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Abstract 24 

In comparison with northern countries, limited data are available on the occurrence 25 

and potential toxicity of cyanobacterial blooms in lakes and ponds in Sub-Saharan 26 

countries. With the aim of enhancing our knowledge on cyanobacteria and their toxins 27 

in Africa, we performed a 17-month monitoring of a freshwater ecosystem, Lagoon 28 

Aghien (Ivory Coast), which is used for multiple practices by riverine populations and 29 

for drinking water production in Abidjan city. The richness and diversity of the 30 

cyanobacterial community were high and displayed few variations during the entire 31 

survey. The monthly average abundances ranged from 4.1x104 cell mL-1 to 1.8x105 32 

cell mL-1, with higher abundances recorded during the dry seasons. Among the five 33 

cyanotoxin families analyzed (anatoxin-a, cylindrospermopsin, homoanatoxin, 34 

microcystins, saxitoxin), only microcystins (MC) were detected with concentrations 35 

ranging from 0 to 0.364 µg L-1 in phytoplankton cells, from 32 to 1,092 µg fresh weight 36 

(FW) kg-1 in fish intestines and from 33 to 383 µg FW kg-1 in fish livers. Even if the MC 37 

concentrations in water and fish are low, usually below the thresholds defined in WHO 38 

guidelines, these data raise the issue of the relevance of these WHO guidelines for 39 

Sub-Saharan Africa, where local populations are exposed throughout the year to these 40 

toxins in multiple ways. 41 

 42 
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Introduction 46 

Eutrophication of freshwater ecosystems due to point and diffuse nutrient pollution is 47 

ongoing on the African continent (Jenny et al. 2020). As shown for Lake Victoria (East 48 

Africa), this process is associated with the rapid demographic changes taking place on 49 

this continent (United Nations 2017) and leads to significant land use changes and 50 

increasing pollution pressures on freshwater ecosystems (e.g., Olokotum et al. 2020). 51 

Like anywhere else in the world, one would expect that the ongoing eutrophication of 52 

African lakes would lead to the development of cyanobacterial blooms in these 53 

ecosystems (Nyenje et al. 2010). This has already been well documented in a few 54 

large lakes, such as Lake Victoria (e.g., Krienitz et al. 2002; Olokotum et al. 2021), and 55 

in lakes and reservoirs located in northern and southern Africa (e.g., Oberholster et al. 56 

2010; Matthews and Bernard 2015; Guellati et al. 2017; Hammou et al. 2018). 57 

However, in comparison with northern countries, limited data are available on the 58 

occurrence of cyanobacterial blooms in lakes and ponds located in intertropical areas 59 

(e.g., Merel et al. 2013). In addition, there is also a lack of data on the potential toxicity 60 

of these cyanobacterial blooms, with data available from less than half of African 61 

countries (e.g., Ndlela et al. 2016; Svircev et al. 2019). In contrast, several reports of 62 

freshwater cyanobacterial poisoning in terrestrial wildlife (flamingos and 63 

megaherbivores) have been made, mainly in eastern and southern Africa (Ash and 64 

Patterson 2022). 65 

This lack of knowledge on the occurrence and potential toxicity of cyanobacterial 66 

blooms in freshwater ecosystems of numerous sub-Saharan countries is partly 67 

explained by the rarity of institutional monitoring of cyanobacteria in freshwater 68 

ecosystems, and vice versa (Codd et al. 2005). In addition, there are also no 69 

management plans, including policy tools, legislation and public communication, 70 
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dedicated to preventing human exposure to cyanotoxins, despite the potentially high 71 

exposure of human populations to these toxins in developing countries. Indeed, the 72 

majority of populations living around lakes use raw (untreated) water for multiple 73 

purposes, including washing dishes and clothes, bathing, cooking and direct 74 

consumption during fishing expeditions (e.g., Effebi et al. 2017; Roegner et al. 2020 75 

and 2023; Olokotum et al. 2022). 76 

In an attempt to improve our knowledge on threat assessment attributed to 77 

cyanobacterial blooms in Sub-Saharan Africa, we performed a 17-month monitoring of 78 

a freshwater lagoon, Lagoon Aghien, located in northern Abidjan city (Ivory Coast). 79 

This lagoon supplies treated water for the Abidjan district and is used for recreational 80 

and multiple domestic activities and for fishing by local populations living in the villages 81 

located along its shores. Finally, this assessment led us to discuss the considerations 82 

for applying the microcystin guideline values provided by the WHO in African countries 83 

and the limits for their use in these countries. 84 

 85 

Material and Methods 86 

Study site 87 

Lagoon Aghien (5°22’N to 5°26’N and 3°49’W and 3°55’W) is a freshwater ecosystem 88 

located in the northern-western part of the Abidjan District (Ivory Coast) (Fig. 1). This 89 

lagoon covers a surface area of 19.5 km2 with a perimeter of 40.72 km, a volume of 75 90 

km3 and a maximum depth of 10 m. More than 12,000 inhabitants live on its shores. 91 

The lagoon is drained by three rivers (i.e., rivers Bété, Djibi and Mé) (Fig. 1). 92 

The Mé and Bété catchments mainly include natural and agricultural lands, whereas 93 

the Djibi catchment contains mostly urbanized areas. The Djibi and Bété Rivers flow 94 

directly in the western part of the lagoon, while the Mé River flows in the channel 95 
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between Lagoon Aghien and Lagoon Potou. These three rivers carry many nutrients 96 

(phosphorus and nitrogen), explaining the hypereutrophication of the lagoon (Koffi et 97 

al. 2019; Ahoutou et al. 2021). 98 

 99 

 100 

Fig. 1 Locations of the six sampling stations in Lagoon Aghien 101 

 102 

Monthly rainfall values were obtained from the averages of the data collected at 103 

two weather stations (Anyama and Atchokoi). 104 

 105 

Sampling strategy of water 106 

As described in Ahoutou et al. (2021), a monthly monitoring survey was performed 107 

from December 2016 to April 2018 at five sampling stations (St1, St2, St4, St5 and 108 

St6) located on a NW‒SE transect and at one additional sampling station (St3) located 109 

close to the shoreline area of Akandje village (Fig. 1). Briefly, water samples were 110 

collected in the first meter of the water column by using an integrated sampler as 111 

described in Laplace-Treyture et al. (2016). The collected water samples were 112 
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transferred into two clean bottles that were stored in a cool box until they were returned 113 

to the laboratory. 114 

For cyanobacterial cell counting and identification, 200 mL of raw water was 115 

fixed in a formaldehyde solution (5% in final concentration). For the extraction of toxins 116 

from cyanobacterial cells, 200 mL of water was filtered through polycarbonate filters 117 

(Whatman® Nuclepore), which were stored at −80 °C. 118 

 119 

Dissolved nutrient analyses 120 

All the nutrient analyses were performed following the instructions of the LCK cuvette test 121 

systems provided by of the manufacturer (Hach® Company). The preparation of samples was 122 

performed using LCK cuvette test systems LCK 304, 341, 339 and 349 for ammonium (NH4), 123 

nitrites (NO2), nitrates (NO3) and soluble reactive phosphorus (SRP) respectively, after the 124 

water samples were filtered through nylon membranes (WhatmanTM, porosity 0.45 µm, 125 

diameter 47 mm). Colorimetric determinations of the concentrations were made using a HACH 126 

DR6000 UV VIS spectrophotometer.  127 

 128 

Cyanobacteria identification and counting 129 

The identification and counting of cyanobacteria genera were performed with an 130 

inverted microscope (Nikon Eclipse TS100) according to the Utermöhl method 131 

(Utermöhl 1958) and following the AFNOR 15204 standard. For each sample, a 132 

minimum of 30 fields of view, selected at random and distributed over the entire surface 133 

of the counting chamber, were observed under the microscope such that at least 500 134 

counting units (cells, colonies or filaments/trichomes) were counted. Except for some 135 

cyanobacteria, the cells were directly counted. For Microcystis, two categories of 136 

colonies were considered corresponding to their diameters (< or > 200 μm). The mean 137 
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number of cells per category was estimated under an upright microscope by counting 138 

the number of cells in 30 colonies per category after the colonies were gently spread 139 

between slides and coverslips. For filamentous cyanobacteria (Aphanizomenon, 140 

Cylindrospermopsis/Raphidiopsis, Limnothrix, Lyngbya, Oscillatoria, Planktothrix and 141 

Pseudanabaena), filament lengths of 100 μm were considered, and the mean cell 142 

number per 100 μm of filament was estimated on 30 filaments per genus according to 143 

the method described by Catherine et al. (2017). Finally, for all genera, the results of 144 

the cell counts are expressed as numbers of cells per mL. 145 

The potential ability of the various genera to produce cyanotoxins was identified 146 

on the basis of a report published by ANSES (2020). 147 

 148 

Fish 149 

The fish were purchased monthly between May 2017 and April 2018 from fishermen 150 

in three villages located around the lagoon (Anyama-Débracadère, Akandjé and 151 

Aghien-Télégraphe). They were transported in a cooler to the laboratory, and then (i) 152 

the length and weight of each individual were measured (Supplementary Fig. S1; Table 153 

1) and (ii) liver, intestinal and muscle tissues were taken from each fish and stored at 154 

-80 °C until analysis. 155 

A total of 97 fish belonging to six species were collected: 34 Chrysichthys 156 

nigrodigitatus (Claroteidae), 33 Tilapia guineensis (Cichlidae), 16 Sarotherodon 157 

melanotheron (Cichlidae), six Oreochromis niloticus (Cichlidae), five Hemichromis 158 

fasciatus (Cichlidae) and three Hepsetus odoe (Hepsetidae). These fishes belong to 159 

four trophic groups (i.e., omnivorous for T. guineensis, phytoplanktivorous for S. 160 

melanotheron and O. niloticus, zooplanktivorous for C. nigrodigitatus and carnivorous 161 
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for H. fasciatus and H. odoe) (Blé et al. 2008; Decru et al. 2012; Kidé et al. 2015; Jawad 162 

et al. 2017) 163 

 164 

 165 

Supplementary Fig. S1 Average length and weight (± standard deviation) and fish 166 
number in the six fish species collected in Lagoon Aghien 167 
CN = Chrysichthys nigrodigitatus; HF = Hemichromis fasciatus; HO = Hepsetus odoe; 168 
ON = Oreochromis niloticus; SM = Sarotherodon melanotheron; TG = Tilapia 169 
guineensis 170 
 171 

Table 1 Total lengths (TL), weights and microcystin (MC) -LR and -RR  concentrations 172 
in intestine, liver and muscle of all the fishes collected in Lagoon Aghien  173 
Cn = Chrysichthys nigrodigitatus; Hf = Hemichromis fasciatus; Ho = Hepsetus odoe; 174 
On = Oreochromis niloticus; Sm = Sarotherodon melanotheron; Tg = Tilapia 175 
guineensis 176 
 177 
 178 
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 181 
 182 

Cyanotoxin identification and quantification from phytoplankton cells and fish 183 

The same protocols as those described in Ahoutou et al. (2022) were used for all toxin 184 

analyses. Briefly, for intracellular cyanotoxins (in the phytoplanktonic biomass), the 185 

extraction was performed from biomass on polycarbonate filters (Whatman® 186 

Nuclepore) stored at −80 °C. After thawing, the filters were placed in sterile glass 187 

containing 4 mL of 75% methanol and then sonicated on ice with an ultrasound probe 188 

(Sonics Vibra Cell). The extracts were centrifuged, and the supernatants were 189 

collected and stored at 4 °C. The resulting pellets underwent a second extraction using 190 

the same protocol and then were centrifuged again to ensure that all toxins were 191 

extracted. These second supernatants were added to the first and centrifuged again. 192 

They were further frozen at −80 °C until cyanotoxin analysis. 193 

For cyanotoxin extractions from the fish, the method of Manubolu et al. (2018) 194 

was used with minor adjustments. For each fish, 100 mg of fresh liver, muscle, and 195 

intestinal tissues were used for cyanotoxin extraction. The 100 mg muscle extracts 196 

were further previously freeze-dried and underwent ball milling. All samples were 197 

extracted twice with BuOH:MeOH:H2O (1:4:15), submitted to an ultrasonic probe 198 

(Sonics Vibra Cell, 130 Watt, 20 kHz, 60%, 30 sec, three cycles) and centrifuged 199 

(15 300 G, 10 min, 4 °C). The collected supernatants underwent final centrifugation 200 

(15 300 G, 10 min, 4 °C) and were stored at −80 °C until analysis. 201 
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The identification and quantification of the cyanotoxins in the water and fish 202 

samples were performed by ultrahigh-performance liquid chromatography in tandem 203 

(Elute UHPLC—Bruker) coupled with high-resolution mass spectrometry (Compact 204 

QTOF—Bruker) (UHPLC–MS/MS). All samples were separated on a C18 stationary 205 

phase column (Acclaim RSLC Polar Advance 2, 2.2 μm, Thermo Fisher® 2.1 Å~ 100 206 

mm) along a linear gradient of acidified acetonitrile and acidified ultrapure water and 207 

then analyzed between 50 and 1500 m/z in positive BbCID (MS-MS/MS) mode, 208 

alternating at 2 Hz between low and high-energy MS and MS2 modes, respectively, 209 

with a mass accuracy of less than 0.5 ppm. The injection volume and data acquisition 210 

time were 4 μl and 21 min, respectively. The elution rate was 0.5 μL min−1. The 211 

analytical standards of the cyanotoxins investigated were saxitoxin (STX) (CAS 35554-212 

086), anatoxin-a (ATX) (CAS 64285-06-9), homoanatoxin (HTX) (CAS 142926-86-1), 213 

nodularin (NOD) (CAS 118399-22-7), cylindrospermopsin (CYL) (CAS 143545-90-8), 214 

and seven variants of microcystins (MC) (variant MC-LR, -LA, -LF, -LW, -LY, -RR and 215 

-YR corresponding to CAS 101043-37-2; CAS 96180-79-9; CAS 154037-70-4; CAS 216 

157622-02-1; CAS 123304-10-9; CAS 11755-37-4; and CAS 10164-48-6, 217 

respectively), all certified one year, purity >99% (Novakit®). Data were integrated using 218 

TASQ 1.1 software (Bruker®). Cyanotoxins were identified according to (i) retention 219 

time, (ii) molecular mass, (iii) isotopic pattern, and (iv) diagnostic ions. They were then 220 

quantified according to the area under the peak signal determined for analytical 221 

standards. Phormidium favosum (PMC 240.05), Raphidiopsis raciborskii (PMC 99.03), 222 

Aphanizomenon gracile (PMC 638.10), and Microcystis aeruginosa (PMC 728.11) 223 

strains were used as positive controls for ATX, CYL, STX and MC, respectively. Except 224 

for MC-RR, MC-LR, and MC-YR, other MC structural variants were quantified 225 
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according to MC-LR equivalence, calculated from the regression curves of the MC-LR 226 

analytical standard. 227 

For phytoplankton, the LOD and LOQ were equal to 0.0003 and 0.001 µg L-1 of 228 

raw water for MC-RR and 0.001 and 0.004 µg L-1 for MC-LR, respectively. For fish 229 

tissues, the LOD and LOQ were equal to 1.3 and 12.8 µg kg-1 fresh weight (FW) for 230 

MC-RR and 0.5 and 4.8 µg kg-1 for MC-LR, respectively. 231 

 232 

Statistical analyses 233 

Wilcoxon pairwise tests, sign tests, ordinary least squares regression and multiple 234 

linear regression (MLR) were performed by using PAST software v4.11. 235 

 236 

Results 237 

Spatial and temporal variations in cyanobacteria abundances and biovolumes 238 

A total of 15 cyanobacterial genera were found during the monitoring of the lagoon: 239 

Aphanizomenon, Aphanocapsa, Aphanothece, Chroococcus, Dolichospermum, 240 

Gomphosphaeria, Leptolyngbya, Limnothrix, Lyngbya, Merismopedia, Microcystis, 241 

Oscillatoria, Planktothrix, Pseudanabaena and Raphidiopsis (previously 242 

Cylindrospermopsis) (Supplementary Table S1). 243 

 244 

Supplementary Table S1 Cyanobacterial abundances (cell mL-1) and potential toxicity 245 
of the 15 cyanobacterial genera identified during the 17-month monitoring performed 246 
at six sampling stations in Lagoon Aghien  247 
 248 
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 249 

 250 

 Few variations were found in the richness and diversity (Shannon and Simpson 251 

indices) of the cyanobacterial community at the genus level during the 17-month 252 

monitoring of Lagoon Aghien (Fig. 2), except for the decrease in the two diversity 253 
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indices in January 2018. These low values in richness and diversity were associated 254 

with a high dominance of the genus Limnothrix in the cyanobacterial community (Fig. 255 

2 and 3). 256 

 257 

 258 

Fig. 2 Monthly variations in the richness and diversity (evenness, Shannon and 259 
Simpson indices calculated on the average cyanobacterial abundances at the six 260 
sampling stations) of the cyanobacterial community estimated at the genus taxonomic 261 
level in Lagoon Aghien. Monthly cumulative rainfall values (cm) have been added to 262 
the figure. 263 
 264 
 265 
 The total cyanobacterial abundances (sum of all genera) estimated during the 266 

monitoring survey ranged from 1.6x104 to 3.1x105 cell mL-1 (Supplementary Table S1), 267 

and monthly average abundances ranged from 4.1x104 cell mL-1 in July 2017 to 268 

1.8x105 cell mL-1 in March 2017. As shown in Figure 3, two main peaks of total 269 

cyanobacteria abundances were observed in February-March 2017 and February 270 

2018. The four dominant cyanobacterial genera in terms of cellular abundance were 271 

Raphidiopsis, Limnothrix, Microcystis and Oscillatoria. The main peak abundances of 272 
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these four genera were found from January to April 2017 and from December 2017 to 273 

February 2018 when rainfall was low (Fig. 3). 274 

 275 

 276 

Fig. 3 Variations in the monthly average abundances of the total cyanobacteria 277 
abundances (black curve) and of each cyanobacterial genus abundance (colored 278 
curves) (mean values from the six sampling stations) and variations in the cumulative 279 
monthly rainfall (gray bar chart). Standard deviations have only been added for the 280 
monthly averages of total cyanobacteria abundances. Total cya = Total cyanobacteria 281 
abundance. 282 
 283 

A negative correlation was found between monthly variations occurring in the 284 

monthly cumulative rainfall and those occurring in the total cyanobacterial abundance 285 

averages (r2=0.24; ordinary least squares regression, p<0.05) (Supplementary Fig. 286 

S2). 287 
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 288 

Supplementary Fig. S2 Correlation between Log10 monthly cyanobacterial 289 
abundance averages and Log10 monthly cumulative rainfall values 290 
 291 
 292 

Finally, among the 15 cyanobacteria genera observed in the lagoon, twelve are 293 

known to produce cyanotoxins. More specifically, four of them are known to produce 294 

ATX or HTX, five are known to produce CYL, nine are known to produce MC and four 295 

are known to produce STX (Supplementary Table S1). 296 

As observed for the variations in the total cyanobacterial abundances, the 297 

variations in the monthly averages of the potentially MC-producing cyanobacteria 298 

abundances (Aphanocapsa, Dolichospermum, Leptolyngbya, Limnothrix, 299 

Merismopedia, Microcystis, Oscillatoria, Planktothrix and Pseudanabaena) were 300 

characterized by a first peak of abundance at the beginning of 2017 followed by a 301 

strong decrease in June-July 2017 and a progressive increase in average abundance 302 

values until the end of the monitoring (Supplementary Fig. S3). 303 

 304 

 305 



 
 

18 

 306 
 307 
Supplementary Fig. S3 Variations in the monthly average abundances of all 308 
cyanobacteria and of cyanobacteria potentially able to produce microcystins (mean 309 
values from the six sampling stations) during the monitoring of Lagoon Aghien 310 
Total = monthly average abundances of all cyanobacteria; Pot. MC+ = monthly 311 
average abundances of cyanobacteria potentially able to produce microcystins 312 
 313 

Finally, as shown in Fig. 4A and by a Wilcoxon pairwise test (Supplementary 314 

Table S2), Station 6 and, to a lesser extent, Station 3 were characterized by lower 315 

monthly average abundances of cyanobacteria potentially able to produce MC. 316 

 317 

Supplementary Table S2 p values of the Wilcoxon paired test performed on the 318 
monthly average abundances of cyanobacteria potentially able to produce 319 
microcystins at the six sampling stations during the monitoring of Lagoon Aghien (bold 320 
characters = significant p values) 321 
 322 

 323 

Stations St1 St2 St3 St4 St5 St6 
St1 - 0,43 0,05 0,61 0,21 0,01 
St2  - 0,26 0,46 0,96 0,04 
St3   - 0,02 0,21 0,52 
St4    - 0,40 0,01 
St5     - 0,16 
St6      - 
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 324 
 325 
 326 

 327 
 328 
Fig. 4A & B Box plot of the variations in the monthly average abundances of potentially 329 
MC-producing genera (A) and in MC-RR concentrations (B) recorded at the six 330 
sampling stations in Lagoon Aghien 331 
 332 
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Spatial and temporal variations in intracellular cyanotoxin concentrations  333 

During the survey, intracellular STX, ATX, HTX, NOD and CYL were not detected. Two 334 

MC congeners, MC-RR and MC-LR, were detected throughout the year, but MC-LR 335 

concentrations were always under the limits of quantification. 336 

MC-RR was detected in cyanobacterial cells during all monitoring (Figure 5). 337 

The MC-RR concentrations ranged from 0 to 0.364 µg L-1 (mean value during the 338 

monitoring = 0.08 µg L-1) and were not correlated with the total abundances of 339 

potentially MC toxigenic cyanobacteria (R2=0.01). There was no correlation between 340 

MC-RR concentrations and the cell abundances of each of the nine genera potentially 341 

able to produce MC. Finally, the MLR analysis performed by using MC concentration 342 

as the dependent variable and cell abundance of each potentially MC-toxigenic 343 

cyanobacteria as the independent variables, showed that MC-RR concentrations were 344 

positively affected by Microcystis cell abundance (cell mL-1) and negatively affected by 345 

Oscillatoria cell abundance (cell mL-1) (p<0.05). The regression model obtained by 346 

MLR was: MC-RR= 0.072 +1.22 10-6 (Microcystis) - 2.99 10-6 (Oscillatoria). 347 

The comparison of these MC-RR concentrations at the six sampling sites shows 348 

that these concentrations were significantly lower at station 6 (median concentration = 349 

0.000 µg L-1, respectively) than at the other stations (median concentrations between 350 

0.055 and 0.079 µg L-1) (Fig. 4B and Supplementary Table S3). 351 

 352 
Supplementary Table S3 p values of the paired sign tests performed on the 353 
intracellular MC-RR concentrations recorded at the six sampling stations (S1 to S6) 354 
during the monitoring of Lagoon Aghien (bold characters = significant p values) 355 
 356 



 
 

21 

 357 

 358 

 The monthly variations in MC-RR concentrations were broadly similar at all 359 

sampling stations, with a first peak in April-May 2017, followed by a sharp decrease in 360 

June, and then a second peak in September-October 2017, followed by a sharp 361 

decrease in November 2017 (Fig. 5). These two peaks in MC-RR concentration 362 

followed an increase in nitrate concentrations in the lagoon (Supplementary Fig. S4). 363 

 364 

 365 

Fig. 5. Variations in the intracellular microcystin-RR concentrations at the six sampling 366 
stations and of rainfall values during the monitoring of Lagoon Aghien (no value in 367 
February 2018). MC St1-6= Microcystin concentrations at sampling stations 1 to 6. 368 
Average MC = Average MC concentrations at the six sampling stations.  369 

Stations St1 St2 St3 St4 St5 St6 
St1 - 0.80 0.80 0.80 0.80 0.00 
St2  - 0.46 0.80 0.80 0.02 
St3   - 0.12 0.80 0.00 
St4    - 0.80 0.00 
St5     - 0.00 
St6      - 
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 370 

 371 
 372 
Supplementary Figure S4. Variations in the intracellular microcystin-RR and 373 
dissolved nutrient average concentrations during the monitoring of Lagoon Aghien (no 374 
value in February 2018) 375 
 376 
 377 

Temporal variations in microcystin concentrations in fish tissues 378 

No STX, ATX, HTX, NOD or CYL were detected in any of the fish tissues analyzed, 379 

while MC-RR and MC-LR were frequently detected in the intestines and livers of all 380 

fish species but never in muscle tissues (Table 1). MC-RR and/or MC-LR were 381 

quantified in 32 of the 97 intestines analyzed (33%) and in 18 of the 61 livers analyzed 382 

(30%) (Table 1). 383 

 Among the 61 fish for which MC concentrations were quantified in liver and/or 384 

in intestine, MC-RR/LR were quantifiable (i) both in intestine and liver in 8% of the fish 385 

for which intestines and liver were analyzed, (ii) only in liver for 28% and (iii) only in 386 

intestine for 23% of them (Table 1). Total MC concentrations (MC-RR + MC-LR) 387 
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ranged between 32 and 1,092 µg kg-1 FW in the intestines and between 33 and 383 388 

µg kg-1 FW in the livers (Table 1). 389 

As shown in Table 2, MC was found in a higher proportion of the intestines in 390 

phytoplanktivorous fish (56 and 67% for O. niloticus and S. melanotheron, respectively) 391 

than in other dietary regimes (from 9 to 39% for all the other fish species). Moreover, 392 

there was a significant difference (Sign test, p<0.05) in the monthly averages of 393 

intestine MC concentrations of phytoplanktivorous-omnivorous fish and 394 

zooplanktivorous-carnivorous fish, with these concentrations being higher in the 395 

intestines of phytoplanktivorous-omnivorous fish. There were no significant differences 396 

(Kruskal‒Wallis test) in the MC concentrations estimated in the livers of T. guineensis 397 

(omnivorous), S. melanotheron (phytoplanktivorous) and C. nigrodigitatus 398 

(zooplanktivorous). 399 

 400 

Table 2 The proportions of the intestines and livers containing microcystins in the six 401 

fish species sampled in Lagoon Aghien 402 

C = carnivorous fish; Z = zooplanktivorous fish; P = phytoplanktivorous fish; O = omnivorous 403 

fish 404 

 405 

 406 

 407 

 Intestine Liver 

Chrysichthys nigrodigitatus (Z) 3/34 (9%) 5/18 (28%) 

Hemichromis fasciatus (C)  1/5 (20%) 0/5 (0%) 

Hepsetus odoe (C) 1/3 (33%) 0/3 (0%) 

Tilapia guineensis (O) 13/33 (39%) 5/18 (28%) 
Sarotherodon melanotheron (P) 

Oreochromis niloticus (P) 

9/16 (56%) 

4/6 (67%) 

7/11 (64%) 

1/6 (17%) 
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Discussion 408 

Cyanobacterial community composition and dynamics 409 

Fifteen cyanobacterial genera were observed during the survey of Lagoon Aghien, 410 

which is within the same range as data obtained in other tropical freshwater 411 

ecosystems, such as those reported by Olokotum et al. (2022), who identified 16 412 

cyanobacterial genera in two embayments of Lake Victoria (Uganda), and by Dalu and 413 

Wasserman (2018), who identified 13 cyanobacterial genera in a reservoir in 414 

Zimbabwe. In contrast with temperate areas, few variations in the richness of the 415 

cyanobacterial community were observed during the Lagoon Aghien survey, probably 416 

because of the temporal stability of the water temperature of the lagoon (between 26.3 417 

°C in July 2017 and 31.6 °C in March 2017; Ahoutou et al. 2021). Studies performed 418 

in temperate areas have shown that the decrease in water temperature is one of the 419 

main factors associated with a decrease in richness in phytoplankton communities 420 

(e.g., Catherine et al. 2016; Maberly et al. 2022). 421 

Among these 15 genera, four were dominant: Raphidiopsis (formerly 422 

Cylindrospermopsis), Microcystis, Oscillatoria and Limnothrix. The first three genera 423 

are the most frequently reported in studies performed in Sub-Saharan Africa (Svircev 424 

et al.2019), while Limnothrix is mainly found in shallow and eutrophic lakes of 425 

temperate areas (e.g., Rucker et al. 1997; Wiedner et al. 2002), even if it is also able 426 

to proliferate in tropical ecosystems, as shown in Brazil by Soares et al. (2009). The 427 

highest cyanobacterial abundances were generally associated with the genus 428 

Raphidiopsis, which is known to have high fitness at tropical latitudes and to be able 429 

to outcompete other cyanobacterial genera under these environmental conditions 430 

(e.g., Burford et al. 2016; Jia et al. 2020). Finally, we found that the variations in total 431 

cyanobacterial abundances were negatively correlated with rainfall, as previously 432 
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observed in other tropical freshwater ecosystems, this negative relationship being 433 

probably explained by the water dilution of cyanobacteria combined with high flushing 434 

rates (e.g., Barros et al. 2017; Giani et al. 2020). As shown by a canonical correspondence 435 

analysis performed by Ahoutou et al. (2021), only 22% of the variation in biovolume values of 436 

the dominant phytoplankton genera (including Raphidiopsis and Limnothrix) in the Lagoon 437 

Aghien phytoplankton community could be explained by variations in environmental variables. 438 

 439 

Toxin production 440 

 In Lagoon Aghien, 12 of the 15 cyanobacteria genera observed can potentially 441 

produce ATX, HTX, CYL, MC and/or STX (ANSES 2020), but only MC was found in 442 

the phytoplankton biomass. These data are in agreement with those reported in the 443 

reviews of Mowe et al. (2015) and Svircev et al. (2019), showing that MC are the most 444 

frequent cyanotoxins on the African continent during cyanobacterial blooms. Despite 445 

the high abundances of the genus Raphidiopsis, known to be a potential producer of 446 

CYL and/or STX (Vico et al. 2020), these two cyanotoxins were not found in Lagoon 447 

Aghien water. In two papers dealing with the production of CYL in Sub-Saharan Africa, 448 

all the Raphidiopsis strains isolated in Senegal and Uganda were shown to lack the 449 

genes involved in the biosynthesis of this toxin (Berger et al. 2006; Haande et al. 2008). 450 

These data should also be considered in light of the recent study of Vico et al. (2020), 451 

which suggested by genomic and phylogenetic analyses that central Africa was the 452 

original dispersion center of Raphidiopsis (Cylindrospermopsis) raciborskii and that 453 

these African populations were not able to produce CYL. 454 

 The intracellular MC concentrations in the water were quite low, always <0.4 µg 455 

equi. MC-LR eq L-1 and were not correlated with the total abundances of 456 

cyanobacterial genera known to be able to produce MC or with the abundance of each 457 

of these genera. On the other hand, our MLR analysis showed that MC-RR 458 
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concentrations were negatively affected by Oscillatoria cell abundances, but positively 459 

affected by Microcystis cell abundances. This finding is consistent with the fact that 460 

this genus is considered to be the major MC-producing genus in Africa (see reviews of 461 

Mowe et al. 2015; Chia et al. 2022). It is known that the variations in MC concentration 462 

are partly explained by the variations in the proportions of MC-producing (MC+) and 463 

non-MC-producing (MC-) strains in Microcystis populations (e.g., Briand et al. 2009; 464 

Suominen et al. 2017). Their respective proportions were not estimated in our study, 465 

and few data are available in Africa on this topic. Haande et al. (2007) found that only 466 

four of 24 M. aeruginosa isolates were able to produce MC, and Ballot et al. (2014) 467 

found that only one of 16 M. aeruginosa isolates was able to produce MC. These first 468 

data are interesting to consider, but knowing that there is very high variability in 469 

Europe/North America in the variations of MC+/MC- proportions during a bloom event 470 

or from one bloom to another (e.g., Briand et al. 2009; Sabart et al. 2009; Bozarth et 471 

al. 2010), much more data are necessary to get a real idea of the variability of these 472 

proportions in cyanobacterial populations in Sub-Saharan Africa. 473 

The average abundances of potentially MC-producing cyanobacteria and of MC 474 

concentrations in water were lower at sampling Station 6. As shown by Ahoutou et al. 475 

(2022), the values of some physico-chemical parameters, such as turbidity and 476 

phytoplankton community composition and biomass, were significantly different at 477 

Station 6, probably because this station is placed under the direct influence of the Mé 478 

river and Potou channel (Koffi et al. 2019).  479 

Another point to consider for explaining these low MC concentrations in Lagoon 480 

Aghien concerns nitrogen availability. In their review, Mowe et al. (2015) reported a 481 

positive correlation between N:P ratio values and MC concentrations from data 482 

collected in several tropical lakes. It is also well known that an increase in N supply 483 
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leads to an increase in MC cell quotas and concentrations (e.g., Chaffin et al. 2018; 484 

Horst et al. 2014; Wagner et al. 2021). During this monitoring of Lagoon Aghien, the 485 

N:P ratio values ranged between 7 and 14 (Ahoutou et al. 2020), which corresponds 486 

to the low N:P ratio and low microcystin concentrations reported by Mowe et al. (2015). 487 

It is interesting to note that in the present study the two MC peaks followed an increase 488 

in nitrate concentration, suggesting a possible link between these events. Moreover, 489 

during mesocosm experiments performed in Lagoon Aghien (Ahoutou et al. 2022), we 490 

found that the addition of nitrogen, alone or combined with phosphorus in the 491 

mesocosms filled with the water of the lagoon, stimulated MC production by 492 

cyanobacteria. Taken together, these results are interesting to consider in light of the 493 

data provided by Chianu et al. (2012) showing that nitrogen fertilizer consumption is 494 

low in African farming systems compared to northern countries. This suggests that an 495 

increase in the use of nitrogen fertilizers on this continent might lead to increasing MC 496 

concentrations in African freshwater ecosystems in the future. 497 

Few data are available on fish contamination by MC in Africa (Abdallah et al. 498 

2021, Roegner et al. 2023), but our data are interesting to compare with those of 499 

Semyalo et al. (2010), who dealt with the MC contamination of Nile tilapia (O. niloticus) 500 

in two Ugandan lakes (Lake Mburo and Lake Victoria). The MC concentrations in the 501 

cyanobacterial biomass in Lake Mburo ranged between 0.006 and 0.26 µg eq. MC-LR 502 

L-1 and were close to those recorded in Lagoon Aghien (between 0.02 and 0.25 µg MC 503 

L-1). These MC concentrations were higher in Murchison Bay (Lake Victoria), with 504 

values ranging between 0.2 and 0.7 µg equi. MC-LR L-1, depending on the season. In 505 

the fish intestines, the highest MC concentrations recorded in the O. niloticus sampled 506 

in the two Ugandan lakes were >300 and >390 µg.kg-1 FW in Lake Mburo and 507 

Murchison Bay, respectively, whereas the highest MC concentration recorded in 508 



 
 

28 

Lagoon Aghien was 1,092 µg.kg-1 FW when considering all the fish and 371 µg.kg-1 509 

FW when considering only O. niloticus. MC was most frequently found in the intestine 510 

and liver of phytoplanktivorous fish, consistent with the consumption and presence of 511 

cyanobacterial cells in the fish intestine and subsequent accumulation in the liver, the 512 

target organ of MCs. An interesting point was that in carnivorous fish (H. fasciatus, H. 513 

odoe), MC was only quantified in the liver and not in the intestine. This is probably 514 

related to their mode of intoxication via contaminated prey (no direct ingestion of 515 

cyanobacterial cells), the short length of their intestines and their rapid digestion 516 

time,allowing MC to be rapidly assimilated after prey digestion and directed to the liver 517 

for accumulation and metabolism. Such differences in MC accumulation in the gut and 518 

liver of phytoplanktivorous versus carnivorous fish have been previously reported by 519 

Ibeling et al. (2005), Zhang et al. (2009) and Nyakairu et al. (2010). 520 

Although similar MC concentrations were found in the fish intestines in Uganda 521 

and Ivory Coast, no MC was found in the fish muscle tissues in Lagoon Aghien, while 522 

low concentrations (<6 µg.kg-1 FW) were found in these tissues in fish from Mburo and 523 

Victoria Lakes. In the same way, MC concentrations ranging between 0.5 and 1,917 524 

µg.kg-1 FW were found in the muscle tissue of various fish species (including O. 525 

niloticus) collected in several Ugandan lakes by Poste et al. (2011), and some of these 526 

MC concentrations exceeded the tolerable daily intake guideline defined by the WHO 527 

for chronic exposure to MC. More recently, Roegner et al. (2023) found in the Winam 528 

Gulf (Lake Victoria, Kenya) that the hazard quotients for fish consumed by young 529 

children were 5 to 10 times higher than the permissible levels. 530 

This absence of MC in muscle tissues of fish collected in Lagoon Aghien is 531 

intriguing knowing that similar MC concentrations in water and in fish intestine were 532 

found in this lagoon and in two Ugandan lakes (Semyalo et al. 2010), where MC was 533 
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found in muscle tissues. High MC concentrations in fish muscle have been frequently 534 

estimated by ELISA and this method may overestimate these MC concentrations (see 535 

Ibelings et al. 2021). This could partly explain the lack of MC detection in the muscle 536 

tissue of fish from Lagoon Aghien, but the same analytical approach (LC‒MS/MS) as 537 

ours was used in the study of Semyalo et al. (2010), where MC was found in fish 538 

tissues. However, in our study, our LOQ values were quite high (12.8 µg kg-1 FW for 539 

MC-RR and 4.8 µg kg-1 FW for MC-LR), while the LOQ was not provided by Semyalo 540 

et al. (2010). Consequently, the existence of moderate MC contamination in the muscle 541 

of fish in Lagoon Aghien cannot be ruled out. Furthermore, only free MC was quantified 542 

in our study, whereas much of the accumulated MC may be covalently bound in animal 543 

tissues requiring specific extraction protocols (Neffling et al. 2010, Bouteiller et al. 544 

2021). Finally, as shown in the review paper of Martins and Vasconcelos (2009), fish 545 

are efficient in detoxifying MC, depending on the species and on the environment. In 546 

contrast with fish living in freshwater ecosystems from temperate areas, which are 547 

exposed to MC for only a few months, we showed that the fish community of Lagoon 548 

Aghien is contaminated throughout the year by MC, which could have led this 549 

community to develop active processes for the detoxification of MC. 550 

 All these data on toxin production by cyanobacteria in Lagoon Aghien raise the 551 

issue of health hazards for populations living around the lagoon. The WHO has 552 

provided guideline values for lifetime and short-term exposure to MC-LR by drinking 553 

water and for exposure by recreational activities (1, 12 and 24 µg L-1, respectively) 554 

(Chorus and Welker 2021). In France, more restrictive guideline values (0.1 µg L-1 for 555 

drinking water and 0.3 µg L-1 for recreational activities) have been adopted because 556 

the French Agency for Food, Environmental and Occupational Health and Safety 557 
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(ANSES) has taken into account the findings provided by Chen et al. (2001) showing 558 

reprotoxic effects of MC-LR during chronic low-dose exposure of mice. 559 

The WHO TDI for microcystin yields a threshold concentration of microcystin in 560 

fish of 24 μg kg-1 FW for a consumer weighing 60 kg and consuming 100 g of fish daily 561 

(Poste et al. 2011). Knowing that no MC was found in the muscle of the six fish species 562 

studied and even if we cannot exclude the presence of a low MC content in fish 563 

muscles, it is likely that the exposure risk by fish consumption of human populations 564 

living around Lagoon Aghien is probably limited. However, local populations consume 565 

some small fish species with viscera (i.e., Pellonulla leonesis, which was not sampled 566 

in this study), which could potentially contribute to their exposure to MC, since MC 567 

were found in the intestines of all the species targeted in this study. 568 

Taking into account all these guidelines, human populations living around the 569 

lagoon seem to be moderately exposed to adverse health effects of MC because MC 570 

concentrations in water and fish are generally below the WHO thresholds. However, in 571 

agreement with Roegner et al. (2020), we must question the relevancy of these 572 

guideline values, which have been established in developed countries where water 573 

uses are very different and have consequences on the cyanotoxin exposure level. For 574 

example, around Lagoon Aghien, children play for several hours every day of the first 575 

twelve years of their life in water continuously containing approximately 0.2 µg L-1 of 576 

MC, as we found, for example, between April 2017 and 2018. Nontreated lagoon water 577 

is also used for meal preparation, to wash children since the first weeks of their life, to 578 

wash dishes and clothes, etc. In addition, these populations eat fish from the lagoon 579 

almost every day, with fish being the main source of protein for them (Ahi 2021; Effebi 580 

et al. 2017). Daily exposure to low MC concentrations by different exposure routes 581 
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over more than 10 years is not taken into account in the current guidelines, making 582 

children in particular a potentially very vulnerable population. 583 

Even if guidelines adapted to developing countries were provided by the WHO, 584 

they would be far from being used in Sub-Saharan African countries, where there is 585 

usually no regular monitoring of cyanobacteria and their toxins in freshwater 586 

ecosystems. As observed for Lagoon Aghien and Lake Guiers (Senegal), which are 587 

used for the production of drinking water for the cities of Abidjan and Dakar, 588 

respectively, and face problems with cyanobacteria, the two main difficulties for the 589 

implementation of long-term monitoring of these resources are (i) the competition 590 

between national water institutions for the leadership of such a program and (ii) the 591 

sustainable funding of this monitoring, none of the ministries concerned agreeing to 592 

ensure it (Mitroi et al. 2022). Beyond the resolution of these governance difficulties, 593 

another key point in Africa will also be to inform the local populations and make them 594 

aware of the health hazards associated with cyanobacterial blooms. Finally, even if 595 

guidelines adapted to the local water practices are provided and monitoring and 596 

awareness of local populations are performed, the issue of the provision of alternative 597 

resources (in water, proteins, etc.) will be the last key step needed to reduce the 598 

exposure of these populations to MC. 599 

 600 
  601 
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