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This paper deals with Pythagorean hodograph curves of the spaces of algebraic trigonometric functions and trigonometric polynomials, span {1, t, {cos (kt) , sin (kt)} m k=1 } and span {1, {cos (kt) , sin (kt)} m k=1 } , respectively. First, we propose a general characterization of planar PH curves in these spaces. Next, we consider the particular cases m = 1 and m = 2. For each of them, we give the general form of the control polygon of the PH curves, the implicit relations defining these curves, and their geometrical interpretations. Some examples and particular cases complete this study.

Introduction

The rational parameterization, including polynomial parameterization (NURBS, Bézier curves and surfaces) is one of the most commonly used schemes in CAD and CAGD for the representation of curves and surfaces. However, this scheme, mainly defined with the help of Bézier's model, contains some drawbacks, as detailed by Mainar & All [START_REF] Mainar | Shape preserving alternatives to the rational bézier model[END_REF]. Among them, we may mention in particular the fact that it only allows the representation of a limited number of curves. Even if the trigonometric curves can be parameterized in rational form, this transformation is made at the expense of the quality of the parameterization: for instance, it at been demonstrated in [START_REF] Rida | Real rational curves are not 'unit speed[END_REF] that such a curve can not be parameterized by its arc length. Even in the case of a simple curve as the circle, the rational parameterization has desavantages: difficulty in representing a whole circle or loss of regularity at the junction points (see [START_REF] Fiorot | The circle as a smoothly joined br-curve on [0, 1][END_REF]).

The works of Carnicer and Peña have first shown in [START_REF] Carnicer | Shape preserving representations and optimality of the bernstein basis[END_REF] that among the normalized totally positive bases of polynomial spaces, the Bernstein basis was optimal for shape-preserving properties (decrease of the variation, convex hull property, tangency to the control polygon endpoint). They then established that, in any space having normalized totally positive bases, we can find a unique basis, called normalized B-basis, possessing these shape-preserving properties [START_REF] Carnicer | Totally positive bases for shape preserving curve design and optimality of b-splines[END_REF]. These results thus allow the transfer of the most interesting properties of the rational and polynomial Bézier curves to other spaces. In [START_REF] Mainar | Optimal bases for a class of mixed spaces and their associated spline spaces[END_REF], Mainar and Peña first constructed normalized B-bases in spaces spanned by algebraic polynomials or trigonometric or hyperbolic functions. Then, Mainar, Peña and Sanchez-Reyes determined in [START_REF] Mainar | Shape preserving alternatives to the rational bézier model[END_REF] the normalized B-bases for spaces of curves for which the parameterization consists of trigonometric and polynomial functions, in particular for the sets of trigonometric polynomials F m (K) = span {1, {cos (kt) , sin (kt)} m k=1 } and for the algebraic-trigonometric functions P m (K) = span {1, t, {cos (kt) , sin (kt)} m k=1 } , for m = 1 and 2, where K can be either R or C. Let us notice that such curves could be described as a particular case of generalized splines in their trigonometric space (see [START_REF] Wang | Unified and extended form of three types of splines[END_REF] and [START_REF] Manni | Generalized b-splines as a tool in isogeometric analysis[END_REF]). The spaces P m (K) present numerous advantages: they allow the representation of several classic curves, such as ellipses, cycloids, lemniscates, etc., supplying in particular the arc length parameterization of the circle. Contrary to the rational Bézier curves, the complexity of the representation does not increase with the derivative. Finally, these spaces contain the arc-length parameterization of line segments and arcs of a circle, in the same framework. This point is important in some industrial applications where the curves are still mainly defined by these elements.

However, this will result in having to manipulate the elements derived from these objects, such as the arc length, the curvature, the offset curves or surfaces, etc. Therefore, it is important that these quantities can be computed explicitly. This aim was reached within the framework of polynomial planar curves by Farouki and Sakkalis [START_REF] Rida | Pythagorean hodographs[END_REF] with the Pythagorean hodograph curves, denoted PH curves: a polynomial curve R(t) is said to be a PH curve if and only if the Euclidian norm of its hodograph R (t) is also a polynomial. They have been exhaustively studied by Farouki (see [START_REF] Farouki | Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable[END_REF]) and a survey of the work done on PH curves in the decade 2008-2018 can be consulted in [START_REF] Farouki | New Developments in Theory, Algorithms, and Applications for Pythagorean-Hodograph Curves[END_REF]. These results can be extended to trigonometric polynomials and algebraic-trigonometric curves and could be adapted to various applications (like interpolations, splines, transition between various geometrical objects, etc).

The present paper is thus dedicated to the studies of spaces of algebraic trigonometric PH curves, called AT P H curves, which have been partially studied by Romani & All [START_REF] Romani | Algebraic-trigonometric pythagoreanhodograph curves and their use for hermite interpolation[END_REF] who were particularly interested in the set P 2 (K) and in its application for Hermite interpolation. Here, we propose more general results allowing us to determine all the AT P H curves of a given order, as well as an in-depth study of those of the spaces P 1 (K), P 2 (K), F 1 (K) and F 2 (K). By extending the works of Farouki and Sakkalis on the polynomial case [START_REF] Farouki | Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable[END_REF], [START_REF] Farouki | New Developments in Theory, Algorithms, and Applications for Pythagorean-Hodograph Curves[END_REF] and [START_REF] Rida | Pythagorean hodographs[END_REF], we verify that AT P H curves are characterized by the Pythagorean condition. Then, we show that the complex expression of these curves, introduced by Farouki for Bézier polynomials [START_REF] Farouki | Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable[END_REF], [START_REF] Farouki | New Developments in Theory, Algorithms, and Applications for Pythagorean-Hodograph Curves[END_REF] and [START_REF] Rida | The conformal map z → z 2 of the hodograph plane[END_REF], allows to describe them in a simple and exhaustive way. In section 3, we present the case of P 1 (K) curves, for which we give the formal expression for the control polygons of the PH curves, relatively to the corresponding normalized B-basis, as well as an intrinsic relation which characterizes these control polygons and their geometrical interpretation. We conclude this section with the particular case of the circle arcs for which we give a geometrical characterization. The next section proposes similar results within the framework of the space P 2 (K), completing the works of Romani & All [START_REF] Romani | Algebraic-trigonometric pythagoreanhodograph curves and their use for hermite interpolation[END_REF] and Saini [START_REF] Saini | New tools for animation and design : a haptic-based system for stop motion camera animation and curve design by algebraic-trigonometric Pythagorean Hodograph curves[END_REF]. Finally, in the last section, we present the PH curves of F 1 (K) and F 2 (K) spaces as particular cases of P 1 (K) and P 2 (K) spaces, respectively. However, the results are expressed in the normalized B-bases specific to F 1 (K) and F 2 (K).

2 Characterisation of Algebraic-Trigonometric Pythagorean Hodograph (ATPH) curves

AT function spaces

For an arbitrary m belonging to N * , considering K = R or C, the main Algebraic-Trigonometric (AT) function spaces we study are described as :

P m (K) = span {1, t, {cos (kt) , sin (kt)} m k=1 } .
As we shall see further, to study the properties of the ATPH curves of P m (K), we need to introduce the spaces

F n 2 (K) =    span {cos (kt) , sin (kt)} p k=0 , with p = n 2 if n is even, span cos 2k-1 2 t , sin 2k-1 2 t p k=1 , with p = n+1 2 otherwise.
Note that the derivatives of the functions of P m (K) are in the F m (K) space (i.e. F n 2 (K) for n = 2m).

A function f (t) of F n 2 (K) can be written using the following trigonometric expressions as

f (t) =    f 0 + p k=1 (f 2k-1 cos (kt) + f 2k sin (kt)) , if n is even, p k=1 f 2k-1 cos 2k-1 2 t + f 2k sin 2k-1 2 t
, otherwise, or, using the exponential expressions:

f (t) =    ϕ 0 + p k=1 (ϕ k exp(ikt) + ϕ -k exp(-ikt)) , if n is even, p k=1 ϕ k exp(i 2k-1 2 t) + ϕ -k exp(-i 2k-1 2 t) , otherwise.
However, even if f (t) belongs to F n 2 (R), the coefficients of its exponential form are often complex. So we need conditions which ensure that such a form defines a function f (t) of

F n 2 (R). Proposition 1 Let f (t) ∈ F n 2 (C) be expressed in its exponential form. This function belongs to F n 2 (R) if and only if    ϕ 0 ∈ R and ϕ -k = ϕ k , for k = 1, . . . , p, if n is even, ϕ -k = ϕ k , for k = 1, . . . , p, otherwise. (1) 
Proof : We consider f (t) ∈ F n 2 (C) with an even n. If the coefficients ϕ i verify (1), it is easy to verify that

f (t) = ϕ 0 + p k=1 ((ϕ k + ϕ -k ) cos (kt) + i(ϕ k -ϕ -k ) sin (kt))
has real coefficients in trigonometric form. Reciprocally, we can write f (t) as

f (t) = f 0 + p k=1 1 2 (f 2k-1 -if 2k ) exp(ikt) + 1 2 (f 2k-1 + if 2k ) exp(-ikt) , so ϕ k = 1 2 (f 2k-1 -if 2k ) and ϕ -k = 1 2 (f 2k-1 + if 2k
) then, if the coefficients f k are real, for k = 0, . . . 2p, (1) is verified. When n is odd, the proof is similar.

Introducing the notation T = exp(it), we can write

f (t) = 1 T n 2 ϕ(T )
where

ϕ(T ) :=    p k=-p ϕ k T p+k , if n is even, - 1 
k=-p ϕ k T p+k + p-1 k=0 ϕ k+1 T p+k , otherwise. Obviously, the map which associates the polynomial ϕ to the AT function f is bijective. This observation permits to extend some definitions from polynomials to AT functions.

Definition 1

The polynomial ϕ(T ) is called the polynomial associated with f (t). Moreover, two functions a(t) and b(t) of the space F n 2 (R) have w(t) for their GCD if its associated polynomial is the GCD of those of a(t) and b(t). They are said to be relatively prime if their associated polynomials are relatively prime.

Remark 1 The degree of ϕ(T ) associated with f (t) of F n 2 (K) is n, whether n is even or odd.

Pythagorean condition for F m (R) functions

As previously noted, the derivative of a function of P m (K) is in the F m (K) space. So the PH curves of P m (R) are those whose hodograph, belonging to F m (R), verifies the Pytagorean condition.

Theorem 1 Let a(t), b(t) and c(t) be non-zero real functions of the space F m (R) such that a(t) and b(t) are relatively prime. The Pythagorean condition

a 2 (t) + b 2 (t) = c 2 (t) (2) 
is satisfied if and only if we can find two functions u(t) and v(t) in the space

F m 2 (R) such that a(t) = u 2 (t) -v 2 (t), (3) b 
(t) = 2u(t)v(t), (4) c(t) = u 2 (t) + v 2 (t), (5) 
where u(t) and v(t) are relatively prime.

Proof : By substituting the conditions (3-5) into (2), we immediately verify they are sufficient.

To prove they are also necessary, we consider α(t), β(t) and γ(t) the respective associated polynomials of a(t), b(t) and c(t) which are supposed to verify [START_REF] Carnicer | Totally positive bases for shape preserving curve design and optimality of b-splines[END_REF]. These polynomials also verify the Pythagorean condition (2). According to the similar result proved in [START_REF] Rida | Pythagorean hodographs[END_REF], two relatively prime polynomials ν(t) and µ(t) can be found such that

α(t) = ν 2 (t) -µ 2 (t), β(t) = 2ν(t)µ(t), γ(t) = ν 2 (t) + µ 2 (t).
We 

u(t) = 1 T m 2 ν(T ) and v(t) = 1 T m 2 µ(T ),
two functions in the space F m 2 (R) which verify [START_REF] Cattiaux | Normalized B-Bases for Trigonometric Polynomial Curves[END_REF][START_REF] Farouki | Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable[END_REF][START_REF] Farouki | New Developments in Theory, Algorithms, and Applications for Pythagorean-Hodograph Curves[END_REF]. Without loss of generality we may write

u 2 (t) = 1 2 (a(t) + c(t)) ∈ F m (R), (6) v 2 (t) = 1 2 (c(t) -a(t)) ∈ F m (R), (7) u(t)v(t) = 1 2 b(t) ∈ F m (R). ( 8 
)
We observe that u(t) and v(t) are both either real or imaginary. Both of these cases lead to the same functions a(t), b(t) and c(t). For this reason, we consider that u(t) and v(t) only belong to F m 2 (R). In this space, (u(t), v(t)) and (-u(t), -v(t)) are the only two solutions of (6-8). Moreover, ν(t) and µ(t) being supposed relatively prime, u(t) and v(t) are relatively prime too.

Remark 2

The Theorem 1 can be easily extended to the case where a(t) and b(t) are not relatively prime. Denoting by δ(t) the GCD of a(t) and b(t), the Pythagorean condition becomes

a(t) = u 2 (t) -v 2 (t) δ(t), b(t) = 2u(t)v(t)δ(t), c(t) = u 2 (t) + v 2 (t) δ(t),
where u(t) and v(t) are two relatively prime functions of the space F m 2 (R).

Definition 2 A planar parametric curve R(t) = (x(t), y(t)), where x(t) and y(t) are nonzero real functions in the space P m (R), whose first derivative R (t) = (x (t), y (t)) verifies the Pythagorean condition (2) is called an Algebraic Trigonometric PH curve or ATPH curve.

Complex representation

Any parameterization R(t) = (x(t), y(t)), where x and y belong to P m (R), can be bijectively associated with the complex map r(t) = x(t) + iy(t) of P m (C). Farouki in [START_REF] Rida | The conformal map z → z 2 of the hodograph plane[END_REF] proved the practicality of such a representation for the polynomial PH curves. The same approach can be used for ATPH curves. Within this context, they can be characterized by the following result.

Proposition 2 For any m ∈ N * , a P m (R) regular curve R(t) is an ATPH curve if and only if its complex form r(t), belonging to P m (C), can be written as

r(t) = r 0 + t 0 w 2 (τ )dτ, ( 9 
)
where w is a F m 2 (C) function and r 0 = r(0).

Proof :

Considering w(t) = u(t) + iv(t) ∈ F m 2 (C), we have

r (t) = w 2 (t) = u 2 (t) -v 2 (t) + 2iu(t)v(t) ∈ F m (C), so x (t) = u 2 (t) -v 2 (t)
and y (t) = 2u(t)v(t). Thus, according to Proposition 1, R(t) is an ATPH parameterization of P m (R).

Reciprocally, as R(t) is a regular ATPH curve, x (t) and y (t) are relatively prime elements of F m (R). Therefore, according to Theorem 1, two relatively prime functions u(t) and v(t) of F m 2 (C) can be found such that

x (t) = u 2 (t) -v 2 (t), y (t) = 2u(t)v(t).
So, for w(t) = u(t) + iv(t), the result is evident.

Remark 3

We can easily see that, for a parameterization R(t) and its complex form r(t), the choice of w(t) that satisfies (9) is unique up to a sign. In the same manner, having chosen the function w(t), changing the complex value r 0 gives the same curve modulo a translation.

In the remainder of this paper, unless specified, we will only represent a curve parameterization R(t) by its complex formulation r(t), so to simplify the notations, P m (C) and F m (C) will be written as P m and F m . 

w(t) = z 1 cos t 2 + z 2 sin t 2 . (10) 
So, they can be represented by :

r(t) = r 0 + 1 2 z 2 1 + z 2 2 t + z 1 z 2 (1 -cos t) + 1 2 z 2 1 -z 2 2 sin t. (11) 
To obtain a regular curve, we need w(t) = 0, for any value of t. This condition is verified when z 1 z 2 is not a real value, i.e. when Im(z 1 z 2 ) = 0.

In [START_REF] Mainar | Shape preserving alternatives to the rational bézier model[END_REF], the authors described the normalized P 1 B-basis, for α belonging to the interval ]0, 2π[ and t ∈ [0, α]. It can be defined as : where

Z k (t) = m 0,k + m 1,k t + m 2,k cos t + m 3,k sin t, for k = 0, 1, 2, 3, with, for α = π m 0,0 = α S α , m 0,1 = - S α + R α S α R α sin α, m 0,2 = sin α R α , m 0,3 = 0, m 1,0 = - 1 S α , m 1,1 = C α S α R α sin α, m 1,2 = -m 1,1 , m 1,3 = -m 1,0 , m 2,0 = - sin α S α , m 2,1 = -m 0,1 , m 2,2 = -m 0,2 , m 2,3 = 0, m 3,0 = cos α S α , m 3,1 = sin α S α R α (C α -α sin α), m 3,2 = m 1,1 , m 3,3 = m 1,0 ,
S α = α -sin α, C α = 1 -cos α, R α = 2 sin α -α -α cos α.
This general expression cannot be used for α = π, in which case it needs a particular description

m 0,0 = 1, m 0,1 = - 1 2 , m 0,2 = 1 2 , m 0,3 = 0, m 1,0 = - 1 π , m 1,1 = 1 π , m 1,2 = - 1 π , m 1,3 = 1 π , m 2,0 = 0, m 2,1 = 1 2 , m 2,2 = - 1 2 , m 2,3 = 0, m 3,0 = - 1 π , m 3,1 = 1 π , m 3,2 = 1 π , m 3,3 = - 1 π .
In both cases, these coefficients define the transformation matrix M α = (m i,j ) 0≤i,j≤3 between the basis {1, t, cos t, sin t} and the normalized B-basis. When we determine its inverse M -1 α , the indetermination for α = π vanishes in the general formulation. For all cases we thus obtain :

M -1 α =          1 0 1 0 1 S α C α 1 S α C α 1 S α + R α C α -1 + α sin α C α S α + R α C α 1 α cos α sin α         
.

Some examples of the normalized B-basis are shown in Figure 1. In this basis, the curve parameterization is described by four control points P 0 , P 1 , P 2 and P 3 , whose complex forms

P 0 Q 0 P 1 P 2 P 3 Q 1 Q 2 Q 3 Figure 2: P 1 PH curve obtained for z 1 = 1 2 + i, z 2 = 3 -3 20
i and α = π 3 (dashed blue line and control points P 0 , P 1 , P 2 , P 3 ) or α = 2π 3 (green line and control points

Q 0 , Q 1 , Q 2 , Q 3 ).
are p 0 , p 1 , p 2 and p 3 , respectively. The parameterization complex expression is

r(t) = 3 k=0 p k Z k (t). ( 12 
)
Using M -1 α and (11), we determine the formulation of p 0 , p 1 , p 2 and p 3 when they describe a PH curve :

p 0 = r 0 , (13) 
p 1 = r 0 + S α C α z 2 1 , (14) 
p 2 = r 0 + z 1 C α (z 1 (S α + R α ) + z 2 (2C α -α sin α)) , (15) 
p 3 = r 0 + 1 2 (α + sin α)z 2 1 + z 1 z 2 C α + 1 2 z 2 2 S α . ( 16 
)
As we can see in the expression [START_REF] Mainar | Shape preserving alternatives to the rational bézier model[END_REF], the choice of z 1 and z 2 fixes the parameterization of the curve. The α value operates on the length of the arc that is represented and on its control polygon, as shown in Figure 2.

Intrinsic relation

The point p 0 being the curve's initial point r 0 , it can be freely chosen, and the other points can be determined by the relations :

∆p 0 = p 1 -p 0 = S α C α z 2 1 , (17) 
∆p 1 = p 2 -p 1 = z 1 C α (z 1 R α + z 2 (2C α -α sin α)) , (18) 
∆p 2 = p 3 -p 2 = S α 2C α z 2 1 (1 + cos α) + 2z 1 z 2 sin α + z 2 2 C α . (19) 
From these results, we can deduce the following property :

Proposition 3 A curve parameterized in P 1 defined by ( 12) is an ATPH curve if and only if its control points verify

(∆p 1 ) 2 = K α ∆p 0 ∆p 2 with K α = 4 S 2 α 2 sin α 2 -α cos α 2 2 . ( 20 
)
Proof : As the points of an ATPH curve control polygon verify relations (17-19), we have

∆p 1 = z 1 C α 4 sin α 2 cos α 2 -2α cos 2 α 2 z 1 + 4 sin 2 α 2 -2α sin α 2 cos α 2 z 2 = 2 z 1 C α 2 sin α 2 -α cos α 2 z 1 cos α 2 + z 2 sin α 2 , 
and ∆p 2 = S α 2C α 2z 2 1 cos 2 α 2 + 4z 1 z 2 sin α 2 cos α 2 + 2z 2 2 sin 2 α 2 = S α C α z 1 cos α 2 + z 2 sin α 2 2 .
The curve is supposed to be regular so ∆p 0 and ∆p 2 are non-zero and

(∆p 1 ) 2 ∆p 0 ∆p 2 = 4 S 2 α 2 sin α 2 -α cos α 2 2 .
Reciprocally, let us consider a curve whose control points written in the complex form p 0 , p 1 , p 2 , p 3 verify (20). Parameters r 0 and α being previously chosen, we can determine z 1 verifying (17) then z 2 verifying (19). The relation (20) ensures that (18) is verified too, so the curve is an ATPH curve.

Geometrical interpretation

Proposition 4 Denoting by l k = |∆p k |, for k = 0, 1, 2 and by θ 1 and θ 2 the interior angles as shown in Figure 3, the implicit condition (20) is equivalent to

l 2 1 = K α l 0 l 2 and θ 1 = θ 2 .
Proof : K α is positive, so, if we denote ∆p k = l k exp(iβ k ) the polar form of ∆p k for k = 0, 1, 2, condition (20) can be written as

l 2 1 = K α l 0 l 2 and 2β 1 = β 0 + β 2 .
Having θ 1 = π + β 1 -β 0 and θ 2 = π + β 2 -β 1 , the conclusion is straightforward. 

Arc-length expression

For the parameterization described by [START_REF] Mainar | Shape preserving alternatives to the rational bézier model[END_REF], the instantaneous speed

|r (t)| = |w(t)| 2 is |r (t)| = 1 2 |z 1 | 2 + |z 2 | 2 + 1 2 |z 1 | 2 -|z 2 | 2 cos t + Re(z 1 z 2 ) sin t.
and the arc-length is straighforwardly

s(t) = 1 2 |z 1 | 2 + |z 2 | 2 t + 1 2 |z 1 | 2 -|z 2 | 2 sin t + Re(z 1 z 2 )(1 -cos t).
The complexe values z 1 et z 2 can be deduced from the control polygon by the following relations, obtained from (17-19) :

z 2 1 = C α S α ∆p 0 , z 1 z 2 = C α 2C α -α sin α ∆p 1 - R α S α ∆p 0 , z 2 2 = 1 + cos α S α ∆p 0 - 2 sin α 2C α -α sin α ∆p 1 + 2 S α ∆p 2 .

Application : circle arc control polygon

In P 1 (C), the anticlockwise parameterization of any circle is

r(t) = ω + ρ exp(i(t + γ)), ( 21 
)
where ω is the complex form of the circle center Ω, ρ is its radius and γ is the r 0 argument (so, r 0 = ω + ρ exp(iγ)). Such a parameterization has evidently a Pythagorean hodograph but the determination of its B-based control polygon needs some calculations. The expression (21) may be written in the form r(t) = ω + ρ exp(iγ) cos t + ρ exp(i(γ + π 2 )) sin t. Identifying this expression with (11), we have z 1 z 2 = -ρ exp(iγ) and z 2 1 = -z 2 2 = ρ exp i(γ + π 2 ). These expressions are sufficient to determine the control polygon, using relations (13 -16) :

p 0 = ω + ρ exp(iγ), (22) 
p 1 = ω + ρ exp(iγ) 1 + i S α C α , (23) 
p 2 = ω + ρ exp(iγ) C α (-C α + α sin α + i(αC α -S α )) , (24) 
p 3 = ω + ρ exp i(γ + α). (25) 
where ω, ρ and γ can be freely chosen. Figure 4 shows some examples of such control polygons and the circles they define.

Remark 4 When t ∈ [0, α], this parameterization describes a circle arc whose central angle is α. This is confirmed by the expression of p 3 . Moreover,

p 1 -p 0 = ρ S α C α exp i(γ + π 2 ) and p 3 -p 2 = ρ S α C α exp i(γ + α + π 2 ), ( 26 
)
which ensures that the tangents at the ends of the arc are orthogonal to the corresponding circle radii, as expected.

Proposition 5 A P 1 (R) curve is an anticlockwise parameterized arc of circle whose central angle is α if and only if its control polygon verifies

l 0 = l 2 = 1 √ K α l 1 and θ 1 = θ 2 = α 2 -π, (27) 
with Proposition 4 notations. Proof : We denote the control points of the curve by P 0 , P 1 , P 2 , P 3 and their complex form by p 0 , p 1 , p 0 , p 3 . If this curve is a circle arc whose center is Ω and whose central arc is α, its parameterization in P 1 has a Pythagorean hodograph, so according to Proposition 4 and formula (26), we have

l 0 = l 2 = 1 √ K α l 1 .
Moreover, the sum of the interior angles of the pentagon ΩP 0 P 1 P 2 P 3 gives the relation α + π -2θ 1 = 3π, which yields the second constraint of (27).

Reciprocally, let us consider a control polygon verifying (27). We define Ω as the point such that the straight lines (ΩP 0 ) and (ΩP 3 ) are orthogonal to (P 0 P 1 ) and to (P 3 P 2 ) respectively. We denote the distance Ω -P 0 by ρ. We choose Ω as the origin of the coordinate system and the bisector of the segment [P 3 P 0 ] as the y-axis (see Figure 5).

As previously stated, the property of the sum of a pentagon's angles ensures that we have ∠(P 0 -Ω, P 3 -Ω) = α, so the abscissa of P 0 is

x 0 = ρ cos α - π 2 = l 1 2 -l 0 cos π - α 2 , then ρ sin α 2 = 1 2 √ K α + cos α 2
l 0 and S α ρ = C α l 0 . We have thus p 0 = ρ exp(iγ) where

γ = π-α 2 and p 1 -p 0 = l 0 exp i π -α 2 = S α C α ρ exp i π 2 + γ .
Having l 0 = l 2 and θ 1 = θ 2 , the control polygon is symmetrical with respect to the yaxis, therefore we have also

p 3 = ρ exp i(π -γ) = ρ exp i(α + γ) and p 3 -p 2 = l 0 exp(iθ 1 ) = S α C α ρ exp i(γ + α + π 2 )
. So, according to (22,25,26), the represented curve is a circle arc.

B-based representation of the P 2 PH curves 4.1 B-basis of P 2

In [START_REF] Mainar | Shape preserving alternatives to the rational bézier model[END_REF], the authors give the B-basis {B 5 k (t)} 5 k=0 of P 2 which is detailed in [START_REF] Romani | Algebraic-trigonometric pythagoreanhodograph curves and their use for hermite interpolation[END_REF]. It is illustrated by Figure 6. In this basis, the curves are described by

r(t) = 5 k=0 p k B k (t). ( 28 
)
The graphics of the basis functions and the P 2 curves can be viewed and manipulated in [START_REF] Cattiaux | Normalized B-Bases for Trigonometric Polynomial Curves[END_REF]. Their expression is

B 5 k (t) = λ k (γ k0 + γ k1 t + γ k2 sin t + γ k3 cos t + γ k4 sin 2t + γ k5 cos 2t) , (29) 
with

λ 0 = λ 5 = 1 n 0 , λ 1 = λ 4 = s 1 2n 0 n 1 , λ 2 = λ 3 = s 1 12n 1 n 2 , γ 00 = 6α, γ 10 = -3(2n 4 α -n 0 ), γ 20 = -3(8c 1 n 1 + n 0 -2n 4 α), γ 01 = -6, γ 11 = 6n 4 , γ 21 = -6n 4 , γ 02 = 8c 2 , γ 12 = -4(2n 4 c 2 + s 2 n 0 ), γ 22 = 4(4n 1 (s 1 + c 1 s 2 ) + n 0 s 2 + 2n 4 c 2 ), γ 03 = -8s 2 , γ 13 = 4(2n 4 s 2 -c 2 n 0 ), γ 23 = 4(4c 1 n 1 (1 + c 2 ) + n 0 c 2 -2n 4 s 2 , γ 04 = -c 3 , γ 14 = s 3 n 0 + n 4 c 3 , γ 24 = -(s 3 (8n 1 s 1 + n 0 ) + c 3 (n 4 -8n 1 c 1 )), γ 05 = s 3 , γ 15 = c 3 n 0 -n 4 s 3 , γ 25 = -(s 3 (8n 1 c 1 + n 0 ) + c 3 (n 4 + 8n 1 s 1 )), γ 30 = -3(8c 1 n 1 + n 0 ), γ 40 = 3n 0 , γ 50 = 0, γ 31 = 6n 4 , γ 41 = -6n 4 , γ 51 = 6, γ 32 = 8(2s 1 n 1 -n 4 ), γ 42 = 8n 4 , γ 52 = -8, γ 33 = 4(8c 1 n 1 + n 0 ), γ 43 = -4n 0 , γ 53 = 0, γ 34 = n 4 -8s 1 n 1 , γ 44 = -n 4 , γ 54 = 1, γ 35 = -(8c 1 n 1 + n 0 ), γ 45 = n 0 , γ 55 = 0,
where s q = sin 2 q-2 α , c q = cos 2 q-2 α ,

and

n 0 = 6α -8s 2 + s 3 , n 1 = c 1 (s 2 -3α) + 4s 1 , n 2 = (2 + c 2 )α -3s 2 , n 4 = 8s 4 1 .
These coefficients define the transformation matrix G α = (λ j γ j,i ) 0≤i,j≤5 between the canonical basis {1, t, cos t, sin t, cos 2t, sin 2t} and the normalized B-basis. Determining a control polygon from its canonical parameterization requires the inverse matrix

G -1 α = 1 n 4 γ i,j 0≤i,j≤5
where

γ 00 = n 4 , γ 10 = n 4 , γ 20 = n 4 , γ 01 = 0, γ 11 = 1 2 n 0 , γ 21 = 3 2 (n 0 -4n 2 ), γ 02 = 0, γ 12 = 1 2 n 0 , γ 22 = 3 2 (n 0 -4n 2 ), γ 03 = n 4 , γ 13 = n 4 , γ 23 = 3s 2 (α -s 2 ), γ 04 = 0, γ 14 = n 0 , γ 24 = 3(n 0 -4n 2 ), γ 05 = n 4 , γ 15 = n 4 , γ 25 = (4αs 2 + 4c 2 + c 3 -5), γ 30 = n 4 , γ 40 = n 4 , γ 50 = n 4 , γ 31 = 1 2 (2α(2 + c 3 ) + 4n 2 -3s 3 ), γ 41 = -1 2 (2α(-3 + 4c 2 -c 3 ) + n 0 ), γ 51 = αn 4 , γ 32 = 3 2 (α(3 + 2c 2 + c 3 ) -2s 2 -2s 3 ), γ 42 = 1 4 (c 2 (s 3 -12α) + s 2 (9 + c 3 )), γ 52 = s 2 n 4 , γ 33 = 3s 2 (2s 2 -α(1 + c 2 )), γ 43 = s 1 (6αc 1 -8s 1 -s 3 c 1 ), γ 53 = c 2 n 4 , γ 34 = 3(2α(2c 2 + c 3 ) + 4s 2 -5s 3 ), γ 44 = -6αc 3 -6s 2 + 3s 3 + 2 sin 3α, γ 54 = s 3 n 4 , γ 35 = 3(1 + 4c 2 -5c 3 -2α(2s 2 + s 3 )), γ 45 = 1 + 6αs 3 -6c 2 + 3c 3 + 2 cos 3α, γ 55 = c 3 n 4 .

Remark 5

The above formulae must be used with caution. Indeed, for small values of α (α < 0.005), some tests, with Mathematica, Matlab and Scilab, show numerical instability problems for the functions B 5 2 (t) and B 5 3 (t). L. Saini, in [START_REF] Saini | New tools for animation and design : a haptic-based system for stop motion camera animation and curve design by algebraic-trigonometric Pythagorean Hodograph curves[END_REF] proposed another expression, but it can not be used to determine the classical matrix correspondence between the expressions of a curve in the monomial basis {1, t, sin t, cos t, sin2t, cos 2t} and in the B-basis. The formulation of B 5 2 (t) and B 5 3 (t) we proposed are those which are the less instable among the different attempts we made.

Regularity of a P 2 curve

As in the space P 1 , Proposition 2 shows that the ATPH curves of P 2 are written from the

F 1 functions w(t) = z 0 + z 1 cos t + z 2 sin t, (30) 
and have the form :

r(t) = r 0 + 1 2 2z 2 0 + z 2 1 + z 2 2 t + 2z 0 z 2 (1 -cos t) + 2z 0 z 1 sin t + 1 2 z 1 z 2 (1 -cos 2t) + 1 4 z 2 1 -z 2 2 sin 2t. ( 31 
)
Remark 6 The parametric speed of such a parameterization is

|r (t)| = |z 0 | 2 + 1 2 |z 1 | 2 + |z 2 | 2 + 2Re(z 0 z 1 ) cos t + 2Re(z 0 z 2 ) sin t + 1 2 |z 1 | 2 -|z 2 | 2 cos 2t + Re(z 1 z 2 ) sin 2t.
Its arc-length is widely described in [START_REF] Romani | Algebraic-trigonometric pythagoreanhodograph curves and their use for hermite interpolation[END_REF]. Such a curve is regular when w(t) = 0 for any value of t, i.e. when the resultant of Re(w(t)) and Im(w(t)), written in a polynomial form via the formulae cos t = 1-u 2 1+u 2 and sin t = 2u 1+u 2 , is non-zero :

x 0 + x 1 2x 2 x 0 -x 1 0 0 x 0 + x 1 2x 2 x 0 -x 1 y 0 + y 1 2y 2 y 0 -y 1 0 0 y 0 + y 1 2y 2 y 0 -y 1 = 0
where z k = x k + iy k for k = 0, 1, 2. After some calculations, this constraint may be written as

Im(z 2 (z 0 + z 1 ))Im(z 2 (z 0 -z 1 )) + Im(z 0 z 1 ) 2 = 0. (32) 
In [START_REF] Romani | Algebraic-trigonometric pythagoreanhodograph curves and their use for hermite interpolation[END_REF], w is written in the normalized B-basis { B 2 k (t)} 2 k=0 of the space F 1 as

w(t) = w 0 B 2 0 (t) + w 1 B 2 1 (t) + w 2 B 2 1 (t). ( 33 
)
where

B 2 k (t) = 1 C α (n 0,k + n 1,k cos t + n 2,k sin t) , (34) 
and n 0,0 = 1, n 0,1 = -1 -cos α, n 0,2 = 1,

n 1,0 = -cos α, n 1,1 = 1 + cos α, n 1,2 = -1, n 2,0 = -sin α, n 2,1 = sin α, n 2,2 = 0. ( 35 
)
This basis is illustrated by Figure 7. The coefficients described in (35) define the transformation matrix (cf [START_REF] Sánchez-Reyes | Harmonic rational bézier curves, p-bézier curves and trigonometric polynomials[END_REF])

N α = 1 C α (n i,k ) 0≤i,k≤2
between the basis {1, cos t, sin t} and the B-basis, which allows us to establish that

z 0 = 1 C α (w 0 -(1 + cos α)w 1 + w 2 ) , z 1 = 1 C α (-cos αw 0 + (1 + cos α)w 1 -w 2 ) , z 2 = sin α C α (w 1 -w 0 ).
After some (tedious) calculations, the condition (32) yields

Im(w 0 w 2 ) 2 = 2(1 + cos α)Im(w 0 w 1 )Im(w 1 w 2 ). (36) 
In the following, we will assume this criteria satisfied.

Remark 7

The inverse of N α is the matrix

N -1 α = n i,k 0≤i,k≤2
, where

N -1 α =      1 1 0 1 1 sin α 1 + cos α 1 cos α sin α     

Intrinsic relations

The complex forms of the control polygons of the P 2 PH curves can be deduced from (31) with G -1 α . They have already been described in [START_REF] Romani | Algebraic-trigonometric pythagoreanhodograph curves and their use for hermite interpolation[END_REF]. We easily deduce the following slightly different formulation :

∆p 0 = µ 0 w 2 0 , ∆p 1 = (2µ 0 -3µ 1 )w 0 w 1 , ∆p 2 = µ 1 (1 + cos α)w 2 1 + w 0 w 2 , ( 37 
) ∆p 3 = (2µ 0 -3µ 1 )w 1 w 2 , ∆p 4 = µ 0 w 2 2 ,
where µ 0 = 1 4C 2 α (6α -8 sin α + sin 2α) and µ 1 = 1 C 2 α (α(2 + cos α) -3 sin α). Figure 8 shows two examples of such control polygons and the curves they defined.

It can be easily verified that the parameters µ 0 and µ 1 are both positive and non null for any α belonging to ]0, 2π[. The curves being assumed regular, ∆p 0 and ∆p 4 are non-zero. Then formulae (37) allow us to establish the following result : Proposition 6 Let us denote by r(t) a P 2 curve defined by its control polygon p 0 , p 1 , p 2 , p 3 , p 4 according to (28). If ∆p 1 = 0 or ∆p 3 = 0, this curve is a PH curve if and only if

∆p 0 (∆p 3 ) 2 = ∆p 4 (∆p 1 ) 2 , ( 38 
)
and one of the following relations are verified :

∆p 0 ∆p 1 ∆p 2 - µ 1 µ 0 (∆p 0 ) 2 ∆p 3 -µ 0 µ 1 Γ α (∆p 1 ) 3 = 0, ( 39 
) ∆p 2 ∆p 3 ∆p 4 - µ 1 µ 0 (∆p 4 ) 2 ∆p 1 -µ 0 µ 1 Γ α (∆p 3 ) 3 = 0, ( 40 
) ∆p 0 ∆p 2 ∆p 3 - µ 1 µ 0 ∆p 0 ∆p 1 ∆p 4 -µ 0 µ 1 Γ α (∆p 1 ) 2 ∆p 3 = 0, ( 41 
) ∆p 1 ∆p 2 ∆p 4 - µ 1 µ 0 ∆p 0 ∆p 3 ∆p 4 -µ 0 µ 1 Γ α ∆p 1 (∆p 3 ) 2 = 0, (42) 
where

Γ α = (1 + cos α) (2µ 0 -3µ 1 ) 2 .
and anticlockwise if ε = 1. This curve is regular if and only if z 1 = 0, i.e. if the circle radius is non-zero.

Using the F 1 B-basis described by (34) and (35), we determine the control polygon of r(t) as

p 1 = p 0 + tan α 2 z 2 1 , p 2 = p 1 + tan α 2 z 2 1 exp(iα).
for α belonging in (-π, π). So, it is easy to see that an F 1 curve is a PH curve, i.e. a circle arc, if and only if the following intrinsic relation is verified :

∆p 1 = ∆p 0 exp(iα).
Evidently, the geometric form of this condition is

l 0 = l 1 and β 1 = β 0 + α,
where, for k = 0, 1, ∆p k = l k exp(iβ k )) is the polar form of ∆p k . This curve parameterization gives the shortest control polygon for a circle arc among the different families of curves we study in this article.

F 2 PH curves

Similarly to the previous case, F 2 is a subset of P 2 , so the functions w(t) which allow us to describe the F 2 curves belong to F 1 . They can be written in the canonical form (30) or in a Bézier-like form (33). As for the P 2 curves, we can express the regularity of r(t) curve using the condition (32) for the canonical form and (36) for the Bézier-like form. In the following, we assume that the curve is regular. The description (31) of a PH curve of P 2 allows D 1 to be defined as

D 1 = {w(t) = z 0 + z 1 cos t + z 2 sin t with z 0 , z 1 and z 2 verifying 2z 2 0 + z 2 1 + z 2 2 = 0}, If w(t) is written in the normalized B-basis, the condition which define D 1 , 2z 2 0 + z 2 1 + z 2 2 = 0, is rewritten as 3 w 2 0 + w 2 2 + 2 (1 + cos α) w 2 1 (2 + cos α) -3w 1 (w 0 + w 2 ) + 2w 0 w 2 (2 + cos α) = 0. ( 54 
)
The normalized B-basis of F 2 is defined (see [START_REF] Romani | Algebraic-trigonometric pythagoreanhodograph curves and their use for hermite interpolation[END_REF] and Figure 11), for k = 0, 1, 2, 3, 4 by cos α) + ∆p 0 ), we obtain

B 4 k (t) = 1 C 2 
∆p 1 = K 2 1 + cos α 2 sin α v 0 v 1 -v 0 2 .
According to (64) we have

εv 1 v 2 = ∆p 2 (2 + cos α) -K 1 v 2 2 ,
and

∆p 2 = K 2 1 + cos α 2 sin α εv 1 v 2 -v 2 2 .
So, for w 0 = v 0 , w 2 = εv 2 and w 1 = 1 2 sin α v 1 , the expression of the control polygon agrees with (60-63).

Remark 9 If ∆p 1 (2 + cos α) + ∆p 0 = 0, the curve regularity and the relation (64) ensure that ∆p 2 (2 + cos α) + ∆p 3 = 0, and conversely. In this case, the control polygon shape is particular. Indeed, we have ∆p 1 = -1 2 + cos α ∆p 0 and ∆p 2 = -1 2 + cos α ∆p 3 , with -1 2 + cos α belonging to -1, -

. The polygon is therefore a cross, as shown in Figure 13.

Then ∆p 1 = -K 2 w 2 0 and ∆p 2 = -K 2 w 2 2 . If we identify both of these expressions with (61) and (62), we obtain w1 = 0 or α = π. In both cases, we can write the relation (54) as : 3w 2 0 + 3w 2 2 + 2w 0 w 2 (2 + cos α) = 0 which is verified if the following condition is true : 3∆p 0 + 3∆p 3 + 2ε(∆p 0 ∆p 3 ) 1 2 (2 + cos α) = 0 either for ε = 1 or for ε = -1.

Conclusion

The spaces P m and F m propose efficient alternatives to polynomial or rational Bézier curves for CAGD purpose. Indeed, their normalized B-bases provide the shape-preserving properties of the Bernstein basis. In these spaces, we showed that the PH curves are still characterized by the Pythagorean condition, like for polynomial curves. Using this property, we studied different particular cases, including P 1 and P 2 for which we determined the general control polygon form of PH curves. We noticed its similarity to the polynomial PH curves described by Farouki and Sakkalis in [START_REF] Rida | Pythagorean hodographs[END_REF] and [START_REF] Rida | The conformal map z → z 2 of the hodograph plane[END_REF]. The same is true for the implicit relation characterizing PH curves in both of these spaces.

Such similarities probably have underlying causes, in relation with the B-bases properties, described in [START_REF] Mainar | Shape preserving alternatives to the rational bézier model[END_REF] and [START_REF] Mainar | Optimal bases for a class of mixed spaces and their associated spline spaces[END_REF]. Studying theses causes could provide an interesting generalization of the present paper to any space having a normalized B-basis.
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  3 B-based representation of the P 1 PH curves 3.1 Cubic ATPH curves in the normalized B-basis of P 1 According to Proposition 2, all the P 1 ATPH curves are obtained from the F 1 2 functions through the relation (9):
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Proof : Assuming the curve r(t) is a PH curve, its control polygon has the form described by (37), so (38-42) can be proved with some calculations. Reciprocally, let us suppose that (38) and (39) are true. As the curve is regular, ∆p 0 = 0 and ∆p 4 = 0. Moreover, if ∆p 1 = 0, relation (38) ensures that ∆p 3 = 0 also, and conversely. So we can set a 2 0 = 1 µ 0 ∆p 0 , a 2 2 = 1 µ 0 ∆p 4 and a 1 = 1 a 0 ∆p 1 . According to (38), (∆p 3 ) 2 = a 2 1 a 2 2 , and ∆p 3 = εa 1 a 2 , where ε = ±1. Condition (39) is hence equivalent to µ 0 a 3 0 a 1 ∆p 2 -εµ 1 a 0 a 2 -µ 1 Γ α a 2 1 = 0, and ∆p 2 = εµ 1 a 0 a 2 + µ Γ α a 2 1 . Then the forward differences can be written as

which is coherent with (37) for w 0 , w 1 , w 2 such that

If relation (40), (41) or ( 42) is verified, instead of (39), the approach is similar and yields the same conclusion.

Proposition 7

If ∆p 1 = 0 and ∆p 3 = 0, the curve r(t) is a PH curve if and only if the following relation is verified :

Proof : When r(t) is a PH curve, it is clear, like in the proof of Proposition 6, that (43) is verified. Reciprocally, let us assume (43) is satisfied. Setting

and ∆p 2 = εµ 1 a 0 a 2 where ε = ±1, which agrees with (37) for w 0 = a 0 , w 1 = 0 and w 2 = εa 2 .

Remark 8 In fact, like in the polynomial case (see [START_REF] Rida | Pythagorean hodographs[END_REF]), the curve is a PH curve if one of the two following conditions is verified :

But, if we assume that ∆p 1 = 0 and ∆p 3 = 0, both of these relations can be rewritten as (43). 

Geometrical interpretation

As in the cubic case, the relations (38-43) can be reformulated as functions of geometric elements. We denote by ∆p k = l k exp(iβ k ), the polar form of ∆p k , for k = 0, 1, 2, 3, 4. When ∆p 1 = 0 or ∆p 3 = 0, the relation (38) becomes :

Considering the interior angles θ k for k = 1, 2, 3, 4, as shown in Figure 9, we have

and the relation (44) can be geometrically expressed as

Similarly, conditions (39-42) are respectively reformulated as

The real and imaginary parts of each of these equations furnish two geometric conditions. For example, (46) yields

So, relations (45), ( 50) and (51) form a necessary and sufficient condition to obtain an ATPH curve if ∆p 1 = 0 or ∆p 3 = 0. Any of the equalities (47-49) can replace (46) to furnish two equalities (different of ( 50) and ( 51)) which also constitute with (45) a necessary and sufficient condition.

When ∆p 1 = ∆p 3 = 0, the geometrical situation is different (see Figure 10). We denote by As we mentioned earlier, the curves of the spaces F m can be expressed in a rational form, but this comes at the cost of losing some properties of the trigonometric curves. Here we will describe the ATPH of these spaces, in the corresponding bases. For all values of m in N * , F m is a subspace of P m , therefore we can use the Proposition 2 to describe its PH curves with [START_REF] Fiorot | The circle as a smoothly joined br-curve on [0, 1][END_REF]. We denote by D m 2 the set of functions w of F m 2 for which r, defined by ( 9) is in F m .

However, the constant term (which gives the linear term after integration) appears only when w(t) 2 is linearized. So, the definition of D m 2 needs an additional equation to remove this term.

F 1 PH curves

According to [START_REF] Mainar | Shape preserving alternatives to the rational bézier model[END_REF]

2 with z 0 and z 1 verifying z 2 1 + z 2 2 = 0}, and straightforwardly, we obtain

with ε = ±1. Unsurprisingly such a curve is always a circle arc, whose complex form of the center Ω is ω = r 0 + iεz 2 1 and whose radius is

in the latter requires the inverse matrix

where

. This parameterization is thus

where, relatively to z 0 , z 1 et z 2 , the control polygon is defined by

where

. Such curves are shown in Figure 12.

Using the matrix N α (see (35)) and the relation (54), we can rewrite the control polygon as

This family of curves also has an implicit description, although the condition (54) in this form is complicated. 

Proof : First, let us prove that (65) is equivalent to (54). Denoting a = 4z 0 z Solving this linear system, we obtain the b, c, d expressions described by (66-68).

Let us now prove the remainder of the proposition. If the curve is a PH curve, its control polygon is described by (60-63) and by the condition (54). It is clear that (64) and (65) are verified.

Reciprocally, let us assume that (64) is satisfied. We write v 0

As the curve is regular, v 0 and v 2 are non-zero complex numbers. Denoting v 1 = 1 v 0 (∆p 1 (2 +