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Abstract—In this paper, we utilize graph coloring for functions
captured by cycle graphs to achieve lossless function compression.
For functional compression of characteristic graphs or cycles
and their OR graphs, we present a feasible scheme for coloring
the odd cycles and their OR power graphs. In addition, we
calculate the chromatic number for coloring the n-th power of
even cycles, which paves the way for calculating the minimum
entropy coloring. Moreover, we determine the number of distinct
eigenvalues in each OR power and the largest eigenvalue for
each power, which allows us to derive a bound on the chromatic
number of each OR power of a cycle. Our method provides a
proxy for understanding the fundamental limits of compressing
cyclic graphs, which has broad applications in various practical
use cases of cryptography and computer algebra.

Index Terms—Function compression, characteristic graph,
graph coloring, graph entropy, eigenvalues, chromatic number.

I. INTRODUCTION

The concept of data compression in information theory
describes the process of encoding and decoding a source using
fewer bits than its original size of the source, which is given by
Shannon’s entropy [1]. When the sources are distributed and
the goal is to recover them jointly at a user, the Slepian-Wolf
theorem gives the fundamental limits of compression [2]. In
the case of recovering or computing a deterministic function
of distributed sources but not sources themselves, we can
provide a further reduction in compression via accounting for
the structure of the function [3]. This is known as functional
compression, where the function is an abstraction of a task.

A. Motivation and Literature Review

Let us begin with an example. Consider a student database
with information including the rental records, and health, etc.,
of individuals. The Ministry of Science wants to offer housing
aid to a particular group of students, by only requiring infor-
mation on the rental contracts, and the payslips of the students,
and without disclosing their personal data, due to privacy
and redundancy constraints. This scenario is an example of
functional compression, which aims to avoid compressing and
transmitting large volumes of data, and is instead tailored
to the specifics (i.e., the structure, distribution, sensing, or
whatever) of the function.
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towards Future Wireless Networks. Co-funded by the European Union (ERC,
SENSIBILITÉ, 101077361). Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them.

In Shannon’s breakthrough work in [1], the function to be
recovered at the user is the identity function of the source,
i.e., the source itself. In [2], the authors have generalized the
noiseless coding of a discrete information source, given in [1],
to distributed compression and joint decoding of two jointly
distributed and finite alphabet sources. Slepian-Wolf theorem
gives a theoretical bound for the lossless coding rate of
distributed coding of such sources [2]. As shown in their work,
these two data sequences {Xi}∞i=1, and {Yi}∞i=1 are obtained
by repeated independent drawings from a discrete bivariate
distribution. The encoder of each source is constrained to
operate without the knowledge of the other source, while the
joint distribution is available to the decoder. Practical schemes
for Slepian-Wolf compression have been proposed in [4]–[6].

Different from distributed source compression, in functional
compression, the goal is to separately compress the distributed
sources such that a deterministic function f(X,Y ) of these
sources can be calculated by a receiver. Prior attempts on func-
tional compression can be categorized into works focusing on
lossless compression of functions, [1]–[3], [7]–[19], and those
for which the compression schemes tolerate distortion for lossy
reconstruction of functions [20]–[25]. In [10], Orlitsky and
Roche have provided a single letter characterization for general
functions of two variables. The authors have used characteris-
tic graphs, where each graph represents the outcomes of one
source and the pairwise relationships between each source’s
outcomes while maintaining the function structure [10].

Applications of distributed compression problem include
the two special cases studied by Ahlswede and Körner, i.e.,
when f(X1, X2) = X1, and f(X1, X2) = (X1+X2) mod 2
[15]. Körner and Marton, in [14], have derived the rate region
for distributed encoding of two binary sources to compute
their modulo-two sum at the receiver. In [22], Yamamato has
considered a source coding problem for Wyner-Ziv systems, in
which the receiver estimates the value of f(X,Y ) of the input
X given side information Y . In [17], Han and Kobayashi have
established an achievable functional reconstruction scheme,
which depends on the structure of f(X1, X2), but free of the
joint distribution of (X1, X2). Optimal coding schemes and
achievable rate regions for lossless and lossy computation of
f(X,Y ) with side information Y , and distributed compression
of f(X,Y ) have been derived in [9].

B. Overview and Contributions

In this paper, we propose a coding scheme for distributed
functional compression problems; where the source character-



istic graphs can be represented as cycles, i.e., each source
outcome must be distinguished from the two neighboring
(or adjacent) outcomes of the same source. We focus on
asymptotically lossless compression and decoding of functions
with such cyclic characteristic graphs.

Cycle graphs (or cyclic graphs) show up in many practical
scenarios, such as periodic functions, and mod functions,
which are widely used in cryptography, computer algebra, and
science. More specifically, in cryptography, Caesar Ciphers,
Rivest-Shamir-Adleman (RSA) algorithm [26], Diffie-Hellman
[27], as well as Advanced Encryption Standard (AES) [28],
International Data Encryption Algorithm (IDEA), are several
practical examples [29]. The calculation of checksums within
serial numbers is another application of interest [30]. For
example, ISBNs (International Standard Book Numbers) use
mod 11 arithmetic for 10-digit ISBNs or mod 10 for 13-
digit ISBNs to detect errors. In addition, International Bank
Account Numbers (IBANs) use mod 97 arithmetic to identify
mistakes in bank account numbers entered by users.

Why cyclic graphs? There are several key advantages to
having cycles as characteristic graphs and their coloring. When
we color cyclic structures, we can reuse coloring much more
efficiently than when coloring any other connected graph with
a higher average degree, as we will discuss later in Sect. III-C.
In particular, to model a length n source sequence, we use the
n-th OR power1 of the characteristic graph [10] and its valid
coloring to compress the source information for computing
the desired function in a lossless manner as the blocklength
n tends to infinity. The minimum entropy valid coloring gives
a lower bound to the compression length required in bits for
the lossless reconstruction of the desired function. Due to the
features that cycles and their powers can capture, in this paper,
we aim to find valid coloring for both even and odd cycles.

The main contributions of this paper can be listed as follows:

• We characterize the exact degree of a vertex of n-th OR
power for both odd and even cycles.

• We derive the exact chromatic number, denoted by χC2l
,

for even cycles C2l and their OR powers, for l ∈ Z+.
• We devise an achievable coloring scheme for odd cycles

C2l+1 for l ∈ Z+.
• We compute the largest eigenvalue, λ1(C

n
i ), of the adja-

cency matrix An
f for the n-th OR power of cycle graphs.

• We compute a valid coloring of a characteristic graph,
which is in the form of a cycle, in polynomial time2,
exploiting the structure of the graph and its OR powers.

• We derive lower and upper bounds on the chromatic
numbers of OR powers of cycle graphs, χCj

i
, based on

the relationship between the adjacency matrices of cycle
graphs and the eigenvalues of these matrices.

1In this paper, we exclusively focus on the OR graph powers for realizing
lossless compression of multi-letter source realizations [31].

2Note that the problem of finding a minimum entropy coloring in general
graphs (beyond cyclic graphs) is in general NP-hard [32].

C. Organization

The rest of this article is organized as follows. The second
section, II, consists of a review of some technical literature on
graphs, cycles, and their valid coloring. Main results section,
III, contains theorems, and coloring schemes, drawing on the
bounds of the degrees, eigenvalues, and the chromatic numbers
of cycle graphs. In Sect. IV, we summarize our key results and
outline avenues for exploration.

D. Notation

Capital letter X denotes a discrete random variable with
distribution p(x) over the finite alphabet X , whereas x is a
realization of X , and {Xj}∞j=1 is an i.i.d. sequence where each
element is distributed according to p(x). The joint distribution
of the source variables X1 and X2 is denoted by p(x1, x2). For
a length n i.i.d. vector realization of X1, we use the boldface
notation xn

1 = x11, . . . , x1n to represent the length n source
realization. We also let [n] = {1, . . . , n} for n ∈ Z+.

The distributed sources X1 and X2 build the characteris-
tic graphs GX1

and GX2
, respectively, to compute function

f(X1, X2). We denote by χGX
the chromatic number of GX ,

by Ci a cycle graph with i vertices, by Cn
i its n-th OR power,

and by Cj
i (l) the set of distinct colors in sub-graph l ∈ V

(detailed in Sect. III) of the j-th power of Ci.
We denote by JV and IV an all-one and identity matrices of

size V ×V each, by Af the adjacency matrix of Ci = G(V, E),
where Af = (axx′)1≤x, x′≤V is a symmetric (0, 1)-matrix with
zeros on its diagonal, i.e., axx = 0, and axx′ = 1 indicates
that vertices x, x′ ∈ V are adjacent, and axx′ = 0 when there
is no edge between them. We denote by deg(x) the degree
of x ∈ V . The largest and the smallest eigenvalues of Af are
denoted by λ1, and λV , respectively, and ϑ(Cj

i ) is the set of
distinct eigenvalues of the adjacency matrix of Cj

i , i.e., Aj
f .

II. TECHNICAL PRELIMINARY

This section introduces the fundamental concepts related to
graphs, such as degree, independent sets, and cycles [33]–[37].
Furthermore, it discusses some graph-theoretic concepts used
in distributed functional compression, such as characteristic
graphs, OR power graphs, and their coloring [37]–[39].

A. Regular Graphs, Characteristic Graphs, and OR Powers

Consider a graph G(V, E) on a set of vertices V = [V ] and
set of edges E , with the number of vertices being |V| = V .

Definition 1. (Degree of a vertex [33].) The degree of a vertex
x ∈ V , represented by deg(x), of G(V, E) is the number of
edges it is connected to, i.e., the number of its neighbors.

The number of edges in G is determined as

|E| = (
∑
l∈[V ]

deg(xl))/2 . (1)

Along with the notion of the degree of a vertex, we next
introduce the concept of an independent set, which is critical
for determining the valid coloring of a characteristic graph that
we discuss later in Sect. II-B.



Definition 2. (Independent set, and maximal independent set
[34].) An independent set, I(G), in G(V, E) is a subset of
vertices of V , such that no two are adjacent. A maximal
independent set, MIS(G), is an independent set that is not a
subset of any other independent set I(G) of G(V, E).

In the distributed functional compression setting we focus
on here, the function outputs at the receiver can be captured
through source characteristic graphs. To that end, we next de-
fine characteristic graphs to help distinguish between function
outcomes toward providing compression savings.

Definition 3. (Characteristic graph, GX [36].) Source X1

builds a characteristic graph or confusion graph GX1 =
G(V, E) to distinguish the outcomes of a function f(X1, X2)
of the distributed sources X1 and X2 with a joint distribution
p(x1, x2). This graph is constructed using source outcomes,
where V = X1, and for x1

1, x
2
1 ∈ V that are distinct vertices, ∃

an edge (x1
1, x

2
1) ∈ E if and only if there exists a x1

2 ∈ X2 such
that p(x1

1, x
1
2) · p(x2

1, x
1
2) > 0 and f(x1

1, x
1
2) ̸= f(x2

1, x
1
2), i.e.,

these two vertices of GX1
should be distinguished.

The type of characteristic graphs we use in the current
paper falls into the category of cyclic graphs. We note that
a characteristic graph can be either cyclic or non-cyclic based
on the function which it represents. As our next step, we will
define k-regular graphs that contain cycles.

Definition 4. (k-regular graph, and cycles [35], [37].) In
a regular graph G(V, E), each vertex x ∈ V has the same
number of neighbors. The term k-regular graph refers to a
regular graph with a degree of k = deg(x) for all x ∈ V .

Cyclic graphs are members of k-regular graphs. More
specifically, cyclic graphs are 2-regular graphs and their
adjacency matrices are symmetric (0, 1) matrices.

To present the concept of characteristic graphs clearly, the
following example is provided.

Example 1. Consider the problem of distributed functional
compression of f(X1, X2) = (X1 + X2) mod 2 with two
sources X1 and X2 and one receiver. Source one X1 is
uniform over the alphabet X1 = {0, 1, 2, 3, 4, 5}, and X2 is
uniform over X2 = {0, 1}. Because for even X1, the function
output is f(X1, X2) = X2, and for the odd values of X1, we
have f(X1, X2) = X2 + 1. At source X1 even outcomes do
not need to be distinguished from each other and are assigned
the color G, while odd outcomes of X1 are assigned the color
Y , and similarly for X2. We illustrate the coloring of GX1

and
GX2 in Fig. 1. For decoding f , it is necessary and sufficient
[12], if the receiver has the color pairs (Y, G) or (G, Y ), to
determine the function outcome, which is 1, whereas, for the
pairs (Y, Y ) and (G, G), to infer that the outcome is 0.

To determine the number of bits needed for multiple source
instances, and realize the fundamental limits of functional
compression of a source sequence [3], we exploit the notion
of OR powers of graphs, as introduced next.

Fig. 1. The problem of a distributed functional compression with two sources,
with the characteristic graph for X1, i.e., GX1 , being cyclic, and a receiver.

Definition 5. (n-th OR power graph, Gn
X [37]–[39].) For n >

1, the n-th OR power of GX = G(V, E) is represented as
Gn

X = (Vn, En) where Vn = Xn, and for distinct vertices
xn
1 = x1

11, . . . , x
1
1n ∈ Vn , and xn

2 = x1
21, . . . , x

1
2n ∈ Vn

it holds that (xn
1 ,x

n
2 ) ∈ En , when ∃ at least one l ∈ [n]

such that (x1
1l, x

2
1l) ∈ E , where recall that this condition is

determined by the rule in Defn. 3 for building GX .

The total number of vertices in Vn is represented by V n.
The total number of edges in Gn

X, i.e., |En|, can be determined
evaluating deg(xn

l ), l ∈ [V n] and using (1).

Definition 6. (Sub-graphs of Gn
X.) Given the n-th power

graph Gn
X, the set of V graphs {Gn−1

X (l)}l∈[V ] in Gn
X, each

corresponding to a replica of the (n− 1)-th power of GX, is
denoted as the sub-graphs of Gn

X.

The use of OR powers in determining the rate regions in
the asymptotic regime for distributed lossless compression of
functions is explored in [12] and [13], where the authors have
demonstrated that the lowest sum rate could be achieved by
encoding the n-th OR power graphs built using Xn

1 and Xn
2 ,

p(xn
1 ,x

n
2 ), and f(x1, x2) in the limit as n goes to infinity.

Having defined these theoretical tools for our functional
compression problem, we next focus on how to utilize them.

B. Coloring of Characteristic Graphs

In this paper, we envision a vertex coloring perspective
for the encoding of characteristic graphs. A valid or proper
coloring of GX1 is such that each vertex of GX1 is assigned a
color, and adjacent vertices of GX1 receive distinct colors. In
other words, a valid coloring in our distributed compression
setting determines which source realizations should be as-
signed different codes (colors). Nonadjacent vertices can be
assigned the same or different colors. The minimum number of
colors required to achieve a valid coloring of GX1 is called the
chromatic number, χGX1

. The problem of determining χGX1

is connected to finding the maximal independent sets of GX1
,

and is in general NP-complete [32]. A sufficient condition for
achieving a minimum entropy coloring is as follows. Provided
that p(x1, x2) > 0, ∀ (x1, x2) ∈ X1 × X2, the maximal
independent sets of GX1 and of its power Gn

X1
, for n > 1,

are some non-overlapping fully-connected sets [12]. Under
this condition, the minimum entropy coloring of GX1

can be
achieved by assigning different colors to its different maximal
independent sets (see e.g., Sect. III-A).

Next, in Sect. III, we detail our coloring approach devised
specifically for cycle graphs.



III. MAIN RESULTS

Let Ci be a cycle graph with i vertices that represents the
characteristic graph source X1 builds for computing f , where
for an even cycle we have i = 2l, and for an odd cycle, we
have i = 2l + 1, for some l ∈ Z+. We seek to achieve an
asymptotically lossless functional compression of sources to
recover the colors of Ci. To that end, we need to determine
the optimal coloring for the n-th power of Ci, denoted by Cn

i .
We start this section by determining the degree of each

vertex of the j-th power of Ci, i.e., Cj
i .

Theorem 1. The degrees in the n-th OR power of a cycle
graph, Cn

i for n ≥ 2, are calculated as follows:

deg(xn) = 2 +
∑

j∈[n−1]

2(V j) , ∀xn ∈ Vn . (2)

Proof. See Appendix A.

From Theorem 1, when GX = Ci is a cycle, Gn
X = Cn

i is
a k-regular graph, i.e., deg(xn

l ) = k, for some even number
k ∈ Z+, ∀ l ∈ [V n], as given by (2). We will next calculate
the chromatic number of χCn

i
, n ≥ 1, for i = 2l, l ∈ Z+.

A. Coloring Cyclic Graphs

In this part, we first discuss even cycles and their j-th
powers, and determine their chromatic numbers (see Theorem
2). Then, we analyze odd cycles, for which we introduce a
valid coloring scheme (see Prop. 1 and App. B).

1) Even Cycles: We first consider even cycles, which are
denoted by C2l, l ∈ Z+. Vertices are sequentially numbered in
a clockwise direction, e.g., see GX1 in Fig. 1, and alternately
colored. Even vertices are represented by one color, while odd
vertices are denoted with a different color.

Theorem 2. The chromatic number of Cn
2l is given as

χ(Cn
2l) = 2n , l ∈ Z+ , n ≥ 1 . (3)

Proof. In order to cover all vertices in Cn
2l, l ∈ Z+, only two

colors are required. Subsequently, for C2
2l, the sub-graphs are

{C2l(1), C2l(2), . . . , C2l(2l)}. The reason for having 2l sub-
graphs in C2

2l can be explained as follows. There are (2l)2

vertices in C2
2l such that each sub-graph C2l(·), i.e., a 1-st

power graph, has 2l vertices. Due to the fact that each sub-
graph is two colorable, and the vertices of adjacent sub-graphs
are fully connected, the colors of the two sub-graphs should
differ. For example, consider {C2l(l1 mod (V )), C2l(l1 + 1
mod (V ))}. Consequently, each of these sub-graphs requires
two different colors disjoint across C2l(l1 mod (V )) and
C2l(l1+1 mod (V )), resulting in a total of 4 colors. However,
due to the cyclic characteristic of power graphs, it is possible to
alternate colors from C2l(l1 mod (V )) to cover the vertices
of C2l(l1 + 2 mod (V )) for any l1 ∈ [2l], and so on, and
similarly for the sub-graphs of C2

2l with even indices.
Using induction, we can calculate the number of colors

needed to reach a valid coloring from (n−1)-th to n-th powers.
Finally, we can calculate χCn

2l
by the relation in (3).

We show a valid coloring for the 3 − rd power graph C3
4

of the even cycle C4 in Fig. 2.

Fig. 2. A valid coloring of C3
4 with 8 colors.

2) Odd Cycles: Our next consideration is odd cycles,
namely C2l+1, l ∈ Z+. In the special case with 3 vertices,
i.e., for C3, a valid coloring requires 3 distinct colors to
successfully recover the coloring information of the vertices in
decoding. In C2

3 , each sub-graph of a power graph, i.e., C3(1),
C3(2), and C3(3), requires 3 different colors since C3 is a
complete graph. Similarly, using induction we can show that
for a valid coloring of Cn

3 the minimum number of required
colors is given as χCn

3
= 3n, n ≥ 1. In fact, because C3 is

complete, one cannot exploit color reuse.
Unlike C3, for coloring C5, which is not complete, one

could reuse the colors. A valid coloring of C5 has χC5 = 3.
We next present an achievable scheme for valid coloring of
general odd cycles C2l+1 and their powers, namely, Cn

2l+1.

Proposition 1. (Chromatic number of odd cycles.) The
chromatic number can be recursively computed as follows:

χCn+1
i

= 2χCn
i
+

⌈χCn
i

2

⌉
, n ≥ 1 (4)

where χCn
i

is the chromatic number of Cn
i , i.e., the n-th OR

power of an odd cycle, where i = 2l + 1 for some l ∈ Z+.

Proof. See Appendix B.

The value of χCn
2l

in Theorem 2 for even cycles is exact, but
for odd cycles, it is not. However, we note from Prop. 1 that,
χCn

i
for n ≥ 1 can be determined from χCi

. It remains unclear
whether, in general, we can lower and upper bound chromatic
numbers χGX

of characteristic graphs. By exploiting the
eigenvalues of the adjacency matrix, we will next bound χGX

.

B. Eigenvalues of An Adjacency Matrix of Cyclic Graphs

It is possible to bound χCi
for a cycle graph Ci = G(V, E)

using the eigenvalues λi(Ci) (where Ci has V eigenvalues)
of its adjacency matrix Af distinguishing the outcomes of a
function f . We can calculate the largest eigenvalue λV n(Cn

i )
of the adjacency matrix of n-th power of Ci, i.e., An

f , exploit-
ing the eigenvalues of the V × V all-ones matrix, denoted by
JV . To begin with, let us describe the characteristics of JV .

Lemma 1. The eigenvalues of the all-ones matrix JV are 0
and V , with algebraic multiplicities V −1 and 1, respectively.



Fig. 3. The 2-nd power of C5 and its valid coloring.

Proof. See Appendix C.

The adjacency matrix of the n-th OR power, An
f , of a cycle

Ci = G(V, E) is presented as follows:

An
f =


An−1

f JV n−1 0V n−1 . . . 0V n−1 JV n−1

JV n−1 An−1
f JV n−1 0V n−1 . . . 0V n−1

...
...

...
. . .

...
...

JV n−1 0V n−1 0V n−1 . . . JV n−1 An−1
f

 ,

(5)

which has a block structure, with V row partitions of size V
for each partition. In every block row of An

f , i.e., a sub-matrix
of An

f that is obtained by selecting a set of consecutive rows
from the matrix, with the number of rows equal to the number
of rows in An−1

f , and there are exactly two JV matrices. From
Lemma 1, the largest eigenvalue of the JV matrix is equal to
V , i.e., λ1(JV ) = V . In order to calculate the eigenvalues of
An

f , one needs to solve |An
f − λ(Cn

i )IV n | = 0.
Let λl(Ci), l ∈ [V ] be the eigenvalues of Af , and

νl(C
2
i ), l ∈ [V 2] be the eigenvalues of A2

f which is a V 2×V 2

matrix. Let ul, l ∈ [V ] be the set of eigenvectors of Af . We
also let vl, l ∈ [V 2] be the set of eigenvectors of A2

f .
We solve the equations Afu = λ(Ci)u to determine the

eigenvalues λ(Ci) of Af . Similarly, for the 2-nd power graph,
we have A2

fv = ν(C2
i )v for A2

f . The eigenvalues ν(C2
i ) of

A2
f can be determined by solving the following matrix:

Af JV 0V . . . 0V JV

JV Af JV . . . 0V 0V
...

...
...

...
...

...
JV 0V 0V . . . JV Af

v = ν(C2
i )v , (6)

where v = [v⊺
1 ,v

⊺
2 , . . . ,v

⊺
V ]

⊺, and each vl, l ∈ [V ] is
V × 1. In other words, for each ν(C2

i ), we have a set of V
block row equations, each containing V scalar equations. More
specifically, ν(C2

i ) satisfy the following V block equations:

Afvl + JV vl+1 + JV vl−1 = ν(C2
i )vl , l ∈ [V ] . (7)

Using (7), we next derive the eigenvalues of An
f .

Theorem 3. The adjacency matrix An
f for the n-th OR

power of cyclic graphs, where n ≥ 2, has the same distinct
eigenvalues of An−1

f as well as two new distinct eigenvalues.

Proof. See Appendix D.

Let us consider G to be a general characteristic graph
with an adjacency matrix Af . The following section presents
bounds on the eigenvalues of An

f for n-th OR powers of G.

C. Bounds on Chromatic Number Derived from Eigenvalues

The following inequality provides bounds on χG, i.e., the
chromatic number of graph G = (V, E):

1− λ1(G)

λV (G)
≤ χG ≤ ⌊λ1(G)⌋+ 1 , (8)

where λ1(G) is the largest eigenvalue, and λV (G) is the
smallest eigenvalue of G, respectively [40], and the lower and
the upper bounds are derived from [41] and [42], respectively.

Our objective is next to refine the bound in (8) for χCj
i

derived from Aj
f , j ∈ [n]. To that end, we first consider

the smallest eigenvalue of matrix Af , which is λV (Ci).
In accordance with Brigham and Dutton [43], we have the
following lower bound on the V -th eigenvalue in Af of Ci:

λV (Ci) ≥ −
√
2|E|(V − 1)/2 . (9)

For the 2-nd power graph C2
5 , (9) yields λV 2(C2

5 ) ≥ −60.
The set of distinct eigenvalues, ϑ, for A2

f are calculated
as ϑ(C5) = {−1.618, 0.618, 2}, and similarly ϑ(C2

5 ) =
{−6.090,−1.61803, 0.61803, 5.09016, 12} for C2

5 .
Consider the set ϑ(C2

5 ), where λV 2(C2
5 ) = −6.09, which

satisfies the bound presented in (9). Later, Hong [44] has
derived the following lower bound for graph G:

λV (G) ≥ −
√
(V/2)[(V + 1)/2] , (10)

where we note that for C2
5 , it holds that λV 2(C2

5 ) ≥ −12.748.
By observing the lower bounds on λV 2(C2

5 ) from (9), and
(10), for the 2-nd power, one can find that the bound by Hong
in [44] is tighter. Hence, we can enhance the bounds on χCj

i

in (8) using the bound for λV (G) in (10) given by Hong [44].
For cyclic graphs, we recall from Theorem 1 that all vertices

of Cn
i for n ≥ 2 have the same degree. Using this result, we

next derive an exact characterization for λ1(C
n
i ), n ≥ 2.

Theorem 4. The largest eigenvalue λ1(C
n
i ) of the n-th OR

power of a cycle graph Cn
i is determined as follows:

λ1(Ci) = 2 , λ1(C
n
i ) = 2 +

∑
j∈[n−1]

(2V j) , n ≥ 2 . (11)

Proof. See Appendix E.

The bounds in (8) are enhanced by utilizing the exact values
for λ1(C

n
i ) given in Theorem 4. Ideally, we aim to sharpen

these and extend them to include a wider range of charac-
teristic graphs beyond cycles. Our method for constructing
An

f results in a lower complexity versus methods that do not
exploit the structure of a given function (e.g., [45] and [46]),
hence, leading to a reduced functional compression rate.

By exploiting the bounds on the eigenvalues of Af given
above, we next derive new lower and upper bounds on χCn

i
.



Proposition 2. The following bound holds for χCn
i

:

1−
2 +

∑n−1
j=1 (2V

j)

−
√
(V n/2)[(V n + 1)/2]

≤ χCn
i
≤

n−1∑
j=1

(2V j) + 3 .

Proof. See Appendix G.

Remark 1. From Theorem 1, the total number of edges |E|
given in (1), and the lower bound on λV (Ci) given in (9), we
derive the following new bound for χCn

i
:

1−
2 +

∑n−1
j=1 (2V

j)

−
√
2|E|(V n − 1)/2

≤ χCn
i
≤ 1 + (2 +

n−1∑
j=1

(2V j)) ,

where the term 2+
∑n−1

j=1 (2V
j) that appears both in the LHS

and RHS is equal to the largest eigenvalue of An
f (see (11)).

We provide a more comprehensive overview of the largest
and smallest eigenvalues and bounds on chromatic numbers in
Appendix F. These bounds were utilized for deriving bounds
on the chromatic number of a general graph and comparison
purposes alongside the bounds presented in this section.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we present a new method for distributed
compression of functions with characteristic graphs that are
represented as cycles and multi-shot computing of functions
through OR graph powers. Our approach can achieve the
minimum entropy coloring (see e.g., Theorem 1 and Prop. 1)
for cycle graphs, while it might not be possible to achieve
such a coloring for other connected graph types. Our findings
include the analysis of the degree of a vertex for the n-th
OR power of cycles and the chromatic number required for
coloring even cycles. Additionally, our contributions include a
novel scheme for coloring odd cycles that reduces entropy,
offering improved compression efficiency. Furthermore, we
examine the properties of the adjacency matrices of power
graphs, particularly for cycles, and establish bounds for the
chromatic number based on the eigenvalues of the adjacency
matrices of such graphs. Our approach introduces a new and
efficient cyclic coloring technique, as outlined in Prop. 1 and
App. B, for the purpose of function compression. Possible
future directions include improving the bound in Prop. 2
for general graphs based on the properties in Theorem 2,
Lemma 1, and Prop. 1. Specifically, we aim to determine the
distribution of coloring, to derive bounds on the entropy of
cycle graphs, which will be followed by achieving the entropy
of fractional coloring for the n-th OR powers of such graphs
(cf. [13]). These bounds can also be applied to characteris-
tic graphs beyond cycles to realize the limits of functional
compression for more general computation scenarios.

APPENDIX

A. Proof of Theorem 1

Consider a cycle Ci = (V, E), with a total number of ver-
tices V . It is known that each vertex in Ci has a degree of two
from Defn. 4. The second power can be represented by C2

i =

(V2, E2), and it has V sub-graphs {Ci(1), Ci(2), . . . , Ci(V )}.
For a given sub-graph, say Ci(l), l ∈ [V ], any x1(l) ∈ Ci(l),
where x1(l) denotes a vertex in the l-th replica of Ci, is
connected to any vertex of the adjacent sub-graphs, namely
∈ {Ci((l−1) mod (V )), Ci((l+1) mod (V ))}. Therefore,
each vertex in Ci(l) has V edges to Ci((l − 1) mod (V ))
and Ci((l+1) mod (V )) each. For n = 2, taking the sum of
the number of edges between adjacent sub-graphs, and each
vertex’s degree in the sub-graph itself, the degree of each
vertex in C2

i is deg(x2
1) = 2 + 2V . When n = 3, the degree

of vertex x3
1 can be calculated by adding the number of edges

connecting it to adjacent sub-graphs and the degree of the
vertex in n = 2. This results in deg(x3

1) = 2 + 2V + 2V 2.
For a given sub-graph Cn−1

i (l), each vertex xn−1
1 (l) is

connected to all vertices in the adjacent sub-graphs, Cn−2
i ((l−

1) mod (V )) and Cn−2
i ((l + 1) mod (V )). Therefore, the

degree for the (n − 1)-th power, by considering the pre-
vious power’s degree and using induction, is going to be
deg(xn−1

1 ) = 2+2V +2V 2+· · ·+2V n−2 = 2+
∑n−2

j=1 2(V j).
Similarly, for building the n-th power graph of a cy-

cle, using the same procedure, there are V sub-graphs
{Cn−1

i (1), Cn−1
i (2), . . . , Cn−1

i (V )}. Like the second power
graph, the sub-graph Cn−1

i (l), l ∈ [V ], is fully connected to
the adjacent sub-graphs {Cn−1

i ((l−1) mod (V )), Cn−1
i ((l+

1) mod (V ))}. Therefore, for the n-th power, the degree for
each vertex xn can be found using (2).

B. Proof of Proposition 1

The cycle characteristic graph C5 is 3 colorable. The
second power, C2

5 , has a valid coloring using 8 colors, as
shown in Fig. 3, which provides a saving from the greedy
coloring algorithm with 9 colors. We use coloring sets for
sub-graphs instead of coloring the entire structure at once
and encountering difficulties finding optimal coloring. The
coloring set, namely Ci(l), is a set of colors that can be used
for the valid coloring of sub-graph l. It is important to ensure
that no two neighboring coloring sets share the same color.

To achieve a valid coloring, we divide the set of vertices into
sub-graphs and assign to each a set of colors. The minimum
number of colors required for coloring these sets is known.
The following example will help us understand it better.

As previously mentioned, coloring C5 requires three distinct
colors, e.g., {c1, c2, c3}. It is also evident that the cardinality
of the color set for Cn

i changes based on χCn−1
i

that is, the set
contains the number of distinct colors needed to color the sub-
graph. However, the number of coloring sets is always constant
and equal to the number of vertices on Ci, |V| = V . In the
case of C5, there are 5 sets of coloring assigned to the sub-
graphs. To cover the sub-graphs assigned to the first two color
sets, the adjacent coloring sets cannot share the same colors.
Thus, {c1, c2, . . . , c6} are required in the first two coloring
sets, namely C2

5(1) and C2
5(2). Consequently, we can reuse the

colors from the first set, since there is no edge between the
first C2

5 (1) and third C2
5 (3) sub-graphs. It is easy to note that

by adding only 2 colors to the third color set and using them



in a cyclic manner, all vertices are colored with only 8 colors,
which allows us to express C2

5(l) for l ∈ [5] as:

C2
5(1) = {c1, c2, c3}, C2

5(2) = {c4, c5, c6},
C2
5(3) = {c7, c8, c1}, C2

5(4) = {c2, c3, c4},
C2
5(5) = {c5, c6, c7} .

Based on the number of colors used on coloring sets, the
size of five coloring sets for the next power will be adjusted. In
this case, the set size for the next power is 8. For C3

5 , we will
follow the same method, which results in a chromatic number
of 20. Hence, we can express C3

5(l) for l ∈ [5] as

C3
5(1) = {c1, c2, c3, c4, c5, c6, c7, c8},

C3
5(2) = {c9, c10, c11, c12, c13, c14, c15, c16},

C3
5(3) = {c17, c18, c19, c20, c1, c2, c3, c4},

C3
5(4) = {c5, c6, c7, c8, c9, c10, c11, c12},

C3
5(5) = {c13, c14, c15, c16, c17, c18, c19, c20}.

Using induction, we can show that C4
5 requires 50 colors. The

followings are the chromatic numbers for the graph powers:
χC1

5
= 3, χC2

5
= 8, χC3

5
= 20, χC4

5
= 50, χC5

5
= 125, and

χC6
5
= 313, and so on. From this pattern, it is easy to note

that, by induction, χCn+1
i

can be determined as (4).

C. Proof of Lemma 1

Let IV be the V ×V identity matrix, and JV be the square
V × V all-ones matrix, which can be represented as follows:

JV = (1xx′)1≤x, x′≤V . (12)

For computing the eigenvalues, first, we need to solve the
characteristic equation of JV , which is JV uV = λ(JV )uV ,
or equivalently, |JV − λ(JV )IV | = 0, where u represents an
eigenvector that satisfies the following relationship:

JV uV = λ(JV )uV =

u1 + u2 + · · ·+ uV

...
u1 + u2 + · · ·+ uV

=

λ(JV )u1

...
λ(JV )uV

 .

Hence, multiplying JV by the eigenvectors uV, clearly, the
above relation implies that the eigenvalues λ(JV ) satisfy

λ(JV ) =

{
V with multiplicity 1,

0 with multiplicity V − 1 ,

which gives the final result.

D. Proof of Theorem 3

Assume that Af has V eigenvalues. To find the eigenvalues
of A2

f , one needs to solve the equation, (7), that comes from
computing the eigenvalues of (6), which gives V equations
for each block row, with V eigenvalues. Hence, there are V 2

equations, from which the remaining (V − 1) × V equations
are just replicas of the eigenvalues of any given block row, due
to cyclic symmetry. In (7), due to the cyclic nature, the terms
with indices l + 1 and l − 1 are in modulo V . There are two
additional equations necessary for calculating eigenvalues of
the adjacency matrix as the power increases from n− 1 to n.

Both Af and JV are diagonalizable due to symmetry and can
be transformed into diagonal matrices HAf

and HJV
using a

matrix P . The relationship between the matrices is expressed
as Af = P−1HAf

P and JV = P−1HJV
P .

Note 1. In symmetrical matrices, all eigenvalues are real [47].

If we consider the sum of Af and JV , it holds that

Af + JV = P−1HAf
P + P−1HJV

P = P−1(HAf
+HJV

)P .

The eigenvalues of Af + JV can now be computed using the
diagonal of HAf

+ HJV
, where λ(Af ) and λ(JV ) represent

the eigenvalue of Af and JV matrices, respectively.

λ(Af + JV ) = λ(Af ) + λ(JV ) (13)

From Lemma 1, the number of distinct eigenvalues of A2
f

differs from the eigenvalues of Af at most by two, and
similarly for the eigenvalues of Aj

f , j ∈ {Z+≥2} derived from
Aj−1

f of the (j−1)−th power graph. From (5), the sub-graph
Aj−1

f in Aj
f will have the following form:

Aj−1
f vl + JV j−1vl+1 + JV j−1vl−1 = νvl, l ∈ [V ] , (14)

where j ∈ {Z+≥2}, and the dimension of the column vector vl

is V j−1×1. The adjacency matrix for the n-th power, namely
An

f , is constructed by combining An−1
f , JV n−1 from the (n−

1)-th power, and V n−1 × V n−1 zero matrices, as specified in
(5). The first block row of An

f contains the matrix An−1
f , the

two JV n−1 matrices representing full connections to adjacent
two sub-graphs, and the remaining V n−1×V n−1 zero matrices
indicating the absence of edges between sub-graphs, which
impacts the calculation of eigenvalues. Accordingly, the n-th
power of the cycle graph has two more distinct eigenvalues
from the (n− 1)-th power of the cycle graph. As a result, by
using Lemma 1, we can prove Theorem 3.

E. Proof of Theorem 4

The eigenvalues of the adjacency matrix of Cj
i can be

derived through generalizing (7), From (13) and (14) it can
be observed that the largest eigenvalue for a power graph
Cn

i is obtained by adding up the largest eigenvalue of An−1
f

corresponding to a sub-graph Cn−1
i with 2 times the largest

eigenvalue of JV n−1 , which is V n−1 (see Lemma 1). Hence,
we can derive the final result given in Theorem 4.

F. Additional Bounds on the Largest and Smallest Eigenvalues
of Graph Adjacency Matrices

In this section, we will explore several additional bounds
on the largest λ1(G) and the smallest λV (G) eigenvalues of
adjacency matrices of a graph G(V, E), in addition to the
ones in Sect. III-C. Barnes in [48] used the Hoffman-Wielandt
inequality [49], and the eigenvalues and the eigenvectors of an
adjacency matrix to partition the vertex set of a graph such
that the resulting partitions have fewer edges between them
than any other possible subsets, which ensures a tight upper
bound for the largest eigenvalue of the matrix.



For the largest eigenvalue λ1(G), there exist several bounds
[44], [50], [51]. For instance, Das and Kumar [50] proved that

λ1(G) ≥
√

2|E| − (V − 1)dV + (dV − 1)d1 , (15)

where d1 = max
x∈V

(deg(x)) and dV = min
x∈V

(deg(x)).

In [50], the authors also bounded λV (G):

λV (G) ≥ −
√
2|E| − (V − 1)dV + (dV − 1)d1 . (16)

Hong obtained the following lower bound for λV (G) [44]:

λV (G) ≥ −
√
V (V + 1)/2 , (17)

Similarly, Brigham and Dutton bounded λV (G) as [43]:

λV (G) ≥ −
√
2|E|(V − 1)/2 . (18)

G. Proof of Proposition 2

Combining equation (8), which bounds λ1(G) and λV (G)
of Af for G = Cn

i , with Theorem 4, as well as the Hong
bound (10) for λV (G) [44], we have

1−
2 +

∑n−1
j=1 (2V

j)

−
√
(n/2)[(n+ 1)/2]

≤ χG ≤
⌊
2 +

n−1∑
j=1

(2V j)
⌋
+ 1 .

Further simplifying the floor function on the RHS by plugging
a positive integer-valued λ1(C

n
i ) (see Theorem 4), we obtain

the result in Prop. 2.
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