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I. MAE AND BOXPLOTS WITH CC-PVTZ BASIS SET

FIG. S1: The mean absolute errors (MAE) (in eV) of S1 and S2 excited states against (based on

symmetry label of states) the best estimates for Thiel’s molecular set as a function of XC

functionals, where top figure represents the MAE results with cMRSF=cSPC=cHF, while the MAEs

of bottom figure were generated with cMRSF=cSPC=0.5. All calculations were done by

MRSF-TDDFT with cc-pVTZ basis set. The values in parentheses are cHF for each functional.

2



FIG. S2: The boxplot (medians, interquartile ranges, as well as whiskers) of S1 and S2 excited state

error (in eV) relative best estimate obtained for Thiel’s molecular set as a function of XC

functionals, where top figure represents the boxplot results with cMRSF=cSPC=cHF, while the

boxplots of bottom figure were generated with cMRSF=cSPC=0.5. All calculations were done by

MRSF-TDDFT with cc-pVTZ basis set. The values in parentheses are cHF for each functional. The

values in parentheses are cHF for each functional.

II. ORBITAL STATIONARY CONDITIONS: Z(k)-VECTOR EQUATIONS

Two independent sets of orbital stationary conditions for singlet (k = S) and triplet response

states (k = T) are defined, respectively, as

∑
µ

∂L(k)

∂cµtα
cµuα + ∑

µ

∂L(k)

∂cµtβ
cµuβ = 0. (1)
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FIG. S3: The upper panel with mean absolute errors (MAE) and the bottom panel with the

boxplot (medians, interquartile ranges, as well as whiskers) (in eV) of S1 and S2 excited states

against (based on symmetry label of states) the best estimates for Thiel’s molecular set as a

function of range-separated exact exchange (α1, β1) for SCF part at fixed (α2=0.5, β2=0.0) for

response part with range-separation parameter µ =0.33. All calculations were done by

MRSF-TDDFT with cc-pVTZ basis set.

From this condition, the following Z(k)-vector equation can be derived as

C,O

∑
r

O,V

∑
s

J̄pq,rsZ̄(k)
rs = −R̄(k)

pq , p ∈ C, O q ∈ O, V, (2)

where the unique spin-independent Z(k) vector (with the bar symbol) is introduced as:

Z̄(k)
ix = Z(k)

ixβ, (3a)

Z̄(k)
xa = Z(k)

xaα, (3b)

Z̄(k)
ia = Z(k)

iaα = Z(k)
iaβ, otherwise, 0. (3c)
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The orbital Hessian J̄pq,rs of MRSF-TDDFT takes the identical forms of SF-TDDFTS1 as:

J̄ix,jy = (ix |jy )− cHF

2
[(iy |jx ) + (ij |xy )] + f xc

ixβ,jyβ

− 1
2

Fijβδxy +
1
2

Fxyβδij, (4a)

J̄ia,jy =2 (ia |jy )− cHF

2
[(iy |ja ) + (ij |ya )] + f xc

iaα,jyβ

+ f xc
iaβ,jyβ +

1
2

Fyaβδij, (4b)

J̄xa,jy = (xa |jy ) + f xc
xaα,jyβ −

1
2

Fjaαδxy, (4c)

J̄ia,jb =4 (ia |jb )− cHF[(ib |ja ) + (ij |ab )]

+ f xc
iaα,jbα + f xc

iaα,jbβ + f xc
iaβ,jbα + f xc

iaβ,jbβ

+ (ϵa − ϵi)δijδab, (4d)

J̄xa,jb =2 (xa |jb )− cHF[(xb |ja ) + (jx |ab )] + f xc
xaα,jbα

+ f xc
xaα,jbβ −

1
2

Fjxαδab, (4e)

J̄xa,yb = (xa |yb )− 1
cHF

[(xb |ya ) + (xy |ab )] + f xc
xaα,ybα

− 1
2

Fxyαδab +
1
2

Fabαδxy, (4f)

where f xc
pqσ,rsτ represents the matrix elements of the second functional derivatives of the exchange-

correlation functional with respect to the electron density. The spin-state-specific R̄(k)
pq on the

right-hand side of Eq. (2) for the singlet (k = S) and triplet states (k = T) are given by:

R̄(k)
ix =

1
2

H+
ixβ[T

(k)] + Hixα[X(k), X(k)]

− Hxiα[X(k), X(k)]− Hxiβ[X(k), X(k)],

R̄(k)
xa =

1
2

H+
xaα[T

(k)] + Hxaα[X(k), X(k)]

+ Hxaβ[X(k), X(k)]− Haxβ[X(k), X(k)],

R̄(k)
ia =

1
2
(H+

iaα[T
(k)] + H+

iaβ[T
(k)])

+ Hiaα[X(k), X(k)]− Haiβ[X(k), X(k)], (5)

where

H+
pqσ[V] ≡∑

rsτ

{2 (pq |rs ) + 2 f xc
pqσ,rsτ

− cMRSFδστ[(ps |rq ) + (pr |sq )]}Vrsτ, (6)

5



with

T(k)
prα ≡ −

O,V

∑
q

U(k)
pq X(k)

pq U(k)
rq X(k)

rq , p, r ∈ C, O,

T(k)
qsβ ≡

C,O

∑
p

U(k)
pq X(k)

pq U(k)
ps X(k)

ps , q, s ∈ O, V. (7)

And the Htuσ[X(k), X(k)] of Eq. (5) is defined as

Htuσ[X(k), X(k)] ≡ H(0)
tuσ[X

(k), X(k)]

+ ∑
xy

Hintra
tuσ [X(k)

Cx , X(k)
Cy ] + ∑

xy
Hintra

tuσ [X(k)
xV , X(k)

yV ]

+ ∑
x

Hinter
tuσ [X(k)

Cx , X(k)
xV ] + ∑

x
Hinter

tuσ [X(k)
xV , X(k)

Cx ], (8)

where

H(0)
tuα[X

(k), X(k)] ≡
C,O

∑
r

O,V

∑
qs

U(k)
tq X(k)

tq {δurFqsβ − δqsFurα

− cMRSF (ur |sq )}U(k)
rs X(k)

rs ,

H(0)
tuβ[X

(k), X(k)] ≡
C,O

∑
pr

O,V

∑
s

U(k)
pt X(k)

pt {δprFusβ − δusFprα

− cMRSF (pr |su )}U(k)
rs X(k)

rs , (9)

and

Hintra
tuα [X(k)

Cx , X(k)
Cy ] ≡ (−1)1−δxy

C

∑
r

O

∑
qs

UCx
tq X(k)

tq H(k)intra
uq,rs

× UCy
rs X(k)

rs ,

Hintra
tuα [X(k)

xV , X(k)
yV ] ≡ (−1)1−δxy

O

∑
r

V

∑
qs

UxV
tq X(k)

tq H(k)intra
uq,rs

× UyV
rs X(k)

rs ,

Hinter
tuα [X(k)

Cx , X(k)
yV ] ≡

O

∑
rq

V

∑
s

UCx
tq X(k)

tq H(k)inter
uq,rs UyV

rs X(k)
rs ,

Hinter
tuα [X(k)

xV , X(k)
Cy ] ≡

C

∑
r

O

∑
s

V

∑
q

UxV
tq X(k)

tq H(k)inter
uq,rs UCy

rs X(k)
rs , (10)

Hintra
tuβ [X(k)

Cx , X(k)
Cy ] ≡ (−1)1−δxy

C

∑
pr

O

∑
s

UCx
pt X(k)

pt H(k)intra
pu,rs
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× UCy
rs X(k)

rs ,

Hintra
tuβ [X(k)

xV , X(k)
yV ] ≡ (−1)1−δxy

O

∑
pr

V

∑
s

UxV
pt X(k)

pt H(k)intra
pu,rs

× UyV
rs X(k)

rs ,

Hinter
tuβ [X(k)

Cx , X(k)
yV ] ≡

C

∑
p

O

∑
r

V

∑
s

UCx
pt X(k)

pt H(k)inter
pu,rs UyV

rs X(k)
rs ,

Hinter
tuβ [X(k)

xV , X(k)
Cy ] ≡

C

∑
r

O

∑
pr

UxV
pt X(k)

pt H(k)inter
pu,rs UCy

rs X(k)
rs . (11)

Four terms on the right-hand side of Eq. (III.12) except for the first term are derived from

the spin-pairing coupling in Eq. (II.15). Without these terms, all equations for the Z(k)-vector

equation are almost same as those of SF-TDDFT.S1 Only the difference is using the expanded

excitation amplitudes, U(k)
pq X(k)

pq , in MRSF-TDDFT. This is a great advantage since one can simply

utilize the same existing routines for SF-TDDFT.

III. GRADIENT OF MRSF-TDDFT

From the stationary condition of Lagrangian for a nuclear coordinate (ξ) of

∂L(k)

∂ξ
= 0, (12)

the analytic gradient of the excitation energy (Ωξ
(k)) can be obtained by:

Ωξ
(k) = ∑

µνσ

hξ
µνP(k)

µνσ − ∑
µνσ

Sξ
µνW(k)

µνσ

+ ∑
µνσ,κλτ

(µν| κλ)ξ Γ(k)
µνσ,κλτ, (13)

where the superscript ξ denotes the derivative with respect to the nuclear coordinate. hξ
µν and

(µν| κλ)ξ are the derivatives of one- and two-electron integrals in AO basis. Sξ
µν is the derivative

of AO overlap integral. P(k)
µνσ and W(k)

µνσ are

P(k)
µνα ≡

C,O

∑
pq

cµpαP(k)
pqαcνqα, (14a)

P(k)
µνβ ≡

O,V

∑
pq

cµpβP(k)
pqβcνqβ, (14b)

W(k)
µνα ≡ ∑

p≤q
cµpαW(k)

pqαcνqα, (15a)
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W(k)
µνβ ≡ ∑

p≤q
cµpβW(k)

pqβcνqβ. (15b)

In addition, Γ(k)
µνσ,κλτ are given by

Γ(k)
µνσ,κλτ

=
1
2
[2P(k)

µνσDκλτ − cHFδστ(P(k)
µκσDνλσ + P(k)

µλσDνκσ)

− cMRSFδσαδτβ(X(k)
µλ X(k)

νκ + X(k)
µκ X(k)

νλ )]

+ sgn(k)cSPCδσαδτβ×

[{(Xintra
O1V )

(k)
µλ − (Xintra

O2V )
(k)
µλ}{(X

intra
O1V )

(k)
κν − (Xintra

O2V )
(k)
κν }

+ {(Xintra
CO1 )

(k)
µλ − (Xintra

CO2 )
(k)
µλ}{(X

intra
CO1 )

(k)
κν − (Xintra

CO2 )
(k)
κν }

+ (Xinter
CO1 )

(k)
µν (Xinter

O2V)
(k)
κλ + (Xinter

CO2 )
(k)
µν (Xinter

O1V)
(k)
κλ

+ (Xinter
O2V)

(k)
µν (Xinter

CO1 )
(k)
κλ + (Xinter

O1V)
(k)
µν (Xinter

CO2 )
(k)
κλ

− (Xinter
CO1 )

(k)
µλ (X

inter
O2V)

(k)
νκ − (Xinter

CO2 )
(k)
µλ (X

inter
O1V)

(k)
νκ

− (Xinter
O2V)

(k)
µλ (X

inter
CO1 )

(k)
νκ − (Xinter

O1V)
(k)
µλ (X

inter
CO2 )

(k)
νκ ], (16)

where

Dµνα ≡
C,O

∑
p

cµpαcνpα, (17a)

Dµνβ ≡
C

∑
p

cµpβcνpβ, (17b)

X(k)
µν ≡

C,O

∑
p

O,V

∑
q

cµpαU(k)
pq X(k)

pq cνqβ, (18)

and

(Xintra
OmV)

(k)
µν ≡

O

∑
p

V

∑
q

cµpαUOmV
pq X(k)

pq cνqβ,

(Xintra
COm)

(k)
µν ≡

C

∑
p

O

∑
q

cµpαUCOm
pq X(k)

pq cνqβ,

(Xinter
OmV)

(k)
µν ≡

O

∑
p

V

∑
q

cµpαUOmV
pq X(k)

pq cνqβ,

(Xinter
COm)

(k)
µν ≡

C

∑
p

O

∑
q

cµpαUCOm
pq X(k)

pq cνqβ. (19)
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Finally, the gradient of the ground state energy is given by:

Eξ = ∑
µνσ

hξ
µνDµνσ − ∑

µνσ

Sξ
µνW ′

µνσ

+ ∑
µνσ,κλτ

(µν| κλ)ξ Γ′
µνσ,κλτ, (20)

where

Γ′
µνσ,κλτ =

1
2
(DµνσDκλτ − cHFδστDµλσDνκσ). (21)

W ′
µνσ = ∑

p,q
cµpσFpqσcνqσ (22)

IV. NON-ADIABATIC DYNAMICS WITH MRSF-TDDFT

The three-state NAMD simulations were initiated by sampling the Wigner function of a

canonical ensembleS2,3 at T = 300K around the S0 equilibrium geometry. In this study, NAMD has

been performed based on the fewest-switches surface-hopping algorithm, S4 and nonadiabatic

coupling vectors are computed numerically by using a fast overlap calculation S5 using the locally

modified GAMESS. Velocity Verlet is used for integration. The energy conservation during the

hops was ensured by rescaling the velocities. Hundred trajectories were propagated using the

NVE ensemble with a time-step size of 0.5 fs until 200 fs for a propagation of the nuclear degrees

of freedom and with a sub-time-step size 10−5 fs for a propagation of the electronic degrees of

freedom.S6 No corrections for decoherence were applied.
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IP/eV

Exp 8.8S7,8

Orbital Energies of ROHF Reference

MRSF/BH&HLYP 6.4

MRSF/DTCAM-AEE 6.2

MRSF/DTCAM-VEE 6.2

IP by EKT-MRSF

EKT-MRSF/BH&HLYP 7.9

EKT-MRSF/DTCAM-VEE 8.2

EKT-MRSF/DTCAM-AEE 8.7

TABLE S1: The HOMO energies from MRSF and electron binding energies (eBEs) from

EKT-MRSF with BH&HLYP, DTCAM-AEE, and DTCAM-VEE functionals and 6-31G(d) basis set

at the MRSF/6-31G(d)/BH&HLYP optimized S0 equilibrium geometry of thymine. The

symmetry labels correspond to the Cs symmetry group.

V. PERFORMANCE OF IONIZATION POTENTIAL AND ELECTRON AFFINITY
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