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Prognosis of lasso-like penalized Cox 
models with tumor profiling improves 
prediction over clinical data alone and benefits 
from bi-dimensional pre-screening
Rémy Jardillier1,2, Dzenis Koca1, Florent Chatelain2† and Laurent Guyon1*† 

Abstract 

Background: Prediction of patient survival from tumor molecular ‘-omics’ data is a key step toward personalized 
medicine. Cox models performed on RNA profiling datasets are popular for clinical outcome predictions. But these 
models are applied in the context of “high dimension”, as the number p of covariates (gene expressions) greatly 
exceeds the number n of patients and e of events. Thus, pre-screening together with penalization methods are widely 
used for dimensional reduction.

Methods: In the present paper, (i) we benchmark the performance of the lasso penalization and three variants (i.e., 
ridge, elastic net, adaptive elastic net) on 16 cancers from TCGA after pre-screening, (ii) we propose a bi-dimensional 
pre-screening procedure based on both gene variability and p-values from single variable Cox models to predict 
survival, and (iii) we compare our results with iterative sure independence screening (ISIS).

Results: First, we show that integration of mRNA-seq data with clinical data improves predictions over clinical data 
alone. Second, our bi-dimensional pre-screening procedure can only improve, in moderation, the C-index and/or the 
integrated Brier score, while excluding irrelevant genes for prediction. We demonstrate that the different penalization 
methods reached comparable prediction performances, with slight differences among datasets. Finally, we provide 
advice in the case of multi-omics data integration.

Conclusions: Tumor profiles convey more prognostic information than clinical variables such as stage for many 
cancer subtypes. Lasso and Ridge penalizations perform similarly than Elastic Net penalizations for Cox models in 
high-dimension. Pre-screening of the top 200 genes in term of single variable Cox model p-values is a practical way to 
reduce dimension, which may be particularly useful when integrating multi-omics.
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Background
The roots of the ‘P4’ model of cancer medicine are 
based on prediction combined with personalization, 
prevention, and participation [1]. Prediction of the best 
treatment for a given patient and prediction of clinical 
outcome, including overall survival, are both of grow-
ing interest. The ‘-omics’ technologies now come with 
decreasing costs, which has made possible the molecular 
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characterization of tumor samples of various subtypes, 
including gene expression [2, 3]. As a result, there are 
growing numbers of knowledge databases that include 
molecular profiling of patient tumors, together with clin-
ical information from patient follow-up. Survival analysis 
from transcriptome profiling of cancer patients in terms 
of messenger RNA (mRNA) expression is now emerg-
ing for clinical use [4]. Transcriptome based tests such 
as MammaPrint ® and Oncotype DX ® are already used 
in clinical environment to assess risk of relapse of breast 
cancer, as well as Afirma  ® gene expression classifier 
that is used to differentiate between invasive cancer and 
benign nodules [5]. Also, [6–8] show that gene expres-
sion often provides the best survival prognosis compared 
with other omics.

The Cox proportional hazard model [9] is one of the 
most popular approaches in medicine to link covariates 
to survival data. When considering the number of covari-
ates, p (which can typically be 20,000 gene products), in 
relation to the number of patients in the databases, n, 
and so the number of events e (which can typically be 
only a few hundred), various issues occur due to the high 
dimensionality [10], which include the lack of stability of 
the selected genes [11] and over-fitting [12]. This p ≫ e 
problem is referred to as the ‘curse of dimensionality’. 
The issues are aggravated when integrating multi-omics 
data [13], which is a research area of growing interest [14, 
15]. Among many, there are two main distinct strategies 
to tackle issues arising from high dimensionality, both of 
which aim to reduce the number of variables considered: 
screening procedures and penalization methods [10, 16].

Cox regression model with the lasso penalty for vari-
able selection [17] is often used to identify few prognos-
tic biomarkers from among thousands of genes profiled, 
and to obtain a parsimonious model for simpler and 
cheaper clinical applications. Lasso generalizations have 
been proposed for generalized linear models, such as 
Cox regression, to improve the performance and stability. 
In particular, the elastic net [18] and the adaptive elas-
tic net [19] are regularization procedures that can over-
come some stability issues of the lasso in the presence 
of highly correlated variables [20], and the ridge penalty 
allows control of the variance of the estimator. The lasso 
tends to select one variable in a set of correlated pre-
dictors [21]. The elastic net and the adaptive elastic net 
result in lower mean-squared errors than the lasso and 
the ridge in the presence of highly correlated variables 
[22]. Although there is no selection, the ridge regression 
has shown promise and reliability for survival prediction 
using high-dimensional microarray data [23].

First, Bovelstad et al. [24] compared the ridge and the 
lasso among other prediction models on three real data-
sets only. Their results showed that the ridge penalty 

obtains the best predictions on the selected datasets. 
Then, Benner et al. [25] compared the ridge, lasso, elas-
tic net, and adaptive lasso penalties on simulated and two 
real cancer datasets. As practical conclusions, the authors 
advocated for the use of lasso or elastic net penalization, 
as they do not require an initial estimation step, and were 
among the best-performing methods in their simulations. 
They also suggest further research on gene pre-screening 
prior to the use of Cox model. Finally, [26] showed that 
the ridge, lasso and elastic net penalties perform equally 
well for low-dimensional settings with few events.

Pre-screening methods should be considered as a sta-
tistical screening procedure to remove irrelevant genes. 
From this point of view, the aim is not to identify the 
most relevant variables, but to select a moderate size sub-
set of variables that can be further reduced using penal-
ized approaches [24, 27, 28]. Among many, two strategies 
are commonly used to pre-screen genes. The first is an 
unsupervised technique that aims at pre-screening 
the least variable genes among the patients. Indeed, 
the least variable genes are subjected to measurement 
noise and can provide poor contributions to distinguish 
between patients [27]. On the contrary, the most vari-
able genes present a better signal-to-noise ratio and are 
easier to measure in practice for both research and clini-
cal applications. Moreover, in the context of differentially 
expressed genes, pre-screening the least variable genes 
has been shown to increase the identification power in 
high dimension analyses with microarray data [29, 30]. 
The second methodology is supervised, as the survival 
data are used in a single variable Cox model for each 
gene. Both of these two supervised and unsupervised 
pre-screening techniques are single variable (i.e., the 
scores are calculated gene by gene), but more complex 
(and computationally intensive) techniques exist [16]. 
Thus, these two pre-screening methodologies represent 
simple and useful techniques to reduce the dimension 
before multivariable analysis. However, both selecting the 
most variable genes, and the genes which have the high-
est correlation with survival, require a threshold. But the 
pre-screening step is often carried out without justifica-
tion of these thresholds for both unsupervised [31–33] 
and supervised [34, 35] techniques, and it has been 
shown that these values can have an impact on the selec-
tion process [30].

To the best of our knowledge, no independent bench-
mark of multivariable Cox regression (i.e, ridge, lasso, 
elastic net, adaptive elastic net) has been defined using 
mRNA-seq datasets of a large set of cancers of The Can-
cer Genome Atlas (TCGA, https:// www. cancer. gov/ tcga) 
with supervised and unsupervised pre-screening of the 
genes, and according to well-established evaluation met-
rics for prediction. In this context, the goals of this paper 

https://www.cancer.gov/tcga
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are to: (i) study the impact of pre-screening the genes 
based on their interquartile range (IQR) and p-value 
from a single variable Cox model on prediction accuracy, 
and propose a rationale toward setting a threshold; (ii) 
compare four multivariable Cox penalty methods (i.e., 
ridge, lasso, elastic net, adaptive elastic net) after a pre-
screening step; (iii) compare the pre-screening methods 
we propose to a well-known algorithm, the iterative sure 
independence screening (ISIS) [28].

To evaluate the Cox regression methods for prediction 
of overall survival, we chose a panel of sixteen cancers 
from TCGA. The scripts used to reproduce the figures 
presented throughout the article are available in a github 
repository. We used R version 3.6 and 4.0.3 [36], the sur-
vival package [37], and ggplot2 package [38] to produce 
the figures.

Methods
Penalization methods for a sparse model
We consider four alternative penalties: the ridge regres-
sion [23], the lasso [17], the elastic net [18], and the adap-
tive elastic net [19]. Briefly, these methods consist of the 
addition of a penalty term to the log-pseudo-likelihood 
l(β) before the maximization:

• The lasso 

• The elastic net

• The ridge 

• The adaptive elastic net (a two-step procedure) 

1 estimates the vector β̂0 by maximizing l with the 
ridge regression.

2 weights the elastic net penalty with the coefficient 
β0
j , j ∈ {1, ..., p} computed in step 1:

 

 with ŵj = 1/|β̂0
j |, j ∈ {1, ..., p}.

We used the package glmnet [39] to estimate Cox penal-
ized models. We selected the parameter � by minimizing 

β̂(lasso) = argmax
β

l(β)− �||β||1

𝛽(EN ) = argmax
𝛽

l(𝛽) − 𝜆(𝛼||𝛽||1 +
1 − 𝛼
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the deviance in the cross-validation process, on the train-
ing dataset. For more details on the Cox model and the 
parameters used for penalties, we refer the reader to Sup-
plementary Materials and Supplementary Fig. S1.

We further compared the prognostic performance with 
non-convex methods, namely smoothly clipped abso-
lute deviation (SCAD) and the mimimax concave pen-
alty (MCP) [40]. These methods were proposed to avoid 
known bias of the lasso, and are defined as follows:

• SCAD 

• MCP 

γ is a tuning parameter of the MCP/SCAD penalty. 
We used the default parameter (3 for MCP and 3.7 for 
SCAD). We used the package ncvreg [41] to compute 
the Cox models penalized by MCP or SCAD. Benner and 
colleagues show that SCAD depends on pre-selection 
procedures, and they advise lasso and elastic net as being 
the methods of choice [25]. We will thus show most of 
the results with lasso-like penalties.

Cox model assumption
To test for the proportional hazard assumption, we learn 
one Cox model with all patients with the ridge penaliza-
tion for each cancers, and we apply a Schoenfeld resid-
ual test followed by Benjamini-Hochberg correction for 
multiple testing (Table 1) [42]. Only THYM has a p-value 
below 0.05, showing a low probability to verify propor-
tional hazards. We anyway compute all the predictions 
for THYM, as some authors consider that even if hazards 
are not proportional, survival prediction can be evaluated 
with a Cox model [43]. Nevertheless results from THYM 
should be interpreted with care.

Prediction performance metrics
We estimate the prediction performance of the models 
by 10 repetitions of a K-fold cross-validation ( K = 5 ). 
We compute the β vector of the Cox model on a training 
dataset ( 45 of the patients), and from this estimated vec-
tor we define a risk score for each patient in the testing 

𝛽(SCAD) = argmax
𝛽

l(𝛽) − 𝜆||𝛽||1 , if ||𝛽||1 ≤ 𝜆

−
2𝛾𝜆||𝛽||1 − ||𝛽||2

1
− 𝜆2

2(𝛾 − 1)
, if 𝜆 < ||𝛽||1 ≤ 𝛾𝜆

−
(𝛾 + 1)𝜆2

2
, if ||𝛽||1 > 𝛾𝜆

𝛽(MCP) = argmax
𝛽

l(𝛽) − 𝜆||𝛽||1 +
𝛽2

2𝛾
, if ||𝛽||1 ≤ 𝛾𝜆

−
𝛾𝜆2

2
, if ||𝛽||1 > 𝛾𝜆
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dataset ( 15 of the patients). This risk score is called the 
‘Prognostic Index’ (PI) and is defined for a given patient 
i as P̂Ii = β̂T

X
i , with β̂ the estimator of the coefficients 

in the Cox model, and X the gene expression vector. This 
procedure allows assessment of prediction performance 
by computing the C-index and the Integrated Brier Score 
(IBS) (Fig. 1, [44]). Then, at the end of this classical proce-
dure [15], 50 C-indices and 50 IBS are computed for each 
method. With this procedure, all patient measurements 
are used, either in the training set or in the testing set 
(but not both), and each measurement is used only once 
(no replacement).

The C-index allows the discrimination ability of a 
model to be assessed by quantifying the proportion of 
comparable patient pairs whose PI are in good agreement 

with their survival data. For two patients i and j with 
risk scores PIi and PIj , and with survival times Ti and Tj , 
the C-index is defined as C = P(Ti < Tj |PIi > PIj) . A 
C-index of 1 indicates perfect agreement, and a C-index 
of 12 corresponds to random chance agreement. We took 
the estimator of the C-index given by [45] and theo-
rized by [46]. In this estimator, only comparable pairs of 
patients are considered, meaning that the shortest time 
among both patients has to be measured (not censored).

The Brier Score [47] measures the average squared 
distance between the observed survival status and the 
predicted survival probability at a particular time t. It is 
always a number between 0 and 1, with 0 being the best 
possible value. We used the integrated Brier score that 
integrates the Brier Score between 0 and the maximum 

Table 1 P-value, after Benjamini-Hochberg correction, of the Schoenfeld residual test, applied on the Cox model with ridge 
penalization. THYM, for which the p-value is low, is highlighted in bold

ACC BLCA BRCA CESC COAD ESCA GBM HNSC KIRC KIRP

0.71 0.26 0.38 0.66 0.71 0.66 0.62 0.38 0.38 0.38

LAML LGG LIHC LUAD LUSC MESO OV PAAD PRAD READ

0.38 0.26 0.38 0.73 0.41 0.41 0.42 0.73 0.73 0.38

STAD TGCT THCA THYM UCEC UVM

0.38 0.38 0.38 0.011 0.71 0.62

Fig. 1 Procedure for the evaluation of prediction performances. CPM corresponds to Count Per Million normalization, PI means Prognostic Index 
and IBS refers to integrated Brier score
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event time of the test set and divides this quantity by 
the maximum integration time. Then, while the C-index 
measures the ability of a model to rank patients accord-
ing to their risks, the IBS estimates the capacity of a 
model to predict survival probabilities along time. The 
IBS is a global performance metric that assesses both 
discrimination and calibration, but is more difficult to 
interpret in practice. These two metrics are widely used 
to estimate prediction performance in practice and are 
complementary.

We used the package survcomp [48] to compute both 
the C-index and the IBS.

The Cancer Genome Atlas dataset
Cancer acronyms, as provided by the TCGA consor-
tium, are available in Supplementary Table S1. First, we 
included cancers available in TCGA for which there were 
more than 75 patients with mRNA-seq and survival data. 
Then, we followed recent formal recommendations [49] 
to exclude PCPG dataset that has too few events and 
SKCM dataset that has a high ratio of metastatic samples 
sequenced. We used overall survival as disease-outcome, 
except when the authors recommend the use of progres-
sion-free interval (BRCA, LGG, PRAD, READ, TGCT, 
THCA and THYM). After these two steps, we retained 
26 cancers.

Finally, we computed the C-index estimates with the 
ridge regression method applied over all of the genes for 
these 26 cancers (Supplementary Fig. S2), as explained in 
Fig. 1, without the pre-screening step. To focus on can-
cers for which the prediction exceed a minimal level of 
performance with RNA-seq data, we decided to retain 
only the datasets for which the median C-index is sig-
nificantly higher than 0.6 according to a one-sided Wil-
coxon test at level 0.01. At the end of this procedure, 
we retained 16 cancer subtypes (Table 2). Among them, 
UVM, ACC, and KIRP contain few events ( e < 50 ). Sup-
plementary Fig. S3 shows that this may lead to a bias on 
the C-index toward a too optimistic value, resulting in an 
anti-correlation between the C-index and the number of 
events (cor = -0.63, p-val = 0.008). This anti-correlation 
disappears when selecting cancer subtypes for which the 
TCGA dataset contains more than 50 events (cor = -0.18, 
p-val = 0.55). However, we retain these 3 datasets as this 
bias is identical for all methods applied to a given dataset; 
therefore, the results remain comparable within a cancer 
subtype.

We obtained clinical and mRNA-seq datasets using the 
Broad GDAC FIREHOSE utility (https:// gdac. broad insti 
tute. org). We retained only expressed genes (i.e. CPM 
value higher than 1) for at least 1% of the patients. Then, 
we used a log2-CPM normalization (count per million) 
of the mRNA-seq count data using packages edgeR 

[50] and limma [51], and we standardized the data in 
the training dataset, and in the testing datasets using the 
mean and standard deviation values of the training data.

The independent dataset
To further compare the validity of our prediction and 
the procedure used, we chose the clear cell renal cell 
carcinoma (ccRCC), for which the predictions are high 
(C-index = 0.75), and the dataset is large enough to gather 
a large number of events (e = 175). We collected the 
expression data and the clinical data for Renal Cell Car-
cinoma (RECA-EU) from the ICGC repositories (https:// 
dcc. icgc. org), while selecting only ccRCC patients. We 
retained only expressed genes (i.e. CPM value higher than 
1) for at least 1% of the patients. Then, we used a log2-
CPM normalization (count per million) of the mRNA-seq 
count data using packages edgeR [50] and limma [51]. 
To test the procedure on an independent dataset, we used 
TCGA:KIRC as a training dataset while ICGC:RECA 
dataset as the testing dataset, in a similar way as explained 
above. Due to differences between datasets, we selected 
only genes that were found in both datasets. Therefore, 
we used 17,000 genes to learn the model on training sub-
set of TCGA:KIRC and then tested both on the remain-
ing patients from TCGA:KIRC or on all the patients in the 
independent ICGC:RECA dataset separately. We stand-
ardized the external testing dataset independently from 
the training set, by using the mean and standard deviation 

Table 2 Characteristics of the 16 cancers selected. C-indices are 
computed with 10 repetitions of 5-fold cross-validation with the 
ridge regression and all of the genes in the Cox model. Datasets 
are ordered according to their median C-index (decreasing order)

Cancer n events n patients Censoring rate Survival 
- 3 years

C-index

ACC 27 77 0.65 0.75 0.86

KIRP 42 269 0.84 0.87 0.83

UVM 21 77 0.73 0.74 0.79

MESO 73 85 0.14 0.19 0.75

KIRC 175 526 0.67 0.76 0.73

LGG 192 510 0.62 0.56 0.73

CESC 70 288 0.76 0.72 0.7

PRAD 92 490 0.81 0.8 0.69

LIHC 125 358 0.65 0.62 0.67

UCEC 91 541 0.83 0.83 0.67

BLCA 165 371 0.56 0.48 0.65

LAML 92 149 0.38 0.31 0.65

BRCA 145 1079 0.87 0.88 0.64

HNSC 210 491 0.57 0.57 0.64

PAAD 93 175 0.47 0.34 0.63

LUAD 179 488 0.63 0.61 0.62

https://gdac.broadinstitute.org
https://gdac.broadinstitute.org
https://dcc.icgc.org
https://dcc.icgc.org
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of the testing set. This standardizing procedure is differ-
ent as for the K-fold validation, but was necessary to reach 
good performance in terms of IBS. We further comment 
this issue in the discussion section.

Integration of mRNA-seq data together with clinical data
Taking into account clinical information when assess-
ing the predictive value of omics data is an impor-
tant aspect of model building [52]. An added value of 
mRNA-seq data over clinical data alone to predict 
survival has been shown for some cancers but not 
all [7, 34, 44, 53]. Different strategies exist for com-
bining mRNA-seq and clinical data [54, 55]. In this 
study, we added the prognostic indices computed 
with mRNA-seq data alone ( PImRNA ) to classical clini-
cal features (age, gender, grade, T, N, M), when avail-
able ( PI = βPImRNA + k βkClink , where Clink is the 
kth clinical variable). The TNM Staging System cor-
responds to a score constructed with the extent of the 
tumor (T), the extent of spread to the lymph nodes (N), 
and the presence of metastasis (M). We did not include 
gender for sex-specific cancers (CESC, PRAD, TGCT). 
Age is available for all cancers, and we specify whether 
the other variables are available in Fig.  2 and Supple-
mentary Fig. S4 and S5. For example, the grade (G) is 
only available for 10 cancer subtypes out of 26.

We used the ridge penalty with all the genes to com-
pute PImRNA . To test if the mRNA-seq data added 

prediction quality over clinical data, we compared the 
C-index (resp. IBS) distributions obtained with clinical 
data alone and with both clinical and mRNA data by 
performing a one-sided Wilcoxon signed rank test for 
each of the 16 cancers studied.

Bi-dimensional pre-screening procedure
Supervised pre‑screening: based on the single variable Cox 
model
Single variable Cox pre-screening consists of allocating 
one p-value associated with the test ‘ β = 0 ’ for each 
gene individually using the patients from the training 
dataset. We computed the p-values using the likeli-
hood ratio test [56] implemented in the package sur-
vival [57]. We corrected for multiple testing with 
the Benjamini-Hochberg procedure [42]. We used six 
different thresholds (0.01, 0.05, 0.1, 0.2, 0.5, 1), and 
only the genes with a corrected p-value below a given 
threshold were kept to estimate βj in a multivariable 
Cox model.

This supervised pre-screening approach retains the 
genes that are individually associated with survival.

Unsupervised pre‑screening: based on the interquartile range
We used the interquartile range (IQR) applied to the 
gene expression of patients from the training dataset 
for unsupervised pre-screening. The IQR is a robust 

Fig. 2 C-indices obtained with clinical data alone (red), mRNA-seq data alone with ridge penalty and all the genes (blue, no bi-dimensional 
pre-screening), and clinical and mRNA-seq data together (purple) for the 16 cancers studied. We computed the C-indices by 10 repetitions of a 
K-fold cross-validation (K=5). To test whether the added value of mRNA-seq data for prediction is significant over clinical data alone, we computed 
the p-values of a one-sided Wilcoxon signed-rank test (purple stars at the top of each graphic, Benjamini-Hochberg correction for the 16 p-values). 
Red letters at the bottom of each graphics indicate the clinical data available (G: grade; T: tumor; N: node; M: metastasis). Age is available for all 
cancers, and gender only for non-unisexual cancers (CESC, PRAD, TGCT are sex-specific). ***: p ≤ 0.001 , **: p ≤ 0.01 , *: p ≤ 0.05 , +: p ≤ 0.1 , n.s. : 
p > 0.1
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measurement of the dispersion, and it is defined as the 
difference between the 75th and 25th percentiles.

The RNA-seq technology induces a relationship 
between the median and the IQR for expression data: the 
larger the median of the count data, the greater the IQR 
(Supplementary Fig. S6 A, B). The use of logarithm (base 
2) in log2-CPM data allows to overcome the problem of 
asymmetric data distribution [58], but assigns a higher 
IQR to low count data because of the concave shape of 
the logarithm function (Supplementary Fig. S6 C).

To overcome this median-IQR trend bias, we used 
a variance stabilizing transformation (VST) algorithm 
[59]. The goal is to compensate for this tendency so that 
screening with the IQR does not penalize genes with 
low count data (CPM normalization) or high count 
data (log2-CPM normalization, Supplementary Fig. S6 
D). Both of these class of genes can be important in the 
multivariable Cox model for prediction, and have to be 
treated equally in the screening process.

We excluded genes for which IQR of the VST data 
among all of the patients was below a given threshold (0, 
0.5, 1, 1.5, 2, 2.5).

Suggested screening algorithm
In this study, we suggest to screen the genes in a bi-
dimensional way, both on individual correlation with 
survival (i.e. p-value of the single variable Cox model) 
and variability of the genes among patients (IQR of VST 
data). For each pair of thresholds, we compute 50 C-indi-
ces (resp. 50 IBS) as explained in Fig. 1. Optimal thresh-
olds are those that maximize (resp. minimize) the median 
C-index (resp. IBS), according to the performance metric 
of interest (i.e. C-index or IBS in this study). The pair of 
thresholds that maximizes prediction accuracy is referred 
to as the ‘optimal case’, ‘optimal pre-screening’ or ‘optimal 
thresholds’.

Evaluation of prediction performances with the same 
cross-validation procedure and datasets used for model 
selection may lead to an optimistically biased evaluation. 
To overcome this issue and measure the extent to which 
our bi-dimensional screening procedure improves pre-
dictions, we used a nested cross-validation procedure 
[60]. Briefly, we simply re-ran the procedure with new 
sampling after having learned optimal thresholds, i.e. we 
learned new models on new training and testing datasets 
but with the optimal bi-dimensional screening threshold 
computed in the first run of 10 cross-validations (K=5). 
To evaluate if the prediction quality is improved by the 
pre-screening step, we compared the C-index (resp. IBS) 
distributions without screening (i.e. all the genes) and 
with the optimal pre-screening with boxplots. To help 
guide the comparisons, we also performed a one-sided 

Wilcoxon signed-rank tests, which is purely indicative as 
detailed in the discussion paragraph. We corrected the 
p-values with Benjamini-Hochberg method. To further 
compare prediction performances of the different form 
of penalizations, we did a one-sided Wilcoxon test at level 
0.05 between distributions of the C-indices and IBS for 
each cancers.

Simulation procedure
In order to evaluate the pre-screening procedure in 
a controlled environment, compatible with the Cox 
model, we ran simulations. The Cox model assumes 
the time dependent hazard, for a given patient i, to be 
hi(t) = h0(t).exp(β

T
X
i) . To compute the time depend-

ent baseline h0(t) , we used the Cox-Weibull model, 
h0(t) = rsts−1 [61, 62]. The correlation structure of 
mRNA-seq data is complex and specific to each can-
cer [63]. Thus, we used the real data from TCGA for 
mRNA expression Xi . We chose ccRCC as the cancer of 
interest for the same reasons as for the validation on an 
independent dataset: high C-index and large number of 
events. We learnt a Cox survival model with Elastic Net 
penalty 10 times, leading to sets of selected genes of size 
51 to 75. Out of these sets, we selected the 68 genes that 
are selected at least 7 times among the 10 models. We 
then ran simulations only with this set of genes consid-
ered as the ground truth, and we use a normal distribu-
tion N (0, σ) to compute β . We ran the simulations for 
different values of σ and chose σ = 0.2 as it leads to the 
closest Kaplan-Meier curves between simulated and real 
data (Supplementary Fig. S7). We simulate the survival 
time for a given patient i by

with (r, s) the parameters of the Cox-Weibull model, and 
U a variable following a standard uniform distribution 
[64]. Finally, we simulated censored time Ci following a 
uniform distribution between 0 and θ , this latter parame-
ter determined to have the same censoring rate as for the 
real dataset (0.67 for the TCGA dataset considered) [65].

We ran only 3 different simulations scheme, due to 
the time required to run a single simulation, leading to 3 
simulated datasets (each with 526 patients with the same 
gene expression as for the real datasets, but simulated 
survival and censored time). For each of the 3 datasets, 
we performed a pre-screening of the genes, and then 
learnt a Cox model with EN penalization, with the same 
K-fold with repetition procedure described above (Fig. 1). 
It leads to 50 measurements of C-index and IBS per pre-
screening condition per simulation.

Ti =

(

−log(U)exp(−βT
X
i)

r

)1/s

,
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Comparison with sure independence screening
Finally, we compared our bi-dimensional pre-screening 
procedure to the well-known sure independence screen-
ing [28]. This algorithm is close to the supervised screen-
ing procedure as it is based on individual correlation 
between each gene and the survival outcome. Briefly, a 
|β| coefficient is computed individually for each gene in 
a single variable Cox model, and the d genes with the 
highest score are retained. The iterative procedure aims 
at handling possible spurious correlation and multicol-
linearity issues. The ISIS algorithm allows each gene that 
has not been selected at step k to enter the model at step 
k + 1 based on their individual additional contribution in 
a multivariable Cox model with lasso penalty.

We followed the recommendations of [28] and set 
d = ⌊ n

log(n)
⌋ . If we observe a convergence issue with this 

value, as has been mentioned by [55], we chose a lower 
value of d until the algorithm converge (i.e. d = ⌊ n

2 log(n)
⌋ 

and then d = ⌊ n
4 log(n)

⌋ ). We then apply the Cox model 
with ridge penalty on the genes selected by the ISIS 
procedure.

Results
mRNA-seq data improves predictions over clinical data 
alone for most of the investigated cancers
Adding mRNA-seq to clinical data improves predictions 
for 11 cancers according to the C-index, and for 5 can-
cers according to the IBS over the 16 cancers selected 
(Fig.  2, Supplementary Fig. S4). Overall, the predictions 
are significantly improved according to at least one of 
the metrics (i.e. C-index or IBS) for 13 cancers. These 
results show the benefit of mRNA data for survival pre-
diction, and further encouraged us to compare the dif-
ferent penalization methods. For the 10 cancer subtypes 
not further considered for pre-screening, only Thymoma 
(THYM) showed an improvement. Nevertheless, the 
predictive power remains low (median C-index = 0.6), 
and we chose to keep only cancer subtypes for which we 
obtained adequate predictive power. In addition, the inte-
gration of clinical data can also improve predictions over 
mRNA data alone for 13 cancer subtypes out of 26 when 
evaluating with the C-index (7 out of the 16 cancers 
selected, and 6 out of the 10 cancers not further studied).

It is interesting to note that for MESO, although the 
stage, age, T, N and M are available, the predictions 
obtained from these clinical data are poor (median 
C-index of 0.51). On the other hand, for LAML, with 
only age and gender as clinical variables, we observe a 
median C-index of 0.66. Finally, for COAD and TGCT, 
the mRNA-seq data do not provide good predictions 
(median C-index < 0.55 ), whereas the clinical data does 
(median C-index > 0.70 , Supplementary Fig. S5).

Optimal bi-dimensional thresholds vary according 
to cancers, metrics, and penalty methods.
Figure 3A shows the median C-indices obtained for dif-
ferent thresholds with the elastic net penalty for BRCA. 
This methodology and representation allows optimal 
supervised and unsupervised thresholds with regard to 
the median C-index to be chosen for the pre-screening 
step (Fig. 3A, highlighted by a blue box). Figure 3B shows 
the number of genes screened by the IQR only, by the 
p-value of the single variable Cox model only, and by 
both.

Optimal thresholds vary according to the cancers. For 
example, for the elastic net penalty and C-index as a 
measure of prediction quality, the optimal thresholds for 
KIRP are 0.01 for the p-value of the single variable Cox 
model and 0 for the IQR (i.e. no pre-screening with the 
IQR), while they are 1 (i.e. no pre-screening with the 
p-value) and 2.5 for PAAD, respectively. We observe this 
diversity for the other penalties as well. A combination 
of supervised and unsupervised pre-screening is chosen 
in the optimal case with the C-index (resp. the IBS) for 7 
(resp. 11) cancers for the ridge, 9 (resp. 13) cancers for the 
lasso, 6 (resp. 9) cancers for the elastic net, and 11 (resp. 
13) cancers for the adaptive elastic net. Thus a combina-
tion of both supervised and unsupervised pre-screening 
techniques is valuable to remove irrelevant genes.

The bi-dimensional pre-screening procedure increases 
prediction performance significantly for some cancers
Figure 3C shows improved prediction performance when 
the bi-dimensional pre-screening procedure is applied 
for BRCA. Without pre-screening, with ridge penalty, the 
median C-index for BRCA is C = 0.651 ( 95% confidence 
interval [0.629 ; 0.665]), improved to C = 0.674 ([0.657 ; 
0.685]) with the optimal pre-screening. To note, for ridge 
and AEN, the optimal threshold for p-value is 1, meaning 
that all the genes are retained with the supervised proce-
dure. Overall, the bi-dimensional pre-screening is at least 
neutral and at best improves the C-index, while remov-
ing irrelevant genes for prediction. The C-index is signifi-
cantly increased after pre-screening for 3 cancers for the 
ridge, 8 cancers for the lasso, 7 cancers for the elastic net, 
and 5 cancers for the adaptive elastic net (Supplementary 
Fig. S8 and S9). The most important increase of C-index is 
observed for LAML and elastic net (0.026), but the typical 
improvement on C-index remains modest, around 0.015.

Similarly, the IBS is significantly decreased for 9 can-
cers for the ridge, 3 cancers for the lasso, 8 cancers for 
elastic net, and 11 cancers for the adaptive elastic net 
(Supplementary Fig. S10 and S11). The most important 
decrease on IBS is also observed for LAML, but with 
the adaptive elastic net (0.044).
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Overall, the bi-dimensional pre-screening step leads 
to improved predictions, regardless of the penalty 
method, for LGG, KIRC, BLCA, LAML and BRCA with 
the C-index as the performance metric, and for UCEC, 
BLCA, LAML, BRCA, and PAAD with the IBS. For the 
other cancers, the improvement is method-dependent 
(e.g. for LIHC and the C-index, the median increase is 
0.02 for the elastic net, but 0 for the ridge).

Pre-screening prevents selection of irrelevant genes
For BRCA, 27 out of the 45 genes selected by elastic 
net (originally near 20,000 features) shows low variabil-
ity among patients (i.e. IQR < 1 , lower than the optimal 
threshold, Supplementary Fig. S12). Pre-screening on 

gene variability avoids the selection of these genes, for 
which the difference among patients are difficult to meas-
ure in practice.

However, all of these selected 45 genes have a cor-
rected p-value below the optimal threshold (0.5). The 
pre-screening on corrected p-values allows to reduce 
the dimension (i.e. genes with corrected p-values greater 
than 0.5 are eliminated by screening), thus accelerating 
the computations. The genes selected by the penalization 
methods already have low p-values from single variable 
Cox model.

We observed these two properties for all datasets (data 
not shown): genes selected by lasso likes penalization 
have all low p-values, but not all a high IQR.

Fig. 3 C-index computed with different pre-screening thresholds for BRCA and the elastic net penalty. (A) Median C-indices obtained by 10 
repetitions of a K-fold cross-validation (K = 5) for different pre-screening thresholds for corrected p-values on the x-axis and for interquartile range 
(IQR) on the y-axis. Box surrounded by gray: no pre-screening; box surrounded by blue: optimal case (highest median C-index); white numbers: 
number of genes after the pre-screening step. (B) Number of genes retained by unsupervised (purple) and supervised (lightblue) pre-screening 
in the optimal case (the blue square in (A)). (C) Boxplot of C-indices obtained with 10 repetitions of 5-fold nested cross-validation without 
pre-screening (gray box in (A) for elastic net) and in the optimal case for bi-dimensional pre-screening (blue box in (A) for elastic net) for the ridge, 
the lasso, the elastic net (EN), the adaptive elastic net (AEN). The p-value above each method is calculated with a one-sided Wilcoxon signed-rank 
test between the C-indices obtained in the optimal case and without pre-screening; blue numbers are the number of genes retained after optimal 
bi-dimensional pre-screening; black and red numbers are respectively the number of genes and the optimal thresholds retained by supervised (left) 
and unsupervised (right) pre-screening in the optimal case. ***: p ≤ 0.001 , **: p ≤ 0.01 , *: p ≤ 0.05 , +: p ≤ 0.1 , n.s. : p > 0.1



Page 10 of 16Jardillier et al. BMC Cancer         (2022) 22:1045 

Penalization methods provide comparable prediction 
performances after pre-screening
Figure 4 shows that overall, after the bi-dimensional pre-
screening step, the performances of each penalization are 
similar, with small differences for a few cancer. We can in 
particular notice that in most cases EN does not provide 
better nor poorer performances than lasso. The predic-
tion performance, however, strongly depends on cancer 
studied.

Among the noticeable differences, the ridge pen-
alty reaches higher C-indices than the other penaliza-
tions for MESO and BLCA, but lower for CESC (Fig. 4). 
When focusing on the methods that allow the selection 
of a subset of genes (i.e. lasso, elastic net, adaptive elas-
tic net), none outperforms the others. The lasso obtains 
poorer performances than the two others for LAML, and 
the elastic net dominates the adaptive elastic net for ACC 
and MESO.

Similarly, by choosing IBS as a metric, the ridge penalty 
performs poorer than the other penalizations for CESC 
(Supplementary Fig. S12). Among the selection methods, 
none dominate the others, and they perform very simi-
larly. We can notice that the adaptive elastic net (resp. the 
lasso) performs slightly worse than the lasso and the elas-
tic net (resp. the elastic net and the adaptive elastic net) 
for PRAD (resp. for LIHC). After the bi-dimensional pre-
screening, the number of genes selected by the elastic net 
and the adaptive elastic net are comparable, and is twice 
as large as the one obtained with the lasso.

The two non-convex penalization methods lead to dif-
ferent performance: while SCAD performs similarly as 
the lasso-like methods, MCP clearly shows degraded 
performance with C-index, and to a less extent with IBS 
(Supplementary Fig. S14 and S15). More precisely, cal-
culating the median C-index among the 50 C-indices 
for each penalization method, MCP obtains the worst 

performance for 12 out of the 16 cancers studied, while 
ridge reaches the best performance for 9 out of 16. For 
the IBS, AEN reaches the worst performance for 11 can-
cers, followed by MCP for 4 cancers. The best perfor-
mances were again obtained by ridge (8 cancers) followed 
by lasso (5 cancers).

Optimal bi-dimensional pre-screening shows improved 
performance on an independent dataset
Figure 5 shows the performance of the model on the same 
TCGA dataset through cross-validation, and on an inde-
pendent ICGC:RECA dataset. First, we observe on the 
independent dataset a strong reduction in performance 
on the C-index, which we interpret by the small propor-
tion of patients with aggressive cancer in ICGC:RECA 
(14% of clinical stage III and IV patients in ICGC, com-
pared to 39% in TCGA). Interestingly, even though there 
is almost no improvement in the C-index after pre-
screening procedure is applied on TCGA (from C = 0.71 
[0.702 ; 0.72] to C = 0.716 [0.698 ; 0.730]), the improve-
ment is clear when the model learned on TCGA datase,t 
after the pre-screening procedure, is applied on the ICGC 
dataset ( (from C = 0.545 [0.535 ; 0.553] to C = 0.566 
[0.560 ; 0.573]), Fig.  5A). Besides, the improvement 
is clear and strong when measuring the performance 
with the IBS, both on TCGA as a test set, and on ICGC 
(Fig. 5B): for TCGA:KIRC from IBS = 0.172 [0.165 ; 0.18] 
to IBS = 0.164 [0.159 ; 0.172], and for ICGC:RECA from 
IBS = 0.187 [0.185 ; 0.19] to IBS = 0.172 [0.170 ; 0.172].

Simulations show improved IBS performance 
after pre-screening
Supplementary Fig.  16 shows the C-index obtained 
for the simulated models, before pre-screening and 
with optimal pre-screening. The C-index performance 

Fig. 4 C-index obtained after pre-screening for the 16 cancers and the convex penalization methods studied (i.e. ridge, lasso, elastic net, adaptive 
elastic net). In each case, we computed the C-index by 10 repetitions of a nested 5-fold cross validation (section Suggested screening algorithm)
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strongly depends on the simulation runs (with a median 
C-index being 0.8, 0.73 or 0.65 for simulations 1 to 3). 
It suggests that the vector of β values strongly impacts 
the predictability of a given dataset. Similarly to the 
real TCGA dataset (Fig.  5), the pre-screening does not 
improve nor degrade the C-index of the model learnt.

Supplementary Fig. 17 shows the IBS obtained for the 
simulated models, before pre-screening and with opti-
mal pre-screening. Also, the IBS performance strongly 
depends on the simulation runs (with a median IBS being 
0.21, 0.11 or 0.12). Unlike the C-index, IBS is improved 
by the pre-screening procedure, also in line with what we 
observe for the real TCGA dataset (Fig. 5).

On each of the 3 simulated datasets, we also pre-fil-
tered correlated genes, to keep only one gene in a group 
of correlated ones (with a correlation coefficient above 
0.5 in absolute value, we kept the most correlated to sur-
vival in a single variable Cox model). This led to a reduc-
tion of the number of genes, from 17,249 to 4,890. Some 
of the suppressed genes were in the ground truth set, 
used to simulate the data. However, the performance of 
the models were equivalent with both sets of genes, with 
and without pre-screening, in the two metrics investi-
gated (C-index and IBS, not shown). We hypothesize that 
the explanation lies in the fact that the lasso-like penali-
zations also select only one variables among correlated 
ones [20].

Bi-dimensional pre-screening outperforms ISIS 
for prediction
First, it is worth noting that screening genes with indi-
vidual correlation with survival using |β| coefficients or 
p-values of a single variable Cox model are almost equiva-
lent procedures. The correlation between the former and 
the latter are above 0.99 for all cancers (Supplementary 

Fig. S18). In that sense, pre-screening on p-values only is 
very close to pre-screening on |β| coefficients. The p-val-
ues have the advantage of taking into account the uncer-
tainty associated with the estimation of the coefficients 
and facilitate the choice of the thresholds in comparison 
with the beta coefficients. Second, for most cancers, pre-
screening on gene variability among patients by setting 
a threshold on IQR leads to higher prediction perfor-
mances. However, SIS (without iterations) and ISIS (with 
iterations) algorithms focuses only on individual correla-
tion with survival.

Second, we observe better prediction performances 
with our bi-dimensional pre-screening algorithm com-
pared with ISIS procedure. The C-indices are significantly 
higher for 9 of the 16 cancers studied (Fig. 6). For IBS, the 
results are equivalent for all cancers, with the exception 
of CESC for which the IBS is significantly smaller with bi-
dimensional pre-screening (Supplementary Fig. S19).

Finally, the number of genes removed by the ISIS 
procedure is much greater than by our bi-dimensional 
pre-screening algorithm. For example, the median 
number of genes retained by the bi-dimensional pre-
screening for BRCA with regard to the C-index is 1039 
for the elastic net (Fig. 3B), and 84 for the ISIS (Fig. 6). 
However, the penalization methods (i.e. lasso, elastic 
net, adaptive elastic net) make it possible to further 
reduce the number of genes after the pre-screening 
step, down to 54 for BRCA and lasso (Fig. 6).

Pre-screening without any cross-validation procedure
Previous sections show the interest of the cross-vali-
dation pre-screening procedure to decrease in a con-
trolled manner the number of variables before further 
selection with lasso like procedures. If the number of 

Fig. 5 Performance of the predictions for ccRCC patients, test on two different datasets. In gray without pre-screening, in blue after optimal 
bi-dimensional pre-screening performed on the TCGA dataset. In both case, the model is tested on an independent set not used for learning, either 
TCGA or ICGC. (A) C-index metric, higher is better. (B) IBS metric, lower is better. In each case, we computed the C-index by 10 repetitions of a nested 
5-fold cross validation (section Suggested screening algorithm). Paired Wilcoxon tests. ***: p ≤ 0.001 , **: p ≤ 0.01 , *: p ≤ 0.05 , +: p ≤ 0.1 , n.s. : p > 0.1



Page 12 of 16Jardillier et al. BMC Cancer         (2022) 22:1045 

events is too small to perform a cross-validation, and/
or the required CPU is too high for the number of 
variables used to learn the model, we herein investi-
gate whether general rules can be used for all cancers. 
We noticed in a previous section that the variables 
selected using a lasso like penalized Cox model are also 
individually correlated with patient survival, meaning 
that they all have a small p-value in a single variable 
Cox model. This property is not true for IQR. Besides, 
higher is the number of patients in a cohort, lower will 
be the p-value for a given variable: so, we will not use a 
threshold on p-values to provide a general advice. We 
thus decided to investigate to which extent pre-select-
ing a given number of genes with the lowest p-values 
would degrade the performance of the model for all 
cancers. Again in this section, we use the cross vali-
dation framework described Fig. 1 to avoid using data 
twice for learning and evaluation. Supplementary Figs. 
S20-23 show that using the top 50 genes in terms of 
p-values lead to reduced performances for CESC, 
MESO and KIRP cancers, which is especially true for 
C-index. However, when pre-selecting on the top 200, 
500 or 2,000 genes, the performance are similar, while 
reducing drastically the number p of variables.

Discussion
Like many others but in a complementary way [6, 7, 66], 
our work shows the benefit of using mRNA-seq data of 
the tumor together with clinical variables for typically half 
of the cancer subtypes for which mRNA profiles carry 
prognostic power. However, we restricted the clinical 
variables to common ones, shared for most cancer sub-
types. Cancer-specific clinical variables exist (e.g. estro-
gen receptor status for breast cancer) and can further 
improve prediction obtained with clinical variables. Thus, 

the general conclusions we reached could be balanced for 
given cancer subtypes with the use of selected cancer-
specific variables. It nevertheless confirms the interest of 
tumor profiling for prediction. Besides, we have not modi-
fied the prognostic index to account for clinical variables. 
Thus, there remains a potential of improvement in inte-
grating clinical variables and mRNA data which is beyond 
the scope of the present work.

Then, as others before [7, 67], we confirm here that the 
overall survival prediction quality is cancer dependent, 
and it can be as low as a pure random prediction, with 
a median concordance of 0.51 for ESCA (Supplementary 
Fig. S2). Different hypotheses can be drawn up to explain 
these differences across cancers. First, many studies show 
intra-tumoral heterogeneity (e.g., genetic and phenotypic 
variations across different geographic regions for one 
tumor subtype) [68]. The expression levels of the genes 
correlated with survival (the input of the Cox model) 
might thus vary across spatial area of the tumor, although 
the survival time of the patients is a global outcome. 
Secondly, other explanatory variables might better pre-
dict overall survival for some cancers. For example, [69] 
recently showed that tumor microbiome diversity influ-
ences patient outcome for pancreatic cancer.

The existence of subtypes of cancers with differ-
ent molecular characteristics [70] would lead to poor 
regression performance and prediction, as here all of the 
patient data were processed with the same model. Thus 
the integration of new biological data, and the considera-
tion of hidden variables (e.g. tumor purity, [63]) could 
improve the performance of the models.

Then, the unsupervised pre-screening step allows 
genes that show the highest expression variability among 
patients to be retained. However, the main issue of pre-
screening with IQR (i.e., the difference between the 

Fig. 6 C-index obtained with the lasso without pre-screening (gray), with the lasso after the bi-dimensional pre-screening (blue), and with 
independent sure independence screening (ISIS, red). We computed the C-indices by 10 repetitions of a K-fold-validation (K=5). As an indication, 
the p-values obtained after a Wilcoxon test between ISIS and the bi-dimensional pre-screening (stars above the graphics) are provided. The 16 
p-values are corrected with Benjamini-Hochberg method. Blue stars: the median C-index is lower for the bi-dimensional pre-screening. Blue 
numbers: number of genes selected by the lasso after bi-dimensional pre-screening. Red numbers: number of genes retained by ISIS. ***: p ≤ 0.001 , 
**: p ≤ 0.01 , *: p ≤ 0.05 , +: p ≤ 0.1 , n.s. : p > 0.1
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75th and 25th percentiles) does show up when fewer 
than 25% of the patients express a gene leading to poor 
prognosis. In this case, the gene would not be kept by 
the pre-screening step, while it could be important for 
prediction. Other metrics can be used to overcome this 
issue; e.g., the IQR can be easily replaced by the differ-
ence between the 90th and 10th percentiles using the 
same methodology.

We applied the pre-screening procedure only on tran-
scriptomic data. When performing a supervised pre-
screening on combined clinical and transcriptomic data, 
it could be interesting to test on both individual genes 
and clinical data, in order to pre-select only genes that 
have additional prognostic values than clinical data.

In this study, we have not investigated how to group 
genes following current knowledge, for example clinically 
relevant genes. Also, other penalizations could be used to 
account for pathway information [71]. In three simulated 
datasets, we have pre-filtered the genes, to keep only 
one in a group of correlated genes, choosing an arbitrary 
threshold of 0.5. This procedure is interesting as it highly 
decreases the number of genes with low computation 
time, except if one performs a cross-validation procedure 
to fix the threshold.

In order to compare the prediction performances 
among different conditions, we performed a Wilcoxon 
test among the 50 metric values obtained after 10 rep-
etitions of a K-fold (K=5) cross-validation. We have to 
warn that the p-value we provide is only indicative, as 
a real but small difference in two distributions can lead 
to arbitrarily small p-values when the number of repeti-
tions tends to infinity. Besides, the different repetitions, 
using the same initial set of patients are not independent 
as samples are taken repeatedly from the same data set 
for several Monte-Carlo runs during the cross-validation 
procedure. For these reasons, we set a reasonable num-
ber of repetitions. However, the indicative p-value has 
the advantage to help the readability of the figures by 
focusing on most interesting box plots.

In order to apply predictions to patients in clinics, it is 
important to pursue research on how to normalize the 
data. While in the cross-validation procedure we provide 
a fair standardization, using the mean and standard-devi-
ation of the expression of each gene in the learning set, 
this procedure did not work for the ccRCC independent 
dataset: the average and standard deviation were too dif-
ferent between the two experiments, probably due to the 
difference in protocols. Using the learning set parameters 
did not affect the C-index, but it clearly decreased IBS 
performance (not shown). To reach good performance, 
we had to use the mean and standard deviation of the 
test set. This is not practical in a clinical context. Thus, 
further improvements are required on the normalization 

and standardization of protocols, but this is beyond the 
scope of the present article. A hypothesis would be to 
use carefully selected normalizing genes, and to work on 
standardizing the sample preparation.

Conclusions
To the best of our knowledge, this is the first study to 
gather 16 different cancer subtypes to evaluate various 
Lasso-like penalized Cox models together with 2 pre-
screening procedures with 2 common metrics, namely 
C-index and IBS. In the context of ‘ultrahigh-dimensional 
data’ [14], we propose to pre-screen genes based on a 
robust estimation of their expression variability among 
patients and individual correlation with survival. This 
methodology and the proposed representation allow for: 
(i) the definition of the ‘optimal thresholds’ with rational 
justifications; (ii) the drastic reduction of the number p 
of features by removing irrelevant genes (i.e. not associ-
ated to survival or noisy) and mitigating the ‘curse of 
dimensionality’ in the multivariable Cox model; and (iii) 
optimization of the performance metrics of interest (i.e. 
C-index or IBS in this study). We also provide a bench-
mark of different penalization methods (i.e. ridge, lasso, 
elastic net, adaptive elastic net) after our bi-dimensional 
pre-screening procedure.

First, we showed that integration of mRNA-seq data 
with clinical data allows to improve predictions over clini-
cal data alone. Second, we showed that our bi-dimensional 
pre-screening algorithm allows to improve predictions for 
some cancers regarding both the C-index (LGG, KIRC, 
BLCA, LAML and BRCA) and the IBS (UCEC, BLCA, 
LAML, BRCA, and PAAD), while removing irrelevant 
genes for prediction and for clinical and research applica-
tions. For the other cancers, the improvement depends on 
the chosen penalization, but can only be beneficial. Third, 
we demonstrated that the different penalization methods 
reached similar prediction performances, with slight dif-
ferences among cancers. Fourth, our bi-dimensional pre-
screening procedure allows to get higher C-indices than 
ISIS algorithm for 12 of the 16 cancers studied, and compa-
rable for the 4 others. Finally, we have proved that the pro-
posed methodology is valuable on an independent dataset. 
However, we have to acknowledge that the improvements 
remain modest. Other procedures than ISIS have been 
recently proposed, but are not yet implemented, nor the 
code provided with the original article [72, 73]. A bench-
mark among all these procedures would be an interesting 
perspective.

As practical conclusions, we first advise that the genes 
are pre-screened with both supervised and unsupervised 
approaches, with several (e.g., 10 in our study) repetitions 
of K-fold cross-validation (K=5) to calculate the optimal 
thresholds. If this procedure is not feasible, for example 
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when integrating various omics data, selecting the top 200 
to 2,000 mRNAs in terms of single variable Cox model 
p-value works well for all the datasets and methods we have 
investigated and allow to get effectively rid of irrelevant 
genes. Second, we advise equally the use of the ridge, the 
elastic net or the lasso penalization after the pre-screening 
step as they require lower computational time than the 
adaptive elastic net penalization. However, if a more parsi-
monious model is needed, we advise the use of lasso penal-
ization, as it selects fewer genes to build the final risk score, 
without reducing much the prediction performance.
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