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Polymer networks play a significant role in our lives from rubber to biological tissues1-6. It 

is understood that their characteristic properties − elasticity, strain-stiffening, and 

stretchability − are controlled by a convolution of chemical composition, strand 

conformation, and network topology1-6. Yet, since the discovery of rubber vulcanization by 

Charles Goodyear in 1839, the internal organization of networks has remained a sealed 

“black box”. While many studies show how network properties respond to variation of 

structural parameters,  no method currently exists that would allow decoding the structure 

of an arbitrary network from its properties7. We address this problem by developing a 

forensic-style method based on the analysis of the non-linear response to deformation of 

polymer networks to quantify their crosslink density, strand flexibility, and fraction of 

stress-supporting strands. The decoded structural information enables quality control of 

network synthesis, comparison of targeted to actual architecture, and classification of 

network types according to the effectiveness of stress distribution. The developed forensic 

approach is a vital step in future implementation of artificial intelligence principles for soft 

matter design. 
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  The topology of polymer networks is an ill-defined product of erratic node formation 

processes. Any reasonable efforts to project network architecture by specifying stoichiometry and 

the synthetic pathway are instantly scrambled by swift scaffold percolation generating a stochastic 

distribution of structural elements (Fig. 1a)1-4. The problem is further exacerbated by the inability 

of traditional characterization techniques to isolate and measure contributions from the individual 

structural elements presenting polymer networks as a sealed “black box” (Fig. 1b)7. There are two 

general approaches, both imperative, to uncover network organization. The so-called structure-to-

property approach employs model networks with synthetically pre-defined strands, loops, and 

dangles to quantify the vital contributions of each element to a specific property, e.g. modulus.8-10 

Although informative, this method is unsuitable for conventional polymer networks with unknown 

topology. Alternatively, a structure-from-property approach allows extraction of structural 

information of an arbitrary network from its properties. Current examples include the use of elastic 

modulus or equilibrium swelling ratio for gaining insight on crosslink density1,2, however, this 

single parameter analysis is not sufficient to deconvolute the contributions from multiple structural 

elements. Even the seemingly trivial crosslink density is actually unknown. 

We address this problem by developing a general framework for deciphering the network 

structure from its non-linear response to deformation (Fig. 1c).  Unlike the traditional analysis of 

a single data point, e.g., modulus at small deformations1,2,4,10, we analyze the entire shape of a 

stress-strain  curve, containing information about the network structure. By expanding the analysis 

to multiple self-similar networks, we use their cross-correlated mechanical response to quantify 

the strand Kuhn length, density of stress-supporting strands, onset of entanglement-defined 

elasticity, and, in some cases, effective crosslink functionality and loop contributions. Our 
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approach can be viewed as a macroscopic analog of single chain stretching experiments that utilize 

large deformations to extract molecular information11,12. 

The developed methodology does not require any assumptions about the type of structural 

defects10,13, the mechanism of network assembly10,14,15, nor solvent quality in swelling tests1,2 to 

establish structure-property relationships. Unlike spectroscopic16 and scattering17 techniques that 

involve complex structure-perturbing preparation procedures, our method deals with as-

synthesized materials intended for direct use in practical applications.  Our approach takes into 

account contributions from crosslinks, defects (loops and dangling ends), and trapped 

entanglements (Fig.1a)1,13,18 responsible for elastic modulus at small deformations, 𝐸0, as well as 

 

Figure 1. Forensics methodology. a, Schematics of a real polymer network (containing various defects 

such as loops, multiple strands, side chains, and dangles) defined by a set of structural parameters: 

degree of polymerization between crosslinks (red dots), 𝑛𝑥, and entanglements, 𝑛𝑒, crosslink 

functionality, 𝑓, and Kuhn length of network strand, 𝑏𝐾. b, An as-prepared network represents a black 

box with unknown internal organization - subjected to a forensic analysis. c, Workflow of our forensic 

procedure: (i) synthesis of a series of self-similar networks differing in crosslink density, (ii) 

deformation test to record non-linear stress-strain curves characterized by the Young’s modulus, 𝐸0,𝑖, 

and strain-stiffening parameter, 𝛽𝑖, and (iii) deciphering network structure from the domain of the 

measured [𝐸0,𝑖, 𝛽𝑖] combinations to deliver the structural parameters [𝑓, 𝑏𝐾, 𝑛𝑥, 𝜅], where 𝜅 is the 

network quality factor defined later.   
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its strain-stiffening at large deformations due to finite strand extensibility, 𝛽. The only requirement 

is to have a series of networks with varying crosslink density prepared by the same synthesis 

protocol. Analysis of a single network is also possible but delivers less information. 

The universality of the developed methodology was validated by applying the forensic 

approach to a broad set of elastomers including natural rubber19, end-crosslinked linear 

poly(dimethyl siloxane) (PDMS)9, and brush-like poly(n-butyl acrylate) (PBA) networks with 

systematically varied 𝑛𝑠𝑐 = 0 − 41, 𝑛g = 1 − 10, and 𝑛𝑥 = 25 − 120020,21. Since synthetic 

control of network topology is limited, we performed coarse-grained molecular dynamics 

simulations of linear chain and diamond networks that allow accurate variations of strand 

dimensions, effective crosslinking functionality, and defects distribution (Supplementary 

Information).  

We first apply the forensic approach to results of molecular dynamics simulations of 

phantom networks1,22 made by crosslinking of noninteracting bead-spring chains (precursor 

chains) with degree of polymerization (DP) 𝑁 = 1025 in a melt state (Supporting Information). 

The networks have dangling ends and loops, but are without entanglements as network strands are 

permitted to cross each other. The equation of state for phantom networks undergoing uniaxial 

elongation, 𝜆, under true stress, 𝜎𝑡𝑟𝑢𝑒, is derived by considering individual network strands as 

nonlinear springs of finite extensibility3,23 

𝜎𝑡𝑟𝑢𝑒(𝜆) = (𝜆2 − 𝜆−1)
𝐺

3
[1 + 2 (1 −

𝛽(𝜆2 + 2𝜆−1)

3
)

−2

]                     (1) 

which results in appearance of the divergent term in the brackets. The strain-stiffening behavior is 

defined by the firmness parameter  

𝛽 ≡ 〈𝑅𝑖𝑛
2 〉/𝑅𝑚𝑎𝑥

2 = 𝛼 (1 −
𝛼

2
(1 − 𝑒𝑥𝑝 (−

2

𝛼
)))                                    (2) 
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Eq 2 characterizes the strand extensibility, i.e. how much a network strand with a degree of 

polymerization (DP) 𝑛𝑥 between crosslinks and the repeat unit projection length 𝑙 can be stretched 

from its initial mean-square end-to-end distance 〈𝑅𝑖𝑛
2 〉 to the fully extended state 𝑅𝑚𝑎𝑥=𝑛𝑥𝑙.  The 

second part of eq 2 expresses 𝛽 in terms of 𝛼−1 = 𝑛𝑥𝑙/𝑏𝐾 - the number of Kuhn segments of 

length 𝑏𝐾 per network strand. The structural shear modulus of phantom networks, 𝐺, includes 

contributions from stress-supporting strands between crosslinks with functionality 𝑓, dangling 

ends, and loops as 

𝐺 =
𝐺𝑚

𝑛𝑥

〈𝑅𝑖𝑛
2 〉

𝑏𝐾𝑅𝑚𝑎𝑥
(1 −

2

〈𝑓〉
) 𝐶𝑙𝑜𝑜𝑝 (1 −

𝑛𝑥

𝑁
)                                            (3) 

where 𝐺𝑚 = 𝜌𝑘𝐵𝑇 is the monomeric shear modulus defined by the monomer number density 𝜌 

and the thermal energy 𝑘𝐵𝑇. The coefficient 𝐶𝑙𝑜𝑜𝑝 describes the reduction of 𝐺 due to loops (inset 

in Fig. 2a), while the factor 1 − 𝑛𝑥/𝑁 quantifies the decrease in the density of stress-supporting 

strands caused by two dangling ends per precursor chain and having 𝑛𝑥 2⁄  monomers each  (inset 

in Fig. 2a and Supporting Information).1,2 In addition, the dangling ends reduce the effective 

crosslink functionality, which is accounted for by using the average value of the crosslink 

functionality 〈𝑓〉 (Supplementary Equations 2-5).  

 Figure 2 outlines the main steps of the forensic approach in application to a set of phantom 

networks with different crosslink densities. First, structural shear modulus 𝐺 and strand 

extensibility parameter 𝛽 are determined for each network by fitting the corresponding stress-

elongation curves with eq 1 (Fig. 2a).  Second, we solve eq 2 for 𝛼 and calculate the number of 

bonds in the network strands between crosslinks 𝑛𝑥,𝑐𝑎𝑙𝑐 = 𝑏𝐾/𝑙𝛼 by using the known ratio 

𝑏𝐾/𝑙=2.56, which appeared to be within 8% of the actual 𝑛𝑥 values (Supplementary Figure 1d). 



6 
 

Third, the DP of the precursor chains, 𝑁, and loop coefficient, 𝐶𝑙𝑜𝑜𝑝, are obtained by rearranging 

eq 3 as follows 

𝐺 = 𝐺𝑚

𝛽

𝛼
 (1 −

2

〈𝑓〉
) 𝐶𝑙𝑜𝑜𝑝 (

𝑙

𝑏𝐾
𝛼 −

1

𝑁
)                                             (4) 

and plotting normalized structural modulus 𝐺𝛼/𝐺𝑚𝛽  as a function of 𝛼 (Fig. 2b). It is important 

to point out that the 𝐶𝑙𝑜𝑜𝑝 includes contributions from all types of loops as well as higher order 

corrections due to dangling-ends that are omitted in the analytical calculations of the loop 

factor.10,24 Using the known 𝑏𝐾/𝑙=2.56, the values of the slope and intercept give 

(1 − 2/〈𝑓〉)𝐶𝑙𝑜𝑜𝑝 ≈ 0.40 ± 0.01 and degree of polymerization of the precursor chains 𝑁𝑐𝑎𝑙𝑐=998, 

which is close to the actual value 1025. Since 〈𝑓〉 depends on 𝑛𝑥/𝑁 ratio (Supplementary Equation 

5), we can use obtained values of 𝑛𝑥 and N to calculate 〈𝑓〉 and represent the loop coefficient 𝐶𝑙𝑜𝑜𝑝 

in terms of 〈𝑓〉 (Fig. 2c).  

 

Figure 2. Forensics of phantom networks. a, Stress-elongation curves obtained by computer 

simulations of phantom networks with different crosslink densities made by crosslinking linear bead-

spring chains with bead diameter  and the degree of polymerization 𝑁 = 1025 undergoing uniaxial 

deformation from initial size 𝐿0 to 𝐿 described by the elongation ratio 𝜆 = 𝐿/𝐿0. Solid lines are the best 

fits to eq 1 by considering 𝐺 and  as fitting parameters (Supplementary Table 1). b, Self-similarity of 

phantom networks of linear chains is confirmed by plotting 
𝐺𝛼

𝐺𝑚𝛽
 as a function of parameter 𝛼 = 𝑏𝐾/𝑛𝑥𝑙, 

which effectively corresponds to strand DP 𝑛𝑥  (𝐺𝑚 = 0.85 𝑘𝐵𝑇/𝜎3). The dashed line is the best fits to 

the equation 𝑦 = 0.143𝑥 − 0.00041. c, Dependence of the loop coefficient 𝐶𝑙𝑜𝑜𝑝 on the average 

crosslink functionality 〈𝑓〉 for linear chain networks (filled rhombs) and diamond networks of end-

linked chains with 𝑛𝑥 = 150 and different density of dangling ends (filled circles).  
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Similar analysis can be applied to diamond networks of end-crosslinked phantom strands 

with varying density of dangling ends (inset in Fig 2c, Supplementary Figure 1c and Table 1). A 

perfect diamond network without dangling chains has crosslink functionality 𝑓 = 4 and can be 

viewed as a hierarchical system of loops with 𝐶𝑙𝑜𝑜𝑝 = 2 (Fig. 2c). Dangles lead to a decrease of 

average 〈𝑓〉 and increase 𝐶𝑙𝑜𝑜𝑝, which scales inversely with 〈𝑓〉. Thus, the forensic approach 

executed on model networks provides complete information about the DP between crosslinks, 

effective crosslink functionality, as well as quantifies the effect of loops and dangling ends on the 

network elasticity. 

 The stress-strain analysis becomes more complex for real networks with trapped 

entanglements, described by the following non-linear equation of state3,23  

𝜎𝑡𝑟𝑢𝑒(𝜆) = (𝜆2 − 𝜆−1) (
𝐺𝑒

𝜆
+

𝐺

3
[1 + 2 (1 −

𝛽(𝜆2 + 2𝜆−1)

3
)

−2

])              (5) 

where 𝐺𝑒 represents the direct contribution of entanglements to stress support and corresponds to 

different mode of network deformation. In addition, entanglements cause an indirect effect on the 

structural modulus as  

𝐺 = 𝐺𝑚

𝛽

𝛼
(1 −

2

𝑓
) (

1

𝑛𝑥

+
1

𝑛𝑒𝑓𝑓
)                                            (6) 

Where 𝑛𝑒𝑓𝑓 describes partitioning of repeat units between stress-supporting structural elements 

(networks strands, entanglement strands, and loops) and stress-free elements (dangling ends). The 

sign “+” indicates that entanglements enhance stiffness by overpowering the contributions from 

strands, dangles, and loops. Unlike model networks with specific incorporated defects10 and ones 

discussed above, the partitioning representation is more adequate for real networks given the 

unfeasibility in separating individual contributions from specific elements of unknown network 
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topology. Furthermore, this approach has proven to be instrumental in elucidating the interplay of 

entanglements and chemical crosslinks as discussed below.  

We apply eqs 5 and 6 to monitor the evolution of mechanical properties of natural rubber 

upon increasing crosslink density (Supplementary  Figures 4-6) 19. Two distinct deformation 

regimes with 𝐺 < 𝐺𝑒   and 𝐺 > 𝐺𝑒 separated by a sharp transition at 𝛽 ≈ 𝛼=0.027 were identified 

(Fig. 3a). From the slope value 𝑎=0.13 at 𝛽>0.027 and the known 𝑏𝐾 𝑙⁄ =1.89 and 𝑓=4, we estimate 

〈𝑛𝑥〉 = 𝑛𝑥
∗ = 0.5/𝑎𝛽 ≈ 143, which corresponds to the transition at 𝛽=0.027 and accounts for 

strand polydispersity (Supplementary Equations 10-15). Since, 𝑛𝑥
∗  is larger than the entanglement 

DP in a melt of precursor chains 𝑛𝑒 ≈ 57 25,  we argue that there is a percolation-like transition26 

between two types of networks, where elasticity is controlled by either crosslinks (〈𝑛𝑥〉 < 𝑛𝑥
∗ ) or 

entanglements (〈𝑛𝑥〉 > 𝑛𝑥
∗ ) (insets in Fig. 4a). In these networks, the entanglement contributions 

(before and after 𝑛𝑥
∗ ) are qualitatively different, which results in the stepwise 𝐺 increase and change 

in its functional form. This is corroborated by the dependence of the shear modulus at small 

deformations (𝐺0) on the ratio 𝑛𝑒/〈𝑛𝑥〉 for natural rubber and tetrafunctional (𝑓 = 4) networks of 

end-crosslinked PDMS chains (Fig. 3b) 9. Even though the networks differ in both chemistry and 

topology, they demonstrate the same percolation behavior during a crosslinking process: a sharp 

increase in shear modulus at  〈𝑛𝑥〉 = 𝑛𝑥
∗   followed by a linear increase of modulus for 〈𝑛𝑥〉 < 𝑛𝑥

∗ . 

In the entanglement-controlled regime, 𝑛𝑥
∗ < 〈𝑛𝑥〉, the plateau modulus of the PDMS networks is 

close to that of entangled linear PDMS melt (𝐺𝑒=0.2 MPa). In contrast, the majority of the natural 

rubber samples are softer than 𝐺𝑒= 0.58 MPa 25, which suggests  a dilution of entanglements during 

the network formation. This finding calls into question the commonly held belief of continuous 

crossover between two types of networks8,22 and should be a subject of future research.  
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Figure 3. Elasticity and percolation transition. a, Evolution of the reduced structural shear modulus 

𝐺/𝐺𝑚 with the firmness parameter 𝛽 for natural rubber crosslinked in a melt of chains with 

Mn=195kg/mol at 25C (𝑓 = 4 and 𝐺𝑚 = 33.16 𝑀𝑃𝑎). The solid line corresponds to the equation: 

𝐺/𝐺𝑚 =  0.5 (
𝑛𝑥(𝛼)

〈𝑛𝑥〉

𝑙

𝑏𝐾
𝛽 +

1

𝑛𝑒𝑓𝑓
) = 0.13β + 0.0033, for 𝛽>0.027. The factor 𝑛𝑥(𝛼)/〈𝑛𝑥〉 ≈ 2 

accounts for renormalization of the DP of network strands due to effects of strand polydispersity. The 

dashed-solid line in the interval 𝛽<0.027 indicates extrapolation to infinitely long strands with 𝛽 = 0. 

The insets show computer simulation snapshots for entanglements-controlled (𝐺 < 𝐺𝑒) and crosslinks-

controlled (𝐺 > 𝐺𝑒) networks. b, Shear modulus at small deformations 𝐺0 ≡
1

3
(𝜕𝜎/𝜕𝜆)𝜆=1 = 𝐺𝑒 +

𝐺(1 + 2(1 − 𝛽)−2)/3 as a function of the ratio 𝑀𝑒/〈𝑀𝑥〉 for randomly crosslinked natural rubber and 

tetrafunctional PDMS networks of end-crosslinked chains of different molecular weights. In PDMS 

networks, the number average strand mass 〈𝑀𝑥〉 varies between 2460 and 58000 g/mol, while the 

entanglement molecular weight in a PDMS melt is 𝑀𝑒= 12000 g/mol.  Solid lines show general trends. 

Inset shows normalized shear modulus Ψ = (𝐺0 − 𝐺𝑎𝑣)/𝐺𝑎𝑣 on the ratio 𝑛𝑥
∗ /〈𝑛𝑥〉 for different 

networks as indicated. Coarse-grained networks studied in computer simulations are made by 

crosslinking chains with DP=1025 in a melt (open pentagons). Shear modulus 𝐺𝑎𝑣 corresponds to the 

average value in the plateau regime and 𝑛𝑥
∗  defines the location of the percolation transition.  The 

sharpness of the transition is a general feature for all networks studied experimentally. However, in 

computer simulations, the sharp transition transforms into a crossover due to finite size effect. 
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Figure 4. Forensics of brush network elasticity. a, Examples of stress-elongation curves measured 

upon uniaxial extension of PBA brush elastomer with different grafting densities as indicated. Solid 

lines are the best fits to eq 5 by considering 𝐺𝑒 , 𝐺, and  as fitting parameters (Supplementary Table 4). 

b, The reduced structural shear modulus 
𝐺𝛼

𝐺𝑚𝛽𝜑
= (1 −

2

𝑓
) (

𝑙

𝑏𝐾
𝛼 −

1

𝑛𝑒𝑓𝑓
) versus parameter 𝛼 for linear, 

comb, and bottlebrush PBA networks (𝑓 = 4 and 𝐺𝑚 = 20.83 MPa). The sign “−“ in front of 1/𝑛𝑒𝑓𝑓 

term indicates weak effect of entanglements on elasticity for this type of networks. The dashed lines are 

the best fits to the equation 𝑦 = 𝑎𝑥 − 𝑐, where the slope 𝑎 and intercept 𝑐 give 𝑏𝐾 and 𝑛𝑒𝑓𝑓, respectively. 

The fits give the following (𝑎, 𝑐) coefficients for the corresponding [𝑛𝑔, 𝑛𝑠𝑐] pairs for networks with 

PBA linear [(0.067,0.0014),[0,0];(0.067,0.0002),[0,0]], PBA comb 

[(0.067,0.0023), [11,5]; (0.066,0.0009) ,[11,10]], PBA bottlebrush [(0.033,0.0017),[23,2]; 

(0.024,0.0014),[41,2]], and PDMS bottlebrush [(0.028,0.0018), [14,1]] strands. c, The reduced Kuhn 

length, 𝑏𝐾 𝑏⁄ , as a function of the crowding parameter, Φ = 𝜑−1𝑛𝑠𝑐
−1/2 𝜌(𝑏𝑙)3/2⁄  for PBA and PDMS 

brush polymers as well as computer simulations data (grey symbols) 22,26. The vertical dashed line shows 

the crossover between the comb and bottlebrush regimes at Φ = Φ∗ ≅ 0.7 28,29. The legend for symbols 

is given in Supplementary Table 4. d, Small-angle X-ray scattering (SAXS) curves of PBA brush 

networks at fixed targeted 𝑛𝑥=100 (a) with 𝑛𝑔=1 and various DPs of side chains, 𝑛𝑠𝑐. e, Correlation 

between bottlebrush diameter 𝑑 = 2𝜋/𝑞∗ calculated from the peak position 𝑞∗ in d and Kuhn length 𝑏𝐾 

obtained from forensic analysis. f, Correlation between the targeted degree of polymerization crosslinks 

and one calculated by using forensic approach. 
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Finally, we illustrate the applicability of the forensic approach to networks with brush-like 

strands, where stress-supporting backbones are diluted by side chains with DP=𝑛𝑠𝑐 separated by 

𝑛g backbone repeat units defined by 𝜑 = 𝑛g/(𝑛g + 𝑛𝑠𝑐)  (inset, Fig. 4a). Like for the linear chain 

networks with 𝑛𝑠𝑐 = 0 (𝜑 = 1) (Fig.2a), the forensics procedure begins with fitting experimental 

stress-elongation curves (Fig. 4a) with eq 5 to obtain 𝐺 and 𝛽 values (Supplementary Tables 4-6). 

The Kuhn length 𝑏𝐾 of brush backbone is determined from the slope of reduced structural shear 

modulus 𝐺𝛼/𝐺𝑚𝛽𝜑 as a function of 𝛼 (Fig. 4b). For systems with lower grafting density (linear 

and comb-like networks), several parallel lines are observed with slopes equal to (1 − 2/𝑓)𝑙/𝑏𝐾, 

which is consistent with the fact that 𝑏𝐾 is not affected by loosely grafted side chains. The vertical 

shift between the lines reflects changes in the fraction of repeat units belonging to stress-supporting 

strands characterized by 𝑛𝑒𝑓𝑓, including the contribution from trapped entanglements. Considering 

the known crosslink functionality 𝑓=4, the Kuhn length of linear and comb-like PBA chains are 

calculated as 𝑏𝐾 = 𝑏 = 1.91 nm, which is in excellent agreement with literature values 𝑏=1.79 

−1.90 nm of the bare PBA backbone.  

In densely grafted bottlebrush networks, the inverse relationship observed between slope 

and grafting density (𝜑−1 = 1 + 𝑛𝑠𝑐 𝑛g⁄ ) is due to steric repulsion between side chains, resulting 

in backbone extension and stiffening. (Fig. 4b). To demonstrate the effect of side chains on strand 

stiffness, we plot the normalized Kuhn length 𝑏𝐾/𝑏 as a function of the so-called crowding 

parameter Φ, which describes the degree of interpenetration of side chains belonging to different 

brush molecules (Fig. 4c)27,28. In the comb regime (Φ < Φ∗), the steric repulsion between side 

chains is weak and the effective Kuhn length of the backbone is 𝑏𝐾 ≈ 𝑏27,28. However, in 

bottlebrush systems  (Φ > Φ∗), the repulsion between densely grafted side chains results in 
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backbone stiffening as 𝑏𝐾 ≈ 𝑏Φ/Φ∗ 28,29. The behavior is universal as it was observed for brush 

elastomers with chemically different side chains (PBA, PDMS)20,21 as well as in molecular 

dynamics simulations of bottlebrush melts (Fig. 4c) 28,29. The obtained 𝑏𝐾 values were compared 

with the distance between brush backbone from small angle X-ray scattering. The intrinsic electron 

density contrast for the bottlebrush backbones with densely grafted side chains results in a distinct 

scattering peak corresponding to the brush diameter, 𝑑 = 2𝜋/𝑞∗ (Fig. 4d).21,21a The excellent 

agreement between the bottlebrush diameter 𝑑 and the Kuhn length obtained from forensic 

approach (Fig 4e) is consistent with analytical calculations and computer simulations of 𝑏𝐾 in 

bottlebrush melts.27,30 

Following the forensic protocol outlined above, we use the Kuhn length 𝑏𝐾 and value of 

parameter 𝛼 to calculate the DP between crosslinks, 𝑛𝑥,𝑐𝑎𝑙𝑐 = 𝑏𝐾/𝑙𝛼 (Supporting Table 4). The 

determined 𝑛𝑥,𝑐𝑎𝑙𝑐 scales linearly with targeted 𝑛𝑥, which corroborates self-similarity of the 

synthesized networks (Fig. 4f).  The deviation in absolute numbers between the targeted and true  

𝑛𝑥’s is ascribed to inevitable variations of synthetic conditions between individual series which in 

turn influences the crosslinking efficiency.  

 Varying network topologies results in different patterns of stress distribution between 

structural elements. To quantify a network’s effectiveness in absorbing an applied force, we 

introduce a quality factor, 𝜅, defined as the ratio of the real network modulus 𝐺 to that of the 

defect-free affine network model, 𝐺𝑎𝑓𝑓𝑖𝑛𝑒, in which stress is evenly divided between all network 

strands1,22  

𝜅 =
𝐺

𝐺𝑎𝑓𝑓𝑖𝑛𝑒
=

𝐺𝑏𝐾

𝐺𝑚𝛽𝑙
                                                                   (7) 
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This parameter is directly related to the topology of the stress-supporting scaffold (eq.3 and 6) and 

reduces to 𝜅 = 𝐺𝑛𝑥/𝐺𝑚 for networks of linear flexible chains. Fig. 5 presents the quality factor 

for linear, brush-like, covalent, and self-assembled networks as a function of the number of Kuhn 

segments per network strands between crosslinks, 𝛼−1 ≡ 𝑛𝑥𝑙/𝑏𝐾. For defect-free diamond 

networks, prepared by end-crosslinking of identical chains31, 𝜅 = 1 indicating a uniform stress 

distribution independent on the DP between crosslinks. In real networks such as natural rubber19, 

the uneven stress partitioning results in 𝜅 < 1 along with a downward trend change at 𝛼−1 ≅ 70, 

where a transition to the entanglement-controlled network elasticity occurs. Further reduction of 

𝜅 is observed for networks with comb-like strands20 due to a considerable fraction of stress-free 

 

Figure 5. Network topology classification. a, Mapping of polymer networks with different topologies 

in terms of quality factor 𝜅 and number of Kuhn segments per network strand, 𝛼−1 = 𝑛̃𝑥𝑙/𝑏𝐾. The 

analyzed networks include:  end-crosslinked diamond networks studied in computer simulations (open 

rhombs), natural rubber (open squares), networks of comb (half-filled symbols) and bottlebrush (filled 

symbols) strands, and self-assembled network of linear-bottlebrush-linear (PMMA-PDMS-PMMA) 

copolymers (filled blue hexagons), (PMMA - poly(methyl methacrylate)). Legends for other symbols 

are given in Supplementary Tables 4-6. The pictures on the right show computer simulation snapshots 

of 3D network structure and schematics of network mesh.  
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side chains and dangling ends. In bottlebrush networks20, the increase of grafting density leads to 

an additional decrease of 𝜅 between 0.01 and 0.1 due to stiffening of the brush strands by steric 

repulsion between densely grafted side chains. For self-assembled networks of linear-bottlebrush-

linear copolymers21, the quality factor falls below the covalent brush networks (Supplementary 

Table 6). The worsening of the stress distribution in such networks is a result of stronger stretching 

of stress-supporting bottlebrush strands and their significant dilution by bulky network nodes 

formed upon self-assembly of the linear end blocks.  

 To summarize, we presented a forensic methodology for decoding the degree of 

polymerization of the stress-supporting strands, strand flexibility (Kuhn length), and network 

topology by analyzing the non-linear response of elastomers to deformation. The introduction of 

the quality factor, 𝜅, established a universal classification of self-assembled and chemical networks 

made of strands with different molecular architectures according to the stress distribution between 

network structural elements. For natural rubber and PDMS networks, we discovered a percolation 

transition between networks with crosslink- and entanglement-controlled elasticity. Applying this 

technique to networks with brush-like strands elucidated the Kuhn length dependence on the brush 

molecular architecture. We believe that our approach will be a valuable technique for the 

characterization of synthetic and biological networks due to its simplicity and yet comprehensive 

explanatory power7 for accurate prediction of their structures3-6. Furthermore, decoding the 

structure of real networks is crucial for the verification of architectural codes generated by future 

AI machinery in soft matter design. By comparing the AI-recommended and as-synthesized 

architectural codes, one will be able to optimize the synthesis conditions to achieve optimal 

mechanical properties. 
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