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Abstract. We present a robust reciprocal-space implementation of the
temperature-dependent effective potential method, our implementation can scale
easily to large cell and long sampling time. It is interoperable with standard ab-initio
molecular dynamics and with Langevin dynamics. We prove that both sampling
methods can be efficient and accurate if a thermostat is used to control temperature
and dynamics parameters are used to optimise the sampling efficiency. By way of
example, we apply it to study anharmonic phonon renormalization in weakly and
strongly anharmonic materials, reproducing the temperature effect on phonon fre-
quencies, crossing of phase transition, and stabilization of high-temperature phases.
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1. Introduction

The most commonly used methods for computing phonon spectra are harmonic and
quasiharmonic approximations, in which the potential energy is expanded in Taylor
series up to second order in powers of atomic displacements about their equilibrium
positions. However, the small displacement assumption becomes invalid at high
temperatures, especially near a phase transition, or even at low temperatures if the
energy profile is shallow, or if the quantum nature of nuclei cannot be disregarded,
which warrants the need for anharmonic methods. Furthermore, the perturbative
treatment of anharmonicity can be problematic in the presence of imaginary phonons,
i.e. harmonic approximation has no suitable ground state upon which a perturbative
expansion can be built.

Although non-perturbative anharmonic lattice models, particularly the self-
consistent phonon (SCP) theory, have been developed as early as the 1950s by Born



and Hooton [1, 2] and others [3, 4], these models have originally been applied to rare
gases, like Ne, with simple interaction potentials based on ad hoc parameters, thereby
limiting their application and predictive power. Over the last two decades, there has
been increasing interest in anharmonic methods based on density functional theory
(DFT). While these methods are diverse in their formulation and implementation,
they mainly differ on (i) the method of computing the forces acting on ions, and
(ii) how the potential energy surface (PES) is sampled. Ab initio molecular dynamics
(AIMD) simulations sample the potential energy surface including full anharmonicity.
In the latter framework, dynamical and transport properties can be computed as time
averages over trajectories using either normal-mode analysis (NMA) [5, 6] or velocity
autocorrelation function (VACF) method. NMA and VACF have the advantage that
both renormalized phonon frequencies and phonon lifetime are obtained from AIMD
non-perturbatively and without explicitly computing higher-order force constants.
The main disadvantage of these methods is the long simulated time required to reach
ergodicity and/or targeted frequency resolution. In the case particle exchange is
relevant, an additional drawback is the lack of well-defined quantum statistics.

Nevertheless, the efficiency of VACF can be substantially improved by projecting
the atomic velocities (or displacements) of atoms in a supercell on harmonic phonons
modes from DFT in a commensurate unit cell |7, §].

The early contribution in the family of self-consistent phonon (SCP) methods
was the self-consistent ab initio lattice dynamics (SCAILD) by Souvatzis et al. [9],
which is based on thermal mean square displacements of atoms in a supercell.
Roekeghem et al. [10, 11] extended SCAILD to QSCAILD, which uses a quantum
mean square thermal displacement matrix. The temperature-dependent effective
potential (TDEP) approach involves fitting force constants to ab initio DFT forces
sampled along MD trajectories [12, 13] or stochastically [14]. Other SCP-based
methods include SCPH proposed by Tadano et al. [15], where anharmonic frequencies
are computed from the pole of the Green’s function and higher order effective force
constants from “compressive sensing” [16]. The stochastic self-consistent harmonic
approximation (SSCHA) [17] minimizes the free energy of a system within a harmonic
density matrix ansatz, rigorously capturing both nuclear quantum effects (NQE) and
anharmonicity. Anharmonic effects can also be sampled using a classical Langevin
dynamics based on the algorithm by Bussi and Parrinello [18] and a recent path
integral LD (PILD) scheme using classical and quantum correlators [19, 20]. In PILD,
including NQE implies a significant expense due to the requirement to simulate many
replicas of the system in parallel. Details of these methods are in the original articles
of the authors and also in recent reviews by Esfarjani et al. [21], and Hong et al. [22].

Here we propose a method that allows efficient prediction of the temperature
dependence of phonons and force constants based on the TDEP technique, using a



highly efficient reciprocal-space representation that fully exploits crystal and g-points
symmetries in the Brillouin zone to minimize the number of degrees of freedom.
The rest of the article is structured as follows: In Section 2, we review the TDEP
method starting with harmonic approximation, ab initio molecular dynamics and
Langevin dynamics. Section 3 presents our implementation of the reciprocal space
TDEP method, the temperature-dependent phonon (TDPH) method, including its
features and some convergence tests. In Section 4, we apply the TDPH method
to treat anharmonicity beyond QHA in weakly anharmonic fce aluminum and high-
temperature [-phase of Zr. We also study phonon renormalization in SrTiO3z and
show how the TDPH method successfully captures temperature-driven hardening of
antiferrodistortive mode.

2. Method

2.1. Harmonic Approximation

The Born-Oppenheimer potential energy of interacting atoms in a crystal can be
expressed as a Taylor series expansion around the equilibrium position:

V=V+ Zq)o‘ua +t o Z @a’guau —|— Z @a’?uo‘uﬁuz . (1)
i ij,a 8 : mk By
Here ® are the interatomic force constants (FCs), ijk are atomic indices and a3y are
Cartesian directions (x,y, z). On the right-hand side, the Vj term is a constant that
can be set to zero, while the linear term is zero at equilibrium geometry. The force
acting on atom ¢ along direction « is given as
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Truncating Taylor’s expansion in Equation 1 at the 2nd-order term with respect
to the displacement u, reduces the problem to a well known system of coupled
harmonic oscillators that can be solved on a basis of harmonic collective vibrations
(phonons) with a wavevector q, a polarization eq and an angular frequency wq that
solve the following eigenvalue equation:

D(q)eq.s = W €q.s - (3)
where the dynamical matrix D is the Fourier transform of real-space FCs (D?jﬁ ,
renormalized with the mass m; of the nuclei :
1

m;m;

af _ af _—iqR
Dij (q) = (I)ij e (4)

R
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The harmonic approximation gives phonons as well-defined quasiparticles with infinite
lifetime and independent of temperature. We note that the Fourier transform is not
the only way to build an approximate polynomial for the potential-energy surface,
and the global minimum is not necessarily the only possible point around which this
expansion can be performed. To have well-defined phonons, the dynamical matrix has
to be definite positive, i.e. the second order polynomial approximation has to have
positive curvature. More specifically, the Taylor expansion depends on the second
derivative of the PES at the equilibrium ionic position. In some cases, the oscillatory
motion of the nuclei may cover a relatively large distance and thus see, on average,
a very different curvature. This is more common at high temperature, for light ions,
and when the PES is close to a transition point, where its curvature changes from
positive (stable) to negative (unstable).

2.2. Sampling the Potential Energy Surface (PES)

We employed two methods of sampling the Born-Oppenheimer PES: the standard
molecular dynamics (MD) with Verlet integration of the trajectories, and the
Langevin dynamics (LD) based on the integration method by Bussi and Parrinello [18,
19]. For the MD case, we sampled the PES in two ways, one based on the
NVE ensemble (constant number of particles, volume and energy) and the other
on NVT ensemble (constant temperature). In the latter case, the stochastic SVR
thermostat [23] is used, which produces a dynamics conceptually halfway between
NVE and damped LD.

Generally, the Hamiltonian describing the dynamics of a set of N interacting
atoms with coordinates r = (ry,rs,...ry) and momenta p = (myvy, mavs, ... mMNVy)
moving in a potential of the form V'(r) is

p;
i 2_77% +V(r). (5)

H =

V(r) could be any analytic potential or computed from first principles electronic
structure [24, 25]. In any case, the aim is to explore the phase space (p, r) exhaustively

so that an ensemble average ()., . is equivalent to time average (.),, assuming

p.,r t)

ergodicity, for an observable A(p,r), i.e.

Nsteps

A(p(t:), r(t:)) - (6)

=1

t
1
(A) = lim [ A(t)dt

t—=oo Jo Nsteps

Q

Ab initio MD implies solving the static electronic structure problem and
simultaneously propagating the nuclei classically, according to the equations of motion



(1) = pi(t) ' (7)
The potential energy V' (r) depends, either parametrically or from the explicit ab initio
solution of the electronic problem, on atomic positions {r;} . The right-hand side
of Equation 7 gives the forces f; acting on each atom i € {1,2,...N}.

In the case of Langevin dynamics, the nuclei are propagated according to

pi(t) = —pi(t) +  fi(r(t)) + V2mikpTni(t)

S—— N—— d
damping Hellmann-Feymann stochastic . (8)
: _ pi(t)

In the above Equation, 4 is the Langevin friction, f(q(¢)) the deterministic force, and
n(t) the white-noise term. Following the fluctuation-dissipation theorem (FDT) [26],
the dissipative Langevin damping -~ is compensated by fluctuations induced by the
stochastic forces n(t) via temperature dependence, such that

(mt)nt"))y =0(t —tha(r) with a = 2kgT~. (9)

The equations of motion in Equation 8 can be expressed in terms of the probability
density P(I',t) that evolves according to the Fokker-Planck equation [27] which reads

as
OP(T, 1)

ot

where ¢Lpp = 1L, +iLg+1iL, is the Fokker-Planck Liouvillian, evolving the momenta,

— iLppP(T, 1), (10)

the coordinates and defining the thermostat, respectively.

There are different methods one can choose to integrate the LD of Equation 8. We
have chosen a recent implementation of the Bussi and Parrinello algorithm. [18, 19]
The major advantages of this method over MD are the small correlation time and fast
equilibration, which significantly reduce computing time and allow efficient canonical
sampling of the PES.

Originally developed to describe the behavior of a molecule in water, by treating
implicitly the interaction with the solvent as damping and random external forces, it
has long been shown that LD can properly describe the thermodynamical behavior of
more diverse systems [18]. In its limiting cases, it reduces to NVE (no damping) or to
a Brownian motion (no Born-Oppenheimer forces), while in the intermediate range
its behavior depends on the ratio of the damping and the time step, with a large
range of acceptable good values which can be determined by testing and computing
the correlation time of V. We found that the value v = 0.00146 a.u. is sufficiently
close to the optimum for all our applications.
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2.8. Temperature-dependent Effective Potential (TDEP)

Temperature-dependent effective potential (TDEP) is a method of computing finite-
temperature force constants (FCs) from a sampling of ab initio forces. This method
was first proposed by Esfarjani and Stokes [12], where the FCs (harmonic, cubic, and
quartic) of Si were extracted from ab initio MD force-displacement data. Hellman
and coworkers [13] introduced a similar procedure, but starting instead with zero-
temperature harmonic FCs to obtain the best effective FCs at a given temperature
by a least-square fit to ab initio MD forces at that temperature.

The TDEP method was tested on entropy-stabilized bce phases of Zr and Li by
Hellman et al. [13], and then later extended to treat anharmonic free energy correction
in “He [28] and cubic FCs in Si and FeSi [29]. The TDEP formalism starts with a
model Hamiltonian

H— U0+Zpl+ Z¢aﬂaﬂ (11)
zyozﬁ

where Uj is the ground state energy, and u and p denote displacement and momentum,
respectively, of atom i (j) in Cartesian direction « (). Based on the Hamiltonian
above, one can define a harmonic approximation of the force F = —VV as

F =F¢ = ZM 8 (12)

The model Hamiltonian in Equation 11 is then fitted to a Born-Oppenheimer energy
surface, sampled at finite temperature, by minimizing the residual mean squared
difference between F# and the ab initio (Hellman-Feynman) force, F4/, at each time

step t:
Nstep
Z |FAI FH 2
step =1
1 Nstep <13)
= FM —eup.
Nstep tzl ’ t ‘

The least-square determination of F is then provided by the pseudoinverse solution
that gives the lowest residual force:

u; f F‘f‘[

© = UFA =



The fitted FCs, © = gb%ﬂ (T') can then be used to compute temperature-dependent
properties. Due to the computational cost of AIMD, stochastically initialized
temperature-dependent effective potential (s-TDEP) [14] was proposed in which
atoms in a supercell are displaced with a stochastic thermal displacement [30, 17]
to allow sampling the canonical ensemble. While s-TDEP enables the inclusion of
both anharmonic and quantum effects, its stochastic nature results in phase space that
is not necessarly consistent with the requested temperature. In this work, we adopted
the Langevin dynamics based on the algorithm by Bussi and Parrinello [18, 19], where
instead of using an acceptance probability, as in Monte Carlo algorithms, the addi-
tional knowledge of deterministic forces is used to construct a chain of dynamic steps
that allows for optimized sampling efficiency.

In the case of polar materials, the long-range contribution to FCs due to dipole-
i
and dielectric constant €* from density functional perturbation theory (DFPT).

dipole interactions, ® are computed using ab initio Born effective charges Z*,
Long-range effects are impossible to compute unless one uses a very large supercell.
However, it is possible to separate forces into short- and long-range contributions
FAT = FS® 4 FLE and then fit only the rapidly decaying short-range forces F5%.
Detail explanation will be provided in Section 3.2.

3. Implementation of Reciprocal Space TDEP Method (TDPH)

The temperature-dependent phonon (TDPH) method is a reciprocal space
implementation of the TDEP technique described in Section 2.3. Our method is
similar to the TDEP technique described above. However, instead of fitting the
FCs directly to ab initio forces, we decompose the dynamical matrices D(q) on
symmetrized basis B;(q) at each g-point [31]. This procedure is inspired to the
one used in SSCHA[17] and ensures that an irreducible set of parameters is employed
to describe the full phonon dispersion. These minimum phonon parameters (MPP)
can be used to recompose the FCs and thus be fitted to the ab initio forces.

We will see in Sec. 3.1 how the basis B;(q) is built. Here, we detail the fitting
procedure, which can be summarized in the following steps:

(i) Compute harmonic phonons on a g-grid and decompose the dynamical matrices
D(q) on symmetrized basis B;(q) at each g-point

N

D(q) =) ci(@)Bi(a) ,



(i) Read N configurations of AIMD force-displacement data in a supercell:
{F;‘” ,W;}iz1..n. The supercell size must be commensurate with the phonon
q-grid.

(iii) If polar material, remove the long-range forces FZ® (due to dipole-dipole
interaction) from the AIMD forces before fit. FX# =% >ip gbgﬁ(LR)u?. PP LR

ij
is the long-range contribution to FCs due to dipole-dipole interaction defined
based on Born effective charges Z* and dielectric constants € using DFPT (see

Sec. 3.2).
(iv) Minimize the residual force by LMDIF (Modified Levenberg-Marquardt) method

N
1
2 : AT H|2
=ming — g F* —F;
X {N — | (2 3 ‘ }
(v) Reconstruct the dynamical matrices from the minimal parameters ¢;(q).

3.1. Symmetric Basis for Dynamical Matrices

The phonon dispersion over a grid of n X n x n q-points is described by a 3Ny x 3Ny
Hermitian dynamical matrix at each g-point in the grid. In order to reduce the
dimension of this space from n® x N% down to something more manageable, we can
use symmetries in two ways. First, we can reduce the grid of g-point to its irreducible
wedge, i.e. from every set of g-points which are linked by a symmetry operation of
the crystal, namely a "star of g-points”, we only take one. Second, we observe that
at each g-point the dynamical matrix is fully determined by the subset of symmetry
operations that leave the g-point unchanged, minus a reciprocal space vector [32].
For every qg-point in the irreducible wedge, we apply a symmetrization and
orthogonalization procedure that from a trial Hermitian matrix of dimensions N2,
with no specific symmetry, returns a minimal orthonormal basis which has the correct
symmetry. The symmetrization and orthogonalization algorithm proceeds as follows:

(i) Start with an initial guess of Hermitian matrices of dimension (3N,)? for each
point in the irreducible list. Possible choices are, random matrices, matrices with
a single non-zero element, or matrices constructed from the eigenvectors of the
zero-temperature DFPT calculation.

(ii) The elements of this trial basis are symmetrized, according to the symmetry of
the g-point. If any element is zero, they are discarded, the others are normalized.
(iii) Reduce the basis with the Gram-Schmidt algorithm, because the initial basis is

over-complete; if a zero-norm element appear during the procedure it has to be

discarded.



Finally, what will be left is a set of symmetry-compatible matrices 1,2,...,Ng(q) V q,
such that any dynamical matrix from a simulation of a real crystal at each g-point
can be decomposed in the following way:

Ng(a

)
D(q) = Y _(D(q)| Bi(q)) Bi(q)

=1

V q € 1BZ. (14)

B;(q) are the symmetrized basis, defined as the minimal phonon parameters. Ng(q)
is also the number of irreducible representation in the point group of q. The total
number of such parameters is given by

N = ZNB(Q) (15)

In practice, N is significantly smaller than (3N,;)? and can be as small as 4 for highly
symmetric crystals such as fcc Al on 2 x 2 x 2 g-grid. Table 1 below gives the phonon
parameters of different materials. The number of phonon parameters Ng, depends
on the symmetry of the crystal structure and the size of the phonon g-grid (which
determine the size of the supercell in real space). For instance, Ng of orthorhombic
MgSiOgj is 19 times bigger than that of cubic MgO, although the latter have 1.6 times
more atoms than the former.

Table 1: Size dependence of phonon parameters for a 5,000 MD snapshots. Space
group (SG), supercell size, number of atoms in supercell (N,;), minimal phonon
parameters (Ng), ab initio forces for Ngteps (Flar), and TDPHgipe CPU time (Machine
specification: Personal computer with 2.20GHz (x12) Intel Core i7-8750H ).

System SG Supercell Ny Ny Fa; TDPHyipe($)
Al Fm3m 225 (2x2x2) 8 4 2.00 x10° 3

Csl Pm3m 221 (2x2x2) 16 13 1.20 x10° 9

/7t Im3m 229 (4x4x4 64 17 9.60 x10> 3

SrTiO5 Pm3m 221 (2x2x2) 40 49 6.00 x10° 42

MgO Pm3m 225 (4x4x4) 128 51 1.92 x10° 98

MgSiOs  Pbum 62 (2x1x2) 80 994  1.20 x105 28152

3.2. Dealing with Polar Materials

In polar materials, the long-range nature of the Coulomb forces is responsible of a
macroscopic electric field for longitudinal optical phonons (LO), giving rise to the
LO-TO splitting as q — 0 [33]. Thus, in polar crystals, the force constants can
be separated into an exponentially decaying short-range part ®°f, and a long-range

10



dipole-dipole term ®L% [34, 35] that decays polynomially (~ d~3, where d is the
interatomic distance):
o = @5 4+ @LE, (16)

The long-range FCs are given by the general form in terms of the Born effective charge
tensor Z; of the i-th atoms in a unit cell and the macroscopic dielectric tensor >
which can be routinely computed within DFPT [33, 36, 37]

aB(LR) _ dme? (q-Z7)a(q- Z;)ﬁ
v 0 q- € . q

) (17)
Although the description of the ®¥ in terms of the dipole-dipole term yields accurate
results in the majority of materials, it has been demonstrated that generalizing to
higher order multipolar terms is required in some cases [38]. From Equation 16, the
atomic forces can also be separated into short-and long-range terms

FAI — FSR + FLR

SR LR 1
= =Yooy =y e ] (18)
JB JB

Following Ref. [39, 40], the short-range FCs, ®°F are fitted to the short-range
forces FoF only. Long-range effects on FCs require a very large supercell, which is
not feasible in practice. We tested fitting the effective charges (the long-range forces)
and observed weak temperature dependence. This is expected since any change in Z*
would require a considerable change in the electronic structure (which can be treated
at the QHA level), but the temperature does not significantly affect the electronic
occupations. Note that eq. 3.2 is in reciprocal space, in order to bring it to real space
we compute it for ¢ = 0 in the supercell dual to the g-grid.

3.3. Features of TDPH

The initial guess for FCs could come from DFPT or frozen phonons in a supercell.
In the case of DFPT, this implies, among other factors, handling polar materials in
one integrated way without the need for a separate or complementary calculation of
the long-range dipole-dipole term. For this reason, no arbitrary real-space cutoff has
to be imposed to keep the calculation fast. We have verified that after starting with
initial symmetric random phonon parameters the fitting procedure converged to the
correct result in all of our test cases. In principle, it is possible to start with no initial
guess at all (other than the crystal geometry).

As we have described in Sec. 3.1, the dynamical matrices are decomposed on a
set of symmetrized minimal basis at each g-point in the 1BZ, whose linear coefficients

11



are the parameters that are minimized during the fitting. Thus, this reciprocal-space
approach is highly efficient and ensures very fast convergence.

Effective charges can be considered fixed or minimized. We verified that finite
temperature effects on the effective charges beyond the QHA level are vanishingly
small.

TDPH, as part of the D3Q [41] code, is fully integrated into the Quantum
Espresso (QE) package [42, 43], which computes both FCs and MD configurations.
This unique synergy, as well as faster convergence, makes it easier and more
efficient to compute anharmonic properties. To decorrelate more quickly the sampled
configurations, TDPH can be integrated with both classical and quantum Langevin
dynamics, the latter implemented via the PIOUD engine [44] (also based on QE)
which is currently still in closed development.

3.4. Numerical Minimization

As we have seen in Table 1, the number of phonon parameters can be of the order of
1000 for relatively large systems, which may require a few thousand MD steps for the
TDPH procedure to accurately converge. The Levenberg-Marquardt[45] minimization
algorithm needs to solve linear least squares problems repeatedly. More precisely, this
means finding a vector x that minimizes || Az — b||, where A is a rectangular matrix
of dimension N, (number of parameters) times Nggq = 3 X Nyt X Nyeps (number of
Cartesian direction, atoms in the supercell, and of steps, respectively). The latter
can be of the order of one million. Solving linear least square problems is done
by computing a QR factorization of the matrix — this is the most computationally
expensive step. This takes hours using the naive serial algorithm implemented in
MINPACK [45]. For this reason, we parallelized the existing sequential MINPACK
package from 1980. The main modification consists in using ScaLAPACK [46] to
compute QR factorizations. The implementation we used, minimizes the Ny,
residual forces simultaneously, using their gradient from numerical differentiation.
The algorithm is very robust and can converge, even from randomly initialized FCs,
in a few (typically less than 10) iterations.

3.5. Convergence Tests

The decay time of autocorrelation is the most important parameter in determining
the efficiency of a dynamic algorithm to provide thermodynamic sampling. For
instance, if the MD steps remain correlated for a long time, then more steps need
to be sampled and this will eventually skyrocket the computational cost. Weakly
correlated configurations, on the other hand, imply that less computing time will be
sufficient to sample the PES by keeping the same target accuracy. Finite-size effects,

12



MD integrators, and thermostats are other factors worth observing. Therefore, we

perform the following convergence tests:

e Study the performance of TDPH (i.e. convergence of phonon frequencies, x?2,for

a given set of minimal phonon parameters Ng) with sampling time

Tsampling — n,skip X dt ,

(19)

where dt is the AIMD time step and n_skip is the sampling interval.

e Compare the TDPH results for different supercell sizes.

e Study the dependence of the sampling efficiency on Tsapp1ing in MD versus LD, and

the optimal Tganp1ing tO achieve reasonable convergence for properties of interest

in both cases.

e Universality of FCs fitted over different dynamics methods.

Note that from a numerical point of view, what matters is to have n_skip as small
as possible, i.e. to use the computed DFT data efficiently. This can be achieved by

increasing the time step, but if it is too large, other properties of the simulation

will suffer: the simulation temperature may go out of control, or a bias could be

introduced. We will see these points in detail as we study specific cases.

3.5.1. Convergence of Phonons with AIMD Sampling Taking a simple example as
a benchmark, we examine the phonon frequency convergence by sampling 200 MD
snapshots over different simulations lengths (corresponding to five different sampling
times: Tgamp1ing = 0.1, 0.2, 0.5, 1.0 ps) at 300K. Details of calculations are provided
in Appendix A. As shown in Figure 1, the phonon spectra converged at Tsampring =
0.2ps for a 2 x 2 x 2 fcc Al supercell.
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Figure 1: Convergence of phonon spectra with respect to the AIMD correlation time.

The full phonon dispersion is given in panel (a) and zoomed-out around X in panel

(b).
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As a way to check how TDPH improves the description of atomic forces, we
compare the ab initio and harmonic forces before and after fitting the configurations
along the MD trajectory. In Figure 2, this exercise is done for 400 AIMD snapshots.
Before the fit, the harmonic forces deviate from the ab initio ones represented by
the dashed circles. After fitting, the TDPH forces become closer to the ab initio
determination. Figure 2 gives the same result at 775K. We observe that the ab initio
and model forces are closer at a lower temperature (300K), Figure 2(a), than at a
higher temperature (775 K), Figure 2(b). The residual spread around the ab initio
reference (red line in Fig. 2) gives an idea of the system anharmonicity.
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0.12

T T T T
Frarm  © 300 K Fraru  © 775K

I Froen ° Fropy  *

Force from MODEL (Ry/au)
Force from MODEL (Ry/au)

. . . . . . . . . . .
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 0.02 0.04 0.06 0.08 0.1 0.12
(a) Force from AIMD (Ry/au) (b) Force from AIMD (Ry/au)

Figure 2: Comparison of the modulus of AIMD force and model (harmonic and
TDPH) forces at 300 K (panel (a)) and at 775 K (panel (b))

We also examine the robustness of phonon convergence with respect to arbitrary
initial conditions, by analyzing different randomly initialized MD runs. Two
configurations (system I and II) were initialized with different random atomic
velocities, and the TDPH phonons were compared. The result is shown in Figure
3, where a nice agreement is found between the two calculations.
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Figure 3: Comparison of phonons dispersions from two randomly-initialized MD
simulations and DFPT for a 3 x 3 x 3 Al supercell.

3.5.2. Phonon Parameters versus Supercell Size We test the TDPH performance
with different supercells to examine the dependence of the number of phonon
parameters Ng on the supercell size. Different supercells were considered using the
same temperature, i.e. T = 300K, and same correlation time, namely Tgampiing =
0.2ps. The result for fcc Al is given in Table 2. Also shown in Figure 4, is the
dependence of Ng on the number of atoms corresponding to different supercell sizes.
Note that larger supercells do not necessarily require longer simulations time, since
the ratio Ng,,/Np, where Np,, is the number of force components in the supercell,

does not change significantly, thanks to the full exploitation of symmetry relations in
TDPH.

Table 2: Phonon parameters versus supercell size in Al.

Supercell Nyt Ny Npg,, Np,,/Ns
2X2x%x2 8 4 24 6
3X3x%x3 27 7 81 11.6
4x4x4 64 17 192 11.3
6XxX6x6 216 45 684 14.4

8 X 8x%8 512 94 1536 16.3
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Figure 4: Dependence of the number of phonon parameters Ng on the number of
atoms N for Al as reported in Table 2 .

3.5.3. Convergence of Phonon Parameters with PES Sampling As described in Sec-
tion 2.2, two schemes were employed to sample the PES in the NVT ensemble, namely
MD and LD. For MD, a stochastic velocity rescaling (SVR) thermostat was used, since
it has been shown to have no effects on dynamical and transport properties [23] (see
Appendix A for computational details).

The second method is the classical Langevin dynamics (LD), which integrates
the equations of motion with deterministic (in our case DFT-based) and stochastic
forces at a given temperature, stabilized by an appropriate friction, determined
though the FDT. It is based on Bussi and Parrinello algorithm [18, 19] using a
Trotter factorization of the Liouvillian operator, as already described in Section
2.2 and Ref. [44]. Within this formalism, fully anharmonic quantum dynamics can
be investigated. By replacing LD with PILD, it is possible to take into account
both temperature and nuclear quantum effects (NQE), as recently demonstrated in
diamond and high-pressure atomic phase of hydrogen [19]. For our purpose, only
thermal effects are considered and the classical LD algorithm is used, since NQE
are less significant at higher temperature in the systems studied here. As shown
in Figure 5(a), for weakly anharmonic materials like fcc Al, both MD and LD give
reasonably converged phonons with fewer (i.e. ~ 100) snapshots and no interval
between subsequent steps (i.e. using Tsampiing = 1). In the case of cubic SrTiOs, a
strongly anharmonic perovskite, each dynamic simulation gives converged phonons
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only when an appropriate sampling time is used. We choose this sampling time to
be the autocorrelation time C(t,t') of the ab initio energy (see Appendix C). Using
a large time step can considerably reduce C(¢,t') (and hence computation time) at
the expense of large temperature fluctuations, but this impact is more pronounced in
MD. In the case of LD, FDT guarantees that temperature and friction are coupled,

keeping the temperature near to its intended value.

For a material with dynamical instability, finite-temperature sampling of the PES
with NVE will directly descend to the minima and hence give fast convergence of
those parameters that correspond to soft phonons. However, sampling the PES using
NVT (LD or MD with SVR thermostat) will allow the system to explore the phase
space more exhaustively before descending into the minima. They are therefore more
ergodic than NVE. In both cases, the effective harmonic Hamiltonian is constructed
to give converged phonon parameters and phonon dispersion representative of the
sampling temperature. Figure 5(b) displays the comparison of phonon dispersions
yielded by the three different methods.
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Figure 5: Temperature-dependent phonon dispersion at 300K for fcc Al (panel (a))
and cubic SrTiO; (panel (b)) using LD (red line), MD-NVT (blue-dotted line) and
MD-NVE (dark-green dotted line).
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Figure 6: Convergence of the first four phonon parameters in SrTiO; with TDPH
minimization steps. All methods are in a reasonable agreement after a 2ps long

simulation, with LD yielding the smoothest convergence as a function of the number
of AIMD snapshots.

3.5.4. Unwversality of the FCs in different dynamics Another factor to take into
account is the absence of sampling bias and the ergodicity of the dynamics trajectory
i.e. the property of the trajectory to sample the phase space in a way that is consistent
with the thermodynamic average. To ascertain this property, we cross-tested FCs
from the different dynamics methods (LD, MD- NVT, MD-NVE). To do so, on the
one hand we define xfcit of the FCs as the value of x? obtained at the end of the
minimization (step v in the procedure we detailed at the beginning of Sec. 3). On
the other hand, we define x2_, as the x? value obtained by applying the FC obtained
on a given trajectory to a different trajectory, without further minimization. If there
is no sampling bias, x7;, and x7,,, should be very close.

Our assumption is that a good quality trajectory produces universal TDPH FCs,
which would work equally well on any other trajectory, i.e. X?cit from a good trajectory
should not be significantly smaller than that obtained by applying the final FCs to a
different trajectory.

Conversely, the fact that the y? obtained from a trajectory is too small, does
not imply that the trajectory is good. In the best case it indicates that the system
is weakly anharmonic, while in the worst case it suggests that the sampling has a
bias. This last point is particularly important: a biased trajectory, which does not
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explore the entire phase space, may have a smaller x2, as the phonon parameters that
describe the unexplored degrees of freedom will be unconstrained.

Figure 7 gives a measure of the universality of FCs in Sr'TiOj extracted with
the TDPH method from different dynamics: LD, MD-NVT, MD-NVE. In each case,
the tested chi-square (x7,,;) is rescaled by the baseline (x7;). For a sufficiently large
number of steps, all three methods seem to give comparable results. We remark
however that a tiny difference remains between LD and NVT, which may indicate
an equally tiny bias in the exploration of the phase space. On the other hand, there
is a larger discrepancy between the uncontrolled NVE and the two other methods.
The fact that the NVE x? is higher (panel d of Figure 7) indicates that it explores
a less harmonic region of the phase space.This seems in contradiction with the NVE
property of exploring the PES minima more frequently than the other dynamics. In
fact, we have verified that, for this specific test, the average temperature of the NVE
simulation drifts from the initial one and settles around 315 K. This is because,
in a microcanonical ensemble, the total energy drifts due to error accumulation
from the MD integrator, which tends to increase with simulation length [46]. This
discrepancy can be particularly problematic when studying the temperature evolution
of a system, or when volume expansion is taken into account non-self consistently (i.e.
from the equation of state), which is the most common approach. Nevertheless, the
temperature drift of NVE can be mitigated by using the average temperature instead
of the target one, or by repeating the simulation until the correct temperature is
achieved, but this is expensive and labor-intensive. Therefore, it turns out that using

a stochastic thermostat can achieve a good result in a much simpler and efficient way.

We can conclude that all methods produce universal FCs, but NVT and LD are
more accurate and consistent to each other, as the real trajectory temperature is
consistent with the desired one (299 K for LD and 298 K for NVT). The x? of the
NVE simulation remains consistently higher, which is related to the fact that, for
this specific test, the effective temperature reached in NVE was larger, leading to the
exploration of a more anharmonic region.
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Figure 7: Measure of the universality of FCs extracted via TDPH from different
dynamics. Horizontal lines are obtained by the baseline dynamics that generates the

ensemble against which each set of FCs is tested. Red, blue and green lines indicate
FCs fitted on LD, MD-NVT, and MD-NVE trajectories, respectively.

4. Applications

4.1. Aluminum: quasiharmonic versus anharmonic effects

FCC aluminium exhibits weak anharmonicity. In this context, it is desirable to
understand the degree to which quasiharmonicity and intrinsic anharmonicity affects
phonon frequencies. Within the harmonic approximation, the effect of temperature
is absent. Quasiharmonic approximation introduces temperature dependence via
volume (thermal expansion) which tends to shift phonons as temperature is increased.
In the case of aluminum, the phonons become softer at higher temperature as observed
in experiment [47].
To what degree do the anharmonic phonon frequencies change from their harmonic
and quasiharmonic values at higher temperature? To answer this we apply QHA
and TDPH method to aluminum at five different volumes corresponding to the
temperatures of 273 K, 293 K, 571 K, 752 K and 903 K, obtained from the
experimental data of Ref. [48] (See Table 3 and Fig. 9).

The phonon dispersions calculated at 298 K using QHA and TDPH agree fairly
well with each other, as shown in Fig. 8 The small difference indicates that
thermal expansion is the dominant effect over anharmonicity at that temperature (see
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Appendix B). This is expected, given that 298K is lower than the Debye temperature
of aluminum of 433K (i.e ~ 0.60p) and the atomic vibrations from equilibrium can be
represented fairly well with harmonic potential. However, at 752K (=~ 1.80p), there
is clear separation of QHA from the anharmonic shift. Essentially, QHA phonons
are softer, and TDPH gives a better prediction that lies between the harmonic and
QHA results. We note here that the TDPH result contains both quasiharmonic and
anharmonic corrections:

Weaph (V1) = Whar (V) + Awgna(V(T)) + Awam (V, T). (20)
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Table 3: Comparison of the temperature dependence of lattice constant in Al using
QHA, TDPH and experimental results from Ref. [48]. arppy is obtained from the

minimum of the QHA free energy with renormalized phonons from TDPH.

T(K) apxp aQHA arppH

298.15 4.04962 4.07282 4.06131
481.15 4.06801 4.09353 4.07637
571.15 4.07788 4.10484 4.08338
752.15 4.09991 4.12999 4.09839
903.15 4.12039 4.15388 4.11210

4.2. Zirconium: High-temperature 3-phase

Ti, Zr, and Hf have hexagonal closed-packed (hcp) crystal structure at ambient
conditions which transform to body-centered cubic (bcc) structure at 1155 K, 1136
K, and 2030 K, respectively. Ab initio calculation of their phonon spectra in bcc
structure shows dynamical instability within (quasi)harmonic approximation [49].
When compressed at room temperature, hep Zr (a-phase) transformed to hexagonal
(w-phase) at 17 GPa and subsequently to bce (5-phase) above 35 GPa. However,
there is a temperature-induced a — 8 phase transition around 1136 K at 0 GPa [50].
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Figure 10: TDPH method applied to dynamically unstable bee phase of Zr at 1200K,
using initial force constants from DFPT (blue dash lines) and force-force correlators

(green dashed lines) from Ref. [19]. Orange dashed lines represent harmonic phonons
from DFPT.

The high-temperature [-Zr is entropically stabilized and therefore strongly
anharmonic. Here, we will test the validity of TDPH by examining the role of
anharmonicity in stabilizing the experimentally observed high temperature bee phase
of Zr. Figure 10 shows the harmonic (orange dashed lines) indicating dynamical
instability due to imaginary frequencies, and anharmonic phonon spectra and DOS.
The TDPH method yields renormalized phonons at 1200 K. Figure 10 also shows
how the TDPH works with two different initial guesses of the FCs: DFPT (blue-
dashed lines) and the force-force correlator method of Ref. [19] (green-dashed lines)
represented as TDPH I and TDPH II, respectively. A comparison of phonons using
TDPH vs force-force correlators method for Al and SrTiOjs is given in Appendix C.
Irrespective of the initial guess of the FCs, the TDPH method always gives converged
results, consistent with the temperature at which the PES is sampled.

4.8. SrTiOsz: Renormalized Phonons in c-SrTiOs

As a final benchmark of the TDPH method, we study the role of anharmonicity in
the vibrational and thermal transport properties of Sr'TiOs. Because of its various
applications and rich physics, Sr'TiO3 have been widely studied both theoretically
and experimentally. At room temperature, SrTiO3 has a cubic structure (c-STO),
which transforms to low symmetry tetragonal phase (t-STO), below T, = 105K. First-
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principles method based on conventional harmonic and quasiharmonic approximation
shows that ¢-STO is dynamically unstable, with soft modes at I', R and M-points
as shown in Figure 11. The antiferrodistortive (AFD) R-mode is associated with
symmetry lowering cubic-to-tetragonal structural phase transition, while the I'-mode
is ferreoelecreic (FE). Previous studies indicated that including anharmonic effects
can renormalize phonons, predict the cubic-tetragonal T, [15], enhance accurate
prediction of carrier mobility [39], thermal conductivity [51] and band-gap dependence
on temperature [52].

Here, we applied the TDPH method to compute renormalized phonons in ¢-STO
and lattice thermal conductivity with finite-temperature FCs. In Figure 11, we show
the dynamic stabilization of the cubic phase, as indicated by renormalized positive
frequencies relative to imaginary modes obtained from harmonic approximation using
DFPT.

The temperature-dependence of the phonon dispersion and density of states
(DOS) in cubic SrTiOj is shown in Figure 12(a), indicating phonon hardening with
increasing temperature from 200 K to 800 K. This effect has also been observed in
previous experimental and theoretical studies [53].

The temperature dependence of the squared frequency of the R mode has
been used to predict the cubic-to-tetragonal phase transition in SrTiOs. Figure
12(b) compares TDPH results to experimental measurements and other theoretical
methods. Our transition temperature of 75 K (Figure 12(b)) is closer to the
experimental value of 105 K than SCPH (220 K) [15] and QSCAILD (200 K) [11]
methods. The difference could be due to the functional used, as the lattice
dynamical properties of ferroelectric materials are particularly sensitive to the DFT
functionals [54, 55]. A recent attempt to circumvent the functional dependence of
the FE and AFD instabilities in Sr'TiO3; employed the SSCHA method and machine
learning force field trained on random-phase approximation (RPA), obtaining a

transition temperature of 172 K via Curie-Weiss fit of the AFD mode [56].

We also compute the lattice thermal conductivity of SrTiOs based on the
Boltzmann transport equation (BTE) of phonons in the single mode approximation
(SMA) using renormalized 2nd-order FCs from TDPH, and compared to results from
SCP theory [15] and experiment [57].The effect of four-phonon scattering, which has
been recently reported to suppress thermal conductivity in StTO3 by 15—20% beyond
200 K [58], is not taken into account in our theoretical prediction. Nevertheless,
using TDPH-based finite temperature FCs provides a reasonable estimate of thermal
conductivity in SrTiOs, which is impossible with harmonic FCs, as shown in Fig. 13.
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Figure 12: (a) Temperature-dependence of phonon dispersion and DOS of cubic
SrTiO3 using TDPH method and a zoomed-in region around R-point.

(b) Temperature-dependence of the squared frequency of the soft R-mode, compared
with experimental and QSCAILD results.
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5. Conclusion

We have developed an implementation of the TDEP method which uses a reciprocal-
space minimization to reliably optimize the effective potential even for thousand of
degrees of freedom and millions of data points with a negligible computational cost.
This is achieved by using the symmetry of the crystal to reduce the reciprocal-space
g-point sampling of phonons to its irreducible wedge and, then for each g-point to
reduce the dynamical matrix to its irreducible representations, expressed as a basis
of symmetric hermitian “dynamical” matrices. The minimization itself is performed
using the numerical gradient of the force residual with a new implementation of
the Modified Levenberg-Marquardt algorithm which can be executed in parallel with
ScaLAPACK.

The implementation has been tested on top of different dynamical sampling
methods: uncontrolled NVE ab initio molecular dynamics, NVT with a stochastic
SVR thermostat, and Langevin Dynamics. We have shown that all three methods
can produce universally valid temperature-dependent force constants. NVE is more
efficient, but with the strong caveat that it is susceptible to a large error from
temperature drift. On the other hand, by using the energy auto-correlation time to
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determine a suitable sampling interval between MD steps, the two controlled dynamic
methods, i.e. NVT and LD, are similar in efficiency, with the choice of the time step
and thermostat parameters playing a crucial role in deciding if one can outperform
the other. In our test case, LD yielded the smoothest convergence for the phonon
parameters as a function of the number of dynamics steps used for fitting.

We have tested the TDPH method in combination with Langevin dynamics,
over a range of weakly and strongly anharmonic materials. We report that it can
outperform QHA results in reproducing the temperature dependency of phonon
frequencies in Aluminum. We can also correctly produce the high-temperature
£ phase of Zirconium, with phonon frequencies which are virtually identical to
those obtained from force-force correlation sampled over the same dynamics. The
extrapolated frequency of the soft phonon band at the R point predicts a phase
transition temperature in good agreement with experiments and other simulation
methods using comparable density functional approximations.

We recommend the combination of these two methods as an effective way to
study finite-temperature phonon evolution, as they are readily accessible with only
two computational parameters to tune, i.e. the time step and damping, for the
reliability to optimize the force parameters and for their predictive power.
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A. Computational Details

A.1. DFT and Phonon calculation

DFT calculations were performed using the QUANTUM ESPRESSO package [61, 43],
employing optimized norm-conserving Vanderbilt pseudopotentials (NCPP) [62, 63]
and ultrasoft pseudopotentials (USPP) [64]. Electronic exchange and correlation are
approximated with PBE [62] in Al and Zr, and PBEsol [65] in SrTiO3. A cut-off
energy of 100 Ry was employed for the wavefunctions in Al, Zr, Sr'TiO3 whenever
NCPP is used, while 30 Ry (Al), 50 Ry (Zr) and 75 Ry (SrTiOs) are used in the case
of USPP. Brillouin zone integration was performed using Monkhorst-Pack [66] k-point
grid of 16 x 16 x 16, 8 x 8 x 8 and 4 x 4 x 4 for the unit cells in Al, Zr and SrTiOg, re-
spectively. For supercell calculations, k-point grids were down-scaled proportionally.
Given the metallic nature of Al and Zr, a cold smearing [67] width of 0.05Ry was used.
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The harmonic phonon spectra and FCs were computed using DFPT [33],
including long-range contributions to the dynamical matrices for polar SrTiO3. In all
cases, phonon g-grid were commensurate with supercell size, and strict convergence
was employed for phonon self-consistency (107*°Ry). In the case of cubic SrTiOs,
the FCs computed on 2 x 2 x 2 g-grid were interpolated on 4 x 4 x 4 grid for the
computation of lattice thermal conductivity.

A.2. Phonon lifetime and linewidth calculation

The phonon linewidth and lattice thermal conductivity were computed on a 20 x
20 x 20 g-mesh using Anharmonic code of QUANTUM ESPRESSO [41, 68]. The lattice
thermal conductivity of Sr'TiO3 was computed using Boltzmann transport equation
(BTE) within the Single-mode relaxation time (SMA) approximation along Cartesian
direction « as

a h2 2 2
K = N1 Z: vy won(n+1)7, (A.1)

where R, Ny, €2, kg, T, n represent Planck constant, total number of g-mesh points,
unit cell volume, Boltzmann constant, temperature, and Bose-Einstein phonon
population. The phonon energy w,, and group velocity v,, are computed from
renormalized 2nd-order FCs using TDPH method.

A.3. Molecular and Langevin Dynamics

We perform ab initio molecular dynamics as implemented in QQUANTUM ESPRESSO [61,
43] using the same parameters and settings employed for the harmonic phonon cal-
culations (pseudopotential, cut-off energy for wavefunctions, etc). The size of the
supercell is commensurate with the phonon g-grid, while k-point grids were down-
scaled proportionally. Temperature is controlled by stochastic velocity rescaling (svr)
method [23] to ensure efficient canonical sampling. The length of the simulation and
number of MD snapshots depends strictly on the material. However, after equilibra-
tion, 100 snapshots sampled over 2000 steps (equivalent to 2 ps) were sufficient to
obtain converged results in both Al and Zr.

The second method is Langevin dynamics (LD) with Bussi and Parrinello
algorithm [18] as recently implemented in Ref. [19]. LD integrates the equation
of motion with deterministic (DFT), stochastic, and frictional forces at a given
temperature, based on the Trotter factorization of Liouvillian operator. The Langevin
damping v (see text) had to be chosen so that the sampling efficiency is optimized.
We found v = 0.00146 a.u., to be optimal.
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B. Anharmonic correction to QHA free energy

We compute the effect of anharmonicity on the thermal expansion of Al by computing
the free energy using quasiharmonic approximation (QHA) and temperature
dependent phonon method (TDPH). The TDPH free energy is essentially the QHA
free energy with renormalized phonons from TDPH. This appproach has a difficulty
because the volume-temeprature equation of state used (VT-EOS) for the TDPH
simulation may not be equal to the final one. This problem could be solved self-
consistently, but we observe that a single-shot correction, starting from the standard

QHA VT-EOS can produce a significant correction while remaining fully ab initio.

In Figure Bl at low temperature (100 K and 300 K), the lattice volume
corresponding to the minima of the free energy changes slightly, an indication of weak
anharmonicity. At 700 K, the TDPH correction to the QHA equilibrium volume is
more significant, indicating the importance of including anharmonic effects at higher
temperature.
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Figure B1: The free energy of Al per unit cell vs lattice volume computed using
quasiharmonic approximation (QHA) and temperature dependent phonon method
(TDPH).

C. Phonons from TDPH vs force-force correlators method

We compare phonons from TDPH with force-force correlators method [19] in fcc Al
and cubic SrTiO3. Note that in the case of Sr'TiO3 (Figure ??a ), the TDPH method
is applied to short-range forces only, without the long-range effect due to dipole-dipole
interaction which is removed from the initial guess of the harmonic force constant.
This contribution is absent in the force-force correlators method as shown by the
degenerate phonon bands at I'-point.

30



1000 400

TDPH 300K ———— TDPH 400K ————
<ff> 300K —— <ff> 400K ——
L : ! -~ .
/d 2

350

300 |

250 |

Frequency (cm-l)
Frequency (cm-l)
N
g

(a) 200 X M r R M (b) °r X x2 ; L

Figure C1: Temperature-dependent phonon dispersion using TDPH and force-force
correlators < ff > methods [19]. (a) cubic SrTiO3 without long-range force-constants
(b) fcc Al

D. Phonons and autocorrelation in the different dynamic simulations

We compare the phonon dispersion in SrTiOsz using three different methods of
sampling the PES: LD, MD-NVT and MD-NVE. In each case, the 1,000 configurations
are sampled using Tsamp1ing = C(¢, 1), where C(t,t’) is the autocorrelation function
computed using Wiener-Khinchin theorem

C(t,t) = / |E|?e™ 2"t dy), (D.1)
where E is the instantaneous energy from ab initio simulation. Large deviation of
the average temperature of MD-NVE from the target (T = 300 K) in Table D1 is
due to the absence of thermostat, and the small autocorrelation time comes from fast
descend of NVE to minima (see text).

Table D1: Autocorrelation time and average Temperature

LD MD-NVT  MD-NVE
Toor(K) 299 298 315
C(t,t) 30 12 8
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Figure D1: Comparison of the autocorrelation function of the ab initio energy from
the three different dynamic simulations in cubic SrTiOs.
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Figure D2: Comparison of phonon dispersion from the three different dynamic
simulations in cubic SrTiOs.

E. TDPH input description

This code reads a set of initial dynamical matrices for a given system and optimizes
the harmonic force constants over a series of images that can be the output of a
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molecular dynamics calculation performed with QUANTUM ESPRESSO, or a Langevin
Dynamics calculation from PIOUD code. The code will expect that the size of the
supercell of the dynamics simulation is the same as that of the force constants.

Table E1: TDPH input description

Input Description
CHARACTER, "md" or "pioud": "md" if the sampling comes
from ab initto molecular dynamics wusing the standard
ai QUANTUM ESPRESSO dynamics engine (i.e. using calcula-
tion="md’ in the pw.x input) or "1d" for Langevin dynamics based
on the Bussi and Parrinello’s algorithm engine.
fnd CHARACTER, "md.out": File from standard QQUANTUM ESPRESSO
dynamics engine.
CHARACTER, default "positions.dat" "forces.dat",
ftau, . .. . .
fforce "sigma.dat": Output files from LD containing atomic posi-
ftoten’ tions in Angstrom, atomic forces in Hartree per Angstrom, and
potential energy Hartree atomic units.
CHARACTER, default "mat2R": File containing initial force
file mat2 constants. Must be periodic(i.e. generated with nf = 0 using
d3_q2r.x).
INTEGER, default 1, 100, 5000: When reading MD or LD
nfirst, trajectory files, read one every nskip steps starting from

nskip, nmax

nfirst until nmax configurations are read (i.e. from nfirst to
nfirst+nskipx(nmax—1)).

fit_type CHARACTER, forces: The fitting method described in the text.
CHARACTER, ph, ph+zstar or global: These choices define the
which TDPH minimization method to employ. ph will minimize

minimization short-range FCs and add long-range FCs if present (as they are).
ph+zstar decompose both short and long-range FCs, minimize and
subsequently recompose the TDPH FCs. global is experimental.

e0 REAL: Equilibrium total energy from DFT before AIMD steps.

thr REAL, DEFAULT=1.4-12: file from Quantum espresso containing
initial atomic coordinates and

] ) REAL: Adds or subtracts random numbers to initial phonon
randomization

parameters.
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