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A B S T R A C T

The paper is devoted to the optimization of axisymmetric structures made of functionally graded materials and
subject to mechanical and thermal loads. The novelty of the results is that the volume fraction distribution
is not limited to a power-law variation, as in most of the works available in the literature, but can be
any (piecewise continuous) function. This approach leads to an intrinsic tailoring approach, in the sense it
occurs without prefixing the spatial distribution of effective mechanical properties a priori, and therefore
exploiting at best the inhomogeneity of functionally graded material. After recalling the governing equations
and showing some recent results concerning candidate solutions for the optimal volume fraction distribution in
some particular cases, several instances of the optimization problems aiming at minimizing occurring maximum
stresses are formulated. We show that all these formulations can be treated within the same numerical approach
based on the so-called pseudospectral methods. In the last part of the paper we describe how these methods
have been effectively applied to the considered problems and we discuss the yielded solutions comparing them,
where possible, with power-law solutions.
1. Introduction

The paper develops a numerical approach to optimize the volume
fraction distribution for axisymmetric structures made of functionally
graded materials (FGMs) under mechanical and thermal loads. These
materials are classified as composite materials whose microstructure,
and hence effective properties, are allowed to vary along a prescribed
direction. Generally, this variation in material properties is exclusively
examined according to specific functions of the volume fractions of the
constituents with respect to spatial coordinates [1]. Volume fractions
are in turn linked to the material properties through different models
ranging from explicit traditional rules of mixture to models developed
under micromechanical principles.

The above mentioned optimization problem has been given a con-
siderable attention in the last years. In particular, the overwhelming
studies consider the heterogeneity factors of prefixed variation models
of the volume fractions as control variables so that a certain mechanical
performance is enhanced. For instance, an optimized response for a disk
with variable density through the radial direction has been reported
in [2] by applying classical and heuristic optimization methods. A
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finite-element-based optimization of a pressure vessel consisting of a
finite-length hollow cylinder with hemispherical ends has been per-
formed in [3]. A combination of a co-evolutionary particle swarm
optimization approach coupled with a differential quadrature method is
applied in [4] to minimize stress and displacement fields in a disk under
thermoelastic loads. The thermomechanical analysis and optimization
of functionally graded rotating hollow disks is dealt with in [5] by using
the sequential quadratic programming method.

In these latter works, heterogeneity factors are the exponents associ-
ated with the power-law property distributions. Due to their analytical
tractability, the resulting elastic fields are amenable to numerical opti-
mization by gradient-based methods or meta-heuristic algorithms, yet
imposing considerable limitations to the generalization of the optimiza-
tion procedure. These limitations shed the light on the importance
of providing optimization methods consisting in the search for the
best volume fractions as functions of the spatial direction, and not
merely for the tuning values of factors associated with prefixed models.
For instance, the simultaneous optimization of material properties and
structural layout for an elastic continuum with maximum structural
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stiffness is formulated and analyzed in [6]. The optimization of a
two-phase isotropic composite material under time-dependent ther-
momechanical loadings, with no a priori assumptions regarding the
spatial distribution of each phase, is addressed in [7]. In [8], an
algorithm is proposed to minimize the time-averaged stress energy of
a two-phase composite under dynamic loading. A three-layer cylinder
consisting of a functionally graded interlayer sandwiched between a
metallic layer and a ceramic layer is considered in [9], where the
problem of finding the interlayer composition profile which minimizes
the stresses resulting from material property mismatch and induced in
the cylinder by temperature and pressure loading is addressed. In [10],
thermoelastic bodies composed of two-constituent FGMs under steady-
state conditions are considered and the problem of the optimal choice
of composition profile is addressed. Moreover, in [11], the inverse
problem of finding the variation with the radius of the shear modulus
so that the difference between the radial and the hoop stress satisfies
a particular relation along the radius is considered. In [12], the shear
modulus such that stresses radially evolve in rubber-like cylinders and
spheres within a more general functional constraint is sought. The mass
optimization of FGM plates under deflection and stress requirements
has been addressed in [13], where a piecewise cubic interpolation has
been used to calculate volume fractions of constituent material phases.
In [14], a novel phase-field topology optimization algorithm based
on a graded material definition is introduced for the optimization of
cantilevered beams. The size and shape optimization of FGM plates
have been numerically performed in [15] by genetic algorithms and
in [16,17] by means of isogeometric approaches. A similar work aiming
at enhancing the buckling behavior of toroidal shells has been re-
cently presented in [18]. Eventually, coated structures with layer-wise
graded lattice infill have been analyzed in [19] by means of topology
optimization for maximizing the fundamental eigenfrequency.

The present article addresses the problem of finding the best volume
fractions of the constituents for axisymmetric FGM cylinders, disks and
spheres. These models are frequently employed when it is desired to
study the mechanical behavior of, e.g., pipes, gears, vessels or turbine
rotors under thermomechanical loads, where the material is assumed
to be locally isotropic, functionally graded in the radial direction and
subject to mechanical and thermal loads. It is worth noting that the
volume fraction distribution is an unknown function of the radial
coordinate, offering a material tailoring approach for FGMs. In [20],
the problem of minimizing the maximum occurring equivalent stress for
cylinders loaded under the plane stress condition has been formulated
in the context of dynamic optimization theory and has been solved by
means of Pontryagin’s Principle. The problem has been subsequently
generalized in [21] to take into consideration other load conditions
and the effect of different models linking volume fractions to effective
mechanical properties. Moreover, the thermomechanical behavior of
pressurized spherical vessels has been enhanced in terms of stress
reduction in [22] by adopting functionally graded internal coatings
rather than entirely graded spherical vessels. Here, motivated by the
conclusions made in [23], the problem of minimizing peak stresses
in the aforementioned studies (and disks) is formulated and solved
numerically. Optimization problems are formulated by referring to two
different formulations. The first one is exclusively based on the radial
stress and its derivative along the radial direction. This formulation,
under some mild hypotheses, led to candidate solutions in [20,21]
analytically. In this article, some critical remarks on these solutions are
reported, revealing that the approach might be enhanced if resorting
to another formulation given in terms of both radial stress and radial
displacement as state variables of the problem. It is desired to recall
that both formulations, besides leading to solutions which perform
better than classic volume fraction distributions, present promising
2

results in terms of stress reduction, as shown below.
Fig. 1. A representation of the cylindrical and spherical coordinate systems.

2. Basic equations

2.1. Geometry

Consider a radially graded axisymmetric body whose microstructure
compositionally grades from a ceramic to a metallic material, whose
generic mechanical properties are denoted by 𝑃𝑐 and 𝑃𝑚, respectively,
and let 𝑅i and 𝑅o denote the inner and outer radii, respectively. Let
the radial coordinate be denoted by 𝑟. For the cylinder and the disk,
let the circumferential (or hoop) and axial coordinates be denoted by 𝜃
and 𝑧, respectively, while, for the sphere, let 𝜃 and 𝜑 be the polar and
azimuthal angles, respectively (see Fig. 1). If the body is subject to an
axisymmetric load, then deformations are also axisymmetric, namely
they vary only in the radial direction. More specifically, both strains
and stresses, denoted by 𝜀𝑘 and 𝜎𝑘 (with 𝑘 = 𝑟, 𝜃, 𝑧, 𝜑), respectively, are
functions of 𝑟 only. Moreover, for the pressured hollow spheres polar
and azimuthal stresses are equal to each other.

2.2. Effective properties

As far as effective mechanical properties are concerned, several
models that permit their evaluation from volume fractions are available
in the literature, ranging from bounding methods to mean-field meth-
ods [24]. Although these models may give dissimilar estimates [25],
they have the advantage of providing explicit formulas for the effective
properties. The simplest models are derived from elasticity principles
(minimum of potential energy and maximum complementary energy)
assuming no interaction exists between metallic and ceramic phases,
leading to linear combination (Voigt model) and a harmonic mean
estimation (Reuss model) with respect to the volume fractions. The
exclusive choice of Voigt and Reuss models in the present article is
however motivated by the fact that they could offer a lower and an
upper estimate for effective properties obtained by other models. The
resulting models give rise to the following rules of mixture [1]

𝑃 (𝑟) = 𝑃m𝑉m(𝑟) + 𝑃c𝑉c(𝑟) (1)

and

𝑃 (𝑟) =
𝑃c𝑃m

𝑃m𝑉c(𝑟) + 𝑉m(𝑟)𝑃c
, (2)

for Voigt and Reuss models, respectively, where 𝑉c(𝑟) and 𝑉m(𝑟) are the
ceramic and metallic volume fractions at the generic radius 𝑟, related
to each other by the relation [1]

𝑉 (𝑟) + 𝑉 (𝑟) = 1 . (3)
c m
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Table 1
Hookean coefficients 𝑑𝑖𝑗 (𝑖, 𝑗 = 1, 2) associated with Eq. (6) in terms of
Young’s modulus and Poisson’s ratio.

Cylinder (𝜎𝑧 = 0) Cylinder (𝜀𝑧 = 0) Sphere

𝑑11 1∕𝐸 (1 − 𝜈2)∕𝐸 1∕𝐸
𝑑12 −𝜈∕𝐸 −𝜈(1 + 𝜈)∕𝐸 −2𝜈∕𝐸
𝑑21 −𝜈∕𝐸 −𝜈(1 + 𝜈)∕𝐸 −𝜈∕𝐸
𝑑22 1∕𝐸 (1 − 𝜈2)∕𝐸 (1 − 𝜈)∕𝐸

2.3. Governing elasticity equations

Most of the following analyses take place in the framework of
linear elasticity by considering cylindrical bodies in plane state, with
the hypothesis that strains or stresses are zero along the 𝑧-direction.
Such behaviors are referred to as plane strain and plane stress, respec-
tively [26]. We remind that the plane strain condition requires that
ends of the cylinders are subjected to frictionless contact boundary
conditions and the stress 𝜎𝑧 is determined by the constitutive equations.
Of course, there are comparatively few practical applications in which
a cylinder with plane ends is constrained between frictionless and
fixed ends, but, using the Saint Venant’s principle, the plane strain
assumption can be used in an approximate sense for a cylinder with
any end conditions, provided that the length of the cylinder is large
compared with its cross-sectional dimensions [26]. On the other hand,
examples satisfying the plane stress condition are approached in the
limit as the thickness of the cylinder is small in comparison to the
transversal section. This assumption allows to overcome the inconsis-
tency of the out-of-plane behavior of the plane state formulation. Thin
disks or rings belong to this category. Both plane state conditions can be
formulated by following either the so-called Navier or Beltrami–Michell
approaches, so far as boundary conditions are expressed in terms of
radial displacements or stresses, respectively [27].

According to the linear elasticity theory, in absence of body forces
and assuming axisymmetric loading condition, the equilibrium equa-
tion in the radial direction for cylindrical bodies may be written in the
form [28]

𝜎′𝑟(𝑟) +
𝜒[𝜎𝑟(𝑟) − 𝜎𝜃(𝑟)]

𝑟
= 0 , (4)

here the prime symbol denotes the first derivative with respect to 𝑟
nd 𝜒 = 1. This equation assumes similar form for spherical bodies
ith axisymmetric conditions by assuming 𝜒 = 2; bodies that we will
lso analyze in this paper. Moreover, the strain–displacement equations
re [28]

𝑟(𝑟) = 𝑢′(𝑟) , 𝜀𝜃(𝑟) = 𝑢(𝑟)∕𝑟 , (5)

here 𝑢 is the radial displacement. The stress–strain relation is written
n the form [28]

𝜀𝑟
𝜀𝜃

)

=
[

𝑑11 𝑑12
𝑑21 𝑑22

](

𝜎𝑟
𝜎𝜃

)

, (6)

here the Hookean coefficients 𝑑11, 𝑑12, 𝑑21 and 𝑑22 are listed in Table 1
n terms of Young’s modulus 𝐸 and Poisson’s ratio 𝜈, for cylinders
oaded in the plane stress (𝜎𝑧 = 0) and plane strain (𝜀𝑧 = 0) conditions
nd for spheres with axisymmetric loading conditions (𝜎𝜃 = 𝜎𝜑) [28].

. Optimization problems

In this Section, the statement and mathematical formulation of
he optimization problems are addressed for pressurized cylinders and
pheres and rotating disks. A schematic representation for each model
s shown in Fig. 2 together with the applied loads and boundary
onditions.
3

.1. Internally pressurized cylinders

Let the axisymmetric body described in Section 2.1 be an internally
ressurized cylinder. In order to formulate the optimization problem
escribed in the Introduction in the context of dynamic optimization
heory, a state–space representation, boundary conditions and a objec-
ive functional are needed. To this purpose, two different formulations
re introduced concerning different choices of the state variables. In
he first formulation the radial stress and its derivative are assumed
s elastic states variables (stress formulation) while in the second
ormulation we assume as state variable radial displacement and radial
tress (mixed formulation).

.1.1. Stress formulation for the cylinder
Reference is made to the formulation reported in [21], namely

ased on the Beltrami–Michell approach, where Poisson’s coefficient
as been assumed constant, elastic state variables are given by stresses
nd their derivatives and the control function is the rate of change of
he ceramic volume fraction with respect to 𝑟, namely 𝑑𝑉c(𝑟)

𝑑𝑟 , herein
denoted by vc(𝑟). In particular, the radial strain in Eq. (5), together
with the constitutive relations (6) and the equilibrium Eq. (4) yield

𝜎𝑟(𝑟) = 0 (7)

where  is a differential operator given by [21]

(∙) = 𝑟2(∙)′′ + 𝑟[3 − 𝑟𝛤 (𝑟)vc(𝑟)](∙)′ − �̃�𝛤 (𝑟)vc(𝑟)𝑟(∙) (8)

and �̃� = 1 − 𝜈 and 𝛤 is a function whose explicit expression is derived
from the involved rule of mixture; in particular,

𝛤 (𝑟) = 1
𝐸m

𝐸c−𝐸m
+ 𝑉c(𝑟)

and

𝛤 (𝑟) =
𝐸c − 𝐸m

𝐸m𝑉c(𝑟) + (1 − 𝑉c(𝑟))𝐸c

for Voigt and Reuss models, respectively (for justification, see [21]).
Moreover, it is worth noting that the differential operator  for the
plane strain condition is identical to (8) provided that �̃� is replaced by
̆ = 1 − 𝜈∕�̃� (see [21]).

Introducing the elastic state variables 𝑦1 = 𝜎𝑟, 𝑦2 = 𝑑𝜎𝑟∕𝑑𝑟 and
𝑦3 = 𝑉c, the differential Eq. (7), which serves as differential constraints
and should be satisfied while searching for the optimal solution, may
be recast as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦′1(𝑟) = 𝑦2(𝑟) ,

𝑦′2(𝑟) = 𝛤 (𝑟)
(

𝑦2(𝑟) + �̃�
𝑦1(𝑟)
𝑟

)

vc(𝑟) −
3𝑦2(𝑟)

𝑟
,

𝑦′3(𝑟) = vc(𝑟) .

(9)

As far as boundary conditions are concerned, 𝑦1(𝑅i) and 𝑦1(𝑅o) can be
deduced from the radial stresses at 𝑅i and 𝑅o, namely

𝑦1(𝑅i) = −𝑝i , 𝑦1(𝑅o) = 0 , (10)

where 𝑝i is the internal pressure, while 𝑦2(𝑅i) and 𝑦2(𝑅o) are unknown.
Regarding 𝑦3, if the cylinder is compositionally graded from ceramic to
metal, then

𝑦3(𝑅i) = 1 , 𝑦3(𝑅o) = 0 . (11)

Taking into account the plane stress condition and using the above
introduced state variables, the equivalent Tresca stress may be written
as

𝜎𝑇𝑒𝑞(𝑟) = |𝜎𝜃(𝑟) − 𝜎𝑟(𝑟)| = |𝑦1(𝑟) + 𝑟𝑦2(𝑟) − 𝑦1(𝑟)| = |𝑟𝑦2(𝑟)|.

Since the body is pressurized only internally, 𝑦1 strictly increases along
the radius, and therefore 𝑦2 > 0. Consequently, the absolute value can
be omitted and the minimization of 𝑦 (𝑅 ) leads to the minimization of
2 i
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Fig. 2. A schematic representation for the considered axisymmetric bodies (cylinders, disks and spheres).
�̃�

the internal Tresca stress. The same problem can be stated within the
plane strain condition, taking into account that

𝜎𝑧(𝑟) = 𝜈(𝜎𝑟(𝑟) + 𝜎𝜃(𝑟)) = 𝜈(2𝑦1(𝑟) + 𝑟𝑦2(𝑟)).

According to [29], there are few optimization studies in which the
manufacturability cost is taken into consideration. Adding technolog-
ical constraints to optimization studies is highly recommended as it
leads to more practical designs with large-scale production prospects.
To this purpose, FGM regions with a steep composition gradient are
more difficult and therefore more expensive to manufacture. The slope,
and thus the cost, can be controlled by imposing bounds on the values
that the composition gradient can take. As a consequence, it is reason-
able to assume that vc be constrained in an admissible range of values.
More precisely, we assume, for all values of 𝑟, vc ∈ [v−, v+], whose
bounds v− and v+ can be deduced from fixed radial property variations
or from technological process data. Hence, the optimization problem
can now be stated formally as follows.

Problem 1. Find the distribution of the derivative of the ceramic
volume fraction v∗c (𝑟) that minimizes the Tresca stress at the inner
surface, i.e.,

min
vc(𝑟)

𝑦2(𝑅i)

s.t. 𝑦′1(𝑟) = 𝑦2(𝑟) ,

𝑦′2(𝑟) = 𝛤 (𝑟)
(

𝑦2(𝑟) + �̃�
𝑦1(𝑟)
𝑟

)

vc(𝑟) −
3𝑦2(𝑟)

𝑟
,

𝑦′3(𝑟) = vc(𝑟) ,

𝑦1(𝑅i) = −𝑝i ,

𝑦1(𝑅o) = 0 ,

𝑦3(𝑅i) = 1 ,

𝑦3(𝑅o) = 0 ,

v− ≤ vc(𝑟) ≤ v+ ,

0 ≤ 𝑦3(𝑟) ≤ 1 ,

(12)

where 𝑅i, 𝑅o, v−, v+, 𝑝i and �̃� are given constants and 𝛤 (𝑟) is a specified
function depending on the rule of mixture.

3.1.2. A proposed analytical solution
Pontryagin’s principle has been applied to Problem 1 in [21]. The

optimal change rate of the function v∗c , i.e., the one which minimizes
the objective functional 𝑦2(𝑅i) is, among all admissible functions, the
one which, at any value of 𝑟, minimizes the corresponding Hamiltonian
function (𝑟, 𝐲,𝐩,𝐦, vc), given by [21]

(𝑟, 𝐲(𝑟),𝐩(𝑟),𝐦(𝑟), vc(𝑟)) = (𝑟, 𝐲(𝑟),𝐩(𝑟),𝐦(𝑟))

+ (𝑟, 𝐲(𝑟),𝐩(𝑟),𝐦(𝑟)) vc(𝑟) , (13)

where 𝐩 is the vector of costate variables associated with the elastic
states variables 𝐲 and 𝐦 is the vector of Lagrange multipliers associated
with the inequality constraints, all functions of 𝑟, whereas  and 
are functions of these vectors, whose explicit expressions depends on
the problem under consideration. Nevertheless, it is worth noting that
4

the problem is characterized by a linear Hamiltonian function with
respect to vc and since the set of admissible values for vc is compact,
Pontryagin’s Principle yields extremal solution for the minimization of
(13). More precisely, the optimal rate of change v∗c is defined by

v∗c (𝑟) = argmin
vc

(𝑟) =
{

v− , if (𝑟) > 0 ,
v+ , if (𝑟) < 0 .

(14)

If (�̄�) = 0 for some �̄� then the value of v∗c (�̄�) cannot be determined
by the Pontryagin’s principle. However, two scenarios are possible,
according to the local behavior of  in the neighborhood of �̄�. In the
first one,  crosses the value zero in �̄� passing from a positive value (for
𝑟 < �̄�) to a negative one (for 𝑟 > �̄�) (or viceversa). In this case the value
of v∗c (�̄�) switches instantaneously from one extreme value to the other
one yielding to what is usually referred to as ‘‘bang–bang’’ solution. The
point �̄� is called ‘‘switching point’’. The value of v∗c (�̄�) is not crucial to
determine, through (9), the optimal trajectories of the state variables:
any two different values lead to the same trajectories. In the second
scenario,  = 0 in a whole interval (containing �̄�). In this case, the
solution, called ‘‘singular’’, shall be found from other considerations.

For the sake of analytical tractability, the investigation of the second
scenario is omitted. Hence, recalling the definition of vc, the optimal
ceramic volume fraction 𝑉 ∗

c turns out, under the adopted assumptions,
to be piecewise linear with respect to 𝑟. This conclusion is particularly
interesting since piecewise linear profiles are among the simplest to
manufacture. However, Eq. (14) does not yet provide the explicit
expression of the optimal solution; in fact, it is clear that in order to
know the explicit value of v∗c for any value of 𝑟 one should know the
value of . Hence, a special attention has been drawn in [21] to the
case in which  has only one root, namely when the optimal solution
admits a single switching point. Denoting by �̄� the rate of the linear
variation between 𝑦3(𝑅i) = 1 and 𝑦3(𝑅o) = 0, namely

v̄ = − 1
𝑅o − 𝑅i

,

if v̄ ∈ [v−, v+], two optimal solutions are possible. The first one
is characterized by a subinterval in which vc = v+ followed by a
subinterval in which vc = v−, while the other one presents the opposite
situation (a first subinterval where vc = v− followed by a subinterval
where vc = v+). Moreover, the corresponding switching points �̃� and �̂�
can be analytically determined as [21]

=
−1 − v−𝑅o + v+𝑅i

v+ − v−
, �̂� =

1 − v−𝑅i + v+𝑅o
v+ − v−

, (15)

respectively.
A numerical example has been carried out concerning the design of

a family of internally pressurized thick-walled FGM cylinders in [21],
where the material variation has to be chosen to minimize the inner
equivalent Tresca stress. Classic volume fraction variations, e.g., linear,
sinusoidal and sigmoid, have been considered and then compared with
the ones associated with the optimal solutions resulting from Pontrya-
gin’s Principle. A dedicated finite element model has been developed
to numerically forecast the stress behavior under plane stress and plane
strain conditions and for selected 𝑅 ∕𝑅 ratios. For different values of
o i
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v−∕v+, it has been shown that one of the two aforementioned bang–
ang solutions corresponds to the minimum value of 𝜎T

eq(𝑅i)∕𝑝i, thus
outperforming the variations commonly employed in the literature,
while the other one can be discarded.

3.1.3. Critical remarks
Although optimal solutions perform better than classic property

variations employed in the literature, the aforementioned formulation
of the problem could suffer from some critical aspects. The first one
concerns the absence of a criterion for the selection of v− and v+, whose
values should comply with the constraint on the number of switching
points, which in turn is unknown. In fact, it has been implicitly assumed
that the function  in (13) is either strictly increasing or strictly
decreasing along 𝑟 and this assumption aimed to favor the analytical
tractability of the problem. Secondly, it is emphasized that the stress
formulation is not of much help to determine whether the function
 identically vanishes in one or more finite intervals throughout the
radial direction. Eventually, it is observed that the expression for
optimal solutions (14) thus derived is paradoxically insensitive neither
to whether the pressurized cylinder is exhibiting a plane stress or a
plane strain load condition nor to the employed rule of mixture. In fact,
the state–space representation, the boundary states, the Hamiltonian
function and the optimal rate of change of the ceramic volume fraction
for the plane strain condition are the same as those for the plane stress,
provided that �̃� is replaced by �̆�.

These considerations hint one to reconsider the optimization prob-
lem by means of a different formulation, possibly bypassing the ex-
ploitation of Pontryagin’s Principle so that it overcomes the aforemen-
tioned shortcomings. To this purpose, a mixed formulation based on
both Navier and Beltrami–Michell approaches is illustrated next.

3.1.4. Mixed formulation for the cylinder
Unlike the stress based formulation, elastic state variables are taken

to be the radial displacement and the radial stress. Hereinafter, the
variation of Poisson’s ratio along the radial coordinate is included.

Firstly, the assumption of plane stress load condition is made. On the
one hand, from Eqs. (5), (6) and (4), the radial strain can be expressed
as

𝑢′(𝑟) =
𝜎𝑟(𝑟) − 𝜈(𝑟)𝜎𝜃(𝑟)

𝐸(𝑟)
=

𝜎𝑟(𝑟) − 𝜈(𝑟)[𝜎𝑟(𝑟) + 𝑟𝜎′𝑟(𝑟)]
𝐸(𝑟)

. (16)

On the other hand, the hoop strain and stress can be expressed as

𝑢(𝑟)
𝑟

=
𝜎𝜃(𝑟) − 𝜈(𝑟)𝜎𝑟(𝑟)

𝐸(𝑟)

and

𝜎𝜃(𝑟) =
𝐸(𝑟)

1 − 𝜈(𝑟)2

(

𝑢(𝑟)
𝑟

+ 𝜈(𝑟)𝑢′(𝑟)
)

,

respectively. Consequently, the hoop stress can be expressed in terms
of the states as follows

𝜎𝜃(𝑟) = 𝐸(𝑟)
𝑢(𝑟)
𝑟

+ 𝜈(𝑟)𝜎𝑟(𝑟).

Consequently, the variation of the radial displacement and the radial
stress with respect to the radial coordinate, in terms of the two states,
are given by

𝑢′(𝑟) = −
𝜈(𝑟)
𝑟

𝑢(𝑟) +
1 − 𝜈(𝑟)2

𝐸(𝑟)
𝜎𝑟(𝑟) (17)

and

𝜎′𝑟(𝑟) =
𝐸(𝑟)
𝑟2

𝑢(𝑟) +
𝜈(𝑟) − 1

𝑟
𝜎𝑟(𝑟) , (18)

respectively.
Now, the assumption of a plane strain load condition is assumed.

Here, the axial stress should be taken into account, whereas the axial
5

strain is identically zero. This latter yields a relation between the three
stresses, namely

𝜎𝑧(𝑟) = 𝜈(𝑟)(𝜎𝑟(𝑟) + 𝜎𝜃(𝑟)) . (19)

From constitutive Eqs. (6) and (4), the variation of the radial displace-
ment and radial stress with respect to the radial coordinate, in terms
of the two states, are given by

𝑢′(𝑟) =
𝜈(𝑟)

(𝜈(𝑟) − 1)𝑟
𝑢(𝑟) +

(1 + 𝜈(𝑟))(1 − 2𝜈(𝑟))
(1 − 𝜈(𝑟))𝐸(𝑟)

𝜎𝑟(𝑟) (20)

and

𝜎′𝑟(𝑟) =
𝐸(𝑟)

(1 − 𝜈(𝑟)2)𝑟2
𝑢(𝑟) +

2𝜈(𝑟) − 1
(1 − 𝜈(𝑟))𝑟

𝜎𝑟(𝑟) , (21)

respectively.
Unlike Problem 1, the maximum value for the Tresca equivalent

stress is taken as the objective functional to be minimized and not
that occurring at the inner radius. For the plane stress condition, the
equivalent Tresca stress is given by

𝜎T
eq(𝑟) = max{|𝜎𝜃(𝑟) − 𝜎𝑟(𝑟)|, |𝜎𝜃(𝑟) − 𝜎𝑧(𝑟)|, |𝜎𝑟(𝑟) − 𝜎𝑧(𝑟)|} , (22)

which, in the case of plane stress condition, is just reduced to the first
argument at the right hand-side and can be written in terms of the two
states as follows

𝜎T
eq(𝑟) = |𝜎𝜃(𝑟) − 𝜎𝑟(𝑟)| =

|

|

|

|

𝐸(𝑟)
𝑢(𝑟)
𝑟

+ [𝜈(𝑟) − 1]𝜎𝑟(𝑟)
|

|

|

|

(23)

and its maximum value can be approximated by the -norm, given by

𝜎T
eq,max ≈

{

∫

𝑅o

𝑅i

(

𝐸(𝑟)
𝑢(𝑟)
𝑟

+ (𝜈(𝑟) − 1)𝜎𝑟(𝑟)
)

𝑑𝑟

}1∕

. (24)

Here and throughout  denotes an even positive integer greater than
or equal to 2. As far as the plane strain condition is concerned, it is not
trivial to decide which argument in Eq. (22) is dominant. Consequently,
a potential candidate for the objective functional can be the maximum
value for the hoop stress, which can be approximated as

𝜎𝜃,max ≈

{

∫

𝑅o

𝑅i

(

1
1 − 𝜈(𝑟)2

(

𝐸(𝑟)
𝑢(𝑟)
𝑟

+ 𝜈(𝑟)(1 + 𝜈(𝑟))𝜎𝑟(𝑟)
))

𝑑𝑟

}1∕

.

(25)

Consequently, two optimization problems are formulated depending
on the load condition. Introducing the state variables 𝑦1 = 𝑢 and
𝑦2 = 𝜎𝑟, the problems for the plane stress and plane strain conditions
assume respectively the following form.

Problem 2 (Plane Stress Condition). Find the distribution of the metallic
volume fraction 𝑉 ∗

m(𝑟) along the radial direction of the cylinder so that
the maximum Tresca stress is minimized, i.e.,

min
𝑉m(𝑟)

𝜎T
eq,max =

{

∫

𝑅o

𝑅i

(

𝐸(𝑟)
𝑦1(𝑟)
𝑟

+ (𝜈(𝑟) − 1)𝑦2(𝑟)
)

𝑑𝑟

}1∕

s.t. 𝑦′1(𝑟) = −
𝜈(𝑟)
𝑟

𝑦1(𝑟) +
1 − 𝜈(𝑟)2

𝐸(𝑟)
𝑦2(𝑟) ,

𝑦′2(𝑟) =
𝐸(𝑟)
𝑟2

𝑦1(𝑟) +
𝜈(𝑟) − 1

𝑟
𝑦2(𝑟) ,

𝑦2(𝑅i) = −𝑝i ,

𝑦2(𝑅o) = 0 ,

0 ≤ 𝑉m(𝑟) ≤ 1 ,

(26)

where 𝑅i, 𝑅o, 𝑝i and  are given constants and 𝐸(𝑟) and 𝜈(𝑟) are linked
to 𝑉m(𝑟) through (1) or (2).

Problem 3 (Plane Strain Condition). Find the distribution of the metallic
∗
volume fraction 𝑉m(𝑟) along the radial direction of the cylinder so that
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the maximum hoop stress attains its minimum value, i.e.,

min
𝑉m(𝑟)

𝜎𝜃,max =
{

∫

𝑅o

𝑅i

(

1
1 − 𝜈(𝑟)2

(

𝐸(𝑟)
𝑦1(𝑟)
𝑟

+ 𝜈(𝑟)(1 + 𝜈(𝑟))𝑦2(𝑟)
)) 𝑑𝑟

}1∕

s.t. 𝑦′1(𝑟) =
𝜈(𝑟)

(𝜈(𝑟) − 1)𝑟
𝑦1(𝑟) +

(1 + 𝜈(𝑟))(1 − 2𝜈(𝑟))
(1 − 𝜈(𝑟))𝐸(𝑟)

𝑦2(𝑟) ,

𝑦′2(𝑟) =
𝐸(𝑟)

(1 − 𝜈(𝑟)2)𝑟2
𝑦1(𝑟) +

2𝜈(𝑟) − 1
(1 − 𝜈(𝑟))𝑟

𝑦2(𝑟) ,

𝑦2(𝑅i) = −𝑝i ,

𝑦2(𝑅o) = 0 ,

0 ≤ 𝑉m(𝑟) ≤ 1 ,

(27)

where 𝑅i, 𝑅o, 𝑝i and  are given constants and 𝐸(𝑟) and 𝜈(𝑟) are linked
to 𝑉m(𝑟) through (1) or (2).

3.2. Pressurized hollow spheres

Spherical FGM vessels have been given a considerable attention
in the last years, under several acting loads [22,30,31]. Next, a dy-
namic optimization problem for the material tailoring of an internally
pressurized sphere is presented. Note that the equilibrium equation
is given by Eq. (4) with 𝜒 = 2. Following the mixed formulation, a
similar approach of Section 3.1 taking into account the equations for
the spherical axisymmetry case. After some algebra, the formulation of
the optimization problem assume the following form.

Problem 4. Find the distribution of the metallic volume fraction 𝑉 ∗
m(𝑟)

along the radial direction of the cylinder so that the maximum Tresca
stress attains its minimum value, i.e.,

min
𝑉m(𝑟)

𝜎T
eq,max =

{

∫

𝑅o

𝑅i

(

𝐸(𝑟)
𝑦1(𝑟)
𝑟

+ (𝜈(𝑟) − 1)𝑦2(𝑟)
)

𝑑𝑟

}1∕

s.t. 𝑦′1(𝑟) =
2𝜈(𝑟)

(𝜈(𝑟) − 1)𝑟
𝑦1(𝑟) +

2𝜈(𝑟)2 + 𝜈(𝑟) − 1
(𝜈(𝑟) − 1)𝐸(𝑟)

𝑦2(𝑟) ,

𝑦′2(𝑟) =
2𝐸(𝑟)

(1 − 𝜈(𝑟))𝑟2
𝑦1(𝑟) +

2(1 − 2𝜈(𝑟))
(𝜈(𝑟) − 1)𝑟

𝑦2(𝑟) ,

𝑦2(𝑅i) = −𝑝i ,

𝑦2(𝑅o) = 0 ,

0 ≤ 𝑉m(𝑟) ≤ 1 ,

(28)

where 𝑅i, 𝑅o, 𝑝i and  are given constants and 𝐸(𝑟) and 𝜈(𝑟) are linked
to 𝑉m(𝑟) through (1) or (2).

3.3. Rotating hollow disks

The optimization of functionally graded hollow disks belongs to
contemporary research challenges, as a significant amount of work
has been done in order to understand their stress and strain behav-
iors [32–35]. By addressing the analysis to thin rotating disks only, the
formulation of the optimization problem does not differ from that of
Problem 2, provided that the centrifugal term 𝜌(𝑟)𝜛2𝑟2 is added [28],
where 𝜛 is the angular velocity and 𝜌 denotes the density distribution
along the disk, estimated by either (1) or (2). If the hollow disk is freely
rotating, hence 𝑦2(𝑅i) = 𝑦2(𝑅o) = 0 and the formulation of the problem
can be written as follows.

Problem 5. Find the distribution of the metallic volume fraction 𝑉 ∗
m(𝑟)

along the radial direction of the disk so that the maximum Tresca stress
6

is minimized, i.e.,

min
𝑉m(𝑟)

𝜎T
eq,max =

{

∫

𝑅o

𝑅i

(

𝐸(𝑟)
𝑦1(𝑟)
𝑟

+ (𝜈(𝑟) − 1)𝑦2(𝑟)
)

𝑑𝑟

}1∕

s.t. 𝑦′1(𝑟) = −
𝜈(𝑟)
𝑟

𝑦1(𝑟) +
1 − 𝜈(𝑟)2

𝐸(𝑟)
𝑦2(𝑟) ,

𝑦′2(𝑟) =
𝐸(𝑟)
𝑟2

𝑦1(𝑟) +
𝜈(𝑟) − 1

𝑟
𝑦2(𝑟) − 𝜌(𝑟)𝜛2𝑟 ,

𝑦2(𝑅i) = 0 ,

𝑦2(𝑅o) = 0 ,

0 ≤ 𝑉m(𝑟) ≤ 1 ,

(29)

where 𝑅i, 𝑅o, 𝜛 and  are given constants, 𝐸(𝑟), 𝜈(𝑟) and 𝜌(𝑟) are linked
to 𝑉m(𝑟) through (1) or (2).

The disk considered in Problem 5 is a purely rotating disk, namely
with no imposed displacement conditions on the inner and outer
boundaries. For this reason, such disk is hereinafter referred to as free–
free (FF) disk (see Fig. 2). In parallel, a similar problem associated
with different boundary conditions on the radial displacement at inner
and outer radii can be formulated by simply acting on the value of
𝑦1(𝑅i) and 𝑦1(𝑅o). In particular, we denote by free–clamped (FC) disks
those rotating disks whose only the outer boundary is not allowed to
radially deform. Similarly, rotating disks whose radial displacement
at inner and outer boundaries are constrained are referred to as
clamped–clamped (CC) disks (see Fig. 2).

4. Numerical procedure: A pseudospectral approach

Unlike Problem 1, Problems 2–5 are endowed with a nonlinear
Hamiltonian function with respect to the metallic volume fraction. Nec-
essary conditions for optimal solutions yield Hamiltonian boundary-
value-problems [36], whose variables are nonlinearly coupled, thus
jeopardizing the derivation of analytical solutions. Hence, numerical
procedures are necessary to figure out optimal solutions.

Letting 𝑛, 𝑏 and 𝑞 be the number of elastic state variables, boundary
conditions and inequality constraints and denoting the set of boundary
conditions and inequality constraints by 𝝓 and 𝐜, respectively, the
above mentioned dynamic optimization problems can be generally
recast in a fictitious domain 𝜌 ∈ [−1,+1], related to the physical domain
𝑟 ∈ [𝑅i, 𝑅o] by

𝑟 =
𝑅o − 𝑅i

2
𝜌 +

𝑅o + 𝑅i
2

, (30)

as follows

min
𝑣(𝜌)

 = (𝑅i, 𝐲(−1), 𝑅o, 𝐲(+1)) +
𝑅o − 𝑅i

2 ∫

+1

−1
(𝜌, 𝐲(𝜌), 𝑣(𝜌)) 𝑑𝜌

s.t. 𝑑𝐲(𝜌)
𝑑𝜌

=
𝑅o − 𝑅i

2
𝐚(𝜌, 𝐲(𝜌), 𝑣(𝜌)) ,

𝝓(𝑅i, 𝐲(−1), 𝑅o, 𝐲(+1)) = 𝟎 ,
𝐜(𝜌, 𝐲(𝜌), 𝑣(𝜌)) ≤ 𝟎 ,

(31)

here 𝐚 ∶ [−1,+1] × R𝑛 × R → R𝑛,  ∶ R × R𝑛 × R × R𝑛 → R,
 ∶ [−1,+1] × R𝑛 × R → R, 𝝓 ∶ R × R𝑛 × R × R𝑛 → R𝑏 and 𝐜 ∶
[−1,+1]×R𝑛×R → R𝑞 are functions whose regularity is at least sufficient
to guarantee the existence of a numerical solution. Note that, in order
to have a coherent and compact formulation of the discretized version,
that will be explained below, 𝐚, 𝝓 and 𝐜 are interpreted as row vector
functions. The objective functional  is made up of two terms:  takes
the name of Mayer cost and represents a punctual term of the elastic
states at boundaries, while the integral term is called the Lagrange cost
and it is a distributed cost associated with the whole domain.

Among numerical methods, the so-called ‘‘pseudospectral’’ ones
have been gaining much interest and their theoretical development is



Composite Structures 311 (2023) 116784H.M.A. Abdalla et al.
Fig. 3. A flowchart summarizing the transcription procedure and the sensitivity analysis.
more and more refined which, together with the increasing improve-
ment of computers generation, led researchers to efficient algorithms to
numerically solve dynamic optimization problems [37]. These methods
permit the parameterization of the state and/or of the control function
using specified functional forms and performing a procedure called
‘‘collocation’’ at chosen points called ‘‘nodes’’ [38]. More precisely,
the trajectories of the state variables are approximated by polynomials
and the differential equations are then discretized through a collo-
cation procedure that makes use of particular nodes obtained from
quadrature points [23]. In this way a dynamic optimization prob-
lem, whose solution has to be searched within an infinite-dimensional
domain, is transcribed into a nonlinear programming problem. More
recently, a great deal of research has been done in the class of pseu-
dospectral methods whose collocation points are the roots of certain
orthogonal polynomials (or a linear combination of their derivatives).
For instance, collocation points can range from roots of Legendre–
Gauss, Legendre–Gauss–Lobatto, Legendre–Gauss–Radau polynomials,
and others (see, e.g., [39–41]). In this study, the application of the
Legendre–Gauss–Radau (LGR) pseudospectral method to optimization
problems concerning axisymmetric FGM bodies is presented. The tran-
scription of the dynamic optimization problem into a finite-dimensional
NLP problem (Section 4.2) and the associated sensitivity analysis (Sec-
tion 4.3) are emphasized and summarized in Fig. 3. An application
of the LGR pseudospectral method to dynamic optimization problems,
though pertaining to another class of problems in mechanics, has been
recently proposed in [42], where the shape of elastic straight beams for
minimum mass under buckling requirements has been sought.

4.1. Employed notation

Hereinafter, all vector functions will be treated as row vectors,
whereas any scalar vector is recast as a column vector. Moreover, if
𝐟 ∶ R𝑘 → R𝑙 is a function that maps row vectors 𝐩 ∈ R𝑘 to row vectors
𝐟 (𝐩) ∈ R𝑙, then the result of evaluating 𝐟 (𝐩) at points (𝐩1,𝐩2,… ,𝐩𝑁 ) is
the matrix 𝐅 = [𝐟 (𝐩𝑗 )]1𝑁 , namely

𝐅 = [𝐟 (𝐩𝑗 )]1𝑁 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐟 (𝐩1)
𝐟 (𝐩2)
⋮

𝐟 (𝐩𝑁 )

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁×𝑙 .

A single subscript 𝑖 attached to a matrix 𝐏 ∈ R𝑘×𝑙, i.e., 𝐏𝑖, denotes the
𝑖th row of the matrix 𝐏, whereas 𝐏𝑖,𝑗 denotes the (𝑖, 𝑗)th element of the
matrix 𝐏. Moreover, the notation 𝐏∶,𝑗 will be used to denote the 𝑗th
column of 𝐏 and the notation 𝐏⊤ will be used to denote the transpose
of 𝐏.
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Next, let 𝐏 and 𝐐 be 𝑘 × 𝑙 matrices. Then, the element-by-element
multiplication of 𝐏 and 𝐐 is defined as

𝐏◦𝐐 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑝11𝑞11 𝑝12𝑞12 ⋯ 𝑝1𝑙𝑞1𝑙
𝑝21𝑞21 𝑝22𝑞22 ⋯ 𝑝2𝑙𝑞2𝑙

⋮ ⋮ ⋱ ⋮
𝑝𝑘1𝑞𝑘1 𝑝𝑘2𝑞𝑘2 ⋯ 𝑝𝑘𝑙𝑞𝑘𝑙

⎤

⎥

⎥

⎥

⎥

⎦

.

Note that 𝐏◦𝐐 is not standard matrix multiplication. Furthermore, if
𝐩 ∈ R𝑘, then the operation diag(𝐩) denotes the 𝑘 × 𝑘 diagonal matrix
formed by the element of 𝐩, namely

diag(𝐩) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑝1 0 ⋯ 0
0 𝑝2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑝𝑘

⎤

⎥

⎥

⎥

⎥

⎦

.

The notation for derivatives of functions of vectors is defined next.
First, let 𝑓 (𝐩) with 𝑓 ∶ R𝑘 → R. Then, the gradient of 𝑓 with respect to
𝐩 is a row vector of length 𝑘 and defined as

∇𝐩𝑓 (𝐩) =
[

𝜕𝑓
𝜕𝑝1

𝜕𝑓
𝜕𝑝2

… 𝜕𝑓
𝜕𝑝𝑘

]

∈ R𝑘.

Finally, let 𝐟 (𝐩) with 𝐟 ∶ R𝑘 → R𝑙, where 𝐩 may be either a row or
column vector and 𝐟 (𝐩) has the same orientation (i.e., either row or
column vector) as 𝐩. Then, the Jacobian of 𝐟 with respect to 𝐩 is the
𝑙 × 𝑘 matrix whose 𝑖th row is ∇𝐩𝑓𝑖, namely

∇𝐩𝐟 =

⎡

⎢

⎢

⎢

⎢

⎣

∇𝐩𝑓1
∇𝐩𝑓2
⋮

∇𝐩𝑓𝑙

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑓1
𝜕𝑝1

𝜕𝑓1
𝜕𝑝2

⋯ 𝜕𝑓1
𝜕𝑝𝑘

𝜕𝑓2
𝜕𝑝1

𝜕𝑓2
𝜕𝑝2

⋯ 𝜕𝑓2
𝜕𝑝𝑘

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑙
𝜕𝑝1

𝜕𝑓𝑙
𝜕𝑝2

⋯ 𝜕𝑓𝑙
𝜕𝑝𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑙×𝑘.

4.2. Continuous-to-discrete conversion

Suppose that the interval [−1,+1] is divided into 𝐾 sub-intervals
[𝜌𝑘−1, 𝜌𝑘], 𝑘 = 1, 2,… , 𝐾, where 𝜌0, 𝜌1, … , 𝜌𝐾 are the mesh points and
𝜌0 = −1 and 𝜌𝐾 = +1. Letting 𝐲(𝑘)(𝜌) and 𝑣(𝑘)(𝜌) be the (row) vector
functions containing elastic state variables and the control function
in the 𝑘th interval, respectively, the objective functional  can be
rewritten as

 = (𝑅i, 𝐲(−1), 𝑅o, 𝐲(+1)) +
𝑅o − 𝑅i

2

𝐾
∑

𝑘=1
∫

𝜌𝑘

𝜌𝑘−1

(

𝜌, 𝐲(𝑘)(𝜌), 𝑣(𝑘)(𝜌)
)

𝑑𝜌 .

(32)

As far as the differential and path constraints in the 𝑘th mesh
interval are concerned, one can write

𝑑𝐲(𝑘)(𝜌)
=

𝑅o − 𝑅i 𝐚
(

𝜌, 𝐲(𝑘)(𝜌), 𝑣(𝑘)(𝜌)
)

(33)

𝑑𝜌 2
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and

𝐜
(

𝜌, 𝐲(𝑘)(𝜌), 𝑣(𝑘)(𝜌)
)

≤ 𝟎 , (34)

respectively, whereas the boundary conditions may be recast as

𝝓
(

𝑅i, 𝐲(1)(−1), 𝑅o, 𝐲(𝐾)(+1)
)

= 𝟎 . (35)

Moreover, because elastic state variables must be continuous at each
interior mesh point, it is required also that the condition 𝐲(𝑘)(𝜌−𝑘 ) =
𝐲(𝑘)(𝜌+𝑘 ) for 𝑘 = 1,… , 𝐾 − 1 be satisfied. To guarantee this latter
condition, the following pseudospectral scheme based on the Legendre–
Gauss–Radau (LGR) transcription process is adopted. In particular,
let 𝜌(𝑘)1 ,… , 𝜌(𝑘)𝑁𝑘

denote the collocation points (defined below) in the
𝑘th sub-interval, let 𝜌(𝑘)𝑁𝑘+1

be the right endpoint of the sub-interval
(noncollocated point), the (row) vector of elastic states in the 𝑘th
sub-interval is approximated as

𝐲(𝑘)(𝜌) ≈ 𝐘(𝑘)(𝜌) =
𝑁𝑘+1
∑

𝑗=1
𝐘(𝑘)
𝑗 𝓁(𝑘)

𝑗 (𝜌) , (36)

where 𝐘(𝑘)
𝑗 (𝑗 = 1, 2,… , 𝑁𝑘) are the approximations of the state

variables at the LGR points in mesh interval 𝑘, while 𝓁(𝑘)
𝑗 is the 𝑗th

Lagrange polynomial in the 𝑘th sub-interval which is defined by

𝓁(𝑘)
𝑗 (𝜌) =

𝑁𝑘+1
∏

𝑙=1,𝑙≠𝑗

𝜌 − 𝜌(𝑘)𝑙

𝜌(𝑘)𝑗 − 𝜌(𝑘)𝑙

,

here (𝜌(𝑘)1 , 𝜌(𝑘)2 ,… , 𝜌(𝑘)𝑁𝑘
) are the LGR collocation points in mesh interval

defined on the sub-interval 𝜌 ∈ [𝜌𝑘−1, 𝜌𝑘]. In particular, the LGR
ollocation points in mesh interval 𝑘 are given by the roots of the
olynomial 𝑁𝑘−1 + 𝑁𝑘

, where 𝑁𝑘−1 and 𝑁𝑘
are the Legendre

olynomials of degree 𝑁𝑘 − 1 and 𝑁𝑘, respectively.
Differentiating (36) with respect to 𝜌, one obtains

𝑑𝐘(𝑘)(𝜌)
𝑑𝜌

=
𝑁𝑘+1
∑

𝑗=1
𝐘(𝑘)
𝑗

𝑑𝓁(𝑘)
𝑗 (𝜌)

𝑑𝜌
. (37)

Moreover, the objective functional of Eq. (32) is then approximated
using a multiple interval LGR quadrature as

 = 
(

𝑅i,𝐘
(1)
1 , 𝑅o,𝐘

(𝐾)
𝑁𝐾+1

)

+
𝑅o − 𝑅i

2

𝐾
∑

𝑘=1

𝑁𝑘
∑

𝑗=1
𝜔(𝑘)
𝑗 

(

𝜌(𝑘)𝑗 ,𝐘(𝑘)
𝑗 , 𝑉 (𝑘)

𝑗

)

,

(38)

here 𝐘(1)
1 and 𝐘(𝐾)

𝑁𝐾+1 are the approximations of 𝐲(−1) and 𝐲(+1),
espectively, 𝜔(𝑘)

𝑗 (𝑗 = 1, 2,… , 𝑁𝑘) are the LGR quadrature weights in
he 𝑘th mesh interval, given by

𝜔(𝑘)
1 = 2

𝑁2
𝑘
,

𝜔(𝑘)
𝑖 = 1

(1 − 𝜌(𝑘)𝑖 )

(

𝑑𝑁𝑘−1
(

𝜌(𝑘)𝑖

)

𝑑𝜌

)2
, (𝑖 = 2, 3,… , 𝑁𝑘) (39)

and 𝑉 (𝑘)
𝑗 (𝑗 = 1, 2,… , 𝑁𝑘) are the approximations of the metallic volume

fraction at the 𝑁𝑘 LGR points in the 𝑘th mesh interval.
Collocating the differential constraints of Eq. (33) at the 𝑁𝑘 LGR

points by means of (37), one obtains
𝑁𝑘+1
∑

𝑗=1
𝐷(𝑘)

𝑖𝑗 𝐘(𝑘)
𝑗 −

𝑅o − 𝑅i
2

𝐚
(

𝜌(𝑘)𝑖 ,𝐘(𝑘)
𝑖 , 𝑉 (𝑘)

𝑖

)

= 𝟎 , 𝑖 = 1, 2,… , 𝑁𝑘 , (40)

where

𝐷(𝑘)
𝑖𝑗 =

𝑑𝓁(𝑘)
𝑗

(

𝜌(𝑘)𝑖

)

𝑑𝜌
, 𝑖 = 1,… , 𝑁𝑘, 𝑗 = 1,… , 𝑁𝑘 + 1, (41)

is the 𝑁 × (𝑁 + 1) differentiation matrix in the 𝑘th mesh interval.
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𝑘 𝑘
Next, the path constraint of Eq. (34) in the 𝑘th mesh interval are
enforced at the 𝑁𝑘 LGR points as

𝐜
(

𝜌(𝑘)𝑖 ,𝐘(𝑘)
𝑖 , 𝑉 (𝑘)

𝑖

)

≤ 𝟎 , 𝑖 = 1, 2,… , 𝑁𝑘. (42)

Finally, the boundary conditions of Eq. (35) are approximated as

𝝓
(

𝑅i,𝐘
(1)
1 , 𝑅o,𝐘

(𝐾)
𝑁𝐾+1

)

= 𝟎 . (43)

It is worth to notice that the continuity in the elastic state vector at the
interior mesh points, enforced via the condition

𝐘(𝑘)
𝑁𝑘+1

= 𝐘(𝑘+1)
1 , 𝑘 = 1, 2,… , 𝐾 − 1 , (44)

is taken into account explicitly.
Introducing the notation

𝝆(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜌(𝑘)1
𝜌(𝑘)2
⋮

𝜌(𝑘)𝑁𝑘

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐘(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐘(𝑘)
1

𝐘(𝑘)
2
⋮

𝐘(𝑘)
𝑁𝑘

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑘 = 1, 2,… , 𝐾 − 1,

𝝆(𝐾) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜌(𝐾)
1

𝜌(𝐾)
2
⋮

𝜌(𝐾)
𝑁𝐾+1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐘(𝐾) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐘(𝐾)
1

𝐘(𝐾)
2
⋮

𝐘(𝐾)
𝑁𝐾+1

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐕(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑉 (𝑘)
1

𝑉 (𝑘)
2
⋮

𝑉 (𝑘)
𝑁𝑘

⎤

⎥

⎥

⎥

⎥

⎦

, 𝝎(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜔(𝑘)
1

𝜔(𝑘)
2
⋮

𝜔(𝑘)
𝑁𝑘

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐋(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣


(

𝜌(𝑘)1 ,𝐘(𝑘)
1 , 𝑉 (𝑘)

1

)


(

𝜌(𝑘)2 ,𝐘(𝑘)
2 , 𝑉 (𝑘)

2

)

⋮


(

𝜌(𝑘)𝑁𝑘
,𝐘(𝑘)

𝑁𝑘
, 𝑉 (𝑘)

𝑁𝑘

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐚
(

𝜌(𝑘)1 ,𝐘(𝑘)
1 , 𝑉 (𝑘)

1

)

𝐚
(

𝜌(𝑘)2 ,𝐘(𝑘)
2 , 𝑉 (𝑘)

2

)

⋮

𝐚
(

𝜌(𝑘)𝑁𝑘
,𝐘(𝑘)

𝑁𝑘
, 𝑉 (𝑘)

𝑁𝑘

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐂(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐜
(

𝜌(𝑘)1 ,𝐘(𝑘)
1 , 𝑉 (𝑘)

1

)

𝐜
(

𝜌(𝑘)2 ,𝐘(𝑘)
2 , 𝑉 (𝑘)

2

)

⋮

𝐜
(

𝜌(𝑘)𝑁𝑘
,𝐘(𝑘)

𝑁𝑘
, 𝑉 (𝑘)

𝑁𝑘

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑘 = 1, 2,… , 𝐾

nd letting

=

⎡

⎢

⎢

⎢

⎢

⎣

𝝆(1)

𝝆(2)

⋮
𝝆(𝐾)

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁+1 , 𝝎 =

⎡

⎢

⎢

⎢

⎢

⎣

𝝎(1)

𝝎(2)

⋮
𝝎(𝐾)

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁 , 𝐘 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐘(1)

𝐘(2)

⋮
𝐘(𝐾)

⎤

⎥

⎥

⎥

⎥

⎦

∈ R(𝑁+1)×𝑛,

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐕(1)

𝐕(2)

⋮
𝐕(𝐾)

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁 , 𝐋 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐋(1)

𝐋(2)

⋮
𝐋(𝐾)

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁 , 𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐀(1)

𝐀(2)

⋮
𝐀(𝐾)

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁×𝑛,

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐂(1)

𝐂(2)

⋮
𝐂(𝐾)

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁×𝑞 ,

here 𝑁 =
∑𝐾

𝑘=1 𝑁𝑘, the objective functional and discretized differen-
ial constraints given in Eqs. (38) and (40) can be written compactly as

= 
(

𝑅i,𝐘1, 𝑅o,𝐘𝑁+1
)

+
𝑅o − 𝑅i

2
𝝎⊤𝐋 (45)

and

𝐃𝐘 −
𝑅o − 𝑅i

2
𝐀 = 𝟎 , (46)

where 𝐃 ∈ R𝑁×(𝑁+1) is the LGR differentiation matrix, which has a
block structure with nonzero elements defined by the matrix given
in Eq. (41). The extra column of 𝐃 is due to the Lagrange polynomial
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at the noncollocated point 𝜌𝑁+1 = 1. Finally, the discretized path con-
straints of Eq. (42) and boundary conditions of Eq. (43) are expressed
as

𝐂 ≤ 𝟎 (47)

and

𝝓
(

𝑅i,𝐘1, 𝑅o,𝐘𝑁+1
)

= 𝟎 , (48)

respectively. Hence, Eqs. (31) may be transcribed into the following
NLP problem:

min
𝐘,𝐕,𝑅i ,𝑅o

 = 
(

𝑅i,𝐘1, 𝑅o,𝐘𝑁+1
)

+𝛺

s.t. 𝜟 = 𝟎 ,
𝝓
(

𝑅i,𝐘1, 𝑅o,𝐘𝑁+1
)

= 𝟎 ,
𝐂 ≤ 𝟎 ,

(49)

where 𝛺 = 𝑅o−𝑅i
2 𝝎⊤𝐋 and 𝜟 = 𝐃𝐘 − 𝑅o−𝑅i

2 𝐀. Eqs. (49) represent a
inite-dimensional constrained NLP problem, whose decision variables
re the approximation of the elastic states and the values of the metallic
olume fraction at the LGR points.

.3. Computation of sensitivities

The decision variables of the NLP problem (49) arising from the
GR pseudospectral method are the coordinates of the vector 𝐳 ∈
𝑁(𝑛+1)+𝑁+2 and aim at minimizing

(𝐳) = (𝐳) +𝛺(𝐳) (50)

ubject to the constraint

(𝐳) ≤ 𝟎,

here

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐘∶,1
𝐘∶,2
⋮

𝐘∶,𝑛
𝐕
𝑅i
𝑅o

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜟∶,1
𝜟∶,2
⋮

𝜟∶,𝑛
𝐂∶,1
𝐂∶,2
⋮

𝐂∶,𝑞
𝝓1∶𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

ext, expressions for the gradient of the NLP objective function and
he Jacobian of the NLP constraints are derived. Following [43], these
LP derivatives can be obtained by differentiating the functions of the
riginal continuous dynamic optimization problem.

.3.1. Gradient of the objective function
The gradient of the objective function (50) with respect to the LGR

seudospectral NLP decision vector 𝐳 is given as

𝐳𝑓 = ∇𝐳 + ∇𝐳𝛺. (51)

he derivative ∇𝐳 is obtained as

𝐳 =
[

∇𝐘 ∇𝐕 ∇𝑅i ∇𝑅o
]

, (52)

here

𝐘 =
[

∇𝐘∶,1
 ∇𝐘∶,2

 … ∇𝐘∶,𝑛


]

, ∇𝐕 =
[

𝟎1×𝑁
]

. (53)

he derivatives ∇𝐘∶,𝑖
, ∇𝑅i and ∇𝑅o are obtained as

𝐘∶,𝑖
 =

[

𝜕
𝜕𝑦𝑖(𝑅i)

𝟎1×(𝑁−1)
𝜕

𝜕𝑦𝑖(𝑅o)

]

, 𝑖 = 1, 2,… , 𝑛 , (54)

and

∇𝑅  = 𝜕 , ∇𝑅  = 𝜕 . (55)
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i 𝜕𝑅i o 𝜕𝑅o
ext, ∇𝐳𝛺 is given as

𝐳𝛺 =
[

∇𝐘𝛺 ∇𝐕𝛺 ∇𝑅i𝛺 ∇𝑅o𝛺
]

, (56)

here

𝐘𝛺 =
[

∇𝐘∶,1
𝛺 ∇𝐘∶,2

𝛺 … ∇𝐘∶,𝑛
𝛺
]

. (57)

he derivatives ∇𝐘∶,𝑖
𝛺, ∇𝐕𝛺, ∇𝑅i𝛺 and ∇𝑅o𝛺 are obtained as

𝐘∶,𝑖
𝛺 =

[

𝑅o−𝑅i
2

{

𝐰◦
[

𝜕
𝜕𝑦𝑖

]1

𝑁

}⊤
0
]

, 𝑖 = 1, 2,… , 𝑛, (58)

∇𝐕𝛺 =
𝑅o − 𝑅i

2

{

𝐰◦
[ 𝜕
𝜕𝑣

]1

𝑁

}⊤
, (59)

𝑅i𝛺 = −1
2
𝐰⊤𝐋 , ∇𝑅o𝛺 = 1

2
𝐰⊤𝐋 . (60)

It is shown from Eqs. (51)–(60) that the computation the objective
function gradient requires that the first derivatives of  be determined
with respect to the continuous states 𝐲 and the control function 𝑣,
whereas the first derivatives of  be determined with respect to 𝐲(𝑅i),
𝐲(𝑅o), 𝑅i and 𝑅o. Furthermore, these derivatives are computed at either
the 𝑁 collocation points or at the endpoints.

4.3.2. Constraints Jacobian
The Jacobian of the constraints is defined as

∇𝐳𝐡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∇𝐳𝜟∶,1
∇𝐳𝜟∶,2

⋮
∇𝐳𝜟∶,𝑛
∇𝐳𝐂∶,1
∇𝐳𝐂∶,2

⋮
∇𝐳𝐂∶,𝑞
∇𝐳𝝓1
∇𝐳𝝓2
⋮

∇𝐳𝝓𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (61)

he first derivatives of the defect constraints are obtained by

𝐳𝜟∶,𝑙 =
[

∇𝐘𝜟∶,𝑙 ∇𝐕𝜟∶,𝑙 ∇𝑅i𝜟∶,𝑙 ∇𝑅o𝜟∶,𝑙
]

, 𝑙 = 1, 2,… , 𝑛, (62)

here

𝐘𝜟∶,𝑙 =
[

∇𝐘∶,1
𝜟∶,𝑙 ∇𝐘∶,2

𝜟∶,𝑙 … ∇𝐘∶,𝑛
𝜟∶,𝑙

]

. (63)

he derivatives ∇𝐘∶,𝑖
𝜟∶,𝑙, ∇𝐕𝜟∶,𝑙, ∇𝑅i𝜟∶,𝑙 and ∇𝑅o𝜟∶,𝑙 (with 𝑙 = 1, 2,… , 𝑛)

re obtained as

∇𝐘∶,𝑖
𝜟∶,𝑙 =

[

𝛿𝑖𝑙𝐃∶,1∶𝑁 − 𝑅o−𝑅i
2 diag

(

[

𝜕𝑎𝑙
𝜕𝑦𝑖

]1

𝑁

)

𝛿𝑖𝑙𝐃∶,𝑁+1

]

,

𝑖 = 1, 2,… , 𝑛,

(64)

where 𝛿𝑖𝑙 is the Kronecker delta function, and

∇𝐕𝜟∶,𝑙 = −
𝑅o − 𝑅i

2
diag

(

[

𝜕𝑎𝑙
𝜕𝑣

]1

𝑁

)

, (65)

∇𝑅i𝜟∶,𝑙 =
1
2
[𝑎𝑙]1𝑁 , ∇𝑅o𝜟∶,𝑙 = −1

2
[𝑎𝑙]1𝑁 . (66)

As far as the derivatives of the inequality constraints are concerned,
one may write

∇𝐳𝐂∶,𝑒 =
[

∇𝐘𝐂∶,𝑒 ∇𝐕𝐂∶,𝑒 𝟎𝑁×1 𝟎𝑁×1
]

, 𝑒 = 1, 2,… , 𝑞, (67)

here

𝐘𝐂∶,𝑒 =
[

∇𝐘∶,1
𝐂∶,𝑒 ∇𝐘∶,2

𝐂∶,𝑒 … ∇𝐘∶,𝑛
𝐂∶,𝑒

]

, (68)

here the derivatives ∇𝐘∶,𝑖
𝐂∶,𝑒 and ∇𝐕𝐂∶,𝑒 (with 𝑒 = 1, 2,… , 𝑞) are

iven by

𝐂 =
[

diag
([

𝜕𝑐𝑒
])

𝟎
]

𝑖 = 1, 2,… , 𝑛, (69)
𝐘∶,𝑖 ∶,𝑒 𝜕𝑦𝑖 𝑁×1
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and

∇𝐕𝐂∶,𝑒 = diag
([

𝜕𝑐𝑒
𝜕𝑣

])

, (70)

espectively. Finally, the first derivative of the boundary conditions are
iven as

𝐳𝜙𝑑 =
[

∇𝐘𝜙𝑑 ∇𝐕𝜙𝑑 ∇𝑅i𝜙𝑑 ∇𝑅o𝜙𝑑
]

, 𝑑 = 1, 2,… , 𝑏, (71)

here

𝐘𝜙𝑑 =
[

∇𝐘∶,1
𝜙𝑑 ∇𝐘∶,2

𝜙𝑑 … ∇𝐘∶,𝑛
𝜙𝑑

]

(72)

nd

𝐕𝜙𝑑 =
[

𝟎1×𝑁
]

. (73)

he derivatives ∇𝐘∶,𝑖
𝜙𝑑 , ∇𝑅i𝜙𝑑 and ∇𝑅o𝜙𝑑 (with 𝑑 = 1, 2,… , 𝑏) are

iven by

𝐘∶,𝑖
𝜙𝑑 =

[

𝜕𝜙𝑑
𝜕𝑦𝑖(𝑅i)

𝟎1×(𝑁−1)
𝜕𝜙𝑑

𝜕𝑦𝑖(𝑅o)

]

, 𝑖 = 1, 2,… , 𝑛, (74)

and

∇𝑅i𝜙𝑑 =
𝜕𝜙𝑑
𝜕𝑅i

, ∇𝑅o𝜙𝑑 =
𝜕𝜙𝑑
𝜕𝑅o

. (75)

Also here, it is shown from Eqs. (61)–(75) that the NLP constraint
acobian requires that the first derivatives of 𝐜 and 𝐚 with respect to the
ontinuous states 𝐲 and the control function 𝑣, whereas the derivatives

of 𝝓 are determined with respect to 𝑅i, 𝑅o, 𝐲(𝑅i) and 𝐲(𝑅o). Moreover,
hese derivatives are computed at either the 𝑁 collocation points or at

the endpoints.

5. Results and discussion

In this section, Problems 1–5 are solved by means of the numerical
method described above. The transcription process has been performed
by ad-hoc routines and a dedicated NLP solver has been employed
to numerically solve the optimization problem. In all the simulations
presented here, the termination tolerance on the first-order optimality
and the termination tolerance on the decision variables are set to be
10−9. The two bulk materials are steel and alumina, whose Young’s
moduli are taken to be 𝐸c = 3.9 × 105 MPa and 𝐸m = 2.1 × 105 MPa,
respectively, and whose Poisson’s ratios are 𝜈c = 0.25 and 𝜈m = 0.33,
respectively.

5.1. Numerical solutions

Firstly, a comparison of numerical results for Problem 1 with results
in [21] is made, namely when the Poisson’s ratio is assumed uniform
(𝜈 = 1∕3), for 𝑝i = 10 MPa and for 𝑅i = 20 mm and 𝑅o = 30 mm,
where necessary conditions for optimality under the single switching
point assumption led to closed-form solutions. Figs. 4(a) and 4(b)
forecast the numerical optimal solutions for the rate of change of
the ceramic volume fraction and the corresponding ceramic volume
fraction, respectively. It is clearly shown the existence of one switching
point only, sharply identifiable as the number of mesh points increases.
In particular, it is shown that the optimal solution is the one that first
takes the value v+ and then the value v−, whereas the other solution
must be discarded.

Letting v+ = −0.02, numerical optimal solutions have been forecast
for different values of v−∕v+ = 10, 20, 30 and of 𝑅o∕𝑅i, showing
a good agreement with the locus of the switching point �̃� reported
in Eq. (15), as shown in Fig. 5(a) and commending the analytical
approach adopted in [21]. Given the number of mesh intervals 𝐾 and
based on the symbols 𝛿(𝐾)

1 and 𝛿(𝐾)
2 defined in Fig. 4(a), one can define

a parameter associated with the solution error with respect to the
bang–bang solution as

𝛿(𝐾) = max{𝛿(𝐾), 𝛿(𝐾)} . (76)
10

1 2
Table 2
Normalized maximum equivalent stress 𝜎T

eq,max∕𝑝i associated with the
optimal numerical solutions for both plane stress (Problem 2) and plane
strain (Problem 3) load conditions.

𝑅o∕𝑅i Uniform 𝜈 Variable 𝜈

Voigt & Reuss Voigt Reuss

Problem 2 1.50 2.64784 2.63510 2.63387
1.75 2.13238 2.10822 2.10721
2.00 1.90812 1.87851 1.87790
2.25 1.78525 1.75261 1.75230
2.50 1.70891 1.67442 1.67431

Problem 3 1.50 3.00000 3.00000 3.00168
1.75 2.35846 2.36016 2.35536
2.00 2.08191 2.07584 2.07400
2.25 1.92205 1.90984 1.90848
2.50 1.82429 1.80700 1.80613

Such definition is practical as it gives an immediate idea on the error
on the locus of the switching point �̃� reported in Eq. (15), rather than
the conventional 𝐿∞-norm errors defined on the whole radial interval.
Fig. 5(b) shows that such error measure decreases as the mesh intervals
𝐾 and the number of LGR points in each interval 𝑁𝑘 increase.

Finally, Figs. 6(a) and 6(b) report the agreement found to exist
between elastic stresses associated with the optimal volume fractions
and those obtained by performing a finite element analysis for 𝑅o∕𝑅i =
1.5 and for both rules of mixture.

Critical remarks reported in Section 3.1.3 conveyed to the formu-
lation of Problems 2 and 3, whose solutions are hardly tractable from
the analytical viewpoint. Hence, the proposed numerical procedure is
used. Solutions along the radial direction are computed until a marginal
difference is obtained among successive iterations. The exponent  was
taken to be equal to 60 in all the simulations. As before, solutions
are firstly computed for a constant Poisson’s ratio (𝜈 = 1∕3), just to
make a comparison with results for Problem 1, without the inclusion
of the constraint on the rate of change of volume fractions (as before,
the internal pressure is 𝑝i = 10 MPa). As shown in Figs. 7(a)–7(d)
optimal metallic volume fractions for both Voigt and Reuss models and
for both load conditions are numerically computed with 𝑁𝑘 = 10 and
𝐾 = 9. As shown in these figures, and unlike the stress formulation,
the mixed formulation goes beyond the limits on the maximum and
minimum derivatives of volume fractions, where the material partly
grades throughout the radial coordinate.

As 𝑅o∕𝑅i increases, forecast show that numerical solutions behave
similarly in both plane state conditions, namely there is a finite interval
between 𝑅i and 𝑅o where the material grades, while it is homogeneous
elsewhere. In particular, there are initial and final radial strips where
the optimal distribution of the material yields metallic (𝑉m = 1) and
ceramic (𝑉m = 0) phases, respectively. The position of these radial
strips depends on the geometric aspect of the cylinder. Specifically, the
radial interval where the material grades decreases as the aspect ratio
𝑅o∕𝑅i increases, being fixed the load condition. Numerical solutions
for the normalized maximum equivalent Tresca stress 𝜎T

eq,max∕𝑝i, which
still occur at the inner radius, have been reported in Table 2, where
it is shown they are identical for Voigt and Reuss rules of mixture
as well as lower than those associated with the Pontryagin’s best
extremal obtained from the stress formulation (approximately 34% for
𝑅o∕𝑅i = 1.5, if compared with the maximum equivalent stress shown
in Figs. 6(a) and 6(b)).

Next, the variation of the Poisson’s ratio is taken into account. The
corresponding optimal solutions have been computed and reported in
Table 2 for different aspect ratios. It is emphasized that numerical
solutions do not remarkably differ from those associated with the
uniform Poisson’s ratio. This is due to the marginal variation between
optimal metallic volume fractions for both cases (see Figs. 7(e) and 7(f),
where optimal volume fractions have been computed for 𝑅o∕𝑅i = 2).

Eventually, as far as pressurized hollow spheres (Problem 4) and

freely rotating hollow disks (Problem 5) are concerned, numerical
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Fig. 4. Numerical optimal solutions of (a) the rate of change v∗
c (𝑟) and (b) the ceramic volume fraction 𝑉 ∗

c (𝑟) for 𝑅o∕𝑅i = 1.5 with different mesh points 𝑁𝑘 along the radial
oordinate (Problem 1).
Fig. 5. (a) Analytical and numerical locus of the switching points for v−∕v+ = 10, 20, 30 and for different instance of the aspect ratio 𝑅o∕𝑅i (Problem 1). (b) Solution error 𝛿(𝐾)

defined according to Eq. (76) vs. the number of LGR points in each segment 𝑁𝑘 (Problem 1).
Fig. 6. Finite element validation of occurring stresses associated with the optimal numerical ceramic volume fractions for (a) Voigt and (b) Reuss models for a plane stress load
condition (Problem 1) and for 𝑝i = 10 MPa and 𝑅o∕𝑅i = 1.5.
a
r
i

solutions show similar behavior as the one previously reported for
the cylinder, namely the presence of both radial homogeneous strips
as well as subintervals where the material grades continuously from
the metallic to the ceramic phase. Numerical values for 𝜌m, 𝜌c and
𝜛 have been taken as 7.8×103 kg∕m3, 3.9×103 kg∕m3 and 500 rad/s,
espectively [5]. The corresponding optimal metallic volume fractions
re shown in Figs. 8(a) and 8(b), respectively. Besides the free–free
11

a

(FF) boundary condition, other boundary conditions associated with
the rotating hollow disk problem have been also addressed by simply
imposing different boundary conditions on 𝑦1 and 𝑦2 (see Figs. 8(c)
nd 8(d) for the free–clamped (FC) and clamped-clamped (CC) disks,
espectively). It is worth noting how far the optimal solutions behavior
s from the property variations commonly employed in the literature,
s briefly reported in the following section.
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Fig. 7. Numerical optimal solutions for the metallic volume fraction for (a, c) Voigt and (b, d) Reuss models for the (a, b) plane stress and the (c, d) plane strain conditions and
or different values of 𝑅o∕𝑅i. Effect of the variation of Poisson’s ratio 𝜈 on the numerical optimal solutions for metallic volume fractions for Voigt and Reuss models, for the (e)
lane stress and (f) plane strain conditions and for 𝑅o∕𝑅i = 2.
r
.2. Comparison with the literature

For the sake of comparison with the literature, the mechanical
ehavior of functionally graded cylinders has been forecast by an finite
lement model considering a power gradation law, namely

𝑉 [𝑀→𝐶]
c (𝑟) =

(

𝑟−𝑅i
𝑅o−𝑅i

)𝜇
,

𝑉 [𝐶→𝑀]
c (𝑟) = 1 −

(

𝑟−𝑅i
𝑅o−𝑅i

)𝜇
,

(77)

here 𝜇 is the grading index and notations [𝐶 → 𝑀] and [𝑀 → 𝐶]
efer to having a ceramic material at the inner boundary and a metallic
aterial at the outer boundary and viceversa, respectively. Numerical

alues for the associated normalized maximum Tresca stress have been
12
eported in Table 3 for different values of 𝜇 and 𝑅o∕𝑅i. After a first
examination of these values, it is straightforward to justify why 𝑉m > 0
as 𝑟 → 𝑅i, as computed stresses for [𝐶 → 𝑀] structures yield higher
stresses. This is most probably the reason why a metallic homogeneous
annular ring at the inner boundary is present in the overwhelming
cases (see Figs. 7(a)–11(c)). A comparison between values in Tables 2
and 3 thus reflects the success of the applied approach, albeit some
power-law volume fractions could lead to lower stresses for Problem 3
(see bold numerical values in Table 3). This apparent paradox is easily
solved by the following considerations. As far as [𝑀 → 𝐶] structures
are concerned, Fig. 9 shows elastic stresses that have been forecast
for an internally pressurized cylinder in a plane strain condition with
linear volume fractions (𝜇 = 1) and taking into consideration Voigt
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p

Fig. 8. Numerical optimal solutions for the metallic volume fraction for (a) internally pressurized spheres (Problem 4), (b) free–free (FF), (c) free–clamped (FC) and (d)
clamped-clamped (CC) rotating hollow disks (Problem 5) for different values of 𝑅o∕𝑅i.
Fig. 9. Elastic stresses in an internally pressurized cylinder in a plane strain condition
associated with linear volume fractions (𝜇 = 1) and compared to those associated with
optimal solutions for Problem 3 (𝑅o∕𝑅i = 1.5, Voigt model).

model. It is worth noting that the associated maximum value of the
hoop stress, which is the objective functional in Problem 3, is higher
than the one associated with the optimal volume fraction (see Fig. 7(c)),
thus confirming the results found by the present approach. On the other
hand, as far as [𝐶 → 𝑀] structures are concerned, it is interesting to
lot the rate of change of the ceramic volume fraction 𝑉 [𝐶→𝑀], namely
13

c

vc(𝑟) =
𝑑
𝑑𝑟

𝑉 [𝐶→𝑀]
c (𝑟) =

−𝜇
𝑅o − 𝑅i

(

𝑟 − 𝑅i
𝑅o − 𝑅i

)𝜇−1
, (78)

as it has been done for different instance of the grading factor 𝜇 in
Fig. 10(a), alongside with bounds v− = −0.2 and v+ = −0.02. The
associated normalized equivalent stresses are shown in Fig. 10(b). The
reason why the elastic equivalent stress associated with 𝜇 = 3 is
lower than the optimal one might stem from the violation of both
the lower and upper constraints v− and v+ in different zones along
the cylinder thickness with respect to the other volume fractions. In
fact, if v− becomes −0.4, namely v−∕v+ = 20, normalized maximum
equivalent stresses diminish below the bold values reported in Table 3
(for comparison, see [21]).

5.3. Additional results

For brevity, the following considerations are addressed only for
the cylinder. Without loss of generality, numerical solutions have been
computed for an aspect ratio 𝑅o∕𝑅i = 2.

5.3.1. Effect of external pressure
The effect of the external pressure on optimal solutions is now dis-

cussed. In the formulations of Problems 2 and 3, this can be accounted
for by imposing 𝑦2(𝑅o) = −𝑝o, where 𝑝o is the value of such pressure.
Numerical optimal solutions for different ratios 𝑝o∕𝑝i are shown in
Figs. 11(a) and 11(b). Forecasts have been carried out by employing
a variable Poisson’s ratio along the radial coordinate.

As it is shown, the presence of the radial homogeneous strips may
or may not take place, depending on the employed rule of mixture
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Fig. 10. (a) The rate of change of the ceramic volume fraction (78) for different instances of the grading factor 𝜇 and (b) the associated normalized maximum equivalent stresses.
Fig. 11. Effect of the external pressure on the numerical optimal solutions for metallic volume fractions for Voigt and Reuss models, for the (a) plane stress (Problem 2) and (b,
) the plane strain (Problem 3) conditions and for 𝑅o∕𝑅i = 2.
f
b
c
t
i
S
s
e
c
i
r

nd applied pressure ratio at the internal and external boundaries.
adial strips are not found to be necessarily at boundaries, for instance
ig. 11(c) shows numerical optimal volume fractions for Problem 3 for
ressure ratios 𝑝o∕𝑝i increasingly tending to unity, where radial homo-
eneous strips can occur at several subintervals along the thickness,
eading to the fully homogeneous distribution as a best strategy for the
ase 𝑝o∕𝑝i equal to 1 identically.

.3.2. Inclusion of other micromechanical models
In the previous analyses, reference has been made to rules of mix-

ures only as micromechanical models, though these estimates could
r could not provide upper and lower bounds for these properties. In
14

t

act, while the effective Young’s modulus is bounded to those estimated
y Voigt and Reuss models [44], Poisson’s ratio might not [45]. A
ritical overview of different micromechanical models for the effec-
ive properties estimation could be found in [46] and more recently
n [47,48]. These models include, but are not limited to, Hashin–
htrikman upper and lower bounds, the Mori–Tanaka scheme and the
elf-consistent method [1]. Among all these models, the last one is not
xplicit, i.e. effective properties and volume fractions are nonlinearly
oupled, requiring one to solve an additional subproblem at each
teration. Nevertheless, the present approach can easily include these
equirements. For the sake of example, Figs. 12(a) and 12(b) show
he optimal effective properties by considering each model in the case
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Fig. 12. Optimal variation of (a) Young’s modulus and (b) Poisson’s ratio for an internally pressurized cylinder in a plane stress load condition (Problem 2) and 𝑅o∕𝑅i = 2.
Table 3
Normalized maximum equivalent stress 𝜎T

eq,max∕𝑝i associated with the numerical solu-
ions corresponding to the power gradation law (77) for both plane stress (Problem 2)
nd plane strain (Problem 3) conditions.

𝑅o∕𝑅i [𝑀 → 𝐶] [𝐶 → 𝑀]

Voigt Reuss Voigt Reuss

Problem 2 𝜇 = 3 1.50 3.18459 3.27508 3.88885 3.98321
2.00 2.44731 2.49749 2.81271 2.86198
2.50 2.23278 2.26789 2.47629 2.50948

𝜇 = 2 1.50 3.05397 3.16432 4.01505 4.14888
2.00 2.36460 2.43003 2.88425 2.95764
2.50 2.16854 2.21707 2.52776 2.57938

𝜇 = 1 1.50 2.80599 2.93737 4.32988 4.54603
2.00 2.18976 2.27747 3.07702 3.20747
2.50 2.01935 2.09177 2.67616 2.77600

𝜇 = 0.5 1.50 2.84333 2.82359 4.74929 5.02355
2.00 2.10646 2.14041 3.35564 3.53660
2.50 1.90513 1.93976 2.90586 3.05514

𝜇 = 0.2 1.50 3.09066 2.98965 5.30944 5.54768
2.00 2.26923 2.21266 3.75463 3.92537
2.50 2.03139 1.98925 3.25344 3.40394

Problem 3 𝜇 = 3 1.50 3.19810 3.29516 3.87238 3.97043
2.00 2.44904 2.50353 2.80653 2.85791
2.50 2.23164 2.27006 2.47313 2.50782

𝜇 = 2 1.50 3.06468 3.18416 3.99343 4.13227
2.00 2.36157 2.43333 2.87698 2.95351
2.50 2.16246 2.21612 2.52458 2.57857

𝜇 = 1 1.50 2.80653 2.95047 4.29751 4.52119
2.00 2.17315 2.27037 3.06910 3.20525
2.50 1.99908 2.07988 2.67498 2.77965

𝜇 = 0.5 1.50 2.85201 2.82979 4.70511 4.98849
2.00 2.09001 2.12755 3.34956 3.53875
2.50 1.88480 1.91969 2.91025 3.06723

𝜇 = 0.2 1.50 3.09868 2.99223 5.25299 5.49933
2.00 2.26268 2.20244 3.75463 3.93365
2.50 2.02228 1.97730 3.26920 3.42799

of an internally pressurized cylinder for a plane stress load condition,
showing marginal changes in the position of the radial homogeneous
strips. Moreover, for this particular geometry and applied load con-
dition, it is shown that both Voigt and Reuss estimates for Young’s
modulus and Poisson’s ratio do bound estimates by means of the other
micromechanical models.

5.3.3. Consideration of thermal loads
Finally, the consideration of thermal loads along the radial direction

of the pressurized cylinder is addressed. The inclusion of such situation
is recast by adding the term 𝛼(𝑟)𝛥𝑇 (𝑟) to both radial and hoop strains,
where 𝛼 is the secant coefficient of thermal expansion, 𝛥𝑇 (𝑟) = 𝑇 (𝑟) −
𝑇 ref with 𝑇 ref is the reference temperature for zero thermal stress and

is the temperature along the cylinder thickness. Denoting by 𝜆(𝑟) the
15
thermal conductivity along the radius and letting 𝑦3 and 𝑦4 be the states
corresponding to the temperature and the radial component of the heat
flux, respectively, the material optimization problem associated with
the thermomechanically loaded cylinder in the plane stress condition
can be formulated as follows.

Problem 6. Find the distribution of the metallic volume fraction 𝑉 ∗
m(𝑟)

along the radial direction of the cylinder so that the maximum Tresca
stress is minimized, i.e.,

min
𝑉m(𝑟)

𝜎T
eq,max =

{

∫

𝑅o

𝑅i

(

𝐸(𝑟)
𝑦1(𝑟)
𝑟

+ (𝜈(𝑟) − 1)𝑦2(𝑟)

− 𝛼(𝑟)𝐸(𝑟)
(

𝑦3(𝑟) − 𝑇 ref)) 𝑑𝑟
}1∕

s.t. 𝑦′1(𝑟) = −
𝜈(𝑟)
𝑟

𝑦1(𝑟) +
1 − 𝜈(𝑟)2

𝐸(𝑟)
𝑦2(𝑟) + 𝛼(𝑟)(1 + 𝜈(𝑟))𝑦3(𝑟) ,

𝑦′2(𝑟) =
𝐸(𝑟)
𝑟2

𝑦1(𝑟) +
𝜈(𝑟) − 1

𝑟
𝑦2(𝑟) −

𝛼(𝑟)𝐸(𝑟)
𝑟

(

𝑦3(𝑟) − 𝑇 ref) ,

𝑦′3(𝑟) =
𝑦4(𝑟)
𝑟𝜆(𝑟)

,

𝑦′4(𝑟) = 0 ,

𝑦2(𝑅i) = −𝑝i ,

𝑦2(𝑅o) = 0 ,

𝑦3(𝑅i) = 𝑇i ,

𝑦3(𝑅o) = 𝑇o ,

0 ≤ 𝑉m(𝑟) ≤ 1 ,

(79)

where 𝑅i, 𝑅o, 𝑝i, 𝑇i, 𝑇o, 𝑇 ref and  are given constants and 𝐸(𝑟), 𝜈(𝑟),
𝛼(𝑟) and 𝜆(𝑟) are linked to 𝑉m(𝑟) through (1) or (2).

For the sake of illustrating an example, let 𝑝i = 10 MPa, 𝑇 ref =
0 ◦C and 𝑇o = 20 ◦C. Moreover, let the secant thermal expansion
coefficient and the thermal conductivity obey both Voigt and Reuss
rules of mixture, taking 𝛼m = 1.2 × 10−5 1/◦C, 𝛼c = 0.8 × 10−5 1/◦C,
𝜆m = 0.040 W/m◦C and 𝜆c = 0.018 W/m◦C. Figs. 13(a) and 13(b)
show the best metallic volume fractions along the radial direction to
achieve the lowest maximum value of the Tresca equivalent stress
when the temperature at the inner boundary is 100 ◦C and 150 ◦C,
respectively, and taking into account Voigt and Reuss rules of mixture.
It is shown that there is a preference to adopt a more ceramic-based
graded structure at the inner boundary, in contrast to solutions found
before when the mechanical load was acting alone (see Figs. 7(a)
and 7(b), where the temperature and stress distributions associated
with the optimal volume fractions have been also shown, for both
rules of mixture). As dictated by boundary conditions, the temperature
distribution decreases from 𝑇i to 𝑇o along the radial direction. It is

worth noting that, for fixed values of the applied loads, the adoption
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Fig. 13. Best metallic volume fractions, temperatures and stresses for the thermomechanically loaded cylinder of Problem 6 for (a) 𝑇i = 100 ◦C and (b) 𝑇i = 150 ◦C. Solid and
dashed lines correspond to Voigt and Reuss models, respectively.
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of one rule of mixture than another does not considerably affect the
temperature and stress distributions, although might apparently alter
the microstructure composition. This is in agreement with the former
findings in Figs. 6(a) and 6(b) and Table 2 albeit the absence of thermal
loads.

6. Conclusions

The optimization of the volume fraction distribution to minimize
peak stresses in functionally graded cylinders, disks and spheres is
addressed. The associated optimization problems have been stated
and formulated as dynamic optimization problems by adopting two
different classes of state variables. The advantage of this (tailoring)
approach is that the variation of the decision variable, namely the
volume fraction, is unknown beforehand and not limited to specified
functions (e.g., the power-law function) but is searched among all
possible functions (exhibiting a minimum degree of regularity such
as piecewise continuity). Critical remarks on a previous effort to find
optimal solutions analytically are reported, obliging one to resort to
numerical methods.

Among all, we have shown that pseudospectral methods based on
the state approximation by means of Lagrange interpolation polyno-
mials and the governing equation collocation at a set of Gaussian
quadrature points (Legendre–Gauss–Radau points) can be effectively
applied. The application of such approach leads to the transcription
of the dynamic optimization problems into nonlinear programming
problems, whose solutions have been iteratively found by dedicated
solvers. Expressions for the gradient of the objective functions as well as
the Jacobian of the constraints have been derived through a sensitivity
analysis, in order to reduce the functions evaluations at each iteration.

Most of the analyses have been carried out by considering the
well-known Reuss and Voigt models. However, other models for the
effective properties can be fitted in the same framework. As far as the
loads are considered, the method can be applied to both mechanical
and thermal loads. Optimal solutions for the volume fractions strongly
depend on the geometry, the applied loads and their entity. In any
case, optimal solutions yield enhanced stresses when compared to
those associated with common volume distributions available in the
literature, showing that the more general approach described in the
paper leads to better engineering solutions. The application of the
present numerical approach can be extended to numerous axisymmetric
problems in the realm of mechanical engineering ranging from the
search for thickness distributions for rotating disks complying with
stress and mass constraints to the best arrangement of lay-up angles
in multi-layered filament-wound composite pipes under thermome-
chanical loads. Eventually, further enhancement could be achieved by
using nonsmoothness detection and mesh density reduction through an
16

adaptive mesh refinement method.
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