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Characterizing the processes underlying reproductive isolation between diverging lineages is central to understanding speciation. Here, we present RIDGE -Reproductive Isolation Detection using Genomic polymorphisms -a tool tailored for quantifying gene flow barrier proportions and identifying the corresponding genomic regions. RIDGE relies on an Approximate Bayesian Computation with a model-averaging approach to accommodate diverse scenarios of lineage divergence. It captures heterogeneity in effective migration rate along the genome while accounting for variation in linked selection and recombination. The barrier detection test relies on 1 numerous summary statistics to compute a Bayes factor, offering a robust statistical framework that facilitates cross-species comparisons. Simulations revealed that RIDGE is particularly efficient both at capturing signals of ongoing migration and at identifying barrier loci, including for recent divergence times (~0.1 2N e generations).

Applying RIDGE to four published crow datasets, we validated our tool by identifying a well-known large genomic region associated with mate choice patterns. We identified additional barrier loci between species pairs, which have shown, on the one hand, that depending on the biological, demographic, and selection contexts, different combinations of summary statistics are informative for the detection of signals.

On the other hand, these analyses also highlight the value of our newly developed outlier statistics in challenging detection conditions.

Introduction

The process of speciation involves a gradual and divergent evolution of populations, passing through conditions of semi-isolated species, coined the "grey zone of speciation" [START_REF] Roux | Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence[END_REF]), until complete genetic isolation is achieved resulting in the formation of distinct species [START_REF] Wu | The genic view of the process of speciation: Genic view of the process of speciation[END_REF]. Population divergence can occur through various scenarios, ranging from the complete absence of genetic exchanges, known as allopatric speciation (e.g., due to geographical barriers between populations), to almost unrestricted genetic exchanges in sympatric speciation. These extreme scenarios are not mutually exclusive, as genetic exchanges can reoccur after a period of allopatric divergence followed by secondary contacts [START_REF] Schluter | Ecology and the origin of species[END_REF]. Regardless of the scenario, the question of how reproductive isolation is established between divergent populations is central to understanding speciation. This involves comparing the proportion and identity of the relevant genomic regions across biological systems [START_REF] Delmore | Comparative analysis examining patterns of genomic differentiation across multiple episodes of population divergence in birds[END_REF][START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF][START_REF] Schluter | Ecology and the origin of species[END_REF] Extensive exploration of the genomic bases of speciation have been conducted, in particular in the case of ecological speciation where environmental disparities among populations drive both phenotypic divergence and reproductive isolation [START_REF] Rundle | Ecological speciation[END_REF][START_REF] Schluter | The Ecology of Adaptive Radiation[END_REF][START_REF] Shafer | Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology[END_REF]. A recurrently observed pattern is that pre-mating reproductive isolation is facilitated by the physical linkage between genes that govern reproductive isolation and those responsible for divergent traits, which can potentially result from adaptation to contrasted environmental conditions. The gradual establishment of linkage disequilibrium between these genes can then lead to the progressive arrest of gene flow during the speciation process [START_REF] Schluter | Three problems in the genetics of speciation by selection[END_REF].

For example, in stickleback fish, divergent mate preferences have been mapped to the same set of genomic regions controlling body size, shape, and ecological niche utilization [START_REF] Bay | Genetic Coupling of Female Mate Choice with Polygenic Ecological Divergence Facilitates Stickleback Speciation[END_REF]. Another striking example concerns the genomic determinants of mate selection based on feather color patterns in carrion and hooded crows [START_REF] Metzler | Assortative mating and epistatic mating-trait architecture induce complex movement of the crow hybrid zone[END_REF][START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF]. Specifically, genes encoding feather pigmentation and genes responsible for perceiving color patterns have been identified within the same 1.95 Mb region of chromosome 18. This region displays significant genetic differentiation between carrion and hooded crows. Similarly, in the neotropical butterflies Heliconius cydno and H. melopomene, assortative mating behavior is associated with a genomic region proximate to optix, a crucial locus influencing distinct wing color patterns between these species [START_REF] Merrill | Genetic dissection of assortative mating behavior[END_REF]. Note that, inversions can help build linkage disequilibrium by generating large genomic regions of suppressed recombination, maintaining combinations of co-adapted alleles encoding ecologically relevant traits. For example, in three species of wild sunflowers, 37 large non-recombining haplotype blocks (1-100 Mbp in size) contribute to strong pre-zygotic isolation between ecotypes through multiple traits such as adaptation to soil and climatic conditions or flowering characteristics [START_REF] Todesco | Massive haplotypes underlie ecotypic differentiation in sunflowers[END_REF].

Another key genetic mechanism involved in speciation is the epistatic interaction between genes that produce deleterious phenotypes in hybridization, also known as Bateson-Dobzenski-Muller Incompatibility (BDMI) [START_REF] Gavrilets | PERSPECTIVE: MODELS OF SPECIATION: WHAT HAVE WE LEARNED IN 40 YEARS?[END_REF]. Across Arabidopsis thaliana strains, epistatic interactions between alleles from two loci located on separate chromosomes, resulted in an autoimmune-like responses in F1 hybrids [START_REF] Bomblies | Autoimmune Response as a Mechanism for a Dobzhansky-Muller-Type Incompatibility Syndrome in Plants[END_REF]. In the Swordtail fish species, Xiphophorus birchmanni and X. malinche, an interaction between two genes generates a malignant melanoma in hybrids associated with strong viability selection [START_REF] Powell | Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish[END_REF].

As population-wide genomic data increase, genome-scan approaches enable a more systematic search of the genetic factors behind reproductive isolation. One popular approach relies on the search for genomic islands of elevated differentiation compared with the genomic background, typically through FST scans [START_REF] Wolf | Making sense of genomic islands of differentiation in light of speciation[END_REF]. However, it is now widely recognized that processes other than selection against gene flow can generate such islands. For example, selective sweeps and background selection against deleterious alleles both decrease genetic diversity at linked sites especially in low recombination regions [START_REF] Charlesworth | Directional selection and the evolution of sex and recombination[END_REF][START_REF] Charlesworth | Effects of Selection at Linked Sites on Patterns of Genetic Variability[END_REF][START_REF] Cruickshank | Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow[END_REF][START_REF] Kaplan | The "hitchhiking effect" revisited[END_REF]. Because gene flow barriers are more likely to occur in functional regions, they are also more affected by those forms of selection, further complicating the distinction of gene flow reduction [START_REF] Ravinet | Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow[END_REF]. Demography, which affects the entirety of the genome, is also key to account for barrier detection because barrier loci are harder to identify when the time split is recent and/or the migration rate is low [START_REF] Sakamoto | The Evolutionary Dynamics of a Genetic Barrier to Gene Flow: From the Establishment to the Emergence of a Peak of Divergence[END_REF]). Yet, recent splits of partially isolated taxa are of paramount interest in speciation research as they allow access to the key determinants of reproductive isolation while avoiding the confusion with other differences accumulated since speciation [START_REF] Tenaillon | Crop domestication as a step toward reproductive isolation[END_REF].

Linked selection (at least some forms of) can be approximated by a local reduction in effective population size [START_REF] Cruickshank | Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow[END_REF][START_REF] Ravinet | Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow[END_REF][START_REF] Sakamoto | The Evolutionary Dynamics of a Genetic Barrier to Gene Flow: From the Establishment to the Emergence of a Peak of Divergence[END_REF] and several methods have proposed to decouple its effect from the heterogeneity in effective migration rate to detect gene flow barrier on genomic polymorphism patterns [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF][START_REF] Laetsch | Demographically explicit scans for barriers to gene flow using gIMble[END_REF][START_REF] Sethuraman | Model-based assessments of differential introgression and linked natural selection during divergence and speciation[END_REF][START_REF] Sousa | Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models[END_REF]. These methods relax the assumption that all loci share the same demography. Some of them use likelihood methods to directly estimate and decouple the effects of differential introgression and demography across genomic loci [START_REF] Laetsch | Demographically explicit scans for barriers to gene flow using gIMble[END_REF][START_REF] Sethuraman | Model-based assessments of differential introgression and linked natural selection during divergence and speciation[END_REF][START_REF] Sousa | Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models[END_REF]. However, they make specific assumptions about demography. For example, gIMbl simulates population divergence with constant migration, [START_REF] Laetsch | Demographically explicit scans for barriers to gene flow using gIMble[END_REF]. DILS proposes a more flexible approximate Bayesian computation (ABC) approach (Fraisse et al. 2021). It first infers a demographic model while accounting for heterogeneity in effective population size N e (to mimic linked selection) and heterogeneity in effective migration m e (to mimic gene flow barriers), as taking genomic heterogeneity into account has been shown to enhance the quality of model inferences [START_REF] Roux | Can we continue to neglect genomic variation in introgression rates when inferring the history of speciation? A case study in a Mytilus hybrid zone[END_REF]. Second, the method infers the migration model at the locus scale -arrest of migration vs migration similar to the genome-wide level -, conditioned on the chosen model [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF]. Although effective in detecting gene flow barrier, this dependence on the initial model choice limits comparability among species pairs.

Overall, an adequate method to identify potential reproductive isolation barriers would require a cross-species comparative framework that takes genomic heterogeneity into account, while making analysis comparable despite differences in demographic histories. Here, we propose an innovative method to identify gene flow barrier loci satisfying these requirements and that also quantifies the confidence in locus detection. We used an ABC-based model averaging approach that accounts for different modalities of divergence between pairs of populations/taxons. We considered both heterogeneity in Ne along the genome, by modeling the mosaic effect of linked selection as in the DILS program [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF], and heterogeneity in recombination, by including an option for the user to provide a recombination map. In addition, we relied on a number of classic summary statistics but also incorporated new ones, related to outlier detection, which improved the inferences of barrier loci. Finally, the method provides Bayes factors associated with barrier detection, which facilitate cross-species comparisons.

Material and Methods

RIDGE pipeline

RIDGE utilizes ABC based on random forest (RF) to detect barrier loci between two diverging populations in the line of the framework proposed in DILS [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF]. The observed data consist of a set of loci sequenced on several individuals of the two populations. The general principle of RIDGE is as follows: first, we simulate 14 demographic x genomic models to produce a reference table. This table serves to train a RF that generates weights and parameter estimates for each model according to their fit to the target (observed) dataset. Second, we construct a hypermodel where the posterior distribution of each parameter is obtained as the weighted average over the 14 models. Finally, we use this hypermodel to produce datasets for control loci (thereafter non-barrier) and barrier loci that have undergone no gene flow during divergence. This second set of simulated datasets are employed to train a second RF model that subsequently calculates posterior probabilities and associated Bayes factors for categorizing each locus as barrier or non-barrier.

ABC Summary statistics

ABC inferences rely on summary statistics that are computed either at the locus-level or across loci, i.e. genome-wide distributions of summary statistics and correlations among loci, and either within or between populations. For a given observed dataset, the number of loci used for the building of the hypermodel is set by the user. To reduce computation time for large datasets, a subset of loci can be randomly sampled to represent the whole genome (by default, we used 1000 loci).

For each locus, RIDGE computes the following within population statistics: the number of Single Nucleotide Polymorphisms, SNPs (S), the nucleotide diversity π [START_REF] Nei | Mathematical model for studying genetic variation in terms of restriction endonucleases[END_REF], Watterson's θ [START_REF] Watterson | On the number of segregating sites in genetical models without recombination[END_REF], as well as Tajima's D [START_REF] Tajima | Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism[END_REF]. As measures of population differentiation between populations, RIDGE computes FST [START_REF] Bhatia | Estimating and interpreting FST: The impact of rare variants[END_REF][START_REF] Hudson | Estimation of levels of gene flow from DNA sequence data[END_REF], the absolute (Dxy) and the net (Da) divergence [START_REF] Nei | Mathematical model for studying genetic variation in terms of restriction endonucleases[END_REF], the summary of the joint Site Frequency Spectrum (jSFS) [START_REF] Wakeley | Estimating Ancestral Population Parameters[END_REF] with ss (the proportion of shared polymorphisms between populations), sf (the proportion of fixed differences between populations), sxA and sxB (the proportion of exclusive polymorphisms to each population).

Across loci, RIDGE computes the mean, the median and the standard deviation for each summary statistic described above. In addition, RIDGE computes the Pearson correlation coefficient between Dxy and F ST and between Da and F ST . Regarding specific jSFS status, RIDGE determines the number of loci that contains both shared polymorphisms (ss > 0) and fixed differences (sf > 0) between populations, ss + sf + and following the same rational ss + sf -, ss -sf + , ss -sf -.

These statistics are commonly used in ABC, for example in DILS [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF]. To obtain better insights into the proportion of barriers, we introduced new statistics: the proportion of outlier loci, defined as the proportion of loci that exceeds certain thresholds for F ST , Dxy, sf and Da, or falling below certain thresholds for π and θ. The thresholds are determined using Tukey's fences: t min =Q min -1.5 * (Q max -Q min ) and t max =Q max +1.5 * (Q max -Q min ) , for the lower and upper thresholds respectively, where Q min is the lowest and Q max the highest quartiles [START_REF] Tukey | Exploratory data analysis[END_REF]. All summary statistics were computed using the scikit-allel [START_REF] Miles | cggh/scikit-allel: V1.3.3[END_REF] and numpy [START_REF] Harris | Array programming with NumPy[END_REF] python packages.

Coalescence simulations

We simulated the evolution of neutral loci (1000 by default) under 14 demographic x genomic models using the scrm simulator [START_REF] Staab | scrm: Efficiently simulating long sequences using the approximated coalescent with recombination[END_REF], an efficient ms-like program [START_REF] Hudson | Generating samples under a Wright-Fisher neutral model of genetic variation[END_REF]. We stored corresponding simulation parameters as well as all summary statistics in a reference table.

Demographic models

RIDGE simulates the split of a single ancestral population of effective size N a , in two daughter populations of size N 1 and N 2 at time T split . Four different demographic models are considered as in DILS [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF] (Figure 1: Demographic and genomic models): (1) strict isolation with no migration (SI), (2) isolation with constant migration rate since T split (IM), (3) secondary contact with no migration after the split until a secondary contact at time T SC occurs (SC), and (4) ancestral migration with migration occurring initially and ceasing after time T AM (AM). Migration M (expressed in N.m units) is assumed to be symmetrical between the two populations.

Genomic models

In addition to modeling demography, RIDGE also incorporates heterogeneity in effective population size along the genome generated by linked selection, and heterogeneity in effective migration generated by selection against migrants at barrier loci. Thus, demographic models are combined with two effective population size modalities (homo-N vs hetero-N) and with two migration rate ( M ) modalities (homo-M vs hetero-M) -for models with migration. For simplicity, ge- nomic models are named using a combination of 1N (homo-N), 2N (hetero-N), 1M (homo-M), 2M

(hetero-M). While in the 1N modality all loci display the same effective population size genomewide, heterogeneity of effective population size under 2N, is modeled by a rescaled beta distribution. Effective size at locus i is given by:

N i = N * ( α+β α ) * Β(α , β) (1) 
where B(α,β) is the Beta distribution with parameter α and β and N is the mean effective popu- lation size across the genome. It is worth noting that for migration ( M ) we fixed the product N.m and genome-wide heterogeneity in effective migration is modeled by a Bernouilli distribution where a proportion Q of loci displays M =0 and a proportion 1-Q loci displays M > 0 , M designating either the current migration ( M cur ) or the ancestral migration ( M anc ). Likewise, we referred to the proportion of barriers under current ( Q cur ) and ancestral ( Q anc ) migration.

RIDGE assumes that all loci are independent and experience a genome-wide homogeneous mutation rate (μ, set by the user) and recombination rate (r, set by the user) unless a recombination map is provided, in which case locus-specific recombination rates are given by the recombination map.

Generation of the reference table

RIDGE explores 14 demographic x genomic models of divergence using a hypermodel that integrates them all. This model contains 12 parameters, eight demographic parameters ( N a , N 1 , N 2 ,T split , T AM , T SC , M cur , M anc ) as described in Figure 1, and four genomic parameters

( α , β ,Q cur ,Q anc ).
Regarding the demographic parameters, population sizes ( N a , N 1 , N 2 ) and times ( T split ,T AM ,T SC ) are sampled in uniform distributions with boundaries specified by the user. Migration rates are drawn from a truncated log-uniform distribution, with the boundary also specified by the user. We used log-normal instead of uniform distributions as migration affects 10 most statistics in a non-linear, multiplicative way. Preliminary simulations showed that it improved the performance of migration estimation. Note that depending on the considered demographic model, some of the parameters are set to 0 (Table S1, Figure 1). For example, under SI, only four demographic parameters are estimated (Table S1). Regarding the genomic parameters, parameters of the beta distribution and the Q parameter, are sampled in a uniform distribution where α , β ∊[0,10 ] and

Q anc , Q cur ∊[0 ,Q max ] . Q max ≤1
is the maximal proportion of the genome under gene flow barrier set by the user. RIDGE produces the reference table from a set of simulations with parameters sampled from these prior distributions.

Point estimates and goodness-of-fit of posteriors

RIDGE utilizes the reference table for training a regression RF model [START_REF] Raynal | ABC random forests for Bayesian parameter inference[END_REF].

This model produces point estimates for the predicted values of each parameter and assigns weights to simulations based on their proximity to the real data using the regAbcrf function. The overall weight for each simulation is calculated as the mean of the weights across all parameters, i.e. joint weights. Subsequently, these joint weights are used to subsample a set of simulations (and their corresponding parameter values) that better match the observed data. This subsample of the reference table is referred to as the posterior table. Note that subsampling of parameters according to the joint weights of simulations effectively accounts for the non-independence of parameters. We evaluated the goodness of fit of the posterior distributions using an enhanced version of the gfit function of the abc packages [START_REF] Csilléry | abc: An R package for approximate Bayesian computation (ABC)[END_REF], which employs a goodness-offit statistics approach described in [START_REF] Lemaire | Goodness-of-fit statistics for approximate Bayesian computation[END_REF] and summarized here. To assess the goodness-of-fit of the posterior G post, we followed these steps: first, summary statistics (in both observed dataset and posterior table) are normalized by their mean absolute deviation determined from the posteriors table. Then, we computed the Euclidean distance between each sum-mary statistics computed from the observed dataset and those computed from each η simulation contained in the posterior table. Together it form a vector of Euclidean distances d 1 ... d η on which we computed the average, denoted Dpost . To derive the null distribution of Gpost, we considered a dataset randomly sampled in the posterior table as "observed" and discarded from subsequent analyzes. The remaining η -1 datasets of the reference table were used to compute D post ', the average euclidean distance between the posterior table and the "observed" dataset. Repeated as such Ζ times, we obtained a vector of D ¹ post ' ... D post Ζ ' . Then, we computed G post as the proportion of values for which D post ' > D post .

Detection of barrier loci

Each set of parameters of the posterior table is used to generate two sets of individual-locus simulations, one set for non-barrier loci ( M equals to the value of the posterior table) and one set for barrier loci ( M set to 0), with two corresponding per-locus reference tables. The RF algorithm (abcrf package) was trained on these per-locus reference tables to predict the most probable status of each locus, either barrier (model x1) or non-barrier (model x2). Since there are only two models, the posterior probabilities satisfied: P[ x 1 ]=1-P[ x 2 ] so that we were able to compute a Bayes Factor (BF) for each locus i, denoted as BFi:

BF i =E [ 1- Q Q ] * ( P[ x 1 ] i 1-P[ x 1 ] i ) (2)
Here, E[] represents the average of the ratio (1-Q)/ Q over the posterior distribution ob- tained from the hypermodel.

Evaluation of RIDGE performance on pseudo-observed datasets

We evaluated RIDGE performance on pseudo-observed datasets. As a first step, we evaluated the ability of RIDGE to correctly infer demographic x genomic models. We next used the pseudo-observed datasets to evaluate the accuracy of RIDGE in estimating the proportion of barrier loci, and detecting their locations throughout the genome.

We simulated pseudo-observed datasets under the four demographic models and under both 2M2N and 1M2N genomic models (only 1M2N for SI). For simplicity, we fixed N a =N 1 =N 2 =50 000 individuals. The time of the secondary contact ( T SC ) was set to 0.2 * T split and the time of arrest of ancestral migration ( T AM ) was set to 0.7 * T split . We used a range of parameter values (Table S2) for divergence (from 1000 to 2 million generations, i.e. from 0.1 to 20 in 2N e generation unit), for migration ( M = 1 and 10 N.m), and barrier loci propor- tion (Q = 1%, 5% or 10%). We set the mutation rate to μ = 1.10⁻⁸ and the recombination rate to r = 1.10⁻⁷ so that their ratio was 10. In total, we simulated 15,000 datasets using the scrm coalescent simulator [START_REF] Staab | scrm: Efficiently simulating long sequences using the approximated coalescent with recombination[END_REF]. Each multilocus dataset contained 1000 loci of 10kb each, and we performed 100 replicates per scenario. To evaluate the inference of demographic x genomic models, we calculated the goodness-of-fit of the estimated model and determined the con- 

Application to experimental data on crow hybrid zones

To assess the performance of RIDGE on experimental data, we focused on two published datasets produced by [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF] and [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]. All sequencing data from crows were extracted from NCBI database under project number PRJNA192205 and the refer- All alignments were done on a reference genome (NCBI assembly: GCF_000738735.1) consisting of 1299 scaffolds resulted in the detection of 16,064,921 common SNPs with an average density of 15 SNPs per kilobase. Previous genome-wide scans across the three pairs identified a number of candidate loci potentially involved in population/species divergence [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]. Two metrics were employed in those scans: (i) a Z-transformed F ST computed on 50 kb non-overlapping windows between population/species pairs and normalized by the local level of Z-transformed F ST from allopatric pairs, denoted as F ST ', (ii) an unsupervised genome-wide recognition of local relationship pattern using Hidden Markov Model and a Self Organizing Map (HMM-SOM) method implemented in Saguaro [START_REF] Zamani | Unsupervised genomewide recognition of local relationship patterns[END_REF] to identify local phylogenetic relationships based on matrices of pairwise distance measures, across each of the target hybrid zones.

Here, we applied RIDGE on 50 kb non-overlapping windows considering a mutation rate of 3.10⁻⁹ for both datasets as is [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF] and [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]. We therefore focused on scaffolds longer than 50 kb, which accounted for 9% of the total scaffolds but represented 98% of the genome. Prior bounds are given in Table S3, and were determined based on the observed datasets and results of analysis from [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]. First, we compared Bayes factor outliers (BF > 50) from RIDGE results with outlier loci detected in [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF] to assess the ability of RIDGE to correctly detect barrier locis. Secondarily, we analyzed RIDGE results produced on three species pairs on a lager dataset [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] to understand how BF correlate with summary statistics and which summary statistics are able to discriminate outlier loci (BF > 50).

Results

Demographic inferences

The RIDGE's ability to infer demographic parameters, measured by the goodness of fit of posteriors (Gpost), far exceeded the rejection threshold of 5% and was stable across all models and conditions tested in pseudo-observed datasets (Figure 2 & S1). However, the model's contribution to the estimation of the demographic and genomic parameters varied across conditions.

The percentage of simulations correctly attributed to the correct model increased with the time split ( T split ), reaching over 65.7% for IM, 81.1% for SC and 69.5% for AM models when T split exceeded 10⁶ generations (Figure 3). In contrast, the SI model never achieved more than 32.1%

accuracy. The percentage of simulations correctly detecting the presence or absence of current migration increased with T split and heterogeneous migration was better captured under current rather than ancestral migration (82.1% and 80.8% at 10⁶ generation for IM and SC against 48.7% for AM). Heterogeneity in population size (2N) followed the same pattern across T split , ir- respective of the demographic model. These results indicated that while the correct demographic model was accurately inferred only under specific conditions, the occurrence of current migration was generally well captured.

We also examined the specific point estimates associated with each parameter. The accuracy of T split estimation was only slightly affected by the proportion of barriers and migration rate, closely approximating the simulated value irrespective of the demographic model (Figure S2). Similar patterns were observed for T SC and T AM (Figure S3). As T split increased, esti- mates of current population sizes N1 and N2 improved, approaching simulated values when T split reached 1.10⁵ generations (Figure S4). Estimates of past population size N A is theoreti- cally possible if T MRCA ≈4 N e (with T MRCA the coalescent time of the Most Recent Common An- cestor), if not, all individuals coalesce before T split so that no signal is available for N A . In our case, T MRCA ≈4 N e =2 .10⁵ generations, and N A deteriorated beyond this value, converging towards the prior mean (Figure S4). Current migration estimates ( M curr ) were more reliable than ancestral migration ones ( Manc ). The proportion of barriers had minimal impact on M curr , un- der SC and IM models. Deeper T split resulted in greater migration signal and therefore improved the accuracy of M curr (Figure S5 & Figure S7 left). In contrast, T split had no clear effect on M anc (Figure S6 & Figure S7).

Inferences of barrier proportion

The barrier proportion estimate, Q , plays a crucial role in the computation of Bayes factors (Eq 2) and the detection of barrier loci. We obtained reliable estimates of the barrier proportion, Q , when there was current migration (IM and SC models) and when T split exceeded 1.10⁵ generations (Figure 4 & S8). For more recent T split (< 0.2 2N e generations, approximately),

Q

was not properly estimated and converged to the prior mean, indicating that RIDGE lacks power to discriminate between barrier and non-barrier loci. When there was only ancestral migration (AM model), Q was not reliable whatever the conditions, except for both high migration rate and divergence time. Under the SI model, for which the proportion of barriers has no significance, the estimates corresponded to the prior mean. The Q parameter had a minimal impact on the total effective migration rate, as shown in Figure S7 and S8, and was therefore expected to exhibit a weak correlation with the genome-wide level of genetic differentiation/divergence between populations, as measured by statistics such as F ST , Da, and Dxy. We therefore introduced additional summary statistics based on the proportions of outliers for F ST , Da, Dxy, sf and π. To assess the usefulness of these new statistics, we compared Q estimated with or without them. Overall, out- lier statistics reduced estimation errors by 11%. They were particularly effective in improving Q under challenging conditions for barrier proportion estimation, such as when migration was low ( M ⩽1 ) and the proportion of barriers was small Q⩽1 % (Figure S9). The impact of outlier sta- tistics varied across models and T split values. Under the AM model, Da outliers positively corre- lated with Q (pearson r > 0.56), while under the IM model sf outliers exhibited a positive correla-tion with Q (r > 0.77). For the SC model, correlations between outliers statistics and Q highly depend on divergence time (Table S4). For the recent time split, there was a positive correlation with Dxy (0.68), for intermediate time splits there was a correlation with Da (>0.97), and for the oldest time split, there were positive correlations with F ST , Da, and π (> 0.99, Table S4).

Detection of barrier loci

The parameter T split plays a crucial role in detecting gene flow barriers. This is because the contrast between gene flow barriers and the rest of the genome increases with T split as illus- trated in Figure 5A. As T split increased, the overlap between the space of summary statistics oc- cupied by barrier and non-barrier loci decreased and correlated with the between corresponding BF distribution (Figure 5A & B). To quantify the discriminant power of RIDGE, we used the area under the curve (AUC) of the receiver operating characteristic (ROC), as depicted in Figure 5C.

When T split was low, the AUC remained close to 0.5, indicating no power to detect barriers. Our results on pseudo-observed data demonstrated that both the ability to detect barriers (measured by the AUC of the ROC) and the precision in barrier detection (measured by the PV/P ratio) increased with T split (Figure 6). Moreover, barriers were more efficiently detected and at lower T split =1 .10 ⁴ ), in agreement with AUC close to 0.5 (Figure S10). Nevertheless the AUC never dropped below 0.5, indicating that RIDGE did not generate an excess of false positives (Figure S10 & S11).

Detection of barrier loci on crows datasets

Poelstra et al (2014) identified a highly divergent region on scaffolds 78 and 60, which contained multiple genes identified through genomic scan, functional analysis, and differential expression. These genes are involved in the melanogenesis pathway and visual perception. This region was thus considered by the author as a "speciation island" allowing for the maintenance of phenotypic differences between crows based on color phenotypes and color-assortative mate choice.

We ran RIDGE on the same dataset using the same window size as in [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF]. Our analysis successfully fitted the observed data, with a goodness of fit indicated by G post = 0.67. The estimated value of T split in 2N e generation is T split /2 N e =0.48 , indicating that we were within a favorable range for RIDGE to effectively detect gene flow barriers. The distribution of Bayes Factors (BF) was clearly bimodal with a distinct group of outliers ( BF >50 ), which accounted for 0.3% of the genome (Figure 7B). Interestingly, among these outlier loci, four genes (CACNG1, CACNG4, PRKCA, and RSG9) were also found by [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF] and located on scaffold 78 (Figure 7C). The probability of detecting the same four genes just by chance was low (p = 3.59 10 -5 ).

We 8C). These subsets detected on a per locus basis (RX: 4.7%; XO: 0.37%; OP: 0.30%), represented smaller proportions than the expected proportion estimated in the general model Q (RX: 4.9%; XO: 4.8%; OP: 5.3%) but still fell within the credibility inter- vals (Figure 8B & Table S5).

We found significant overlap between our outliers and those of [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] for the RX and OP pairs (Figure 8A & B). For OP, however, common outliers were found exclusively in the first group of outliers, whereas for RX common loci were found in the first and second group of outliers. On average, the BF revealed various correlation patterns among the three pairs, ranging from a clear correlation pattern with divergence statistics in the OP pair to a more blurred and complex pattern in the RX pair (Figure 9).

Discussion

A key goal of speciation research is to elucidate the genetic mechanisms behind reproductive isolation. Although diverging populations have been analyzed in many studies, a challenging 20 aspect remains the ability to capture the sequence of events that lead to the establishment of reproductive barriers. To answer this question, one approach is to compare populations that exhibit varying degrees of temporal and/or spatial divergence, including recently diverged ones. This requires the use of a comparative framework capable of detecting barriers to gene flow at both early and ancient stages across diverse biological systems, independently of their demographic history. In this context, we introduce RIDGE, a tool designed to facilitate this task.

RIDGE offers a comparative framework where current migration is well captured

Currently, two methods explicitly model heterogeneity in the effective migration rate across the genome. Both tools utilize variations in effective population size to approximate selective effects along the genome. DILS [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF] uses an ABC framework under four demographic models of divergence (SI, IM, SC, AM) to assess alternative models of effective migration's homogeneity/heterogeneity and provides corresponding genome-wide estimates. While not primarily designed to perform barrier detection, DILS can still provide valuable insights on potential barrier loci, conditioned on the selected demographic model [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF]. There are however two main limits to this approach. Firstly, selecting a model can be rather arbitrary when two models explain the data equally well, which is often the case when divergence is shallow between populations (as shown in [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF] and confirmed here, Figure 3). Secondly, the use of potentially different demographic models complicates comparison across species pairs. gIMbl [START_REF] Laetsch | Demographically explicit scans for barriers to gene flow using gIMble[END_REF] relies on composite likelihood to identify windows of unexpected level of effective migration along the genome, but only under the IM model, while secondary contacts may be rather frequent in nature (ex: [START_REF] Leroy | Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers[END_REF][START_REF] Roux | Crossing the Species Barrier: Genomic Hotspots of Introgression between Two Highly Divergent Ciona intestinalis Species[END_REF][START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] RIDGE builds on DILS, offering a high degree of model flexibility, while proposing a comparative framework. In order to do so, RIDGE employs a model averaging approach by assigning weights to each demographic x genomic model without directing the user's choice towards a single model. In addition, model averaging is also useful in reducing the uncertainty on parameter estimation when individual models present high variance [START_REF] Dormann | Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference[END_REF]. Our results

show that model averaging is especially relevant when data offers little discriminant power. For example, when T split is low, the discriminatory power of summary statistics is reduced, resulting in similar assignation to all models (Figure 3). Opting for the best scenario under such conditions might be misleading. For example, at T split =0.1 * 2 N e , when current migration is simulated (IM or SC models), it is detected in only ~60% of the cases (Figure 3), thus potentially leading to the selection of the SI or AM models, thereby impeding the estimation of gene flow barriers. In contrast, the model averaging approach always provides an estimate of the proportion of gene flow barrier with a credibility interval, which can be large and include 0 when the statistical power is low. RIDGE thus allows for formal comparison of any datasets despite differences in demographic history and/or statistical power.

A direct consequence of using a demographic x genomic hypermodel is that RIDGE is not intended for precise estimation of a demographic model and its underlying parameters but rather to address demography as a confounding factor in the detection of gene flow barriers. High and stable values of goodness of fit across models and conditions indicate that we achieved this goal (Figure 2 & S1) and more moderately for complex/real scenario as for crows datasets (Table S5)

where the goodness-of-fit is lower ( G post ~ 0.9 for simulated datasets, G post ~ 0.25 for crows datasets). However, as expected, the accuracy of parameter estimation largely depends on the divergence time (Figure S4-S7). Similar to DILS [START_REF] Fraïsse | DILS: Demographic Inferences with Linked Selection by using ABC[END_REF], the correct model's contribution to parameter estimation and the detection of ongoing migration increases with divergence time (Figure 3). Overall, current migration is well captured, both in model weights and in parameter estimation (Figure 3, Figure S5). This is well illustrated with the analysis of the crow datasets. After the ice cap had retreated in Europe around 10,000 years ago (~ 2000 crow generation), the ancestors of remnant carrion (C. corone) and hooded crow (C. cornix) populations met in a secondary contact in Central Europe, forming a narrow and stable hybrid zone [START_REF] Knief | Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone[END_REF][START_REF] Metzler | Assortative mating and epistatic mating-trait architecture induce complex movement of the crow hybrid zone[END_REF][START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF]. Based on the sampling by [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF], which covers a wide geographic area away from the central European hybrid zone, RIDGE favored the correct scenario, especially the occurrence of ongoing migration (model weight for SC = 48% and IM=41%) (Table S6). With the hybrid zone-specific dataset (RX pair), RIDGE encountered more difficulty in distinguishing between IM and SC scenarios, with IM at 49% and SC at 48%, likely due to the high levels of gene flow within the hybrid zone, which may have blurred the evidence of ancestral isolation to a greater extent than observed with the other sampling scheme [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF] .

Overall, in all four datasets the current status of migration has been correctly captured with ongoing migration accounting for the majority of the model weight (RX: 94% ; XO: 86%; OP: 86%; [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF]) : 90%).

Informative summary statistics are highly context-dependent

One drawback of the ABC approach is that parameter inference relies on summary statistics to capture the genomic signal. Historically, FST, a measure of relative divergence, has been the most widely used statistic in genome scans [START_REF] Wolf | Making sense of genomic islands of differentiation in light of speciation[END_REF]. To avoid the confounding effect of reduced diversity in either of the compared populations due to other causes than barrier to migration [START_REF] Cruickshank | Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow[END_REF][START_REF] Ravinet | Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow[END_REF], it is now common practice to combine it to absolute measure of divergence (Dxy) to other related statistics such as net divergence (Da) or the number of fixed differences (sf) [START_REF] Han | Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin's finches[END_REF][START_REF] Hejase | Genomic islands of differentiation in a rapid avian radiation have been driven by recent selective sweeps[END_REF].

Here, we devised a new set of summary statistics based on outlier detection, and proved them to be useful for estimating barrier proportions. The reasoning was that loci showing local increase in divergence (measured by F ST , Dxy, Da, sf) and decrease in diversity would generate outliers in the genome wide divergence and diversity distributions. Our results show that outlier statistics mostly contribute to Q under moderate gene flow ( M =1 ), and mainly for low level of barrier proportion ( Q<0.1 ) (Figure S9) where estimation of barrier proportion may be challenging.

An important result of our study is that the set of summary statistics that effectively capture the signal of barrier loci varies with the divergence and demographic history and with the sampling scheme (Figure 9). In the OP and XO pairs, Bayes factor outliers are mainly captured by FST, ss and Da statistics (exposing FST and Da increase, ss reduction and also moderate reduction of diversity) with a stronger signal in OP than XO (Figure S12). For the remaining outliers in PO and XO and for all outliers in the RX pair, in addition to an expected increase in divergence, outliers show a moderate increase in diversity statistics, which is the genomic pattern theoretically expected for a gene flow barrier evolving under low-intensity divergent selection which generates an excess of maladaptive alleles and thus increases diversity [START_REF] Sakamoto | The Evolutionary Dynamics of a Genetic Barrier to Gene Flow: From the Establishment to the Emergence of a Peak of Divergence[END_REF].

Differences between correlation patterns between summary statistics and BF could reflect the difference in the environment in which incipient crows species evolved, but also the difference in the geographical area covered by the hybrid zone [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF].

These examples illustrate that considering a few statistics in the detection of barrier loci can be misleading as signatures can be complex and context-dependent. It thus advocates for the use of a more inclusive approach as implemented in the BF derived from the random-forestbased ABC approach of RIDGE. One contribution of the Random Forest (RF) is to reduce the curse of dimensionality [START_REF] Bellman | On adaptive control processes[END_REF], which improves accuracy and computation time, RF also makes ABC a calibration-free problem by automating the inclusion of summary statistics [START_REF] Raynal | ABC random forests for Bayesian parameter inference[END_REF]. In return, a possible drawback is that RF results are less interpretable due to their complex nature. Indeed, even if the abcrf package provides a way to understand the contribution of variables to parameters estimations, it still remains difficult to interpret the RF decision for a specific locus.

Detection of barrier loci using RIDGE:

We validated the ability of RIDGE to detect gene flow barriers on empirical datasets from [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF] and [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]. In particular, we clearly detected the large and wellestablished region of scaffold 78 on chromosome 18. It contains major loci that are involved in mate choice patterns between C.corone and C.cornix (RX) [START_REF] Knief | Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone[END_REF][START_REF] Metzler | Assortative mating and epistatic mating-trait architecture induce complex movement of the crow hybrid zone[END_REF][START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF]. The study by [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] was conducted on three species pairs that had similar demographic histories. For all three pairs of populations, we identified a portion of loci exhibiting elevated BF. We found significant overlap between our results and previously detected outliers for the RX and OP pairs. The overlap mainly corresponded to extreme outliers -characterized by highly divergent loci between species and reduced diversity. We also identified loci not previously detected [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]. Those likely corresponded to barriers evolving under low intensity divergent selection as they displayed both increased divergence and diversity [START_REF] Sakamoto | The Evolutionary Dynamics of a Genetic Barrier to Gene Flow: From the Establishment to the Emergence of a Peak of Divergence[END_REF]. Conversely, barrier loci detected in [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] but not with RIDGE display low diversity without distinctive divergence patterns. This observation can be attributed to the confounding effect of the heterogeneity in N e , not explicitly accounted for in [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] and which is a classic pitfall of F ST scan approaches [START_REF] Cruickshank | Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow[END_REF].

The fact that RIDGE detected only a limited number of loci displaying such a pattern implies that it effectively circumvents this problem. For XO pair, due to its spatial range (three to seven times wider than the hybrid zone of RX pair), selection strength is reduced [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF], resulting in candidate regions showing low-intensity divergence patterns in [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] results similarly to our results (Figure 8). Furthermore, since low signal can increase noise in detection results, we did not detect any direct overlap between the candidate XO gene from Vijay et al.

(2016) and our results. However, when examining the regions surrounding the candidate gene, we observed common regions such as the gene LRP5, which was consistently present in XO and OP pairs in Vijay and was consistently located at a distance of 50-100 kb from an outlier locus in our results.

Benefits of RIDGE and Guidelines for its use

RIDGE relies on an ABC approach that offers a lot of flexibility, enabling it to explore genomic heterogeneity and to incorporate customized summary statistics. We have also devised a method for generating multidimensional parameter estimates, extending beyond the initial singleparameter focus of abcrf [START_REF] Raynal | ABC random forests for Bayesian parameter inference[END_REF]. This improvement enables RIDGE to deal effectively with parameter interdependencies and increase the precision of parameter estimations.

Another improvement introduced by RIDGE is the incorporation of Bayes factors, facilitating result comparisons.

The simulated datasets we explored gave us guidelines for the conditions where RIDGE can provide useful and accurate results. We suggest to use datasets with SNP density higher than 0.1%, such as in crows and simulated datasets, where the SNP density was around 1%.

We also advise to use a minimum of three samples per population. The goodness-of-fit statistics enables users to check the quality of inferences made. If G post < 5%, the user should verify the prior bounds. The guidelines for interpreting and thresholding BF depend on the user's goals. If RIDGE is used solely to discover new candidate genes involved in gene flow barriers for a specific population pair, we recommend using a customized threshold that optimally captures Bayes factor outliers. For the purpose of comparison, it is recommended to use a standard threshold for all datasets, for example BF >100 or to keep the number of outlier loci corresponding to the proportion of barriers estimated in the first step of RIDGE ( Q ). Crucially, genomic data alone cannot provide conclusive evidence of barrier loci and so RIDGE results should be coupled with other analysis such as functional analysis [START_REF] Ravinet | Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow[END_REF]. It is worth noting that window length (default set to 10 kb) can significantly affect the results of RIDGE. It should be determined according to the extent of linkage disequilibrium as well as the level of diversity, since it determines the amount of polymorphism and consequently affects the strength of the signal.

As is the case with all ABC approaches, the quality of the priors given by the user affects the results obtained using RIDGE. A T split of 0.1*2N e generations (10,000 generations in our simulations) appears to be a lower bound for both demography (Fig. 4 & 5) and barrier inferences (Fig. 6), below which RIDGE fails to capture informative signals. RIDGE can detect gene flow barriers on both simulated (Fig. 6) and empirical data (Fig. 7), starting at 0.1*2N e generation, which represents a very low level of divergence. For context, DILS correctly inferred a gene flow barrier when T split >0.5 2N e generations, while gIMbl demonstrated its effectiveness on one pair of Heliconius species that diverged 4.5 million generations ago, estimated to represent 0.49 x 2N e generations [START_REF] Martin | Speciation in Heliconius Butterflies: Minimal Contact Followed by Millions of Generations of Hybridisation[END_REF].

Comparative approaches have been useful in understanding the genomic basis involved in the process of reproductive isolation (e.g [START_REF] Roux | Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence[END_REF]) and they will continue to play an important role in speciation research. By its flexibility and its comparative framework, RIDGE should become a useful tool to follow this direction.

Tables and Figures

Figure 1: Demographic models implemented in RIDGE. The hypermodel combines all four demographic models considered: Strict Isolation (SI), Ancestral Migration (AM), Secondary contacts (SC) and Isolation-Migration (IM) plus genomic models. In the hypermodel, an ancestral population of effective size Na split at T split in two populations of effective size N 1 and N 2 . At T AM ancestral migration ceases, and it restarts at the time of secondary contact, T SC . M anc and M cur denote the ancestral and current migration rates between populations, respectively. To fit in the hypermodel, each of the four demographic models adopt specific values for four of the parameters as indicated below each graph. For example, under SI, T AM is set to T split as there is no ancestral migration, and T SC is set to 0 as there is no secondary contact, and so are M anc and M cur . Note that under IM, in order to model uninterrupted gene flow we considered T AM =T SC =K * T split where K is a random value drawn from a uniform distribution in [0,1]. Figure 7: Results of the analysis conducted using RIDGE on the crow hybrid zone between carrion and hooded crows. PCA plot of the summary statistics (only 4 of 14 summary statistics are represented), where each point represents a locus and is color-coded based on its corresponding Bayes factor value (A) . Distribution of Bayes factors across the genome (B). Genomic landscape of scaffold 78 and 60 through bayes factor, F ST , shared polymorphism (ss) and diversity (π) (C). Data are from [START_REF] Poelstra | The genomic landscape underlying phenotypic integrity in the face of gene flow in crows[END_REF] [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF], violet diamonds indicate loci detected by RIDGE that exceeded the population-specific Bayes factor threshold, and red diamonds represent loci detected both in [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]. [START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]. 
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  tribution of each model to the estimation of posteriors obtained from pseudo-data sets. Contributions were evaluated through four criteria: (i) the average weight of the simulated demographic (among the four) model called here the "correct" model, (ii) the average weight of 2M models, (iii) the average weight of 2N models, and (iv) the average weight of models displaying current migration. We also compared the point estimates obtained from simulations with the input parameter values.Next, we assessed our ability to detect barrier loci using the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. The ROC curve relates the false positive rate (FPR) to the true positive rate (TPR) and provides insights into the discriminant power of a method. The AUC of the ROC ranges from 0 to 1. An AUC of 0.5 indicates that FPR and TPR are equal irrespective of the threshold, which implies a random classification of loci into barrier and non-barrier loci while an AUC of 1 indicates perfect classification. Additionally, we computed the precision as the number of true positives (TP) divided by the sum of true positives and false positives (TP + FP).

  ence genome used to map them is GCF_000738735.1. In the first one, a comparison was made between 30 individuals of Corvus corone (carrion crows) populations from Spain and Germany, and 30 individuals of the C. cornix (hooded crows) population from Poland and Sweden. In the second one, three crow contact zones, among which two well-characterized hybrid zones, with similar divergent times around ~ 80 000 generations are described, from the most recently-diverged pair C. corone -C. cornix (RX), to the most anciently-diverged C. cornix -C. orientalis (XO) and C. orientalis -C. pectoralis (OP) pairs[START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]. This dataset consisted of 124 sequenced individuals. The number of individuals sampled varied for each pair (RX: 15-14 individuals; XO: 6-6 individuals; OP: 5-3 individuals).

T

  split under current (IM and SC models) than ancestral gene flow (AM model) as shown in Fig- ure S10 & S11. Noteworthy, in some instances, RIDGE failed to detect any barrier (e.g., when
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 2345 Figure 2: Evolution of the goodness-of-fit of the posteriors (G post ) as a function of time split, for four demographic models. The rejection threshold of 5% (under which an inferred model is discarded) is represented by the gray zone. Average values over 100 replicates with error bars (standard deviation) are presented. The data used in this figure were obtained from pseudo-observed datasets simulated under the 2N2M model with migration set to 10 ( M =10 ) and a proportion barrier Q=10 % (except for SI, no migration and no barrier).

Figure 6 :

 6 Figure 6: Ability and precision in the detection of barrier loci as a function of divergence time and migration. Ability is measured by the AUC of the ROC (A) and precision by TP/P (B). Considering a proportion of barrier Q, barrier loci are those displaying a Bayes factor superior to the quantile at 1-Q. Each data point represents the average value over 100 replicates with standard deviation as error bars. Simulations were performed under an IM 2M2N modelwithQ=0.1 

Figure 8 :

 8 Figure8: Barrier loci detection by RIDGE on three crow hybrid zones. PCA computed on summary statistics obtained from 50kb-windows along genomes with axes 1 and 2 (A) and 1 and 3 (B) displayed. Datapoints (windows) are colored according to the values of Bayes factors. Black diamonds represent loci detected in[START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF], violet diamonds indicate loci detected by RIDGE that exceeded the population-specific Bayes factor threshold, and red diamonds represent loci detected both in[START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] and RIDGE. Distribution of Bayes factor values for each species pair (C). The histogram inside the figure shows the Bayes factor distribution of detected loci, which are the loci exceeding the population-specific Bayes factor threshold indicated by the violet dashed line. Black dashed line indicate the Bayes factor threshold based on the estimated barrier proportion Q. Data are from[START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF].

  Figure8: Barrier loci detection by RIDGE on three crow hybrid zones. PCA computed on summary statistics obtained from 50kb-windows along genomes with axes 1 and 2 (A) and 1 and 3 (B) displayed. Datapoints (windows) are colored according to the values of Bayes factors. Black diamonds represent loci detected in[START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF], violet diamonds indicate loci detected by RIDGE that exceeded the population-specific Bayes factor threshold, and red diamonds represent loci detected both in[START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF] and RIDGE. Distribution of Bayes factor values for each species pair (C). The histogram inside the figure shows the Bayes factor distribution of detected loci, which are the loci exceeding the population-specific Bayes factor threshold indicated by the violet dashed line. Black dashed line indicate the Bayes factor threshold based on the estimated barrier proportion Q. Data are from[START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF].

Figure 9 :

 9 Figure 9: Pearson correlation between RIDGE Bayes factor and summary statistics used in the gene flow barrier detection for the three hybrid zones. Colors correspond to the values of correlations while circle size reflects the absolute values. Data are from[START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF].

  F ST and Da, and reduced level of diversity in all four pairs, Figures 7, 8 & S12).

	PCA analyses colored by BF show a first group of outliers (characterized by elevated lev-
	els of divergence, Those signals were consistent with theoretical expectations for gene flow barriers (i.e increased
	Dxy, Da, sf, F ST , and reduced ss and diversity). A second group of outliers, present in RX and XO
	pairs, displayed moderate increase in divergence but also in diversity and Tajima's D, which cor-
	responded to a more complex signature of gene flow barrier (Figure 8 & S12). In each pair, we
	identified a subset of loci with elevated Bayes factors ( BF >50 ) clearly separated from the
	genome-wide distribution (Figure
	The goodness-of-fit of the demographic parameters inferred by RIDGE was similar across
	all three pairs (RX: 0.33; XO: 0.21; OP: 0.26). The ratio of T split /2 N e was approximately 0.5 for
	all three pairs (RX: 0.63; XO: 0.54; OP: 0.53) (Table S5), suggesting a comfort zone for RIDGE
	to detect gene flow barriers in all three datasets.

next applied RIDGE on a genome-wide dataset produced for three pairs of Corvus species that form hybrid zones (pair RX: C. corone -C. cornix; pair XO: C. cornix -C. orientalis;

pair OP: C. orientalis -C. pectoralis) where current gene flow is detected

[START_REF] Vijay | Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex[END_REF]

.
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