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Abstract

Characterizing the processes underlying reproductive isolation between di-

verging lineages is central to understanding speciation. Here, we present RIDGE – 

Reproductive Isolation Detection using Genomic polymorphisms – a tool tailored for 

quantifying gene flow barrier proportions and identifying the corresponding genomic 

regions. RIDGE relies on an Approximate Bayesian Computation with a model-aver-

aging approach to accommodate diverse scenarios of lineage divergence. It cap-

tures heterogeneity in effective migration rate along the genome while accounting for

variation in linked selection and recombination. The barrier detection test relies on 
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numerous summary statistics to compute a Bayes factor, offering a robust statistical 

framework that facilitates cross-species comparisons. Simulations revealed that 

RIDGE is particularly efficient both at capturing signals of ongoing migration and at 

identifying barrier loci, including for recent divergence times (~0.1 2Ne generations). 

Applying RIDGE to four published crow datasets, we validated our tool by identifying 

a well-known large genomic region associated with mate choice patterns. We identi-

fied additional barrier loci between species pairs, which have shown, on the one 

hand, that depending on the biological, demographic, and selection contexts, differ-

ent combinations of summary statistics are informative for the detection of signals. 

On the other hand, these analyses also highlight the value of our newly developed 

outlier statistics in challenging detection conditions.

Keywords: Speciation; Reproductive isolation; gene flow barrier detection; approx-

imate bayesian computation; Hybrid zones; Crows.
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Introduction

The process of speciation involves a gradual and divergent evolution of populations, pass-

ing through conditions of semi-isolated species, coined the “grey zone of speciation” (Roux et al. 

2016), until complete genetic isolation is achieved resulting in the formation of distinct species 

(Wu, 2001). Population divergence can occur through various scenarios, ranging from the com-

plete absence of genetic exchanges, known as allopatric speciation (e.g., due to geographical 

barriers between populations), to almost unrestricted genetic exchanges in sympatric speciation. 

These extreme scenarios are not mutually exclusive, as genetic exchanges can reoccur after a 

period of allopatric divergence followed by secondary contacts (Schluter, 2001). Regardless of 

the scenario, the question of how reproductive isolation is established between divergent popula-

tions is central to understanding speciation. This involves comparing the proportion and identity 

of the relevant genomic regions across biological systems (Delmore et al., 2018; Fraïsse et al., 

2021; Schluter, 2001)

Extensive exploration of the genomic bases of speciation have been conducted, in particu-

lar in the case of ecological speciation where environmental disparities among populations drive 

both phenotypic divergence and reproductive isolation (Rundle & Nosil, 2005; Schluter, 2000; 

Shafer & Wolf, 2013). A recurrently observed pattern is that pre-mating reproductive isolation is 

facilitated by the physical linkage between genes that govern reproductive isolation and those re-

sponsible for divergent traits, which can potentially result from adaptation to contrasted environ-

mental conditions. The gradual establishment of linkage disequilibrium between these genes can
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then lead to the progressive arrest of gene flow during the speciation process (Schluter & Riese-

berg, 2022).

For example, in stickleback fish, divergent mate preferences have been mapped to the 

same set of genomic regions controlling body size, shape, and ecological niche utilization (Bay et

al., 2017). Another striking example concerns the genomic determinants of mate selection based

on feather color patterns in carrion and hooded crows (Metzler et al., 2021; Poelstra et al., 2014).

Specifically, genes encoding feather pigmentation and genes responsible for perceiving color 

patterns have been identified within the same 1.95 Mb region of chromosome 18. This region 

displays significant genetic differentiation between carrion and hooded crows. Similarly, in the 

neotropical butterflies Heliconius cydno and H. melopomene, assortative mating behavior is as-

sociated with a genomic region proximate to optix, a crucial locus influencing distinct wing color 

patterns between these species (Merrill et al., 2019). Note that, inversions can help build linkage 

disequilibrium by generating large genomic regions of suppressed recombination, maintaining 

combinations of co-adapted alleles encoding ecologically relevant traits. For example, in three 

species of wild sunflowers, 37 large non-recombining haplotype blocks (1-100 Mbp in size) con-

tribute to strong pre-zygotic isolation between ecotypes through multiple traits such as adaptation

to soil and climatic conditions or flowering characteristics (Todesco et al., 2020).

Another key genetic mechanism involved in speciation is the epistatic interaction between 

genes that produce deleterious phenotypes in hybridization, also known as Bateson-Dobzenski-

Muller Incompatibility (BDMI) (Gavrilets, 2003). Across Arabidopsis thaliana strains, epistatic in-

teractions between alleles from two loci located on separate chromosomes, resulted in an au-

toimmune-like responses in F1 hybrids (Bomblies et al., 2007). In the Swordtail fish species, 
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Xiphophorus birchmanni and X. malinche, an interaction between two genes generates a malig-

nant melanoma in hybrids associated with strong viability selection (Powell et al., 2020).

As population-wide genomic data increase, genome-scan approaches enable a more sys-

tematic search of the genetic factors behind reproductive isolation. One popular approach relies 

on the search for genomic islands of elevated differentiation compared with the genomic back-

ground, typically through FST scans (Wolf & Ellegren, 2017). However, it is now widely recognized

that processes other than selection against gene flow can generate such islands. For example, 

selective sweeps and background selection against deleterious alleles both decrease genetic di-

versity at linked sites especially in low recombination regions (Charlesworth, 1993; Charlesworth 

& Jensen, 2021; Cruickshank & Hahn, 2014; Kaplan et al., 1989). Because gene flow barriers 

are more likely to occur in functional regions, they are also more affected by those forms of se-

lection, further complicating the distinction of gene flow reduction (Ravinet et al., 2017). Demog-

raphy, which affects the entirety of the genome, is also key to account for barrier detection be-

cause barrier loci are harder to identify when the time split is recent and/or the migration rate is 

low (Sakamoto & Innan, 2019). Yet, recent splits of partially isolated taxa are of paramount inter-

est in speciation research as they allow access to the key determinants of reproductive isolation 

while avoiding the confusion with other differences accumulated since speciation (Tenaillon et 

al., 2023).

Linked selection (at least some forms of) can be approximated by a local reduction in ef-

fective population size (Cruickshank & Hahn, 2014; Ravinet et al., 2017; Sakamoto & Innan, 

2019) and several methods have proposed to decouple its effect from the heterogeneity in effec-

tive migration rate to detect gene flow barrier on genomic polymorphism patterns (Fraïsse et al., 
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2021; Laetsch et al., 2023; Sethuraman et al., 2019; Sousa et al., 2013). These methods relax 

the assumption that all loci share the same demography. Some of them use likelihood methods 

to directly estimate and decouple the effects of differential introgression and demography across 

genomic loci (Laetsch et al., 2023; Sethuraman et al., 2019; Sousa et al., 2013). However, they 

make specific assumptions about demography. For example, gIMbl simulates population diver-

gence with constant migration, (Laetsch et al., 2023). DILS proposes a more flexible approximate

Bayesian computation (ABC) approach (Fraisse et al. 2021). It first infers a demographic model 

while accounting for heterogeneity in effective population size Ne (to mimic linked selection) and 

heterogeneity in effective migration me (to mimic gene flow barriers), as taking genomic hetero-

geneity into account has been shown to enhance the quality of model inferences (Roux et al., 

2014). Second, the method infers the migration model at the locus scale − arrest of migration vs 

migration similar to the genome-wide level −, conditioned on the chosen model (Fraïsse et al., 

2021). Although effective in detecting gene flow barrier, this dependence on the initial model 

choice limits comparability among species pairs.

Overall, an adequate method to identify potential reproductive isolation barriers would re-

quire a cross-species comparative framework that takes genomic heterogeneity into account, 

while making analysis comparable despite differences in demographic histories. Here, we pro-

pose an innovative method to identify gene flow barrier loci satisfying these requirements and 

that also quantifies the confidence in locus detection. We used an ABC-based model averaging 

approach that accounts for different modalities of divergence between pairs of populations/tax-

ons. We considered both heterogeneity in Ne along the genome, by modeling the mosaic effect 

of linked selection as in the DILS program (Fraïsse et al., 2021), and heterogeneity in recombina-

tion, by including an option for the user to provide a recombination map. In addition, we relied on 
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a number of classic summary statistics but also incorporated new ones, related to outlier detec-

tion, which improved the inferences of barrier loci. Finally, the method provides Bayes factors as-

sociated with barrier detection, which facilitate cross-species comparisons.

Material and Methods

RIDGE pipeline
RIDGE utilizes ABC based on random forest (RF) to detect barrier loci between two di-

verging populations in the line of the framework proposed in DILS (Fraïsse et al., 2021). The ob-

served data consist of a set of loci sequenced on several individuals of the two populations. The 

general principle of RIDGE is as follows: first, we simulate 14 demographic x genomic models to 

produce a reference table. This table serves to train a RF that generates weights and parameter 

estimates for each model according to their fit to the target (observed) dataset. Second, we con-

struct a hypermodel where the posterior distribution of each parameter is obtained as the 

weighted average over the 14 models. Finally, we use this hypermodel to produce datasets for 

control loci (thereafter non-barrier) and barrier loci that have undergone no gene flow during di-

vergence. This second set of simulated datasets are employed to train a second RF model that 

subsequently calculates posterior probabilities and associated Bayes factors for categorizing 

each locus as barrier or non-barrier. 

ABC Summary statistics
ABC inferences rely on summary statistics that are computed either at the locus-level or 

across loci, i.e. genome-wide distributions of summary statistics and correlations among loci, and

either within or between populations. For a given observed dataset, the number of loci used for 
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the building of the hypermodel is set by the user. To reduce computation time for large datasets, 

a subset of loci can be randomly sampled to represent the whole genome (by default, we used 

1000 loci).

For each locus, RIDGE computes the following within population statistics: the number of 

Single Nucleotide Polymorphisms, SNPs (S), the nucleotide diversity π (Nei & Li, 1979), Watter-

son’s θ (Watterson, 1975), as well as Tajima’s D (Tajima, 1989). As measures of population dif-

ferentiation between populations, RIDGE computes FST (Bhatia et al., 2013; Hudson et al., 1992),

the absolute (Dxy) and the net (Da) divergence (Nei & Li, 1979), the summary of the joint Site 

Frequency Spectrum (jSFS) (Wakeley & Hey, 1997) with ss (the proportion of shared polymor-

phisms between populations), sf (the proportion of fixed differences between populations), sxA 

and sxB (the proportion of exclusive polymorphisms to each population).

Across loci, RIDGE computes the mean, the median and the standard deviation for each 

summary statistic described above. In addition, RIDGE computes the Pearson correlation coeffi-

cient between Dxy and FST and between Da and FST. Regarding specific jSFS status, RIDGE de-

termines the number of loci that contains both shared polymorphisms (ss > 0) and fixed differ-

ences (sf > 0) between populations, ss+sf+ and following the same rational ss+sf-, ss-sf+, ss-sf-. 

These statistics are commonly used in ABC, for example in DILS (Fraïsse et al., 2021). To obtain

better insights into the proportion of barriers, we introduced new statistics: the proportion of out-

lier loci, defined as the proportion of loci that exceeds certain thresholds for FST, Dxy, sf and Da, 

or falling below certain thresholds for π and θ. The thresholds are determined using Tukey's 

fences: tmin=Qmin−1.5∗(Qmax−Qmin)  and  tmax=Qmax+1.5∗(Qmax−Qmin) , for the lower and 

upper thresholds respectively, where Qmin is the lowest and Qmax the highest quartiles (Tukey, 
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1977). All summary statistics were computed using the scikit-allel (Miles et al., 2021) and numpy 

(Harris et al., 2020)  python packages. 

Coalescence simulations 
We simulated the evolution of neutral loci (1000 by default) under 14 demographic x ge-

nomic models using the scrm simulator (Staab et al., 2015), an efficient ms-like program (Hud-

son, 2002). We stored corresponding simulation parameters as well as all summary statistics in a

reference table. 

Demographic models 

RIDGE simulates the split of a single ancestral population of effective size N a , in two 

daughter populations of size N1  and N 2  at time T split . Four different demographic models are 

considered as in DILS (Fraïsse et al., 2021) (Figure 1: Demographic and genomic models): (1) 

strict isolation with no migration (SI), (2) isolation with constant migration rate since T split  (IM), (3)

secondary contact with no migration after the split until a secondary contact at time T SC  occurs 

(SC), and (4) ancestral migration with migration occurring initially and ceasing after time T AM  

(AM). Migration M  (expressed in N.m units) is assumed to be symmetrical between the two 

populations.

Genomic models

In addition to modeling demography, RIDGE also incorporates heterogeneity in effective 

population size along the genome generated by linked selection, and heterogeneity in effective 

migration generated by selection against migrants at barrier loci. Thus, demographic models are 

combined with two effective population size modalities (homo-N vs hetero-N) and with two migra-

tion rate ( M ) modalities (homo-M vs hetero-M) − for models with migration. For simplicity, ge-

nomic models are named using a combination of 1N (homo-N), 2N (hetero-N), 1M (homo-M), 2M
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(hetero-M). While in the 1N modality all loci display the same effective population size genome-

wide, heterogeneity of effective population size under 2N, is modeled by a rescaled beta distribu-

tion. Effective size at locus i is given by:

N i=N̄∗(
α+β
α )∗Β(α ,β)                (1)

where B(α,β) is the Beta distribution with parameter α and β and N̄  is the mean effective popu-

lation size across the genome. It is worth noting that for migration ( M ) we fixed the product N.m

and genome-wide heterogeneity in effective migration is modeled by a Bernouilli distribution 

where a proportion Q of loci displays M=0  and a proportion 1−Q  loci displays M>0 , M  

designating either the current migration ( M cur ) or the ancestral migration ( M anc ). Likewise, we 

referred to the proportion of barriers under current ( Qcur ) and ancestral ( Qanc ) migration. 

RIDGE assumes that all loci are independent and experience a genome-wide homogeneous mu-

tation rate (μ, set by the user) and recombination rate (r, set by the user) unless a recombination 

map is provided, in which case locus-specific recombination rates are given by the recombination

map. 

Generation of the reference table 
RIDGE explores 14 demographic x genomic models of divergence using a hypermodel 

that integrates them all. This model contains 12 parameters, eight demographic parameters (

Na ,N 1, N2 ,T split , T AM , T SC , M cur , M anc ) as described in Figure 1, and four genomic parameters

( α , β ,Q cur ,Qanc ). Regarding the demographic parameters, population sizes ( Na ,N 1, N2 ) and 

times ( T split ,T AM ,T SC ) are sampled in uniform distributions with boundaries specified by the 

user. Migration rates are drawn from a truncated log-uniform distribution, with the boundary also 

specified by the user. We used log-normal instead of uniform distributions as migration affects 
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most statistics in a non-linear, multiplicative way. Preliminary simulations showed that it improved

the performance of migration estimation. Note that depending on the considered demographic 

model, some of the parameters are set to 0 (Table S1, Figure 1). For example, under SI, only 

four demographic parameters are estimated (Table S1). Regarding the genomic parameters, pa-

rameters of the beta distribution and the Q parameter, are sampled in a uniform distribution 

where α , β ∊[0,10 ]  and Qanc ,Qcur∊[0 ,Qmax ] . Qmax≤1  is the maximal proportion of the 

genome under gene flow barrier set by the user. RIDGE produces the reference table from a set 

of simulations with parameters sampled from these prior distributions.

Point estimates and goodness-of-fit of posteriors 
RIDGE utilizes the reference table for training a regression RF model (Raynal et al., 2019).

This model produces point estimates for the predicted values of each parameter and assigns 

weights to simulations based on their proximity to the real data using the regAbcrf function. The 

overall weight for each simulation is calculated as the mean of the weights across all parameters,

i.e. joint weights. Subsequently, these joint weights are used to subsample a set of simulations 

(and their corresponding parameter values) that better match the observed data. This subsample

of the reference table is referred to as the posterior table. Note that subsampling of parameters 

according to the joint weights of simulations effectively accounts for the non-independence of pa-

rameters. We evaluated the goodness of fit of the posterior distributions using an enhanced ver-

sion of the gfit function of the abc packages (Csilléry et al., 2012), which employs a goodness-of-

fit statistics approach described in Lemaire et al (2016) and summarized here. To assess the 

goodness-of-fit of the posterior Gpost, we followed these steps: first, summary statistics (in both 

observed dataset and posterior table) are normalized by their mean absolute deviation deter-

mined from the posteriors table. Then, we computed the Euclidean distance between each sum-
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mary statistics computed from the observed dataset and those computed from each η simulation 

contained in the posterior table. Together it form a vector of Euclidean distances d1 ...dη  on 

which we computed the average, denoted Dpost . To derive the null distribution of Gpost, we consid-

ered a dataset randomly sampled in the posterior table as “observed” and discarded from subse-

quent analyzes. The remaining η – 1 datasets of the reference table were used to compute Dpost’, 

the average euclidean distance between the posterior table and the “observed” dataset. Re-

peated as such Ζ times, we obtained a vector of D ¹post ’ ...Dpost
Ζ ’ . Then, we computed Gpost as 

the proportion of values for which D post ’>Dpost . 

Detection of barrier loci 
Each set of parameters of the posterior table is used to generate two sets of individual-lo-

cus simulations, one set for non-barrier loci ( M  equals to the value of the posterior table) and 

one set for barrier loci ( M  set to 0), with two corresponding per-locus reference tables. The RF 

algorithm (abcrf package) was trained on these per-locus reference tables to predict the most 

probable status of each locus, either barrier (model x1) or non-barrier (model x2). Since there are 

only two models, the posterior probabilities satisfied: P[ x1]=1−P[ x2]  so that we were able to 

compute a Bayes Factor (BF) for each locus i, denoted as BFi:

BF i=E [
1−Q̂
Q̂

]∗(
P[ x1]i
1−P[ x1]i

)                  (2)

Here, E[] represents the average of the ratio (1−Q̂)/Q̂  over the posterior distribution ob-

tained from the hypermodel. 

Evaluation of RIDGE performance on pseudo-observed datasets 
We evaluated RIDGE performance on pseudo-observed datasets. As a first step, we eval-

uated the ability of RIDGE to correctly infer demographic x genomic models. We next used the 
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pseudo-observed datasets to evaluate the accuracy of RIDGE in estimating the proportion of 

barrier loci, and detecting their locations throughout the genome. 

We simulated pseudo-observed datasets under the four demographic models and under 

both 2M2N and 1M2N genomic models (only 1M2N for SI). For simplicity, we fixed

Na=N1=N2=50000  individuals. The time of the secondary contact ( T SC ) was set to

0.2∗T split  and the time of arrest of ancestral migration ( T AM ) was set to 0.7∗T split . We used a

range of parameter values (Table S2) for divergence (from 1000 to 2 million generations, i.e. 

from 0.1 to 20 in 2Ne generation unit), for migration ( M = 1 and 10 N.m), and barrier loci propor-

tion (Q = 1%, 5% or 10%). We set the mutation rate to μ = 1.10⁻⁸ and the recombination rate to r 

= 1.10⁻⁷ so that their ratio was 10. In total, we simulated 15,000 datasets using the scrm coales-

cent simulator (Staab et al., 2015). Each multilocus dataset contained 1000 loci of 10kb each, 

and we performed 100 replicates per scenario. To evaluate the inference of demographic x ge-

nomic models, we calculated the goodness-of-fit of the estimated model and determined the con-

tribution of each model to the estimation of posteriors obtained from pseudo-data sets. Contribu-

tions were evaluated through four criteria: (i) the average weight of the simulated demographic 

(among the four) model called here the “correct” model, (ii) the average weight of 2M models, (iii)

the average weight of 2N models, and (iv) the average weight of models displaying current mi-

gration. We also compared the point estimates obtained from simulations with the input parame-

ter values.

Next, we assessed our ability to detect barrier loci using the Area Under the Curve (AUC) 

of the Receiver Operating Characteristic (ROC) curve. The ROC curve relates the false positive 

rate (FPR) to the true positive rate (TPR) and provides insights into the discriminant power of a 
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method. The AUC of the ROC ranges from 0 to 1. An AUC of 0.5 indicates that FPR and TPR 

are equal irrespective of the threshold, which implies a random classification of loci into barrier 

and non-barrier loci while an AUC of 1 indicates perfect classification. Additionally, we computed 

the precision as the number of true positives (TP) divided by the sum of true positives and false 

positives (TP + FP).

Application to experimental data on crow hybrid zones 
To assess the performance of RIDGE on experimental data, we focused on two published 

datasets produced by Poelstra et al. (2014) and Vijay et al. (2016). All sequencing data from 

crows were extracted from NCBI database under project number PRJNA192205 and the refer-

ence genome used to map them is GCF_000738735.1. In the first one, a comparison was made 

between 30 individuals of Corvus corone (carrion crows) populations from Spain and Germany, 

and 30 individuals of the C. cornix (hooded crows) population from Poland and Sweden. In the 

second one, three crow contact zones, among which two well-characterized hybrid zones, with 

similar divergent times around ~ 80 000 generations are described, from the most recently-di-

verged pair C. corone - C. cornix (RX), to the most anciently-diverged C. cornix - C. orientalis 

(XO) and C. orientalis - C. pectoralis (OP) pairs (Vijay et al., 2016). This dataset consisted of 124

sequenced individuals. The number of individuals sampled varied for each pair (RX: 15-14 indi-

viduals; XO: 6-6 individuals; OP: 5-3 individuals). 

All alignments were done on a reference genome (NCBI assembly: GCF_000738735.1) 

consisting of 1299 scaffolds resulted in the detection of 16,064,921 common SNPs with an aver-

age density of 15 SNPs per kilobase. Previous genome-wide scans across the three pairs identi-

fied a number of candidate loci potentially involved in population/species divergence (Vijay et al., 

2016). Two metrics were employed in those scans: (i) a Z-transformed FST computed on 50 kb 
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non-overlapping windows between population/species pairs and normalized by the local level of 

Z-transformed FST from allopatric pairs, denoted as FST’, (ii) an unsupervised genome-wide 

recognition of local relationship pattern using Hidden Markov Model and a Self Organizing Map 

(HMM-SOM) method implemented in Saguaro (Zamani et al., 2013) to identify local phylogenetic

relationships based on matrices of pairwise distance measures, across each of the target hybrid 

zones.

Here, we applied RIDGE on 50 kb non-overlapping windows considering a mutation rate of

3.10⁻⁹ for both datasets as is Poelstra et al (2014) and Vijay et al (2016). We therefore focused 

on scaffolds longer than 50 kb, which accounted for 9% of the total scaffolds but represented 

98% of the genome. Prior bounds are given in Table S3, and were determined based on the ob-

served datasets and results of analysis from Vijay et al (2016). First, we compared Bayes factor 

outliers (BF > 50) from RIDGE results with outlier loci detected in (Poelstra et al., 2014) to as-

sess the ability of RIDGE to correctly detect barrier locis. Secondarily, we analyzed RIDGE re-

sults produced on three species pairs on a lager dataset (Vijay et al., 2016) to understand how 

BF correlate with summary statistics and which summary statistics are able to discriminate outlier

loci (BF > 50). 

Results

Demographic inferences
The RIDGE’s ability to infer demographic parameters, measured by the goodness of fit of 

posteriors (Gpost), far exceeded the rejection threshold of 5% and was stable across all models 

and conditions tested in pseudo-observed datasets (Figure 2 & S1). However, the model's contri-

bution to the estimation of the demographic and genomic parameters varied across conditions. 
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The percentage of simulations correctly attributed to the correct model increased with the time 

split ( T split ), reaching over 65.7% for IM, 81.1% for SC and 69.5% for AM models when T split  

exceeded 10⁶ generations (Figure 3). In contrast, the SI model never achieved more than 32.1% 

accuracy. The percentage of simulations correctly detecting the presence or absence of current 

migration increased with T split  and heterogeneous migration was better captured under current 

rather than ancestral migration (82.1% and 80.8% at 10⁶ generation for IM and SC against 

48.7% for AM). Heterogeneity in population size (2N) followed the same pattern across T split , ir-

respective of the demographic model. These results indicated that while the correct demographic

model was accurately inferred only under specific conditions, the occurrence of current migration

was generally well captured. 

We also examined the specific point estimates associated with each parameter. The accu-

racy of T̂ split  estimation was only slightly affected by the proportion of barriers and migration 

rate, closely approximating the simulated value irrespective of the demographic model (Figure 

S2). Similar patterns were observed for T̂ SC  and T̂ AM  (Figure S3). As T split increased, esti-

mates of current population sizes N̂ 1  and N̂ 2  improved, approaching simulated values when

T split  reached 1.10⁵ generations (Figure S4). Estimates of past population size N̂ A is theoreti-

cally possible if TMRCA≈4N e  (with TMRCA  the coalescent time of the Most Recent Common An-

cestor), if not, all individuals coalesce before T split  so that no signal is available for N̂ A . In our 

case, TMRCA≈4N e=2 .10⁵  generations, and N̂ A  deteriorated beyond this value, converging 

towards the prior mean (Figure S4). Current migration estimates ( M̂ curr ) were more reliable than

ancestral migration ones ( M̂ anc ). The proportion of barriers had minimal impact on M̂ curr , un-

der SC and IM models. Deeper T split  resulted in greater migration signal and therefore improved
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the accuracy of M̂ curr  (Figure S5 & Figure S7 left). In contrast, T split  had no clear effect on

M̂ anc  (Figure S6 & Figure S7).

Inferences of barrier proportion 
The barrier proportion estimate, Q̂ , plays a crucial role in the computation of Bayes fac-

tors (Eq 2) and the detection of barrier loci. We obtained reliable estimates of the barrier propor-

tion, Q̂ , when there was current migration (IM and SC models) and when T split  exceeded 1.10⁵

generations (Figure 4 & S8). For more recent Tsplit (< 0.2 2Ne generations, approximately), Q̂

was not properly estimated and converged to the prior mean, indicating that RIDGE lacks power 

to discriminate between barrier and non-barrier loci. When there was only ancestral migration 

(AM model), Q̂  was not reliable whatever the conditions, except for both high migration rate and

divergence time. Under the SI model, for which the proportion of barriers has no significance, the

estimates corresponded to the prior mean. The Q  parameter had a minimal impact on the total 

effective migration rate, as shown in Figure S7 and S8, and was therefore expected to exhibit a 

weak correlation with the genome-wide level of genetic differentiation/divergence between popu-

lations, as measured by statistics such as FST, Da, and Dxy. We therefore introduced additional 

summary statistics based on the proportions of outliers for FST, Da, Dxy, sf and π. To assess the 

usefulness of these new statistics, we compared Q̂  estimated with or without them. Overall, out-

lier statistics reduced estimation errors by 11%. They were particularly effective in improving Q̂  

under challenging conditions for barrier proportion estimation, such as when migration was low (

M⩽1 ) and the proportion of barriers was small Q⩽1% (Figure S9). The impact of outlier sta-

tistics varied across models and T split  values. Under the AM model, Da outliers positively corre-

lated with Q̂ (pearson r > 0.56), while under the IM model sf outliers exhibited a positive correla-
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tion with Q̂ (r > 0.77). For the SC model, correlations between outliers statistics and Q̂  highly 

depend on divergence time (Table S4). For the recent time split, there was a positive correlation 

with Dxy (0.68), for intermediate time splits there was a correlation with Da (>0.97), and for the 

oldest time split, there were positive correlations with FST, Da, and π (> 0.99, Table S4).

Detection of barrier loci
The parameter T split  plays a crucial role in detecting gene flow barriers. This is because 

the contrast between gene flow barriers and the rest of the genome increases with T split  as illus-

trated in Figure 5A. As T split  increased, the overlap between the space of summary statistics oc-

cupied by barrier and non-barrier loci decreased and correlated with the between corresponding 

BF distribution (Figure 5A & B). To quantify the discriminant power of RIDGE, we used the area 

under the curve (AUC) of the receiver operating characteristic (ROC), as depicted in Figure 5C. 

When T split  was low, the AUC remained close to 0.5, indicating no power to detect barriers. Our 

results on pseudo-observed data demonstrated that both the ability to detect barriers (measured 

by the AUC of the ROC) and the precision in barrier detection (measured by the PV/P ratio) in-

creased with T split (Figure 6). Moreover, barriers were more efficiently detected and at lower

T split  under current (IM and SC models) than ancestral gene flow (AM model) as shown in Fig-

ure S10 & S11. Noteworthy, in some instances, RIDGE failed to detect any barrier (e.g., when

T split=1 .10 ⁴ ), in agreement with AUC close to 0.5 (Figure S10). Nevertheless the AUC never 

dropped below 0.5, indicating that RIDGE did not generate an excess of false positives (Figure 

S10 & S11).
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Detection of barrier loci on crows datasets
Poelstra et al (2014) identified a highly divergent region on scaffolds 78 and 60, which con-

tained multiple genes identified through genomic scan, functional analysis, and differential ex-

pression. These genes are involved in the melanogenesis pathway and visual perception. This 

region was thus considered by the author as a "speciation island" allowing for the maintenance 

of phenotypic differences between crows based on color phenotypes and color-assortative mate 

choice.

We ran RIDGE on the same dataset using the same window size as in Poelstra et al 

(2014). Our analysis successfully fitted the observed data, with a goodness of fit indicated by 

Gpost = 0.67. The estimated value of T̂ split   in 2Ne generation is T̂ split /2 N̂ e=0.48 , indicating that 

we were within a favorable range for RIDGE to effectively detect gene flow barriers. The distribu-

tion of Bayes Factors (BF) was clearly bimodal with a distinct group of outliers ( BF>50 ), which 

accounted for 0.3% of the genome (Figure 7B). Interestingly, among these outlier loci, four genes

(CACNG1, CACNG4, PRKCA, and RSG9) were also found by Poelstra et al (2014) and located 

on scaffold 78 (Figure 7C). The probability of detecting the same four genes just by chance was 

low (p = 3.59 10-5).

We next applied RIDGE on a genome-wide dataset produced for three pairs of Corvus 

species that form hybrid zones (pair RX: C. corone - C. cornix; pair XO: C. cornix - C. orientalis; 

pair OP: C. orientalis - C. pectoralis) where current gene flow is detected (Vijay et al., 2016).

The goodness-of-fit of the demographic parameters inferred by RIDGE was similar across 

all three pairs (RX: 0.33; XO: 0.21; OP: 0.26). The ratio of T̂ split /2 N̂ e  was approximately 0.5 for 

all three pairs (RX: 0.63; XO: 0.54; OP: 0.53) (Table S5), suggesting a comfort zone for RIDGE 

to detect gene flow barriers in all three datasets. 
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PCA analyses colored by BF show a first group of outliers (characterized by elevated lev-

els of divergence, FST and Da, and reduced level of diversity in all four pairs, Figures 7, 8 & S12).

Those signals were consistent with theoretical expectations for gene flow barriers (i.e increased 

Dxy, Da, sf, FST, and reduced ss and diversity). A second group of outliers, present in RX and XO

pairs, displayed moderate increase in divergence but also in diversity and Tajima’s D, which cor-

responded to a more complex signature of gene flow barrier (Figure 8 & S12). In each pair, we 

identified a subset of loci with elevated Bayes factors ( BF>50 ) clearly separated from the 

genome-wide distribution (Figure 8C). These subsets detected on a per locus basis (RX: 4.7%; 

XO: 0.37%; OP: 0.30%), represented smaller proportions than the expected proportion estimated

in the general model Q̂  (RX: 4.9%; XO: 4.8%; OP: 5.3%) but still fell within the credibility inter-

vals (Figure 8B & Table S5).

We found significant overlap between our outliers and those of Vijay et al (2016) for the RX

and OP pairs (Figure 8A & B). For OP, however, common outliers were found exclusively in the 

first group of outliers, whereas for RX common loci were found in the first and second group of 

outliers. On average, the BF revealed various correlation patterns among the three pairs, ranging

from a clear correlation pattern with divergence statistics in the OP pair to a more blurred and 

complex pattern in the RX pair (Figure 9).

Discussion

A key goal of speciation research is to elucidate the genetic mechanisms behind reproduc-

tive isolation. Although diverging populations have been analyzed in many studies, a challenging 
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aspect remains the ability to capture the sequence of events that lead to the establishment of re-

productive barriers. To answer this question, one approach is to compare populations that exhibit

varying degrees of temporal and/or spatial divergence, including recently diverged ones. This re-

quires the use of a comparative framework capable of detecting barriers to gene flow at both 

early and ancient stages across diverse biological systems, independently of their demographic 

history. In this context, we introduce RIDGE, a tool designed to facilitate this task. 

RIDGE offers a comparative framework where current migration is well 
captured

Currently,  two methods explicitly model heterogeneity in the effective migration rate 

across the genome. Both tools utilize variations in effective population size to approximate selec-

tive effects along the genome. DILS (Fraïsse et al., 2021) uses an ABC framework under four 

demographic models of divergence (SI, IM, SC, AM) to assess alternative models of effective mi-

gration’s homogeneity/heterogeneity and provides corresponding genome-wide estimates. While 

not primarily designed to perform barrier detection, DILS can still provide valuable insights on po-

tential barrier loci, conditioned on the selected demographic model (Fraïsse et al., 2021). There 

are however two main limits to this approach. Firstly, selecting a model can be rather arbitrary 

when two models explain the data equally well, which is often the case when divergence is shal-

low between populations (as shown in Fraïsse et al (2021) and confirmed here, Figure 3). Sec-

ondly, the use of potentially different demographic models complicates comparison across 

species pairs. gIMbl (Laetsch et al., 2023) relies on composite likelihood to identify windows of 

unexpected level of effective migration along the genome, but only under the IM model, while 
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secondary contacts may be rather frequent in nature (ex: Leroy et al., 2020; Roux et al., 2013; 

Vijay et al., 2016) 

RIDGE builds on DILS, offering a high degree of model flexibility, while proposing a com-

parative framework. In order to do so, RIDGE employs a model averaging approach by assigning

weights to each demographic x genomic model without directing the user's choice towards a sin-

gle model. In addition, model averaging is also useful in reducing the uncertainty on parameter 

estimation when individual models present high variance (Dormann et al., 2018). Our results 

show that model averaging is especially relevant when data offers little discriminant power. For 

example, when T split  is low, the discriminatory power of summary statistics is reduced, resulting 

in similar assignation to all models (Figure 3). Opting for the best scenario under such conditions 

might be misleading. For example, at T split=0.1∗2N e , when current migration is simulated (IM 

or SC models), it is detected in only ~60% of the cases (Figure 3), thus potentially leading to the 

selection of the SI or AM models, thereby impeding the estimation of gene flow barriers. In con-

trast, the model averaging approach always provides an estimate of the proportion of gene flow 

barrier with a credibility interval, which can be large and include 0 when the statistical power is 

low. RIDGE thus allows for formal comparison of any datasets despite differences in demo-

graphic history and/or statistical power.

A direct consequence of using a demographic x genomic hypermodel is that RIDGE is not 

intended for precise estimation of a demographic model and its underlying parameters but rather 

to address demography as a confounding factor in the detection of gene flow barriers. High and 

stable values of goodness of fit across models and conditions indicate that we achieved this goal

(Figure 2 & S1) and more moderately for complex/real scenario as for crows datasets (Table S5) 
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where the goodness-of-fit is lower ( G post ~ 0.9 for simulated datasets,  G post ~ 0.25 for crows 

datasets). However, as expected, the accuracy of parameter estimation largely depends on the 

divergence time (Figure S4-S7). Similar to DILS (Fraïsse et al., 2021), the correct model's contri-

bution to parameter estimation and the detection of ongoing migration increases with divergence 

time (Figure 3). Overall, current migration is well captured, both in model weights and in parame-

ter estimation (Figure 3, Figure S5).

This is well illustrated with the analysis of the crow datasets. After the ice cap had re-

treated in Europe around 10,000 years ago (~ 2000 crow generation), the ancestors of remnant 

carrion (C. corone) and hooded crow (C. cornix) populations met in a secondary contact in Cen-

tral Europe, forming a narrow and stable hybrid zone (Knief et al., 2019; Metzler et al., 2021; 

Poelstra et al., 2014). Based on the sampling by Poelstra et al (2014), which covers a wide geo-

graphic area away from the central European hybrid zone, RIDGE favored the correct scenario, 

especially the occurrence of ongoing migration (model weight for SC = 48% and IM=41%) (Table

S6). With the hybrid zone-specific dataset (RX pair), RIDGE encountered more difficulty in distin-

guishing between IM and SC scenarios, with IM at 49% and SC at 48%, likely due to the high 

levels of gene flow within the hybrid zone, which may have blurred the evidence of ancestral iso-

lation to a greater extent than observed with the other sampling scheme (Poelstra et al., 2014) . 

Overall, in all four datasets the current status of migration has been correctly captured with ongo-

ing migration accounting for the majority of the model weight (RX: 94% ; XO: 86%; OP: 86%; 

(Poelstra et al., 2014) : 90%).

Informative summary statistics are highly context-dependent
One drawback of the ABC approach is that parameter inference relies on summary statis-

tics to capture the genomic signal. Historically, FST, a measure of relative divergence, has been 
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the most widely used statistic in genome scans (Wolf & Ellegren, 2017). To avoid the confound-

ing effect of reduced diversity in either of the compared populations due to other causes than 

barrier to migration (Cruickshank & Hahn, 2014; Ravinet et al., 2017), it is now common practice 

to combine it to absolute measure of divergence (Dxy) to other related statistics such as net di-

vergence (Da) or the number of fixed differences (sf) (Han et al., 2017; Hejase et al., 2020). 

Here, we devised a new set of summary statistics based on outlier detection, and proved them to

be useful for estimating barrier proportions. The reasoning was that loci showing local increase in

divergence (measured by FST, Dxy, Da, sf) and decrease in diversity would generate outliers in 

the genome wide divergence and diversity distributions. Our results show that outlier statistics 

mostly contribute to Q̂  under moderate gene flow ( M=1 ), and mainly for low level of barrier 

proportion ( Q<0.1 ) (Figure S9) where estimation of barrier proportion may be challenging. 

An important result of our study is that the set of summary statistics that effectively capture

the signal of barrier loci varies with the divergence and demographic history and with the sam-

pling scheme (Figure 9). In the OP and XO pairs, Bayes factor outliers are mainly captured by 

FST, ss and Da statistics (exposing FST and Da increase, ss reduction and also moderate reduc-

tion of diversity) with a stronger signal in OP than XO (Figure S12). For the remaining outliers in 

PO and XO and for all outliers in the RX pair, in addition to an expected increase in divergence, 

outliers show a moderate increase in diversity statistics, which is the genomic pattern theoreti-

cally expected for a gene flow barrier evolving under low-intensity divergent selection which gen-

erates an excess of maladaptive alleles and thus increases diversity (Sakamoto & Innan, 2019). 

Differences between correlation patterns between summary statistics and BF could reflect the 

difference in the environment in which incipient crows species evolved, but also the difference in 

the geographical area covered by the hybrid zone (Vijay et al., 2016).
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These examples illustrate that considering a few statistics in the detection of barrier loci 

can be misleading as signatures can be complex and context-dependent. It thus advocates for 

the use of a more inclusive approach as implemented in the BF derived from the random-forest-

based ABC approach of RIDGE. One contribution of the Random Forest (RF) is to reduce the 

curse of dimensionality (Bellman & Kalaba, 1959), which improves accuracy and computation 

time, RF also makes ABC a calibration-free problem by automating the inclusion of summary sta-

tistics (Raynal et al., 2019). In return, a possible drawback is that RF results are less inter-

pretable due to their complex nature. Indeed, even if the abcrf package provides a way to under-

stand the contribution of variables to parameters estimations, it still remains difficult to interpret 

the RF decision for a specific locus.

Detection of barrier loci using RIDGE: 
We validated the ability of RIDGE to detect gene flow barriers on empirical datasets from 

Poelstra et al (2014) and Vijay et al (2016). In particular, we clearly detected the large and well-

established region of scaffold 78 on chromosome 18. It contains major loci that are involved in 

mate choice patterns between C.corone and C.cornix (RX) (Knief et al., 2019; Metzler et al., 

2021; Poelstra et al., 2014). The study by (Vijay et al., 2016) was conducted on three species 

pairs that had similar demographic histories. For all three pairs of populations, we identified a 

portion of loci exhibiting elevated BF. We found significant overlap between our results and previ-

ously detected outliers for the RX and OP pairs. The overlap mainly corresponded to extreme 

outliers – characterized by highly divergent loci between species and reduced diversity. We also 

identified loci not previously detected (Vijay et al., 2016). Those likely corresponded to barriers 

evolving under low intensity divergent selection as they displayed both increased divergence and

diversity (Sakamoto & Innan, 2019). Conversely, barrier loci detected in Vijay et al (2016) but not
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with RIDGE display low diversity without distinctive divergence patterns. This observation can be

attributed to the confounding effect of the heterogeneity in Ne, not explicitly accounted for in Vijay

et al (2016) and which is a classic pitfall of FST scan approaches (Cruickshank & Hahn, 2014). 

The fact that RIDGE detected only a limited number of loci displaying such a pattern implies that 

it effectively circumvents this problem. For XO pair, due to its spatial range (three to seven times 

wider than the hybrid zone of RX pair), selection strength is reduced (Vijay et al., 2016), resulting

in candidate regions showing low-intensity divergence patterns in Vijay et al (2016) results simi-

larly to our results (Figure 8). Furthermore, since low signal can increase noise in detection re-

sults, we did not detect any direct overlap between the candidate XO gene from Vijay et al. 

(2016) and our results. However, when examining the regions surrounding the candidate gene, 

we observed common regions such as the gene LRP5, which was consistently present in XO 

and OP pairs in Vijay and was consistently located at a distance of 50-100 kb from an outlier lo-

cus in our results. 

Benefits of RIDGE and Guidelines for its use
RIDGE relies on an ABC approach that offers a lot of flexibility, enabling it to explore ge-

nomic heterogeneity and to incorporate customized summary statistics. We have also devised a 

method for generating multidimensional parameter estimates, extending beyond the initial single-

parameter focus of abcrf (Raynal et al., 2019). This improvement enables RIDGE to deal effec-

tively with parameter interdependencies and increase the precision of parameter estimations. 

Another improvement introduced by RIDGE is the incorporation of Bayes factors, facilitating re-

sult comparisons.

The simulated datasets we explored gave us guidelines for the conditions where RIDGE 

can provide useful and accurate results. We suggest to use datasets with SNP density higher 
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than 0.1%, such as in crows and simulated datasets, where the SNP density was around 1%. 

We also advise to use a minimum of three samples per population. The goodness-of-fit statistics 

enables users to check the quality of inferences made. If G post  < 5%, the user should verify the 

prior bounds. The guidelines for interpreting and thresholding BF depend on the user's goals. If 

RIDGE is used solely to discover new candidate genes involved in gene flow barriers for a spe-

cific population pair, we recommend using a customized threshold that optimally captures Bayes 

factor outliers. For the purpose of comparison, it is recommended to use a standard threshold for

all datasets, for example BF>100  or to keep the number of outlier loci corresponding to the 

proportion of barriers estimated in the first step of RIDGE ( Q̂ ). Crucially, genomic data alone 

cannot provide conclusive evidence of barrier loci and so RIDGE results should be coupled with 

other analysis such as functional analysis (Ravinet et al., 2017). It is worth noting that window 

length (default set to 10 kb) can significantly affect the results of RIDGE. It should be determined 

according to the extent of linkage disequilibrium as well as the level of diversity, since it deter-

mines the amount of polymorphism and consequently affects the strength of the signal.

As is the case with all ABC approaches, the quality of the priors given by the user affects 

the results obtained using RIDGE. A Tsplit of 0.1*2Ne generations (10,000 generations in our simu-

lations) appears to be a lower bound for both demography (Fig. 4 & 5) and barrier inferences 

(Fig. 6), below which RIDGE fails to capture informative signals. RIDGE can detect gene flow 

barriers on both simulated (Fig. 6) and empirical data (Fig. 7), starting at 0.1*2Ne generation, 

which represents a very low level of divergence. For context, DILS correctly inferred a gene flow 

barrier when T split>0.5  2Ne generations, while gIMbl demonstrated its effectiveness on one pair 
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of Heliconius species that diverged 4.5 million generations ago, estimated to represent 0.49 x 

2Ne generations (Martin et al., 2015).

Comparative approaches have been useful in understanding the genomic basis involved in

the process of reproductive isolation (e.g  (Roux et al., 2016)) and they will continue to play an 

important role in speciation research. By its flexibility and its comparative framework, RIDGE 

should become a useful tool to follow this direction. 
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Tables and Figures

Figure 1: Demographic models implemented in RIDGE. The hypermodel com-
bines all four demographic models considered: Strict Isolation (SI), Ancestral Migra-
tion (AM), Secondary contacts (SC) and Isolation-Migration (IM) plus genomic mod-
els. In the hypermodel, an ancestral population of effective size Na split at T split  in 
two populations of effective size N1 and N2 . At T AM ancestral migration ceases, and it
restarts at the time of secondary contact, T SC . M anc and M cur denote the ancestral 
and current migration rates between populations, respectively. To fit in the hyper-
model, each of the four demographic models adopt specific values for four of the pa-
rameters as indicated below each graph. For example, under SI, T AM is set to T split as
there is no ancestral migration, and T SC is set to 0 as there is no secondary contact, 
and so are M anc and M cur . Note that under IM, in order to model uninterrupted gene 
flow we considered T AM=T SC=K∗T split  where K is a random value drawn from a uni-
form distribution in [0,1].
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Figure 2: Evolution of the goodness-of-fit of the posteriors (Gpost) as a function 
of time split, for four demographic models. The rejection threshold of 5% (under 
which an inferred model is discarded) is represented by the gray zone. Average val-
ues over 100 replicates with error bars (standard deviation) are presented. The data 
used in this figure were obtained from pseudo-observed datasets simulated under 
the 2N2M model with migration set to 10 ( M=10 ) and a proportion barrier Q=10%
(except for SI, no migration and no barrier).
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Figure 3: Demographic x genomic model weights in posteriors across time 
splits. Weight was measured by considering four criteria: i) the average joint weight 
of the true demographic (among the fours) model –called here the “correct” model– 
in posteriors, ii) the average joint weight of 2M models, iii) the average weight of 2N 
models, iv) and the average weight of models displaying ongoing (current) migration.
Proportion of accurate model predictions are shown in dark colors. As an example, 
for a time split of 10⁶, an average weight of 0 for ongoing migration under the SI 
model signifies that across 100 replicates, simulations under ongoing migration rep-
resent 0% of the posteriors and so did not contribute to parameter estimation. All 
models were simulated under 2N2M, and M curr or M anc=10
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Figure 4: Barrier proportion estimates as a function of divergence time under 
three demographic models. In this figure, migration is set to M=10 and the plain 
black line represents the priors mean. Each data point represents the average value 
over 100 replicates with standard deviation as error bars. Results overall conditions 
explored are represented in Figure S8.
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Figure 5: Impact of the divergence time on the overlap between barrier and 
non-barrier loci . Overlap revealed by a principal component analysis (PCA) com-
puted on all 14 summary statistics (A), the log of the bayes factor (BF) produced by 
RIDGE (B) and the area under the ROC curve (AUC) of the bayes factor (C). The 
greater the AUC the higher the discriminant power is . A single pseudo-observed 
dataset was used for each of the three values of T split . Datasets were simulated un-
der an IM 2M2N model, with the following parameters: M=10 , and Q=0.1 .
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Figure 6: Ability and precision in the detection of barrier loci as a function of 
divergence time and migration. Ability is measured by the AUC of the ROC (A) and 
precision by TP/P  (B). Considering a proportion of barrier Q̂, barrier loci are those 
displaying a Bayes factor superior to the quantile at 1−Q̂. Each data point represents
the average value over 100 replicates with standard deviation as error bars. Simula-
tions were performed under an IM 2M2N modelwith Q=0.1
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Figure 7: Results of the analysis conducted using RIDGE on the crow hybrid 
zone between carrion and hooded crows. PCA plot of the summary statistics (only 4 
of 14 summary statistics are represented), where each point represents a locus and 
is color-coded based on its corresponding Bayes factor value (A) . Distribution of 
Bayes factors across the genome (B). Genomic landscape of scaffold 78 and 60 
through bayes factor, FST, shared polymorphism (ss) and diversity (π) (C). Data are 
from (Poelstra et al., 2014)
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Figure 8: Barrier loci detection by RIDGE on three crow hybrid zones. PCA 
computed on summary statistics obtained from 50kb-windows along genomes with 
axes 1 and 2 (A) and 1 and 3 (B) displayed. Datapoints (windows) are colored ac-
cording to the values of Bayes factors. Black diamonds represent loci detected in (Vi-
jay et al., 2016), violet diamonds indicate loci detected by RIDGE that exceeded the 
population-specific Bayes factor threshold, and red diamonds represent loci detected
both in (Vijay et al., 2016) and RIDGE. Distribution of Bayes factor values for each 
species pair (C). The histogram inside the figure shows the Bayes factor distribution 
of detected loci, which are the loci exceeding the population-specific Bayes factor 
threshold indicated by the violet dashed line. Black dashed line indicate the Bayes 
factor threshold based on the estimated barrier proportion Q̂. Data are from (Vijay et 
al., 2016).
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Figure 9: Pearson correlation between RIDGE Bayes factor and summary sta-
tistics used in the gene flow barrier detection for the three hybrid zones. Colors cor-
respond to the values of correlations while circle size reflects the absolute values. 
Data are from (Vijay et al., 2016).
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