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The topology of polymer networks is an ill-defined product of erratic node formation processes. Any reasonable efforts to project network architecture by specifying stoichiometry and the synthetic pathway are instantly scrambled by swift scaffold percolation generating a stochastic distribution of structural elements (Fig. 1a) [START_REF] Treloar | The Physics of Rubber Elasticity[END_REF][START_REF] Flory | Principles of Polymer Chemistry[END_REF][START_REF] Sheiko | Architectural code for rubber elasticity: From supersoft to superfirm materials[END_REF][START_REF] Mckenna | Soft matter: rubber and networks[END_REF] . The problem is further exacerbated by the inability of traditional characterization techniques to isolate and measure contributions from the individual structural elements presenting polymer networks as a sealed "black box" (Fig. 1b) [START_REF] Danielsen | Molecular characterization of polymer networks[END_REF] . There are two general approaches, both imperative, to uncover network organization. The so-called structure-toproperty approach employs model networks with synthetically pre-defined strands, loops, and dangles to quantify the vital contributions of each element to a specific property, e.g. modulus. [START_REF] Dossin | Rubber elasticity and well-characterized polybutadiene networks[END_REF][START_REF] Patel | Elastic-modulus and equilibrium swelling of poly(dimethylsiloxane) networks[END_REF][START_REF] Zhong | Quantifying the impact of molecular defects on polymer network elasticity[END_REF] Although informative, this method is unsuitable for conventional polymer networks with unknown topology. Alternatively, a structure-from-property approach allows extraction of structural information of an arbitrary network from its properties. Current examples include the use of elastic modulus or equilibrium swelling ratio for gaining insight on crosslink density [START_REF] Treloar | The Physics of Rubber Elasticity[END_REF][START_REF] Flory | Principles of Polymer Chemistry[END_REF] , however, this single parameter analysis is not sufficient to deconvolute the contributions from multiple structural elements. Even the seemingly trivial crosslink density is actually unknown.

We address this problem by developing a general framework for deciphering the network structure from its non-linear response to deformation (Fig. 1c). Unlike the traditional analysis of a single data point, e.g., modulus at small deformations [START_REF] Treloar | The Physics of Rubber Elasticity[END_REF][START_REF] Flory | Principles of Polymer Chemistry[END_REF][START_REF] Mckenna | Soft matter: rubber and networks[END_REF][START_REF] Zhong | Quantifying the impact of molecular defects on polymer network elasticity[END_REF] , we analyze the entire shape of a stress-strain curve, containing information about the network structure. By expanding the analysis to multiple self-similar networks, we use their cross-correlated mechanical response to quantify the strand Kuhn length, density of stress-supporting strands, onset of entanglement-defined elasticity, and, in some cases, effective crosslink functionality and loop contributions. Our approach can be viewed as a macroscopic analog of single chain stretching experiments that utilize large deformations to extract molecular information [START_REF] Smith | Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules[END_REF][START_REF] Neuman | Single-molecule micromanipulation techniques[END_REF] .

The developed methodology does not require any assumptions about the type of structural defects [START_REF] Zhong | Quantifying the impact of molecular defects on polymer network elasticity[END_REF][START_REF] Flory | Network topology and the theory of rubber elasticity[END_REF] , the mechanism of network assembly [START_REF] Zhong | Quantifying the impact of molecular defects on polymer network elasticity[END_REF][START_REF] Langley | Elasticity effective strand density in polymer networks[END_REF][START_REF] Miller | New derivation of post gel properties of network polymers[END_REF] , nor solvent quality in swelling tests [START_REF] Treloar | The Physics of Rubber Elasticity[END_REF][START_REF] Flory | Principles of Polymer Chemistry[END_REF] to establish structure-property relationships. Unlike spectroscopic [START_REF] Sandakov | NMR analysis of distribution of chain lengths between crosslinks of polymer networks[END_REF] and scattering [START_REF] Bastide | Physical Properties of Polymeric Gels[END_REF] techniques that involve complex structure-perturbing preparation procedures, our method deals with assynthesized materials intended for direct use in practical applications. Our approach takes into account contributions from crosslinks, defects (loops and dangling ends), and trapped entanglements (Fig. 1a) [START_REF] Treloar | The Physics of Rubber Elasticity[END_REF][START_REF] Flory | Network topology and the theory of rubber elasticity[END_REF][START_REF] Edwards | The tube model theory of rubber elasticity[END_REF] responsible for elastic modulus at small deformations, 𝐸 0 , as well as Figure 1. Forensics methodology. a, Schematics of a real polymer network (containing various defects such as loops, multiple strands, side chains, and dangles) defined by a set of structural parameters: degree of polymerization between crosslinks (red dots), 𝑛 𝑥 , and entanglements, 𝑛 𝑒 , crosslink functionality, 𝑓, and Kuhn length of network strand, 𝑏 𝐾 . b, An as-prepared network represents a black box with unknown internal organization -subjected to a forensic analysis. c, Workflow of our forensic procedure: (i) synthesis of a series of self-similar networks differing in crosslink density, (ii) deformation test to record non-linear stress-strain curves characterized by the Young's modulus, 𝐸 0,𝑖 , and strain-stiffening parameter, 𝛽 𝑖 , and (iii) deciphering network structure from the domain of the measured [𝐸 0,𝑖 , 𝛽 𝑖 ] combinations to deliver the structural parameters [𝑓, 𝑏 𝐾 , 𝑛 𝑥 , 𝜅], where 𝜅 is the network quality factor defined later. its strain-stiffening at large deformations due to finite strand extensibility, 𝛽. The only requirement is to have a series of networks with varying crosslink density prepared by the same synthesis protocol. Analysis of a single network is also possible but delivers less information.

The universality of the developed methodology was validated by applying the forensic approach to a broad set of elastomers including natural rubber [START_REF] Mullins | Determination of degree of crosslinking in natural rubber vulcanizates. Part IV. Stressstrain behavior at large extensions[END_REF] , end-crosslinked linear poly(dimethyl siloxane) (PDMS) [START_REF] Patel | Elastic-modulus and equilibrium swelling of poly(dimethylsiloxane) networks[END_REF] , and brush-like poly(n-butyl acrylate) (PBA) networks with systematically varied 𝑛 𝑠𝑐 = 0 -41, 𝑛 g = 1 -10, and 𝑛 𝑥 = 25 -1200 [START_REF] Vatankhah-Varnosfaderani | Mimicking biological stress-strain behaviour with synthetic elastomers[END_REF][START_REF] Vatankhah-Varnosfaderani | Chameleon-like elastomers with molecularly encoded strainadaptive stiffening and coloration[END_REF] . Since synthetic control of network topology is limited, we performed coarse-grained molecular dynamics simulations of linear chain and diamond networks that allow accurate variations of strand dimensions, effective crosslinking functionality, and defects distribution (Supplementary Information).

We first apply the forensic approach to results of molecular dynamics simulations of phantom networks [START_REF] Treloar | The Physics of Rubber Elasticity[END_REF][START_REF] Rubinstein | Polymer Physics[END_REF] made by crosslinking of noninteracting bead-spring chains (precursor chains) with degree of polymerization (DP) 𝑁 = 1025 in a melt state (Supporting Information).

The networks have dangling ends and loops, but are without entanglements as network strands are permitted to cross each other. The equation of state for phantom networks undergoing uniaxial elongation, 𝜆, under true stress, 𝜎 𝑡𝑟𝑢𝑒 , is derived by considering individual network strands as nonlinear springs of finite extensibility [START_REF] Sheiko | Architectural code for rubber elasticity: From supersoft to superfirm materials[END_REF][START_REF] Dobrynin | Universality in nonlinear elasticity of biological and polymeric networks and gels[END_REF] 

𝜎 𝑡𝑟𝑢𝑒 (𝜆) = (𝜆 2 -𝜆 -1 ) 𝐺 3 [1 + 2 (1 - 𝛽(𝜆 2 + 2𝜆 -1 ) 3 ) -2 ] ( 1 
)
which results in appearance of the divergent term in the brackets. The strain-stiffening behavior is defined by the firmness parameter

𝛽 ≡ 〈𝑅 𝑖𝑛 2 〉/𝑅 𝑚𝑎𝑥 2 = 𝛼 (1 - 𝛼 2 (1 -𝑒𝑥𝑝 (- 2 𝛼 ))) (2) 
Eq 2 characterizes the strand extensibility, i.e. how much a network strand with a degree of polymerization (DP) 𝑛 𝑥 between crosslinks and the repeat unit projection length 𝑙 can be stretched from its initial mean-square end-to-end distance 〈𝑅 𝑖𝑛 2 〉 to the fully extended state 𝑅 𝑚𝑎𝑥 =𝑛 𝑥 𝑙. The second part of eq 2 expresses 𝛽 in terms of 𝛼 -1 = 𝑛 𝑥 𝑙/𝑏 𝐾 -the number of Kuhn segments of length 𝑏 𝐾 per network strand. The structural shear modulus of phantom networks, 𝐺, includes contributions from stress-supporting strands between crosslinks with functionality 𝑓, dangling ends, and loops as

𝐺 = 𝐺 𝑚 𝑛 𝑥 〈𝑅 𝑖𝑛 2 〉 𝑏 𝐾 𝑅 𝑚𝑎𝑥 (1 - 2 〈𝑓〉 ) 𝐶 𝑙𝑜𝑜𝑝 (1 - 𝑛 𝑥 𝑁 ) (3) 
where 𝐺 𝑚 = 𝜌𝑘 𝐵 𝑇 is the monomeric shear modulus defined by the monomer number density 𝜌 and the thermal energy 𝑘 𝐵 𝑇. The coefficient 𝐶 𝑙𝑜𝑜𝑝 describes the reduction of 𝐺 due to loops (inset in Fig. 2a), while the factor 1 -𝑛 𝑥 /𝑁 quantifies the decrease in the density of stress-supporting strands caused by two dangling ends per precursor chain and having 𝑛 𝑥 2 ⁄ monomers each (inset in Fig. 2a and Supporting Information). [START_REF] Treloar | The Physics of Rubber Elasticity[END_REF][START_REF] Flory | Principles of Polymer Chemistry[END_REF] In addition, the dangling ends reduce the effective crosslink functionality, which is accounted for by using the average value of the crosslink functionality 〈𝑓〉 (Supplementary Equations 2-5).

Figure 2 outlines the main steps of the forensic approach in application to a set of phantom networks with different crosslink densities. First, structural shear modulus 𝐺 and strand extensibility parameter 𝛽 are determined for each network by fitting the corresponding stresselongation curves with eq 1 (Fig. 2a). Second, we solve eq 2 for 𝛼 and calculate the number of bonds in the network strands between crosslinks 𝑛 𝑥,𝑐𝑎𝑙𝑐 = 𝑏 𝐾 /𝑙𝛼 by using the known ratio 𝑏 𝐾 /𝑙=2.56, which appeared to be within 8% of the actual 𝑛 𝑥 values (Supplementary Figure 1d).

Third, the DP of the precursor chains, 𝑁, and loop coefficient, 𝐶 𝑙𝑜𝑜𝑝 , are obtained by rearranging eq 3 as follows

𝐺 = 𝐺 𝑚 𝛽 𝛼 (1 - 2 〈𝑓〉 ) 𝐶 𝑙𝑜𝑜𝑝 ( 𝑙 𝑏 𝐾 𝛼 - 1 𝑁 ) (4) 
and plotting normalized structural modulus 𝐺𝛼/𝐺 𝑚 𝛽 as a function of 𝛼 (Fig. 2b). It is important to point out that the 𝐶 𝑙𝑜𝑜𝑝 includes contributions from all types of loops as well as higher order corrections due to dangling-ends that are omitted in the analytical calculations of the loop factor. [START_REF] Zhong | Quantifying the impact of molecular defects on polymer network elasticity[END_REF][START_REF] Panyukov | Loops in polymer networks[END_REF] Using the known 𝑏 𝐾 /𝑙=2.56, the values of the slope and intercept give

(1 -2/〈𝑓〉)𝐶 𝑙𝑜𝑜𝑝 ≈ 0.40 ± 0.01 and degree of polymerization of the precursor chains 𝑁 𝑐𝑎𝑙𝑐 =998, which is close to the actual value 1025. Since 〈𝑓〉 depends on 𝑛 𝑥 /𝑁 ratio (Supplementary Equation 5), we can use obtained values of 𝑛 𝑥 and N to calculate 〈𝑓〉 and represent the loop coefficient 𝐶 𝑙𝑜𝑜𝑝 in terms of 〈𝑓〉 (Fig. 2c). Similar analysis can be applied to diamond networks of end-crosslinked phantom strands with varying density of dangling ends (inset in Fig 2c, Supplementary Figure 1c and Table 1). A perfect diamond network without dangling chains has crosslink functionality 𝑓 = 4 and can be viewed as a hierarchical system of loops with 𝐶 𝑙𝑜𝑜𝑝 = 2 (Fig. 2c). Dangles lead to a decrease of average 〈𝑓〉 and increase 𝐶 𝑙𝑜𝑜𝑝 , which scales inversely with 〈𝑓〉. Thus, the forensic approach executed on model networks provides complete information about the DP between crosslinks, effective crosslink functionality, as well as quantifies the effect of loops and dangling ends on the network elasticity.

The stress-strain analysis becomes more complex for real networks with trapped entanglements, described by the following non-linear equation of state [START_REF] Sheiko | Architectural code for rubber elasticity: From supersoft to superfirm materials[END_REF][START_REF] Dobrynin | Universality in nonlinear elasticity of biological and polymeric networks and gels[END_REF] 

𝜎 𝑡𝑟𝑢𝑒 (𝜆) = (𝜆 2 -𝜆 -1 ) ( 𝐺 𝑒 𝜆 + 𝐺 3 [1 + 2 (1 - 𝛽(𝜆 2 + 2𝜆 -1 ) 3 ) -2 ]) (5) 
where 𝐺 𝑒 represents the direct contribution of entanglements to stress support and corresponds to different mode of network deformation. In addition, entanglements cause an indirect effect on the structural modulus as

𝐺 = 𝐺 𝑚 𝛽 𝛼 (1 - 2 𝑓 ) ( 1 𝑛 𝑥 + 1 𝑛 𝑒𝑓𝑓 ) (6) 
Where 𝑛 𝑒𝑓𝑓 describes partitioning of repeat units between stress-supporting structural elements (networks strands, entanglement strands, and loops) and stress-free elements (dangling ends). The sign "+" indicates that entanglements enhance stiffness by overpowering the contributions from strands, dangles, and loops. Unlike model networks with specific incorporated defects 10 and ones discussed above, the partitioning representation is more adequate for real networks given the unfeasibility in separating individual contributions from specific elements of unknown network topology. Furthermore, this approach has proven to be instrumental in elucidating the interplay of entanglements and chemical crosslinks as discussed below.

We apply eqs 5 and 6 to monitor the evolution of mechanical properties of natural rubber upon increasing crosslink density (Supplementary Figures 456) [START_REF] Mullins | Determination of degree of crosslinking in natural rubber vulcanizates. Part IV. Stressstrain behavior at large extensions[END_REF] . Two distinct deformation regimes with 𝐺 < 𝐺 𝑒 and 𝐺 > 𝐺 𝑒 separated by a sharp transition at 𝛽 ≈ 𝛼=0.027 were identified (Fig. 3a). From the slope value 𝑎=0.13 at 𝛽>0.027 and the known 𝑏 𝐾 𝑙 ⁄ =1.89 and 𝑓=4, we estimate 〈𝑛 𝑥 〉 = 𝑛 𝑥 * = 0.5/𝑎𝛽 ≈ 143, which corresponds to the transition at 𝛽=0.027 and accounts for strand polydispersity (Supplementary Equations 10-15). Since, 𝑛 𝑥 * is larger than the entanglement DP in a melt of precursor chains 𝑛 𝑒 ≈ 57 [START_REF] Fetters | Physical Properties of Polymers Handbook[END_REF] , we argue that there is a percolation-like transition [START_REF] Staufer | Introduction to Percolation Theory[END_REF] between two types of networks, where elasticity is controlled by either crosslinks (〈𝑛 𝑥 〉 < 𝑛 𝑥 * ) or entanglements (〈𝑛 𝑥 〉 > 𝑛 𝑥 * ) (insets in Fig. 4a). In these networks, the entanglement contributions (before and after 𝑛 𝑥 * ) are qualitatively different, which results in the stepwise 𝐺 increase and change in its functional form. This is corroborated by the dependence of the shear modulus at small deformations (𝐺 0 ) on the ratio 𝑛 𝑒 /〈𝑛 𝑥 〉 for natural rubber and tetrafunctional (𝑓 = 4) networks of end-crosslinked PDMS chains (Fig. 3b) [START_REF] Patel | Elastic-modulus and equilibrium swelling of poly(dimethylsiloxane) networks[END_REF] . Even though the networks differ in both chemistry and topology, they demonstrate the same percolation behavior during a crosslinking process: a sharp increase in shear modulus at 〈𝑛 𝑥 〉 = 𝑛 𝑥 * followed by a linear increase of modulus for 〈𝑛 𝑥 〉 < 𝑛 𝑥 * .

In the entanglement-controlled regime, 𝑛 𝑥 * < 〈𝑛 𝑥 〉, the plateau modulus of the PDMS networks is close to that of entangled linear PDMS melt (𝐺 𝑒 =0.2 MPa). In contrast, the majority of the natural rubber samples are softer than 𝐺 𝑒 = 0.58 MPa [START_REF] Fetters | Physical Properties of Polymers Handbook[END_REF] , which suggests a dilution of entanglements during the network formation. This finding calls into question the commonly held belief of continuous crossover between two types of networks [START_REF] Dossin | Rubber elasticity and well-characterized polybutadiene networks[END_REF][START_REF] Rubinstein | Polymer Physics[END_REF] and should be a subject of future research. lines are the best fits to eq 5 by considering 𝐺 𝑒 , 𝐺, and  as fitting parameters (Supplementary Table 4).

b, The reduced structural shear modulus

𝐺𝛼 𝐺 𝑚 𝛽𝜑 = (1 - 2 𝑓 ) ( 𝑙 𝑏 𝐾 𝛼 - 1 𝑛 𝑒𝑓𝑓
) versus parameter 𝛼 for linear, comb, and bottlebrush PBA networks (𝑓 = 4 and 𝐺 𝑚 = 20.83 MPa). The sign "-" in front of 1/𝑛 𝑒𝑓𝑓 term indicates weak effect of entanglements on elasticity for this type of networks. The dashed lines are the best fits to the equation 𝑦 = 𝑎𝑥 -𝑐, where the slope 𝑎 and intercept 𝑐 give 𝑏 𝐾 and 𝑛 𝑒𝑓𝑓 , respectively. The fits give the following (𝑎, 𝑐) coefficients for the corresponding [𝑛 𝑔 , 𝑛 𝑠𝑐 ] pairs for networks with PBA linear [(0.067,0.0014),[0,0];(0.067,0.0002),[0,0]], PBA comb [(0.067,0.0023), [11,5]; (0.066,0.0009) , [11,10]], PBA bottlebrush [(0.033,0.0017), [23,2]; (0.024,0.0014), [41,2]], and PDMS bottlebrush [(0.028,0.0018), [14,1]] strands. c, The reduced Kuhn length, 𝑏 𝐾 𝑏 ⁄ , as a function of the crowding parameter, Φ = 𝜑 -1 𝑛 𝑠𝑐 -1/2 𝜌(𝑏𝑙) 3/2 ⁄ for PBA and PDMS brush polymers as well as computer simulations data (grey symbols) [START_REF] Rubinstein | Polymer Physics[END_REF][START_REF] Staufer | Introduction to Percolation Theory[END_REF] . The vertical dashed line shows the crossover between the comb and bottlebrush regimes at Φ = Φ * ≅ 0.7 [START_REF] Liang | Combs and bottlebrushes in a melt[END_REF][START_REF] Liang | Comb and bottlebrush graft copolymers in a melt[END_REF] . The legend for symbols is given in Supplementary Table 4. d, Small-angle X-ray scattering (SAXS) curves of PBA brush networks at fixed targeted 𝑛 𝑥 =100 (a) with 𝑛 𝑔 =1 and various DPs of side chains, 𝑛 𝑠𝑐 . e, Correlation between bottlebrush diameter 𝑑 = 2𝜋/𝑞 * calculated from the peak position 𝑞 * in d and Kuhn length 𝑏 𝐾 obtained from forensic analysis. f, Correlation between the targeted degree of polymerization crosslinks and one calculated by using forensic approach. Finally, we illustrate the applicability of the forensic approach to networks with brush-like strands, where stress-supporting backbones are diluted by side chains with DP=𝑛 𝑠𝑐 separated by 𝑛 g backbone repeat units defined by 𝜑 = 𝑛 g /(𝑛 g + 𝑛 𝑠𝑐 ) (inset, Fig. 4a). Like for the linear chain networks with 𝑛 𝑠𝑐 = 0 (𝜑 = 1) (Fig. 2a), the forensics procedure begins with fitting experimental stress-elongation curves (Fig. 4a) with eq 5 to obtain 𝐺 and 𝛽 values (Supplementary Tables 456).

The Kuhn length 𝑏 𝐾 of brush backbone is determined from the slope of reduced structural shear modulus 𝐺𝛼/𝐺 𝑚 𝛽𝜑 as a function of 𝛼 (Fig. 4b). For systems with lower grafting density (linear and comb-like networks), several parallel lines are observed with slopes equal to (1 -2/𝑓)𝑙/𝑏 𝐾 , which is consistent with the fact that 𝑏 𝐾 is not affected by loosely grafted side chains. The vertical shift between the lines reflects changes in the fraction of repeat units belonging to stress-supporting strands characterized by 𝑛 𝑒𝑓𝑓 , including the contribution from trapped entanglements. Considering the known crosslink functionality 𝑓=4, the Kuhn length of linear and comb-like PBA chains are calculated as 𝑏 𝐾 = 𝑏 = 1.91 nm, which is in excellent agreement with literature values 𝑏=1.79 -1.90 nm of the bare PBA backbone.

In densely grafted bottlebrush networks, the inverse relationship observed between slope and grafting density (𝜑 -1 = 1 + 𝑛 𝑠𝑐 𝑛 g ⁄ ) is due to steric repulsion between side chains, resulting in backbone extension and stiffening. (Fig. 4b). To demonstrate the effect of side chains on strand stiffness, we plot the normalized Kuhn length 𝑏 𝐾 /𝑏 as a function of the so-called crowding parameter Φ, which describes the degree of interpenetration of side chains belonging to different brush molecules (Fig. 4c) [START_REF] Daniel | Solvent-free, supersoft and superelastic bottlebrush melts and networks[END_REF][START_REF] Liang | Combs and bottlebrushes in a melt[END_REF] . In the comb regime (Φ < Φ * ), the steric repulsion between side chains is weak and the effective Kuhn length of the backbone is 𝑏 𝐾 ≈ 𝑏 [START_REF] Daniel | Solvent-free, supersoft and superelastic bottlebrush melts and networks[END_REF][START_REF] Liang | Combs and bottlebrushes in a melt[END_REF] . However, in bottlebrush systems (Φ > Φ * ), the repulsion between densely grafted side chains results in backbone stiffening as 𝑏 𝐾 ≈ 𝑏Φ/Φ * 28,29 . The behavior is universal as it was observed for brush elastomers with chemically different side chains (PBA, PDMS) [START_REF] Vatankhah-Varnosfaderani | Mimicking biological stress-strain behaviour with synthetic elastomers[END_REF][START_REF] Vatankhah-Varnosfaderani | Chameleon-like elastomers with molecularly encoded strainadaptive stiffening and coloration[END_REF] as well as in molecular dynamics simulations of bottlebrush melts (Fig. 4c) [START_REF] Liang | Combs and bottlebrushes in a melt[END_REF][START_REF] Liang | Comb and bottlebrush graft copolymers in a melt[END_REF] . The obtained 𝑏 𝐾 values were compared with the distance between brush backbone from small angle X-ray scattering. The intrinsic electron density contrast for the bottlebrush backbones with densely grafted side chains results in a distinct scattering peak corresponding to the brush diameter, 𝑑 = 2𝜋/𝑞 * (Fig. 4d). 21,21a The excellent agreement between the bottlebrush diameter 𝑑 and the Kuhn length obtained from forensic approach (Fig 4e) is consistent with analytical calculations and computer simulations of 𝑏 𝐾 in bottlebrush melts. [START_REF] Daniel | Solvent-free, supersoft and superelastic bottlebrush melts and networks[END_REF][START_REF] Cao | Computer simulations of bottle brushes: from melts to soft networks[END_REF] Following the forensic protocol outlined above, we use the Kuhn length 𝑏 𝐾 and value of parameter 𝛼 to calculate the DP between crosslinks, 𝑛 𝑥,𝑐𝑎𝑙𝑐 = 𝑏 𝐾 /𝑙𝛼 (Supporting Table 4). The determined 𝑛 𝑥,𝑐𝑎𝑙𝑐 scales linearly with targeted 𝑛 𝑥 , which corroborates self-similarity of the synthesized networks (Fig. 4f). The deviation in absolute numbers between the targeted and true 𝑛 𝑥 's is ascribed to inevitable variations of synthetic conditions between individual series which in turn influences the crosslinking efficiency.

Varying network topologies results in different patterns of stress distribution between structural elements. To quantify a network's effectiveness in absorbing an applied force, we introduce a quality factor, 𝜅, defined as the ratio of the real network modulus 𝐺 to that of the defect-free affine network model, 𝐺 𝑎𝑓𝑓𝑖𝑛𝑒 , in which stress is evenly divided between all network strands 1,22

𝜅 = 𝐺 𝐺 𝑎𝑓𝑓𝑖𝑛𝑒 = 𝐺𝑏 𝐾 𝐺 𝑚 𝛽𝑙 (7) 
This parameter is directly related to the topology of the stress-supporting scaffold (eq.3 and 6) and reduces to 𝜅 = 𝐺𝑛 𝑥 /𝐺 𝑚 for networks of linear flexible chains. Fig. 5 presents the quality factor for linear, brush-like, covalent, and self-assembled networks as a function of the number of Kuhn segments per network strands between crosslinks, 𝛼 -1 ≡ 𝑛 𝑥 𝑙/𝑏 𝐾 . For defect-free diamond networks, prepared by end-crosslinking of identical chains [START_REF] Carrillo | Nonlinear elasticity: from single chain to networks and gels[END_REF] , 𝜅 = 1 indicating a uniform stress distribution independent on the DP between crosslinks. In real networks such as natural rubber [START_REF] Mullins | Determination of degree of crosslinking in natural rubber vulcanizates. Part IV. Stressstrain behavior at large extensions[END_REF] , the uneven stress partitioning results in 𝜅 < 1 along with a downward trend change at 𝛼 -1 ≅ 70, where a transition to the entanglement-controlled network elasticity occurs. Further reduction of 𝜅 is observed for networks with comb-like strands [START_REF] Vatankhah-Varnosfaderani | Mimicking biological stress-strain behaviour with synthetic elastomers[END_REF] due to a considerable fraction of stress-free side chains and dangling ends. In bottlebrush networks [START_REF] Vatankhah-Varnosfaderani | Mimicking biological stress-strain behaviour with synthetic elastomers[END_REF] , the increase of grafting density leads to an additional decrease of 𝜅 between 0.01 and 0.1 due to stiffening of the brush strands by steric repulsion between densely grafted side chains. For self-assembled networks of linear-bottlebrushlinear copolymers [START_REF] Vatankhah-Varnosfaderani | Chameleon-like elastomers with molecularly encoded strainadaptive stiffening and coloration[END_REF] , the quality factor falls below the covalent brush networks (Supplementary Table 6). The worsening of the stress distribution in such networks is a result of stronger stretching of stress-supporting bottlebrush strands and their significant dilution by bulky network nodes formed upon self-assembly of the linear end blocks.

To summarize, we presented a forensic methodology for decoding the degree of polymerization of the stress-supporting strands, strand flexibility (Kuhn length), and network topology by analyzing the non-linear response of elastomers to deformation. The introduction of the quality factor, 𝜅, established a universal classification of self-assembled and chemical networks made of strands with different molecular architectures according to the stress distribution between network structural elements. For natural rubber and PDMS networks, we discovered a percolation transition between networks with crosslink-and entanglement-controlled elasticity. Applying this technique to networks with brush-like strands elucidated the Kuhn length dependence on the brush molecular architecture. We believe that our approach will be a valuable technique for the characterization of synthetic and biological networks due to its simplicity and yet comprehensive explanatory power [START_REF] Danielsen | Molecular characterization of polymer networks[END_REF] for accurate prediction of their structures [START_REF] Sheiko | Architectural code for rubber elasticity: From supersoft to superfirm materials[END_REF][START_REF] Mckenna | Soft matter: rubber and networks[END_REF][START_REF] Zhang | Advances in engineering hydrogels[END_REF][START_REF] Peppas | Hydrogels in biology and medicine: from molecular principles to bionanotechnology[END_REF] . Furthermore, decoding the structure of real networks is crucial for the verification of architectural codes generated by future AI machinery in soft matter design. By comparing the AI-recommended and as-synthesized architectural codes, one will be able to optimize the synthesis conditions to achieve optimal mechanical properties.

Figure 2 .

 2 Figure 2. Forensics of phantom networks. a, Stress-elongation curves obtained by computer simulations of phantom networks with different crosslink densities made by crosslinking linear beadspring chains with bead diameter  and the degree of polymerization 𝑁 = 1025 undergoing uniaxial deformation from initial size 𝐿 0 to 𝐿 described by the elongation ratio 𝜆 = 𝐿/𝐿 0 . Solid lines are the best fits to eq 1 by considering 𝐺 and  as fitting parameters (Supplementary Table1). b, Self-similarity of
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  ). b, Self-similarity of phantom networks of linear chains is confirmed by plotting 𝐺𝛼 𝐺 𝑚 𝛽 as a function of parameter 𝛼 = 𝑏 𝐾 /𝑛 𝑥 𝑙, which effectively corresponds to strand DP 𝑛 𝑥 (𝐺 𝑚 = 0.85 𝑘 𝐵 𝑇/𝜎 3 ). The dashed line is the best fits to the equation 𝑦 = 0.143𝑥 -0.00041. c, Dependence of the loop coefficient 𝐶 𝑙𝑜𝑜𝑝 on the average crosslink functionality 〈𝑓〉 for linear chain networks (filled rhombs) and diamond networks of endlinked chains with 𝑛 𝑥 = 150 and different density of dangling ends (filled circles).

Figure 3 . 3 (

 33 Figure 3. Elasticity and percolation transition. a, Evolution of the reduced structural shear modulus 𝐺/𝐺 𝑚 with the firmness parameter 𝛽 for natural rubber crosslinked in a melt of chains with Mn=195kg/mol at 25C (𝑓 = 4 and 𝐺 𝑚 = 33.16 𝑀𝑃𝑎). The solid line corresponds to the equation: 𝐺/𝐺 𝑚 = 0.5 ( 𝑛 𝑥 (𝛼) 〈𝑛 𝑥 〉 𝑙 𝑏 𝐾 𝛽 + 1 𝑛 𝑒𝑓𝑓 ) = 0.13β + 0.0033, for 𝛽>0.027. The factor 𝑛 𝑥 (𝛼)/〈𝑛 𝑥 〉 ≈ 2 accounts for renormalization of the DP of network strands due to effects of strand polydispersity. The dashed-solid line in the interval 𝛽<0.027 indicates extrapolation to infinitely long strands with 𝛽 = 0. The insets show computer simulation snapshots for entanglements-controlled (𝐺 < 𝐺 𝑒 ) and crosslinkscontrolled (𝐺 > 𝐺 𝑒 ) networks. b, Shear modulus at small deformations 𝐺 0 ≡ 1 3(𝜕𝜎/𝜕𝜆) 𝜆=1 = 𝐺 𝑒 + 𝐺(1 + 2(1 -𝛽) -2 )/3 as a function of the ratio 𝑀 𝑒 /〈𝑀 𝑥 〉 for randomly crosslinked natural rubber and tetrafunctional PDMS networks of end-crosslinked chains of different molecular weights. In PDMS networks, the number average strand mass 〈𝑀 𝑥 〉 varies between 2460 and 58000 g/mol, while the entanglement molecular weight in a PDMS melt is 𝑀 𝑒 = 12000 g/mol. Solid lines show general trends.Inset shows normalized shear modulus Ψ = (𝐺 0 -𝐺 𝑎𝑣 )/𝐺 𝑎𝑣 on the ratio 𝑛 𝑥 * /〈𝑛 𝑥 〉 for different networks as indicated. Coarse-grained networks studied in computer simulations are made by crosslinking chains with DP=1025 in a melt (open pentagons). Shear modulus 𝐺 𝑎𝑣 corresponds to the average value in the plateau regime and 𝑛 𝑥 * defines the location of the percolation transition. The sharpness of the transition is a general feature for all networks studied experimentally. However, in computer simulations, the sharp transition transforms into a crossover due to finite size effect.

Figure 4 .

 4 Figure 4. Forensics of brush network elasticity. a, Examples of stress-elongation curves measured upon uniaxial extension of PBA brush elastomer with different grafting densities as indicated. Solid

Figure 5 .

 5 Figure 5. Network topology classification. a, Mapping of polymer networks with different topologies in terms of quality factor 𝜅 and number of Kuhn segments per network strand, 𝛼 -1 = 𝑛 ̃𝑥𝑙/𝑏 𝐾 . The analyzed networks include: end-crosslinked diamond networks studied in computer simulations (open rhombs), natural rubber (open squares), networks of comb (half-filled symbols) and bottlebrush (filled symbols) strands, and self-assembled network of linear-bottlebrush-linear (PMMA-PDMS-PMMA) copolymers (filled blue hexagons), (PMMA -poly(methyl methacrylate)). Legends for other symbols are given in Supplementary Tables 4-6. The pictures on the right show computer simulation snapshots of 3D network structure and schematics of network mesh.
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