
HAL Id: hal-04291438
https://hal.science/hal-04291438

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relative Regression on Riemannian Manifolds
C. Samir

To cite this version:
C. Samir. Relative Regression on Riemannian Manifolds. Université Clermont Auvergne (UCA). 2020.
�hal-04291438�

https://hal.science/hal-04291438
https://hal.archives-ouvertes.fr


Relative Regression on Riemannian Manifolds

Salah Khardani

Intelligent Networks and Nanotechnology Laboratory

Chafik Samir∗

University of Clermont Auvergne

Sumitted to JMA 2020

Abstract

The considerations of this paper are restricted to random variables with val-
ues on Riemannian manifoldsM, and hence we propose a geometric framework
to estimate their relative regression function. Suppose we are given observa-
tions (Xi, Yi)i=1···n, where Xi ∈ M and Yi ∈ IR+

∗ . In this work we define and
study a new estimator of the regression function on Riemannian ManifoldM.
Precisely, we use the mean squared relative error (MSRE) as a loss function
to construct a nonparametric estimator of the regression operator on Rieman-
nian Manifolds. Under some standard assumptions in Riemannian Manifolds
data analysis, we establish the almost sure consistency, with rates, of the con-
structed estimator as well as its asymptotic normality. Then, a simulation
study, on finite-sized samples, was carried out in order to show the efficiency
of our estimation procedure.

Keywords— Riemannian manifolds, Consistency, Asymptotic normality, Rela-
tive regression, Mean squared relative error.
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1 Introduction
Regression analysis is a fundamental statistical tool for determining how a measured
variable is related to one or more potential explanatory variables. The most widely
used regression model is linear regression, due to its simplicity, ease of interpretation,
and ability to model many phenomena. However, if the response variable takes values
on a nonlinear manifold (non Euclidean space) , a linear model is not applicable.
Theoretically, when studying the statistical problem of estimating a regression or
density function defined on the non-Euclidean, all techniques used in the Euclidean
space cannot be properly used. For solving this problem, the exponential map will
be introduced, which was actually one of the main topics in [Park, 2004].
Non-parametric models have been used extensively in last years in fitting data lying
on Riemannian manifolds, including kernel-based methods and approaches.

This research is motivated by the necessity for automated methods to analyze
such objects. Indeed, for many applications in several branches of science, involving
medical imaging and computer vision, (directional data, transformations, tensors,
and shape)it is desirable to be able to characterize objects and predict their behav-
ior at unobserved times or in the future. Several works have studied the regression
problem on manifolds. [Kim and Park, 2013] studied a geometric structures arising
from kernel density on Riemannian manifolds. [Park, 2012] studied a density kernel
estimator defined by a exponential map on Sd. [Hendriks, 2003] developed a gen-
eralization of estimation with Fourier series to the case of a compact Riemannian
manifold without boundary. [Healy and Kim, 1996] studied a nonparametric convo-
lution density estimation on the unit sphere. [Pelletier, 2005] proposed a family of
nonparametric estimators for the density function based on kernel weight when the
variables are random object valued in a closed Riemannian manifold. The Pelletier’s
estimators is consistent with the kernel density estimators in the Euclidean, i.e., it
coincides to the kernel estimator considered by [Rosenblatt, 1956] and [Parzen, 1962]
when the manifold is IRd .

[Prentice, 1989] introduces an extension of spherical regression using a Stiefel
manifold as the sample space. [Lee and Ruymgaart, 1996] investigate density and
curve estimation on compact smooth submanifolds of a Euclidean space using caps.
In a more general setting, [Bhattacharya and Patrangenaru, 2002] studied a non-
parametric estimation of location and dispersion on Riemannian manifolds. Under
classical assumptions of the kernel and the bandwidth, [Pelletier, 2006] obtained the
asymptotic bias and variance and proved the same L2 rate convergence as kernel re-
gression estimators on Euclidean spaces using a geodesic distance. [Yanovich, 2016]
studied the asymptotic properties of local sampling on Riemannian manifolds.
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Usually, to estimate the nonparametric regression model, many previous works used
the mean squares error (MSE) as a criterion for constructing the predictors, see
some details in [Calsavara et al., 2019]. This method is very sensitive to outliers,
and therefore, the presence of large outliers can lead to inappropriate results.
The mean square relative error (MSRE) criterion is more convenient as a measure
of performance since the notion of relative regression is more recent than the others,
although the results are still limited. [Park and Stefanski, 1998] studied predic-
tion for situations in which relative prediction error is more important than the
usual prediction error and derived the form of the best mean squared relative error
predictor. [Jones et al., 2008] studied nonparametric prediction via relative error re-
gression. [Khardani, 2019] studied nonparametric relative regression under random
censorship model. They established the uniform consistency with rate over a com-
pact set and asymptotic normality of the estimator. [Mechab and Laksaci, 2016]
studied this regression model when the observations are weakly dependent. Re-
cently, [Khardani and Slaoui, 2019] studied the asymptotic properties of a consistent
estimator of this model by using the kernel method for twice censored data.
In this paper, we show that it makes sense to define a relative regression on M
as the result of a least squares minimization. The proposed method of calculat-
ing the regression estimator will be shown to enjoy a number of nice properties:
it is a natural analogue of the Euclidean solution which could be considered as a
generalization and the solution exists and is unique in many common situations. In
particular, we consider the nonparametric estimation of a relative regression function
on a Riemannian manifold by using a generalization of the kernel method, introduced
by [Pelletier, 2005, Pelletier, 2006] for classical regression estimation.
The paper is organized as follows: in Section 2 we present some geometric background
and we define the model and the estimator. In Section 3 we give some assumptions
and results for the proposed estimator. Applications (Simulations and real data) are
drawn in Section 4. The technical details and the proofs are deferred to Section 5.

2 Preliminaries and estimators

2.1 Geometric background

LetM be a finite dimensional manifold. An important geometrical construct for the
statistical analysis is the definition of the tangent space. Since M could be seen a
Riemannian submanifold in L2(I,RN+1) [Samir et al., 2012], at any point p ∈M, we
define the tangent space and we denote TpM [Helgason, 1978]. We equip the tangent
space ofM with a smoothly varying Riemannian metric that measures infinitesimal
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lengths on M. In many cases, the inner product is first defined on L2 and then
induced on the tangent space of M. More precisely, let v and w be two tangent
vectors in TpM, the metric is defined as,

〈v, w〉 =

∫ 1

0

(v(s), w(s))RN+1ds. (1)

We denote by g the metric defined on M with nice physical interpretation and
by dg the distance induced by g. Another important step in our analysis is to
compute geodesic paths between points with respect to the chosen metric. With
respect to the geometric structure, M is considered as submanifold in L2(I,RN+1)
and consequently we can use some standard results from Riemannian geometry, see
for example [Siegel, 1964, Lang, 1995], including geodesics and exponential map.
Therefore, we assume that (M, g) is geodesically complete, at least locally. So, for
any point p ∈ M, there exist a ball Bρ(p) where all geodesics exist and are unique.
For simplicity, we call Bρ(p) the cut locus of p with maximum ρ and injg(M) the
radius of injectivity ofM.

For the rest of the paper, we will assume that injg(M) is strictly positive.
There are many examples of manifolds that have this property, we cite for exam-
ple an Euclidean space with infinite injg(M), the unit finite-dimensional sphere
with injg(M) = π, the manifold of symmetric positive definite matrices, the Rie-
mannian n-hyperboloid with constant negative curvature, etc. The interested reader
can refer to [Jost, 2011, Lang, 1995] for more details. Under these conditions, the
geodesic path χt(p, q), between any two points p and q with q ∈ Bρ(p) on M can
be expressed in terms of a tangent direction v ∈ TpM with, t ∈ [0, 1], χ0(p, q) = p
and χ1(p, q) = q. This formulation translates the constant-speed parametrization
of the geodesic passing through p with velocity vector v at t = 0. As a result, the
exponential map exp : TpM −→M is given as expp(v) = q. So, instead of working
onM directly, we can use the tangent space Tp(M) that has a natural differential
structure. This is made possible because exp is a bijective isometry on Bρ(p). It is
worth noticing that, whenM is Euclidean, exp is simply the identity. The velocity
vector along a geodesic path χt can be obtained as ∂χt

dt |t=0
. Thus, given two points p

and p, the inverse exponential map (also known as the logarithmic map) allows the
recovery of the tangent vector v between them.

To summarize, the exponential map takes points from M in the tangent space
M, preserving distance from p; it also preserves the tangential direction from p.
Concretely, the exponential map only preserves angles and distances for points in
the tangent plane which have the geodesic distance dg(p, .) � ρ(p) from p ; however,
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we shall implicitly assume this condition holds whenever it is needed. Given the above
tools for constructing geodesics and inverse exponential maps onM, we will indicate
in the next section how these tools may be used to solve the problem of regression
from a given set of observations on M. Moreover, we will need to introduce the
notion of the volume density function θp(q) on M as defined by [Besse, 1978], we
have

θp : q −→ θp(q) =
µexp∗p g

µgp
(exp−1p (q)) (2)

as the quotient of the canonical measure of the Riemannian metric exp∗p g on Tp(M).

Now, let X be a random object on M, i.e. a measurable map from a prob-
ability space (Ω, A,P) to (M,B), where B denotes the Borel σ−field of M. Let
(X1, Y1), . . . , (Xn, Yn) be independent, identically distributed (i.i.d.) pairs of random
variables valued in M × IR+ with the same distribution as (X, Y ). For regres-
sion analysis, our main objective is estimating Y given X = p. As it is largely
admitted, the natural solution of this problem in Euclidean spaces is given by
the estimators of the regression function r defined by Y = r(X) + ε. Follow-
ing [Pelletier, 2005, Pelletier, 2006], we present a solution on M and we discuss
the estimators in the next section.

2.2 Model and the estimator

Let us introduce n pairs of random variables (Xi, Yi) for i = 1 · · ·n that we assume
drawn from the pair (X, Y ) which is valued in M× IR . Furthermore, we assume
that the variables X and Y are connected by the following relation

Y = r(X) + ε

where r is an unknown function and ε is a random error variable independent of X.
Usually, we use the least square error IE [(Y − r(X))2|X = p] as a loss function to

estimate the regression function. However, this kind of loss function is very sensitive
to outliers. Indeed, this loss function treats all variables as having an equal weight.
Thus, the presence of large outliers can lead to irrelevant results. For this reason, in
this contribution, we overcome this drawback by using an alternative loss function
based on the relative squared error which is defined, for Y > 0, by

E

[(
Y − r (X)

Y

)2

|X

]
, for Y > 0. (3)
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Clearly, this criterion is more interesting than the squared error, when the range
of predicted values is large. In particular, this kind of obtained regression is less
sensitive to the presence of outliers, see [Khardani and Slaoui, 2019]. Moreover, the
solution of the minimization of Equation (3) can be explicitly expressed by

r(p) :=
E[Y −1|X = p]

E[Y −2|X = p]
.

Then, our proposal in this paper is to estimate r (p) by:

rn(p) :=
ψ1,n(p)

ψ2,n(p)
(4)

where
E[Y −`|X = p] :=

ψl(p)

f(p)

ψl,n(p) =
1

n

n∑
i=1

Y −`i

1

hdn

1

θXn(p)
K

(
dg(p,Xi)

hn

)
for l ∈ {1, 2}.

and

fn(p) =
1

n

n∑
k=1

1

hdn

1

θXk
(p)

K

(
dg(p,Xk)

hn

)

3 Assumptions and main results
The closed ball in (M, g)of center p and of radius h will be denoted by BM(p, h),
and the closed ball in IRd centered at the origin and of radius h will be denoted by
B(h).
Throughout the paper, we denote by r`(·) = E[Y −`|X = ·] the conditional `-inverse
moments of T given X and by ψ`(·) = E[Y −`|X = ·]f(·), with f(6= 0) the density of
X; ` ∈ {1, 2, 3, 4}. When no confusion is possible, we denote by M and/or M ′ any
generic positive constant. Define J0:= { p ∈M such that ψ2(·) > 0} and let S be a
compact subset of J0. Then we suppose that

inf
p∈S

ψ2(p) > 0

and
A =

{
x ∈ S,

{ψ2(x)− 2r(x)ψ3(x) + r2(x)ψ4(x)}
ψ2
2(x)

6= 0

}
.
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In this section, we wants to establish the uniform almost complete convergence (a.s.)
of rn(x) to r(x) over a compact S. Firstly, we consider the following assumptions :
Assumption H1. : f is bounded and two-times continuously differentiable at p
such that:
(i) infp∈S f(p) > M > 0.
(ii) infp,q∈S θp(q) > M ′ > 0.

Assumption H2. hn < h∗
2

where h∗ = min{inj(M), π
2
√
κ
}. where κ is the least

upper bound of sectional curvatures ofM if this upper bound is positive, and κ = 0
otherwise.

Assumption H3. The smoothing parameter (hn) satisfies:

(i) lim
n→+∞

log n

nhdn
= 0, (ii) lim

n→+∞
nhd+4

n = 0.

Assumption H4.
(i) The kernel K is Continuously differentiable compactly supported density function
and is Holder of order γ.
(ii)

∫
R
‖v‖2K(‖v‖)dv <∞.

(iii)
〈∫

B(0,1)
K (||v||) vdv, gradψ`(v)

〉
= 0 for ` = 1, 2.

Assumption H5. The inverse conditional moments of the response variable
r`(p) = E[Y −`|X = p] is two-times continuously differentiable at p and supp∈M | (∇2ψ`(p)i,j) | <
+∞, r2(p) > M ′, ∀ p ∈M, for ` ∈ {1, 2}.

Assumption H6. The inverse conditional moments verify:
∀ p ∈M, and ∀ ` > 1, r`(p) = E[Y −`|X = p] exists.

Discussion of the assumptions.

We impose the condition (H2) on the bandwidth : hn < injg(M) where injg(M) de-
notes the injectivity radius ofM (Chavel, 1993, p108). SinceM is compact, injg(M)
is strictly positive by the theorem of Whitehead. The condition hn < injg(M) guar-
antees for each p ∈ M the existence of a normal coordinate neighborhood at p
containing BM(p, hn), the ball in M centered at p and of a radius h. Assumption
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(H4) is a standard assumption when dealing kernel estimators. Furthermore, As-
sumptions (H5 - H6) are regularity conditions which permit us to evaluate the bias
and variance terms of the estimator (4). The fact that θp(p) = 1 for all p ∈ M
guarantees that H1(ii) for a small compact neighborhood of p.

Theorem 3.1 Under Assumptions (H0)-(H5), we have

sup
p∈S
|rn(p)− r(p)| = O

(
max

{√
log n

nhdn
, h2n

})
a.s. (5)

The following corollary is a particular case of the previous theorem.

Corollary 3.2 Under Assumptions (H0)-(H5) and for (hn) =
((

logn
n

)1/(d+4)
)
, we

have

sup
p∈S
|rn(p)− r(p)| = O

((
log n

n

)2/(d+4)
)

a.s.

Theorem 3.3 Under assumptions (H0)-(H6), then for any p ∈ A, we have(
nhdn
σ2(p)

)1/2

(rn(p)− r(p)) D→ N (0, 1) as n→∞,

where
σ2(p) =

{ψ2(p)− 2r(p)ψ3(p) + r2(p)ψ4(p)}
ψ2
2(p)

∫
B(1)

K2(‖z‖)dz.

and
A =

{
p ∈ M,

{ψ2(p)− 2r(p)ψ3(p) + r2(p)ψ4(p)}
ψ2
2(p)

6= 0

}
,

D→ denotes convergence in distribution, N the Gaussian-distribution.

4 Applications
As part of potential applications, we would like to point out that the method de-
veloped in this work can be used for more general problems under the assumptions
detailed in section 3. As a first example, we want to simulate a regression problem
on Riemannian manifolds with positive constant curvature. This setting is very com-
mon in different applications where data are longitudinal. We cite for example, wind

8



direction, temperature values and changes, hurricane-force winds from the center,
tropical-storm-force winds, bird migration, etc.

We now examine in details the geometric structure of finite-dimensional Rieman-
nian manifolds with positive constant curvature k > 0, and provide explicit formulas
for computation. In order to avoid trivial cases we assume N ≥ 2. The most used
space is the hypersphere for two reasons: i) manifolds with constant k > 0 can be
bijectively mapped to the unit sphere of the same dimension, and ii) lot is known
about the geometry of the sphere. Here we provide some of the useful definitions
from spherical geometry. For more details, we refer the reader to [John M. Lee, 1997].
Since there is no restrictions for the dimension, we denote by SN the unit sphere in
IRN+1.

SN = {p ∈ RN+1| < p, p >2= 1}, (6)

where < ., . >2 is the standard inner product. Thus, for any p and q we have

< p, q >=
N+1∑
i=1

piqi.Every Riemannian manifold isometrically diffeomorphic to SN

will be identified with SN . For p ∈ SN , the tangent space to SN in p is given by
Tp(SN) = {v ∈ RN+1| < p, v >2= 0}. The restriction of the inner product to
closed ball with radius small than π in Tp(SN) is positive definite. This metric is
differentiable and therefore SN has a locally complete Riemannian structure. Starting
from a point p ∈ SN and a unit vector v ∈ Tp(SN) with ||v|| � π, we can construct a
unique geodesic γ : R→ SN and the arc-length (geodesic distance) between distinct
and non antipodal p and q onM is the angle β = arccos (< p, q >2).

The exponential map is a bijective isometry from the tangent space Tp(M) to
M. For any w ∈ Tp(M), we write

Expp(w) = cos(‖w‖2)p+ sin(‖w‖2)
w

‖w‖2
. (7)

Its inverse, the log map is defined fromM to Tp(M) as

Logp(q) =
β

sin(β)
(q − cos(β)p). (8)

For any two elements p and q on M the map Γ : Tp(M) → Tq(M) parallel
transports a vector w from p to q and is given by:

Γp�q(w) = w − 2
(p+ q)

||p+ q||22
< w, q >2 (9)
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Now that we have explicit formulas for geometric tools that can insure conditions
in section 3, we can apply our method for regression on SN . An important issue
in any kernel-based estimation is the choice of the optimal bandwidth In order to
apply our method for the simulation study and the real application considered in next
sections, we use a standard method for the choice of the bandwidth. In particular, an
optimal choice of hn which minimizes the asymptotic mean squared error (MSE) of
the estimator rn at a point x is (hn) =

((
logn
n

)1/(d+8) (d
8

)2/(d+8)
)
. In our experiments,

we use the most common method based on least square cross-validation method to
search for an asymptotically optimal data-driven bandwidth and thus, adaptive data-
driven estimators. Consequently, what we call training data are points used to find
optimal bandwidths where the rest is kept for evaluation. For both simulations and
real application, the performance of an estimate r̂ of r is measured using the Root
Mean Square Error (RMSE).

4.1 Simulations

In this section, we consider two applications, in each investigating the spherical
regression models towards different statistical goals. The first involves a simulated
data set with a scalar covariate, y ∈ R. We use simple data-generating models to
illustrate the flexibility within this regression framework for the mean direction and
dispersion to depend on the covariate; to investigate the performance of regression.
For simplicity, we consider an equivalent situation where X is a random position on
SN (N = 2) representing the sphere and Y ∈ [0, 1]. Consequently, the regression
problem consists in using available observations (Xi, Yi), i = 1, . . . , n in order to
predict Y for unknown positions. To better understand this situation, we display
two examples of noisy data on S2 (earth here) Figure 2(a), use some observations
to better approximate the model Figure 2(b) and then use the proposed method
for regression Figure 2(c). We illustrate this idea with Y-value colors for a better
visualization.

4.2 Real Application

The second dataset concern the air quality as the covariate and the position (longi-
tude and latitude) as the manifold-valued measurement In this application, we use
a dataset consisting of 400 measured at different locations in Europe from January
2015 to July 2019. The dataset is a part of the data archive provided by the Eu-
ropean Environment Agency and is available at https://www.eea.europa.eu. The
dataset contain observations about the air quality in individual countries, regions
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(a) (b) (c)

Figure 1: Simulation 1 (top) & 2 (bottom) for regression on unit sphere S2. For each
example: (a) represents original data with noise, (b) examples from training, and (c)
the predicted values.

and cities. The quality is based on concentration values of different key pollutants
to give an idea about the impact on health. Since data do not cover all locations
(monitoring stations) and some values are either missing or wrong when data are
not formally verified, the relative spherical regression is more convenient. 75% was
used for training and the remaining 25% was reserved for testing the performance of
the proposed model. For all applications, the proposed model showed a good perfor-
mance for predicting covariate. In particular, simulations results in simulation study
show shows robustness against noise and outliers. Note that the optimal bandwidth
is data-dependent but because the geodesic distance on distance on the sphere is de-
fined on wide ball, the impact of hn is moderate. We expect this property to hardly
impact the performance if the radius of injictivety is relatively small. Nevertheless,
there are many Riemannian manifolds where the geodesics are available with explicit
formulas or can be efficiently approximated. Thus, the proposed model can be gen-
eralized for other manifolds with different geometric structures but the conclusions
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(a) (b)

(c) (d)

Figure 2: Regression on air quality: (a) represents examples from original data,
(b) training, (c) test supposed unknown, and (d) original covariate in red and the
prediction in green. In this application, the RMSE between test and predicted by
the proposed model is 0.0072.

remain the same.
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5 Proofs and auxiliary results
Lemma 1 Under assumptions of Theorem 3.1 and for l ∈ {1, 2}, we have

sup
p∈S
|E(ψl,n(p))− ψl(p)| = O(h2n).

Lemma 2 Under assumptions of Theorem 3.1 and for l ∈ {1, 2} we obtain

sup
p∈S
|ψl,n(p)− E(ψl,n(p))| = O

(√
log n

nhdn

)
.

Proof of Theorem 3.1. We consider the following decomposition:

rn(p)− r(p) =
1

ψ2,n(p)
[ψ1,n(p)− ψ1(p)] + [ψ2(p)− ψ2,n(p)]

r(p)

ψ2,n(p)
(10)

The proof of this theorem is based on the decomposition given by (10) and is a direct
consequence of Lemmas (1) and (2), for which the proofs are given in the appendix.

Proof of Theorem 3.3: We write

rn(p)− r(p) =
1

ψ2,n(p)
[Dn +Wn(ψ2,n(p)− E [ψ2,n(p)])] +Wn, (11)

where

Wn =
1

E [ψ2,n(p)]ψ2(p)
{E [ψ1,n(p)]ψ2(p)− [E [ψ2,n(p)]]ψ1(p)}

Dn =
1

ψ2(p)
[[ψ1,n(p)− E [ψ1,n(p)]]ψ2(p) + [E [ψ2,n(p)]− ψ2,n(p)]ψ1(p)].

Then, it follows from (11), that

rn(p)− r(p)−Wn =
1

ψ2,n(p)
[Dn +Wn(ψ2,n(p)− E [ψ2,n(p)])]

= :
Dn +WnJ2n(p)

ψ2,n(p)
,

where

Jjn (p) = ψj,n(p)− E [ψj,n(p)] , for j = 1, 2.

Therefore, Theorem 3.3 is a consequence of the convergence rate of Lemmas (1) and
(2) and the following intermediate results ( Lemmas 3–4), for which the proofs are
also postponed to the appendix.
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Lemma 3 Under assumptions of Theorem 3.3, we obtain(
nhdn

σ2(p)ψ2
2(p)

)1/2

(Dn − E[Dn])
D→ N (0, 1).

Lemma 4 Under assumptions of Theorem 3.3, we obtain

ψ2,n(p)
P→ ψ2(p),(

nhdn
σ2(p)ψ2

2(p)

)1/2

Wn → 0,

and (
nhdn

σ2(p)ψ2
2(p)

)1/2

Wn(ψ2,n(p)− E [ψ2,n(p)])
P→ 0,

where P→ denotes convergence in probability.

5.1 Appendix

Proof of Lemma 1 Using a conditional expectation, we have∣∣∣∣∣E[ψ`,n (p)
]
− ψ` (p)

∣∣∣∣∣ =

∣∣∣∣∣E[Y −`i

1

hdi

1

θXi
(p)

K

(
dg(p,Xi)

hi

)
− ψ`(p)

]∣∣∣∣∣
=

∣∣∣∣∣
∫
M

r`(q)
1

hdn

1

θq(p)
K

(
dg(p, q)

hn

)
f(q)dνg(q)− ψ`(p)

∣∣∣∣∣
=

∣∣∣∣∣
∫
BM (p,hn)

1

hdn

1

θq(p)
K

(
dg(p, q)

hn

)
(ψ`(q)− ψ`(p))dνg(q)

∣∣∣∣∣
=

∣∣∣∣∣12
(
∇2ψ`(p)i,j

∫
B(1)

K(‖u‖)uiujdu

)
h2n + o(h2n)

∣∣∣∣∣
Assumptions (H4−H5) conclude the proof.

Proof of Lemma 3. It is clear that: E[Dn] = 0, so V ar[Dn] = E[D2
n]. Then

E[D2
n] = E{[ψ1,n(x)− E(ψ1,n(x))]2}+

{
ψ1(x)

ψ2(x)

}2

E{[ψ2,n(x)− E(ψ2,n(x))]2} − 2
ψ1(x)

ψ2(x)
cov(ψ1,n(x), ψ2,n(x))

= V ar(ψ1,n(x)) + r2(x)V ar(ψ2,n(x))− 2r(x)Cov(ψ1,n(x), ψ2,n(x)).
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We have

V ar[ψ1,n(x)] = n−1h−2dn var
[ 1

θXn(p)
Y −1n K

(
dg(p,Xn)

hn

)]
=

1

nhdn
E
[ 1

hdn

1

θ2Xn
(p)

Y −2n K2

(
dg(p,Xn)

hn

)]
− 1

n
E2
[ 1

hdn

1

θXn(p)
Y −1n K

(
dg(p,Xn)

hn

)]
=

1

nhdn
E
[ 1

hdn

1

θ2Xn
(p)

Y −21 K2

(
dg(p,Xn)

hn

)]
− 1

n
(ψ1(p) + o(1))2

=: K1n(p) +K2n(p).

For K2n(x) it is clear,

K2n(x) =
1

n
(ψ1(p) + o(1))2 = o(1). (12)

For K1n(x), under (H4–H6), using again the conditional expectation properties
and a Taylor expansion, we get,

K1n(p) =
1

nhdn
E
[ 1

hdn

1

θ2Xn
(p)

Y −21 K2

(
dg(p,Xn)

hn

)]
=

1

nhdn

∫
M

1

hdn

1

θ2q(p)
K2

(
dg(p, q)

hn

)
ψ2(q)dνg(q)

=
1

nhdn
ψ2(p)

∫
B(1)

K2(‖z‖)dz (13)

Then, (12),(13) and a Taylor expansion ensures that

V ar(ψ1,n(p)) =
1

nhdn
E
[
Y −2i |Xi = p

]
f(p)

∫
B(1)

K2(‖z‖)dz. (14)

and
V ar(ψ2,n(x)) =

1

nhdn
E
[
Y −4i |Xi = p

]
f(p)

∫
B(1)

K2(‖z‖)dz (15)

Moreover, we have

Cov(ψ1,n(p), ψ2,n(p))

= cov

(
1

nhdn

n∑
i=1

Y −1i

1

θXi
(p)

K

(
dg(p,Xi)

hn

)
,

1

nhdn

n∑
j=1

Y −2j

1

θXj
(p)

K

(
dg(p,Xj)

hn

))

=
1

nh2dn

{
E
[
Y −3i

1

θ2Xi
(p)

K2

(
dg(p,Xi)

hn

)]
− E

[
Y −1i

θXi
(p)

K

(
dg(p,Xi)

hn

)]
E
[
Y −2i

θXi
(p)

K

(
dg(p,Xi)

hn

)]}
.

15



A simple calculation ensures that

1

nh2dn
E
[
Y −1i

1

θXi
(p)

K

(
dg(p,Xi)

hn

)]
= o(1) and

1

nh2dn
E
[
Y −2i

1

θXi
(p)

K

(
dg(p,Xi)

hn

)]
= o(1).

A Taylor expansion ensures that

Cov(ψ1,n(p), ψ2,n(p)) =
1

nhdn
E
[
Y −3i |Xi = p

]
f(p)

∫
B(1)

K2(‖z‖)dz + o

(
1

nhdn

)
. (16)

Then the combination of (14), (15) and (16) ensures that

V ar[Dn] =
f(p)

nhdn

{
E
[
Y −2|X = p

]
+ r2(p)E

[
Y −4|X = p

]
− 2r(p)E

[
Y −3|X = p

]} ∫
B(1)

K2(‖z‖)dz.

Then, it follows that(
nhdn

σ2(p)ψ2
2(p)

)1/2

(Dn − E[Dn])
D→ N (0, 1).

Proof of Lemma 4. It follows from Lemma 1 that

E[ψ2,n (p)− ψ2 (p)]→ 0

Under assumptions H1, H4 and H5-H6 , we have :

V ar[ψ2,n(p)] = n−1h−2dk var
[ 1

θXk
(p)

Y −2k K

(
dg(p,Xk)

hk

)]
=

1

nhdn
E
[ 1

hdk

1

θ2Xk
(p)

Y −4k K2

(
dg(p,Xk)

hk

)]
− 1

n
E2
[ 1

hdn

1

θXk
(p)

Y −2k K

(
dg(p,Xk)

hk

)]
=

1

nhdn
E
[ 1

hdk

1

θ2Xk
(p)

Y −41 K2

(
dg(p,Xk)

hk

)]
− 1

n
(ψ2(p) + o(1))2

= O
(
n−1h−dn

)
= o(1).

Hence ψ2,n (p)
P→ ψ2(p).

Next, it is clear that the second limit of Lemma 4 is a consequence of the above
convergence. Then, it suffices to treat the last result. For this, we use the fact that

V ar[(ψ2,n(p)− E [ψ2,n(p)])] = V ar[ψ2,n(p)]→ 0.

Then, by the application of Lemma 2 we obtain Wn = O(h2n). Then, we deduce that(
nhdn

σ2(p)ψ2
2(p)

)1/2

Wn(ψ2,n(p)− E [ψ2,n(p)])
P→ 0.
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