are modelled as Cosserat rods parameterized
with strain modes. Unlike the literature approaches for
simulating these models, our approach is designed to work
with an implicit time integration scheme. We choose the
Newmark scheme which is known to be among the best
suited for stiff problems of non-linear structural dynamics.
Using such a scheme allows changing the DAEs of the robot
into a system of nonlinear algebraic equations. At each time-
step, we solve this system with a Newton-Raphson scheme,
requiring the residual and its Jacobian. To this aim we
poposed a new recursive Newton-Euler algorithm. Although
the results are encouraging, in its current state the approach
has been implemented and tested as a proof of concept.
Therefore, we are currently optimising it with the short-term
objective of building a toolbox7, dedicated to simulation
(and control) of soft and continuum robots. We strive
for improvements in terms of robustness, computational
efficiency and programming simplicity.

A. Perspectives for numerical robustness

As expected, the implicit integrator makes the algorithm
robust and stable even for large time steps. However, the
geometrical constraints introduce high frequency parasitic
modes. As a result, in (2) some physical damping has been
introduced into the constitutive laws (33). This artificial
damping could in general affect the low frequency content
of the response of an SMMS. Another solution consists
in replacing the Newmark integrator by the HHT method
or the α-method which are designed to solve this problem
[32],[49].

B. Perspectives for numerical efficiency

Due to the intrinsic predictive-corrective structure of
the algorithm, the simulation time is directly proportional
to the number of iterations of the Newton loop. The
computational efficiency of the algorithm can therefore be
improved in two ways. Firstly, by reducing the number of
Newton iterations (i.e. by improving the convergence of the
loop), and secondly, by optimising the calculation of the

7So far, a first version of the Matlab toolbox (for SMMS with-
out closed loops) can be found at the following address: https:
//gitlab.univ-nantes.fr /cosseroots /library/matlab.
Likewise, the code used to generate the results of section X.B can
be found at: https://gitlab.univ-nantes.fr /cosseroots
/example /t-ro-2023.

residual and, above all, of its Jacobian and its inversion.
Regarding the last point, thanks to the strong reduction
power of the strain-based parametrization [26], the Jacobian
matrix remains moderate in size for typical continuum and
soft robotics designs, and its inversion remains reasonable
in terms of computation time.

1) Reducing the number of Newton iterations: In the
case of closed-loop systems, we can add penalties to the
augmented Lagrangian in order to increase the convexity
of the original variational formulation and improve the
convergence of the Newton loop. Technically, these
penalties simply add restoring forces and torques to the
Lagrange multipliers that initialise the IDM . Finally,
several other additional improvements based on the scaling
of the original DAE system and its tangent linearization,
will be applied in order to optimize the conditioning of the
residual vector and its Jacobian matrix [39], [50].

2) Improving spatial integration: A detailed analysis on
the computation times showed that the spatial integration
of the forward and backward ODEs of the Cosserat rods
(41,50), and (44,54) take more than 90% of the total
computation time, of which 70% is spent on the forward
kinematics, and 30% on the backward dynamics. Although
numerical integration by spectral methods reduces the time
required, compared to the usual finite difference integration
[26], we are considering other options to further reduce
this bottleneck. A first step will be to implement the
integrations in a compiled language like C++. A second
front of improvements will be the investigation of other
integration methods like those based on quadrature and
Magnus expansions [46].

3) Parallelization: Newton-Euler algorithms are natu-
rally suited to parallelization [33]. As a first example, we
can define the relative kinematics of every joint in a parallel
loop before entering the forward kinematics routine. In
addition, the updates of Remark 13, which are necessary
before entering the backward dynamics, can be executed in
a parallel loop too. Moreover, depending on the structure
of the robot, if we proceed with a breadth-first algorithm
to move along the robot tree, we can also parallelise the
backward dynamics of every layer of the tree. Beyond this
parallelization based on NE formulation, the computation
of the Jacobian matrix is the main source of slowdown,
since it requires the TIDM to be called several times. As
this matrix is calculated column-wise, the parallelization
of its calculation should considerably reduce the overall
calculation time.

C. Programming simplicity
As any Newton-Euler algorithm, the computational com-

plexity of our algorithm is O(n), meaning that it increases
linearly with the number n of joints [33]. This scalability in
design and implementation allows it to be applied to com-
plex systems with a large number of joints or complicated
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architectures. Among other advantages, it allows for scalable
software architectures, being well suited to object-oriented
programming.

XII. APPENDIX 1: DETAILED EXPRESSIONS FOR THE
NEWMARK SCHEME

The implicit Newmark scheme takes the generic form
(10), where a, b and the two functions f and h are defined
for any pair of vectors of same dimension (x, y), by:

a = γ/(β∆t) , b = 1/(β∆t2), (71)

f(x, y) = (1− (γ/β))x+∆t (1− (γ/(2β))) y, (72)

h(x, y) = −(1/ (β∆t))x+ (1− (1/(2β))) y. (73)

Where (β, γ) are two constant parameters such that (β, γ) =
(1/4, 1/2) ensures second order accuracy with no damping,
a choice that is systematically adopted in the numeri-
cal examples. Taking (x, y) = (q̇(n), q̈(n)), (ṙ

(n)
0 , r̈

(n)
0 ),

(Ω
(n)
0 , Ω̇

(n)
0 ) in (72) and (73) defines f

(n)
q , f

(n)
r , f

(n)
θ and

h
(n)
q , h

(n)
r , h

(n)
θ of (10) and (11) respectively. With these

notations, the matrices C, A, B of (13), can be detailed
as [11]:

C(ν0) =

(
R

(n)
0 exp(Θ̂0) r

(n)
0 + d0

01×3 1

)
, (74)

A(ν0) =

(
Ω0

V0

)
=

(
aΘ0 + f

(n)
θ

RT
0 (a d0 + f

(n)
r )

)
, (75)

B(ν0) =

(
Ω̇0

V̇0

)
=

(
bΘ0 + h

(n)
θ

RT
0 (b d0 + h

(n)
r ) + V0 × Ω0

)
.

Differentiating the above expressions, one can show that:

∂C

∂ν0
=

(
T (Θ0) 03×3

03×3 RT
0

)
,
∂A

∂ν0
=

(
a13×3 03×3

V̂0T (Θ0) aRT
0

)
,

∂B

∂ν0
=

(
b13×3 03×3

E0T (Θ0) + aV̂0 L0R
T
0

)
, (76)

where E0 = (Â0− Ω̂0V̂0), L0 = (b13×3−aΩ̂0), A0 = V̇0+
Ω0 × V0, and (RT

0 ∆R0)
∨ = T (Θ0)∆Θ0, is the differential

of the exponential of SO(3) [16].

XIII. APPENDIX 2: APPLICATION OF THE ALGORITHM
TO AN ILLUSTRATIVE EXAMPLE

To illustrate the simulation algorithm, we apply it to the
simple case of the cantilevered rod of section X (see figure
17). The rod has a length l, and a circular cross-section of
area and axial moment of inertia A and I respectively. Its
Young’s modulus is E, and its density is ρ. According to
the segmentation of section VI.A, the rod corresponds to
two cross-sections B1 and B2 connected together through
a soft joint J2. This soft joint is modeled as a Kirchhoff
rod moving in the (e1, e2) plane and straight at rest, i.e.
B2 = (0, 0, 1, 0, 0, 0)T and ξo2 = (0, 0, 0, 1, 0, 0)T , where
B2 selects the curvature field K2,Z(.) as the system’s unique

Tip cross-
 sections

Rod

Segmentation

Tip cross-
 sections

Soft joint

Fixed joint

Fig. 17: Segmentation and parametrization of a cantilevered
rod. The rod is fixed to the ground through J1. Its tip-
cross sections define rigid bodies (B1,B2), its internal
domain is a soft joint J2. The basis B0 is fixed. Fe =
F0 = (O, e1, e2, e3) is the inertial frame. K2,Z(.) is the
curvature field of the rod deformed in the plane (e1, e2).
γg = (9.81, 0, 0)T is the gravity acceleration field in Fe.

degrees of freedom. Once reduced on the basis Φ2 of the
first nϵ Chebyshev polynomials, this field is replaced by
the vector qϵ,2 = q2 of the nϵ modal curvature coordinates
of the rod. Referring to the general context of section
IV, we thus have χ = (q2, q̇2, q̈2) and χ̄ = q2, while the
residual vector (constrained by the scheme) and its Jacobian
are R̄ = R̄2 and (∂R̄/∂χ̄) = (∂R̄2/∂q2) respectively.
According to the flowchart 2, the predictor-corrector
algorithm consists of an inner Newton correction loop
included in an outer time-loop. At each new time step tn+1,
the state (q2, q̇2) is first predicted by forcing q̈2 = 0nϵ×1

in the Newmark scheme (10) (inertial predictor), before
entering the Newton loop, whose correction equation (18)
requires computing both R̄2 and (∂R̄2/∂q2).

The computation of R̄2 is performed with the IDM⋆

algorithm of section VIII.C. Since J2 is soft, R̄2 is
defined by (64), where j = 2, Λd,2 = 06×1 (no
internal actuation),

∫ l

0
ΦT

2 B
T
2 H2B2Φ2 dX = EI 1nϵ×nϵ

(Φ2 is orthonormal), and Λ2(.) is calculated by back-
ward integrating (44) from Λ2(l) = 06×1 (no tip
load), with M2 = ρ diag(2I, I, I, A,A,A) and F̄ext,2 =
(01×3, (R

T
2 γg)

T )T (gravity). The integration of (44) re-
quires first to compute the inertial kinematic fields along
the rod (g2, η2, η̇2)(.). Since J1 is fixed, one can take
F1 = Fe, and (g2, η2, η̇2)(.) = (1g2, η2/1, η̇2/1)(.)
is obtained by forward integrating (41), starting from
(1g2, η2/1, η̇2/1)(0) = (14×4, 06×1, 06×1), with (ξ2, ξ̇2, ξ̈2)
= (ξo2 +B2Φ2q2, B2Φ2q̇2, B2Φ2q̈2) and (q̇2, q̈2) function of
q2, and (q

(n)
2 , q̇

(n)
2 , q̈

(n)
2 ) through the Newmark scheme (10).

The computation of (∂R̄2/∂q2) is performed with the
TIDM⋆ algorithm of section VIII.C. This algorithm cal-
culates the variation ∆R̄2 of the outputs of the algorithm
IDM⋆, due to a variation ∆q2 of its inputs. Exploiting the
identity ∆R̄2 = (∂R̄2/∂q2)∆q2 shows that by imposing
∆q2 = δα, α = 1, 2...nϵ, we can calculate all the columns of
(∂R̄2/∂q2) one after the other. This algorithm proceeds as
the previous one except that (66) replaces (64) and the back-
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Algorithm 1: Simulation of the cantilevered rod.

1 Initial conditions:
2 q2 = q2 init, q̇2 = q̈2 = 0nϵ×1;
3 Boundary conditions: 1g2(0) = 14×4,

η2/1(0) = η̇2/1(0) = Λ2(l) = 06×1;
4 ∆ζ2/1(0) = ∆η2/1(0) = ∆η̇2/1(0) = ∆Λ2(l) = 06×1;
5 for n = 0 . . . (tf − t0)/∆t do
6 q

(n)
2 := q2, q̇(n)

2 := q̇2, q̈(n)
2 := q̈2;

7 Prediction (Newmark scheme s.t. q̈2 = 0nϵ×1):
8 q2 = q

(n)
2 − (1/b)h(n)

q , q̇2 = f(n)
q − (a/b)h(n)

q , q̈2 = 0nϵ×1;
9 Correction: R̄2 = 1;

10 while R̄2 > ϵ do
11 Computation of R̄2 with IDM⋆:
12 ξ2 := ξo2 + B2Φ2q2, ξ̇2 := B2Φ2q̇2, ξ̈2 := B2Φ2q̈2
13 Integrate forward from X = 0 to l Eq. (41) to get:
14 g2 := 1g2, η2 := η2/1, η̇2 := η̇2/1;
15 Integrate backward from X = l to 0 Eq. (44) to get: Λ2;
16 Compute R̄2 using (64);
17 Computation of (∂R̄2/∂q2) with TIDM⋆:
18 for α = 1 . . . nϵ do
19 ∆ξ2 := B2Φ2δα, ∆ξ̇2 := a∆ξ2, ∆ξ̈2 := b∆ξ2
20 Integrate forward from X = 0 to l Eq. (50) to get:

∆ζ2 := ∆ζ2/1, ∆η2 := ∆η2/1, ∆η̇2 := ∆η̇2/1;
21 Integrate backward from X = l to 0 Eq. (54) to get ∆Λ2;
22 Compute ∆R̄2 using (66);
23 αth column of (∂R̄2/∂q2) := ∆R̄2;
24 end
25 Update q2 := q2 − (∂R̄2/∂q2)

−1R̄2 and q̇2, q̈2 with (10);
26 end
27 end

ward and forward ODEs (44) and (41) are replaced by (54)
and (50), the first being initialized with ∆Λ2(l) = 06×1, and
the second by ∆ζ2/1(0) = ∆η2/1(0) = ∆η̇2/1(0) = 06×1.
In (54) ∆F̄ext,2 = (01×3, (∆RT

2 γg)
T )T with ∆RT

2 γg =
((RT

2 γg)
∧, 03×3)∆ζ2. In (50), (∆q̇2,∆q̈2) = (a∆q2, b∆q2).

This simulation algorithm is summarized by the pseudo-
code Alg. 1, where all space-integrations of ODEs are
achieved in cascade with a standard spectral method as
indicated in section IX. Note also that in this particular case,
J1 being fixed and the cross-sections of the rod ends B1

and B2 being massless, their model, used in the boundary
conditions, introduces trivial twist and wrench transfers.
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